summaryrefslogtreecommitdiff
path: root/kernel/printk/printk.c (plain)
blob: b67e84cfd085c8cee1e7fd352ef9df404f3180e4
1/*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/tty.h>
22#include <linux/tty_driver.h>
23#include <linux/console.h>
24#include <linux/init.h>
25#include <linux/jiffies.h>
26#include <linux/nmi.h>
27#include <linux/module.h>
28#include <linux/moduleparam.h>
29#include <linux/delay.h>
30#include <linux/smp.h>
31#include <linux/security.h>
32#include <linux/bootmem.h>
33#include <linux/memblock.h>
34#include <linux/syscalls.h>
35#include <linux/kexec.h>
36#include <linux/kdb.h>
37#include <linux/ratelimit.h>
38#include <linux/kmsg_dump.h>
39#include <linux/syslog.h>
40#include <linux/cpu.h>
41#include <linux/notifier.h>
42#include <linux/rculist.h>
43#include <linux/poll.h>
44#include <linux/irq_work.h>
45#include <linux/utsname.h>
46#include <linux/ctype.h>
47#include <linux/uio.h>
48
49#include <asm/uaccess.h>
50#include <asm/sections.h>
51
52#define CREATE_TRACE_POINTS
53#include <trace/events/printk.h>
54
55#include "console_cmdline.h"
56#include "braille.h"
57#include "internal.h"
58
59#ifdef CONFIG_EARLY_PRINTK_DIRECT
60extern void printascii(char *);
61#endif
62
63int console_printk[4] = {
64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
68};
69
70/*
71 * Low level drivers may need that to know if they can schedule in
72 * their unblank() callback or not. So let's export it.
73 */
74int oops_in_progress;
75EXPORT_SYMBOL(oops_in_progress);
76
77/*
78 * console_sem protects the console_drivers list, and also
79 * provides serialisation for access to the entire console
80 * driver system.
81 */
82static DEFINE_SEMAPHORE(console_sem);
83struct console *console_drivers;
84EXPORT_SYMBOL_GPL(console_drivers);
85
86#ifdef CONFIG_LOCKDEP
87static struct lockdep_map console_lock_dep_map = {
88 .name = "console_lock"
89};
90#endif
91
92enum devkmsg_log_bits {
93 __DEVKMSG_LOG_BIT_ON = 0,
94 __DEVKMSG_LOG_BIT_OFF,
95 __DEVKMSG_LOG_BIT_LOCK,
96};
97
98enum devkmsg_log_masks {
99 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
100 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
101 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
102};
103
104/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
105#define DEVKMSG_LOG_MASK_DEFAULT 0
106
107static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
108
109static int __control_devkmsg(char *str)
110{
111 if (!str)
112 return -EINVAL;
113
114 if (!strncmp(str, "on", 2)) {
115 devkmsg_log = DEVKMSG_LOG_MASK_ON;
116 return 2;
117 } else if (!strncmp(str, "off", 3)) {
118 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
119 return 3;
120 } else if (!strncmp(str, "ratelimit", 9)) {
121 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
122 return 9;
123 }
124 return -EINVAL;
125}
126
127static int __init control_devkmsg(char *str)
128{
129 if (__control_devkmsg(str) < 0)
130 return 1;
131
132 /*
133 * Set sysctl string accordingly:
134 */
135 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
136 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
137 strncpy(devkmsg_log_str, "on", 2);
138 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
139 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
140 strncpy(devkmsg_log_str, "off", 3);
141 }
142 /* else "ratelimit" which is set by default. */
143
144 /*
145 * Sysctl cannot change it anymore. The kernel command line setting of
146 * this parameter is to force the setting to be permanent throughout the
147 * runtime of the system. This is a precation measure against userspace
148 * trying to be a smarta** and attempting to change it up on us.
149 */
150 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
151
152 return 0;
153}
154__setup("printk.devkmsg=", control_devkmsg);
155
156char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
157
158int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
159 void __user *buffer, size_t *lenp, loff_t *ppos)
160{
161 char old_str[DEVKMSG_STR_MAX_SIZE];
162 unsigned int old;
163 int err;
164
165 if (write) {
166 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
167 return -EINVAL;
168
169 old = devkmsg_log;
170 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
171 }
172
173 err = proc_dostring(table, write, buffer, lenp, ppos);
174 if (err)
175 return err;
176
177 if (write) {
178 err = __control_devkmsg(devkmsg_log_str);
179
180 /*
181 * Do not accept an unknown string OR a known string with
182 * trailing crap...
183 */
184 if (err < 0 || (err + 1 != *lenp)) {
185
186 /* ... and restore old setting. */
187 devkmsg_log = old;
188 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
189
190 return -EINVAL;
191 }
192 }
193
194 return 0;
195}
196
197/*
198 * Number of registered extended console drivers.
199 *
200 * If extended consoles are present, in-kernel cont reassembly is disabled
201 * and each fragment is stored as a separate log entry with proper
202 * continuation flag so that every emitted message has full metadata. This
203 * doesn't change the result for regular consoles or /proc/kmsg. For
204 * /dev/kmsg, as long as the reader concatenates messages according to
205 * consecutive continuation flags, the end result should be the same too.
206 */
207static int nr_ext_console_drivers;
208
209/*
210 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
211 * macros instead of functions so that _RET_IP_ contains useful information.
212 */
213#define down_console_sem() do { \
214 down(&console_sem);\
215 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
216} while (0)
217
218static int __down_trylock_console_sem(unsigned long ip)
219{
220 if (down_trylock(&console_sem))
221 return 1;
222 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
223 return 0;
224}
225#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
226
227#define up_console_sem() do { \
228 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
229 up(&console_sem);\
230} while (0)
231
232/*
233 * This is used for debugging the mess that is the VT code by
234 * keeping track if we have the console semaphore held. It's
235 * definitely not the perfect debug tool (we don't know if _WE_
236 * hold it and are racing, but it helps tracking those weird code
237 * paths in the console code where we end up in places I want
238 * locked without the console sempahore held).
239 */
240static int console_locked, console_suspended;
241
242/*
243 * If exclusive_console is non-NULL then only this console is to be printed to.
244 */
245static struct console *exclusive_console;
246
247/*
248 * Array of consoles built from command line options (console=)
249 */
250
251#define MAX_CMDLINECONSOLES 8
252
253static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
254
255static int selected_console = -1;
256static int preferred_console = -1;
257int console_set_on_cmdline;
258EXPORT_SYMBOL(console_set_on_cmdline);
259
260/* Flag: console code may call schedule() */
261static int console_may_schedule;
262
263/*
264 * The printk log buffer consists of a chain of concatenated variable
265 * length records. Every record starts with a record header, containing
266 * the overall length of the record.
267 *
268 * The heads to the first and last entry in the buffer, as well as the
269 * sequence numbers of these entries are maintained when messages are
270 * stored.
271 *
272 * If the heads indicate available messages, the length in the header
273 * tells the start next message. A length == 0 for the next message
274 * indicates a wrap-around to the beginning of the buffer.
275 *
276 * Every record carries the monotonic timestamp in microseconds, as well as
277 * the standard userspace syslog level and syslog facility. The usual
278 * kernel messages use LOG_KERN; userspace-injected messages always carry
279 * a matching syslog facility, by default LOG_USER. The origin of every
280 * message can be reliably determined that way.
281 *
282 * The human readable log message directly follows the message header. The
283 * length of the message text is stored in the header, the stored message
284 * is not terminated.
285 *
286 * Optionally, a message can carry a dictionary of properties (key/value pairs),
287 * to provide userspace with a machine-readable message context.
288 *
289 * Examples for well-defined, commonly used property names are:
290 * DEVICE=b12:8 device identifier
291 * b12:8 block dev_t
292 * c127:3 char dev_t
293 * n8 netdev ifindex
294 * +sound:card0 subsystem:devname
295 * SUBSYSTEM=pci driver-core subsystem name
296 *
297 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
298 * follows directly after a '=' character. Every property is terminated by
299 * a '\0' character. The last property is not terminated.
300 *
301 * Example of a message structure:
302 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
303 * 0008 34 00 record is 52 bytes long
304 * 000a 0b 00 text is 11 bytes long
305 * 000c 1f 00 dictionary is 23 bytes long
306 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
307 * 0010 69 74 27 73 20 61 20 6c "it's a l"
308 * 69 6e 65 "ine"
309 * 001b 44 45 56 49 43 "DEVIC"
310 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
311 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
312 * 67 "g"
313 * 0032 00 00 00 padding to next message header
314 *
315 * The 'struct printk_log' buffer header must never be directly exported to
316 * userspace, it is a kernel-private implementation detail that might
317 * need to be changed in the future, when the requirements change.
318 *
319 * /dev/kmsg exports the structured data in the following line format:
320 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
321 *
322 * Users of the export format should ignore possible additional values
323 * separated by ',', and find the message after the ';' character.
324 *
325 * The optional key/value pairs are attached as continuation lines starting
326 * with a space character and terminated by a newline. All possible
327 * non-prinatable characters are escaped in the "\xff" notation.
328 */
329
330enum log_flags {
331 LOG_NOCONS = 1, /* already flushed, do not print to console */
332 LOG_NEWLINE = 2, /* text ended with a newline */
333 LOG_PREFIX = 4, /* text started with a prefix */
334 LOG_CONT = 8, /* text is a fragment of a continuation line */
335};
336
337struct printk_log {
338 u64 ts_nsec; /* timestamp in nanoseconds */
339 u16 len; /* length of entire record */
340 u16 text_len; /* length of text buffer */
341 u16 dict_len; /* length of dictionary buffer */
342 u8 facility; /* syslog facility */
343 u8 flags:5; /* internal record flags */
344 u8 level:3; /* syslog level */
345#ifdef CONFIG_AMLOGIC_DRIVER
346 int cpu;
347#endif
348}
349#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
350__packed __aligned(4)
351#endif
352;
353
354/*
355 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
356 * within the scheduler's rq lock. It must be released before calling
357 * console_unlock() or anything else that might wake up a process.
358 */
359DEFINE_RAW_SPINLOCK(logbuf_lock);
360
361#ifdef CONFIG_PRINTK
362DECLARE_WAIT_QUEUE_HEAD(log_wait);
363#ifdef CONFIG_AMLOGIC_DRIVER
364static int current_cpu;
365#endif
366/* the next printk record to read by syslog(READ) or /proc/kmsg */
367static u64 syslog_seq;
368static u32 syslog_idx;
369static enum log_flags syslog_prev;
370static size_t syslog_partial;
371
372/* index and sequence number of the first record stored in the buffer */
373static u64 log_first_seq;
374static u32 log_first_idx;
375
376/* index and sequence number of the next record to store in the buffer */
377static u64 log_next_seq;
378static u32 log_next_idx;
379
380/* the next printk record to write to the console */
381static u64 console_seq;
382static u32 console_idx;
383static enum log_flags console_prev;
384
385/* the next printk record to read after the last 'clear' command */
386static u64 clear_seq;
387static u32 clear_idx;
388
389#define PREFIX_MAX 32
390#define LOG_LINE_MAX (1024 - PREFIX_MAX)
391
392#define LOG_LEVEL(v) ((v) & 0x07)
393#define LOG_FACILITY(v) ((v) >> 3 & 0xff)
394
395/* record buffer */
396#define LOG_ALIGN __alignof__(struct printk_log)
397#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
398static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
399static char *log_buf = __log_buf;
400static u32 log_buf_len = __LOG_BUF_LEN;
401
402/* Return log buffer address */
403char *log_buf_addr_get(void)
404{
405 return log_buf;
406}
407
408/* Return log buffer size */
409u32 log_buf_len_get(void)
410{
411 return log_buf_len;
412}
413
414/* human readable text of the record */
415static char *log_text(const struct printk_log *msg)
416{
417 return (char *)msg + sizeof(struct printk_log);
418}
419
420/* optional key/value pair dictionary attached to the record */
421static char *log_dict(const struct printk_log *msg)
422{
423 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
424}
425
426/* get record by index; idx must point to valid msg */
427static struct printk_log *log_from_idx(u32 idx)
428{
429 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
430
431 /*
432 * A length == 0 record is the end of buffer marker. Wrap around and
433 * read the message at the start of the buffer.
434 */
435 if (!msg->len)
436 return (struct printk_log *)log_buf;
437 return msg;
438}
439
440/* get next record; idx must point to valid msg */
441static u32 log_next(u32 idx)
442{
443 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
444
445 /* length == 0 indicates the end of the buffer; wrap */
446 /*
447 * A length == 0 record is the end of buffer marker. Wrap around and
448 * read the message at the start of the buffer as *this* one, and
449 * return the one after that.
450 */
451 if (!msg->len) {
452 msg = (struct printk_log *)log_buf;
453 return msg->len;
454 }
455 return idx + msg->len;
456}
457
458/*
459 * Check whether there is enough free space for the given message.
460 *
461 * The same values of first_idx and next_idx mean that the buffer
462 * is either empty or full.
463 *
464 * If the buffer is empty, we must respect the position of the indexes.
465 * They cannot be reset to the beginning of the buffer.
466 */
467static int logbuf_has_space(u32 msg_size, bool empty)
468{
469 u32 free;
470
471 if (log_next_idx > log_first_idx || empty)
472 free = max(log_buf_len - log_next_idx, log_first_idx);
473 else
474 free = log_first_idx - log_next_idx;
475
476 /*
477 * We need space also for an empty header that signalizes wrapping
478 * of the buffer.
479 */
480 return free >= msg_size + sizeof(struct printk_log);
481}
482
483static int log_make_free_space(u32 msg_size)
484{
485 while (log_first_seq < log_next_seq &&
486 !logbuf_has_space(msg_size, false)) {
487 /* drop old messages until we have enough contiguous space */
488 log_first_idx = log_next(log_first_idx);
489 log_first_seq++;
490 }
491
492 if (clear_seq < log_first_seq) {
493 clear_seq = log_first_seq;
494 clear_idx = log_first_idx;
495 }
496
497 /* sequence numbers are equal, so the log buffer is empty */
498 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
499 return 0;
500
501 return -ENOMEM;
502}
503
504/* compute the message size including the padding bytes */
505static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
506{
507 u32 size;
508
509 size = sizeof(struct printk_log) + text_len + dict_len;
510 *pad_len = (-size) & (LOG_ALIGN - 1);
511 size += *pad_len;
512
513 return size;
514}
515
516/*
517 * Define how much of the log buffer we could take at maximum. The value
518 * must be greater than two. Note that only half of the buffer is available
519 * when the index points to the middle.
520 */
521#define MAX_LOG_TAKE_PART 4
522static const char trunc_msg[] = "<truncated>";
523
524static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
525 u16 *dict_len, u32 *pad_len)
526{
527 /*
528 * The message should not take the whole buffer. Otherwise, it might
529 * get removed too soon.
530 */
531 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
532 if (*text_len > max_text_len)
533 *text_len = max_text_len;
534 /* enable the warning message */
535 *trunc_msg_len = strlen(trunc_msg);
536 /* disable the "dict" completely */
537 *dict_len = 0;
538 /* compute the size again, count also the warning message */
539 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
540}
541
542/* insert record into the buffer, discard old ones, update heads */
543static int log_store(int facility, int level,
544 enum log_flags flags, u64 ts_nsec,
545 const char *dict, u16 dict_len,
546 const char *text, u16 text_len)
547{
548 struct printk_log *msg;
549 u32 size, pad_len;
550 u16 trunc_msg_len = 0;
551
552 /* number of '\0' padding bytes to next message */
553 size = msg_used_size(text_len, dict_len, &pad_len);
554
555 if (log_make_free_space(size)) {
556 /* truncate the message if it is too long for empty buffer */
557 size = truncate_msg(&text_len, &trunc_msg_len,
558 &dict_len, &pad_len);
559 /* survive when the log buffer is too small for trunc_msg */
560 if (log_make_free_space(size))
561 return 0;
562 }
563
564 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
565 /*
566 * This message + an additional empty header does not fit
567 * at the end of the buffer. Add an empty header with len == 0
568 * to signify a wrap around.
569 */
570 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
571 log_next_idx = 0;
572 }
573
574 /* fill message */
575 msg = (struct printk_log *)(log_buf + log_next_idx);
576 memcpy(log_text(msg), text, text_len);
577 msg->text_len = text_len;
578 if (trunc_msg_len) {
579 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
580 msg->text_len += trunc_msg_len;
581 }
582 memcpy(log_dict(msg), dict, dict_len);
583 msg->dict_len = dict_len;
584 msg->facility = facility;
585 msg->level = level & 7;
586 msg->flags = flags & 0x1f;
587#ifdef CONFIG_AMLOGIC_DRIVER
588 msg->cpu = smp_processor_id();
589#endif
590 if (ts_nsec > 0)
591 msg->ts_nsec = ts_nsec;
592 else
593 msg->ts_nsec = local_clock();
594 memset(log_dict(msg) + dict_len, 0, pad_len);
595 msg->len = size;
596
597 /* insert message */
598 log_next_idx += msg->len;
599 log_next_seq++;
600
601 return msg->text_len;
602}
603
604int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
605
606static int syslog_action_restricted(int type)
607{
608 if (dmesg_restrict)
609 return 1;
610 /*
611 * Unless restricted, we allow "read all" and "get buffer size"
612 * for everybody.
613 */
614 return type != SYSLOG_ACTION_READ_ALL &&
615 type != SYSLOG_ACTION_SIZE_BUFFER;
616}
617
618static int check_syslog_permissions(int type, int source)
619{
620 /*
621 * If this is from /proc/kmsg and we've already opened it, then we've
622 * already done the capabilities checks at open time.
623 */
624 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
625 goto ok;
626
627 if (syslog_action_restricted(type)) {
628 if (capable(CAP_SYSLOG))
629 goto ok;
630 /*
631 * For historical reasons, accept CAP_SYS_ADMIN too, with
632 * a warning.
633 */
634 if (capable(CAP_SYS_ADMIN)) {
635 pr_warn_once("%s (%d): Attempt to access syslog with "
636 "CAP_SYS_ADMIN but no CAP_SYSLOG "
637 "(deprecated).\n",
638 current->comm, task_pid_nr(current));
639 goto ok;
640 }
641 return -EPERM;
642 }
643ok:
644 return security_syslog(type);
645}
646
647static void append_char(char **pp, char *e, char c)
648{
649 if (*pp < e)
650 *(*pp)++ = c;
651}
652
653static ssize_t msg_print_ext_header(char *buf, size_t size,
654 struct printk_log *msg, u64 seq,
655 enum log_flags prev_flags)
656{
657 u64 ts_usec = msg->ts_nsec;
658 char cont = '-';
659
660 do_div(ts_usec, 1000);
661
662 /*
663 * If we couldn't merge continuation line fragments during the print,
664 * export the stored flags to allow an optional external merge of the
665 * records. Merging the records isn't always neccessarily correct, like
666 * when we hit a race during printing. In most cases though, it produces
667 * better readable output. 'c' in the record flags mark the first
668 * fragment of a line, '+' the following.
669 */
670 if (msg->flags & LOG_CONT)
671 cont = (prev_flags & LOG_CONT) ? '+' : 'c';
672
673 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
674 (msg->facility << 3) | msg->level, seq, ts_usec, cont);
675}
676
677static ssize_t msg_print_ext_body(char *buf, size_t size,
678 char *dict, size_t dict_len,
679 char *text, size_t text_len)
680{
681 char *p = buf, *e = buf + size;
682 size_t i;
683
684 /* escape non-printable characters */
685 for (i = 0; i < text_len; i++) {
686 unsigned char c = text[i];
687
688 if (c < ' ' || c >= 127 || c == '\\')
689 p += scnprintf(p, e - p, "\\x%02x", c);
690 else
691 append_char(&p, e, c);
692 }
693 append_char(&p, e, '\n');
694
695 if (dict_len) {
696 bool line = true;
697
698 for (i = 0; i < dict_len; i++) {
699 unsigned char c = dict[i];
700
701 if (line) {
702 append_char(&p, e, ' ');
703 line = false;
704 }
705
706 if (c == '\0') {
707 append_char(&p, e, '\n');
708 line = true;
709 continue;
710 }
711
712 if (c < ' ' || c >= 127 || c == '\\') {
713 p += scnprintf(p, e - p, "\\x%02x", c);
714 continue;
715 }
716
717 append_char(&p, e, c);
718 }
719 append_char(&p, e, '\n');
720 }
721
722 return p - buf;
723}
724
725/* /dev/kmsg - userspace message inject/listen interface */
726struct devkmsg_user {
727 u64 seq;
728 u32 idx;
729 enum log_flags prev;
730 struct ratelimit_state rs;
731 struct mutex lock;
732 char buf[CONSOLE_EXT_LOG_MAX];
733};
734
735static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
736{
737 char *buf, *line;
738 int level = default_message_loglevel;
739 int facility = 1; /* LOG_USER */
740 struct file *file = iocb->ki_filp;
741 struct devkmsg_user *user = file->private_data;
742 size_t len = iov_iter_count(from);
743 ssize_t ret = len;
744
745 if (!user || len > LOG_LINE_MAX)
746 return -EINVAL;
747
748 /* Ignore when user logging is disabled. */
749 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
750 return len;
751
752 /* Ratelimit when not explicitly enabled. */
753 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
754 if (!___ratelimit(&user->rs, current->comm))
755 return ret;
756 }
757
758 buf = kmalloc(len+1, GFP_KERNEL);
759 if (buf == NULL)
760 return -ENOMEM;
761
762 buf[len] = '\0';
763 if (copy_from_iter(buf, len, from) != len) {
764 kfree(buf);
765 return -EFAULT;
766 }
767
768 /*
769 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
770 * the decimal value represents 32bit, the lower 3 bit are the log
771 * level, the rest are the log facility.
772 *
773 * If no prefix or no userspace facility is specified, we
774 * enforce LOG_USER, to be able to reliably distinguish
775 * kernel-generated messages from userspace-injected ones.
776 */
777 line = buf;
778 if (line[0] == '<') {
779 char *endp = NULL;
780 unsigned int u;
781
782 u = simple_strtoul(line + 1, &endp, 10);
783 if (endp && endp[0] == '>') {
784 level = LOG_LEVEL(u);
785 if (LOG_FACILITY(u) != 0)
786 facility = LOG_FACILITY(u);
787 endp++;
788 len -= endp - line;
789 line = endp;
790 }
791 }
792
793 printk_emit(facility, level, NULL, 0, "%s", line);
794 kfree(buf);
795 return ret;
796}
797
798static ssize_t devkmsg_read(struct file *file, char __user *buf,
799 size_t count, loff_t *ppos)
800{
801 struct devkmsg_user *user = file->private_data;
802 struct printk_log *msg;
803 size_t len;
804 ssize_t ret;
805
806 if (!user)
807 return -EBADF;
808
809 ret = mutex_lock_interruptible(&user->lock);
810 if (ret)
811 return ret;
812 raw_spin_lock_irq(&logbuf_lock);
813 while (user->seq == log_next_seq) {
814 if (file->f_flags & O_NONBLOCK) {
815 ret = -EAGAIN;
816 raw_spin_unlock_irq(&logbuf_lock);
817 goto out;
818 }
819
820 raw_spin_unlock_irq(&logbuf_lock);
821 ret = wait_event_interruptible(log_wait,
822 user->seq != log_next_seq);
823 if (ret)
824 goto out;
825 raw_spin_lock_irq(&logbuf_lock);
826 }
827
828 if (user->seq < log_first_seq) {
829 /* our last seen message is gone, return error and reset */
830 user->idx = log_first_idx;
831 user->seq = log_first_seq;
832 ret = -EPIPE;
833 raw_spin_unlock_irq(&logbuf_lock);
834 goto out;
835 }
836
837 msg = log_from_idx(user->idx);
838 len = msg_print_ext_header(user->buf, sizeof(user->buf),
839 msg, user->seq, user->prev);
840 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
841 log_dict(msg), msg->dict_len,
842 log_text(msg), msg->text_len);
843
844 user->prev = msg->flags;
845 user->idx = log_next(user->idx);
846 user->seq++;
847 raw_spin_unlock_irq(&logbuf_lock);
848
849 if (len > count) {
850 ret = -EINVAL;
851 goto out;
852 }
853
854 if (copy_to_user(buf, user->buf, len)) {
855 ret = -EFAULT;
856 goto out;
857 }
858 ret = len;
859out:
860 mutex_unlock(&user->lock);
861 return ret;
862}
863
864static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
865{
866 struct devkmsg_user *user = file->private_data;
867 loff_t ret = 0;
868
869 if (!user)
870 return -EBADF;
871 if (offset)
872 return -ESPIPE;
873
874 raw_spin_lock_irq(&logbuf_lock);
875 switch (whence) {
876 case SEEK_SET:
877 /* the first record */
878 user->idx = log_first_idx;
879 user->seq = log_first_seq;
880 break;
881 case SEEK_DATA:
882 /*
883 * The first record after the last SYSLOG_ACTION_CLEAR,
884 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
885 * changes no global state, and does not clear anything.
886 */
887 user->idx = clear_idx;
888 user->seq = clear_seq;
889 break;
890 case SEEK_END:
891 /* after the last record */
892 user->idx = log_next_idx;
893 user->seq = log_next_seq;
894 break;
895 default:
896 ret = -EINVAL;
897 }
898 raw_spin_unlock_irq(&logbuf_lock);
899 return ret;
900}
901
902static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
903{
904 struct devkmsg_user *user = file->private_data;
905 int ret = 0;
906
907 if (!user)
908 return POLLERR|POLLNVAL;
909
910 poll_wait(file, &log_wait, wait);
911
912 raw_spin_lock_irq(&logbuf_lock);
913 if (user->seq < log_next_seq) {
914 /* return error when data has vanished underneath us */
915 if (user->seq < log_first_seq)
916 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
917 else
918 ret = POLLIN|POLLRDNORM;
919 }
920 raw_spin_unlock_irq(&logbuf_lock);
921
922 return ret;
923}
924
925static int devkmsg_open(struct inode *inode, struct file *file)
926{
927 struct devkmsg_user *user;
928 int err;
929
930 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
931 return -EPERM;
932
933 /* write-only does not need any file context */
934 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
935 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
936 SYSLOG_FROM_READER);
937 if (err)
938 return err;
939 }
940
941 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
942 if (!user)
943 return -ENOMEM;
944
945 ratelimit_default_init(&user->rs);
946 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
947
948 mutex_init(&user->lock);
949
950 raw_spin_lock_irq(&logbuf_lock);
951 user->idx = log_first_idx;
952 user->seq = log_first_seq;
953 raw_spin_unlock_irq(&logbuf_lock);
954
955 file->private_data = user;
956 return 0;
957}
958
959static int devkmsg_release(struct inode *inode, struct file *file)
960{
961 struct devkmsg_user *user = file->private_data;
962
963 if (!user)
964 return 0;
965
966 ratelimit_state_exit(&user->rs);
967
968 mutex_destroy(&user->lock);
969 kfree(user);
970 return 0;
971}
972
973const struct file_operations kmsg_fops = {
974 .open = devkmsg_open,
975 .read = devkmsg_read,
976 .write_iter = devkmsg_write,
977 .llseek = devkmsg_llseek,
978 .poll = devkmsg_poll,
979 .release = devkmsg_release,
980};
981
982#ifdef CONFIG_KEXEC_CORE
983/*
984 * This appends the listed symbols to /proc/vmcore
985 *
986 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
987 * obtain access to symbols that are otherwise very difficult to locate. These
988 * symbols are specifically used so that utilities can access and extract the
989 * dmesg log from a vmcore file after a crash.
990 */
991void log_buf_kexec_setup(void)
992{
993 VMCOREINFO_SYMBOL(log_buf);
994 VMCOREINFO_SYMBOL(log_buf_len);
995 VMCOREINFO_SYMBOL(log_first_idx);
996 VMCOREINFO_SYMBOL(clear_idx);
997 VMCOREINFO_SYMBOL(log_next_idx);
998 /*
999 * Export struct printk_log size and field offsets. User space tools can
1000 * parse it and detect any changes to structure down the line.
1001 */
1002 VMCOREINFO_STRUCT_SIZE(printk_log);
1003 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1004 VMCOREINFO_OFFSET(printk_log, len);
1005 VMCOREINFO_OFFSET(printk_log, text_len);
1006 VMCOREINFO_OFFSET(printk_log, dict_len);
1007}
1008#endif
1009
1010/* requested log_buf_len from kernel cmdline */
1011static unsigned long __initdata new_log_buf_len;
1012
1013/* we practice scaling the ring buffer by powers of 2 */
1014static void __init log_buf_len_update(unsigned size)
1015{
1016 if (size)
1017 size = roundup_pow_of_two(size);
1018 if (size > log_buf_len)
1019 new_log_buf_len = size;
1020}
1021
1022/* save requested log_buf_len since it's too early to process it */
1023static int __init log_buf_len_setup(char *str)
1024{
1025 unsigned size = memparse(str, &str);
1026
1027 log_buf_len_update(size);
1028
1029 return 0;
1030}
1031early_param("log_buf_len", log_buf_len_setup);
1032
1033#ifdef CONFIG_SMP
1034#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1035
1036static void __init log_buf_add_cpu(void)
1037{
1038 unsigned int cpu_extra;
1039
1040 /*
1041 * archs should set up cpu_possible_bits properly with
1042 * set_cpu_possible() after setup_arch() but just in
1043 * case lets ensure this is valid.
1044 */
1045 if (num_possible_cpus() == 1)
1046 return;
1047
1048 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1049
1050 /* by default this will only continue through for large > 64 CPUs */
1051 if (cpu_extra <= __LOG_BUF_LEN / 2)
1052 return;
1053
1054 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1055 __LOG_CPU_MAX_BUF_LEN);
1056 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1057 cpu_extra);
1058 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1059
1060 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1061}
1062#else /* !CONFIG_SMP */
1063static inline void log_buf_add_cpu(void) {}
1064#endif /* CONFIG_SMP */
1065
1066void __init setup_log_buf(int early)
1067{
1068 unsigned long flags;
1069 char *new_log_buf;
1070 int free;
1071
1072 if (log_buf != __log_buf)
1073 return;
1074
1075 if (!early && !new_log_buf_len)
1076 log_buf_add_cpu();
1077
1078 if (!new_log_buf_len)
1079 return;
1080
1081 if (early) {
1082 new_log_buf =
1083 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1084 } else {
1085 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1086 LOG_ALIGN);
1087 }
1088
1089 if (unlikely(!new_log_buf)) {
1090 pr_err("log_buf_len: %ld bytes not available\n",
1091 new_log_buf_len);
1092 return;
1093 }
1094
1095 raw_spin_lock_irqsave(&logbuf_lock, flags);
1096 log_buf_len = new_log_buf_len;
1097 log_buf = new_log_buf;
1098 new_log_buf_len = 0;
1099 free = __LOG_BUF_LEN - log_next_idx;
1100 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1101 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1102
1103 pr_info("log_buf_len: %d bytes\n", log_buf_len);
1104 pr_info("early log buf free: %d(%d%%)\n",
1105 free, (free * 100) / __LOG_BUF_LEN);
1106}
1107
1108static bool __read_mostly ignore_loglevel;
1109
1110static int __init ignore_loglevel_setup(char *str)
1111{
1112 ignore_loglevel = true;
1113 pr_info("debug: ignoring loglevel setting.\n");
1114
1115 return 0;
1116}
1117
1118early_param("ignore_loglevel", ignore_loglevel_setup);
1119module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1120MODULE_PARM_DESC(ignore_loglevel,
1121 "ignore loglevel setting (prints all kernel messages to the console)");
1122
1123static bool suppress_message_printing(int level)
1124{
1125 return (level >= console_loglevel && !ignore_loglevel);
1126}
1127
1128#ifdef CONFIG_BOOT_PRINTK_DELAY
1129
1130static int boot_delay; /* msecs delay after each printk during bootup */
1131static unsigned long long loops_per_msec; /* based on boot_delay */
1132
1133static int __init boot_delay_setup(char *str)
1134{
1135 unsigned long lpj;
1136
1137 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1138 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1139
1140 get_option(&str, &boot_delay);
1141 if (boot_delay > 10 * 1000)
1142 boot_delay = 0;
1143
1144 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1145 "HZ: %d, loops_per_msec: %llu\n",
1146 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1147 return 0;
1148}
1149early_param("boot_delay", boot_delay_setup);
1150
1151static void boot_delay_msec(int level)
1152{
1153 unsigned long long k;
1154 unsigned long timeout;
1155
1156 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1157 || suppress_message_printing(level)) {
1158 return;
1159 }
1160
1161 k = (unsigned long long)loops_per_msec * boot_delay;
1162
1163 timeout = jiffies + msecs_to_jiffies(boot_delay);
1164 while (k) {
1165 k--;
1166 cpu_relax();
1167 /*
1168 * use (volatile) jiffies to prevent
1169 * compiler reduction; loop termination via jiffies
1170 * is secondary and may or may not happen.
1171 */
1172 if (time_after(jiffies, timeout))
1173 break;
1174 touch_nmi_watchdog();
1175 }
1176}
1177#else
1178static inline void boot_delay_msec(int level)
1179{
1180}
1181#endif
1182
1183static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1184module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1185
1186static size_t print_time(u64 ts, char *buf)
1187{
1188 unsigned long rem_nsec;
1189
1190 if (!printk_time)
1191 return 0;
1192
1193 rem_nsec = do_div(ts, 1000000000);
1194
1195 if (!buf)
1196 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1197
1198#if defined(CONFIG_SMP) && defined(CONFIG_AMLOGIC_DRIVER)
1199 return sprintf(buf, "[%5lu.%06lu@%d] ",
1200 (unsigned long)ts, rem_nsec / 1000, current_cpu);
1201#else
1202 return sprintf(buf, "[%5lu.%06lu] ",
1203 (unsigned long)ts, rem_nsec / 1000);
1204#endif
1205}
1206
1207static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1208{
1209 size_t len = 0;
1210 unsigned int prefix = (msg->facility << 3) | msg->level;
1211
1212 if (syslog) {
1213 if (buf) {
1214 len += sprintf(buf, "<%u>", prefix);
1215 } else {
1216 len += 3;
1217 if (prefix > 999)
1218 len += 3;
1219 else if (prefix > 99)
1220 len += 2;
1221 else if (prefix > 9)
1222 len++;
1223 }
1224 }
1225#ifdef CONFIG_AMLOGIC_DRIVER
1226 current_cpu = msg->cpu;
1227#endif
1228 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1229 return len;
1230}
1231
1232static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1233 bool syslog, char *buf, size_t size)
1234{
1235 const char *text = log_text(msg);
1236 size_t text_size = msg->text_len;
1237 bool prefix = true;
1238 bool newline = true;
1239 size_t len = 0;
1240
1241 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1242 prefix = false;
1243
1244 if (msg->flags & LOG_CONT) {
1245 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1246 prefix = false;
1247
1248 if (!(msg->flags & LOG_NEWLINE))
1249 newline = false;
1250 }
1251
1252 do {
1253 const char *next = memchr(text, '\n', text_size);
1254 size_t text_len;
1255
1256 if (next) {
1257 text_len = next - text;
1258 next++;
1259 text_size -= next - text;
1260 } else {
1261 text_len = text_size;
1262 }
1263
1264 if (buf) {
1265 if (print_prefix(msg, syslog, NULL) +
1266 text_len + 1 >= size - len)
1267 break;
1268
1269 if (prefix)
1270 len += print_prefix(msg, syslog, buf + len);
1271 memcpy(buf + len, text, text_len);
1272 len += text_len;
1273 if (next || newline)
1274 buf[len++] = '\n';
1275 } else {
1276 /* SYSLOG_ACTION_* buffer size only calculation */
1277 if (prefix)
1278 len += print_prefix(msg, syslog, NULL);
1279 len += text_len;
1280 if (next || newline)
1281 len++;
1282 }
1283
1284 prefix = true;
1285 text = next;
1286 } while (text);
1287
1288 return len;
1289}
1290
1291static int syslog_print(char __user *buf, int size)
1292{
1293 char *text;
1294 struct printk_log *msg;
1295 int len = 0;
1296
1297 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1298 if (!text)
1299 return -ENOMEM;
1300
1301 while (size > 0) {
1302 size_t n;
1303 size_t skip;
1304
1305 raw_spin_lock_irq(&logbuf_lock);
1306 if (syslog_seq < log_first_seq) {
1307 /* messages are gone, move to first one */
1308 syslog_seq = log_first_seq;
1309 syslog_idx = log_first_idx;
1310 syslog_prev = 0;
1311 syslog_partial = 0;
1312 }
1313 if (syslog_seq == log_next_seq) {
1314 raw_spin_unlock_irq(&logbuf_lock);
1315 break;
1316 }
1317
1318 skip = syslog_partial;
1319 msg = log_from_idx(syslog_idx);
1320 n = msg_print_text(msg, syslog_prev, true, text,
1321 LOG_LINE_MAX + PREFIX_MAX);
1322 if (n - syslog_partial <= size) {
1323 /* message fits into buffer, move forward */
1324 syslog_idx = log_next(syslog_idx);
1325 syslog_seq++;
1326 syslog_prev = msg->flags;
1327 n -= syslog_partial;
1328 syslog_partial = 0;
1329 } else if (!len){
1330 /* partial read(), remember position */
1331 n = size;
1332 syslog_partial += n;
1333 } else
1334 n = 0;
1335 raw_spin_unlock_irq(&logbuf_lock);
1336
1337 if (!n)
1338 break;
1339
1340 if (copy_to_user(buf, text + skip, n)) {
1341 if (!len)
1342 len = -EFAULT;
1343 break;
1344 }
1345
1346 len += n;
1347 size -= n;
1348 buf += n;
1349 }
1350
1351 kfree(text);
1352 return len;
1353}
1354
1355static int syslog_print_all(char __user *buf, int size, bool clear)
1356{
1357 char *text;
1358 int len = 0;
1359
1360 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1361 if (!text)
1362 return -ENOMEM;
1363
1364 raw_spin_lock_irq(&logbuf_lock);
1365 if (buf) {
1366 u64 next_seq;
1367 u64 seq;
1368 u32 idx;
1369 enum log_flags prev;
1370
1371 /*
1372 * Find first record that fits, including all following records,
1373 * into the user-provided buffer for this dump.
1374 */
1375 seq = clear_seq;
1376 idx = clear_idx;
1377 prev = 0;
1378 while (seq < log_next_seq) {
1379 struct printk_log *msg = log_from_idx(idx);
1380
1381 len += msg_print_text(msg, prev, true, NULL, 0);
1382 prev = msg->flags;
1383 idx = log_next(idx);
1384 seq++;
1385 }
1386
1387 /* move first record forward until length fits into the buffer */
1388 seq = clear_seq;
1389 idx = clear_idx;
1390 prev = 0;
1391 while (len > size && seq < log_next_seq) {
1392 struct printk_log *msg = log_from_idx(idx);
1393
1394 len -= msg_print_text(msg, prev, true, NULL, 0);
1395 prev = msg->flags;
1396 idx = log_next(idx);
1397 seq++;
1398 }
1399
1400 /* last message fitting into this dump */
1401 next_seq = log_next_seq;
1402
1403 len = 0;
1404 while (len >= 0 && seq < next_seq) {
1405 struct printk_log *msg = log_from_idx(idx);
1406 int textlen;
1407
1408 textlen = msg_print_text(msg, prev, true, text,
1409 LOG_LINE_MAX + PREFIX_MAX);
1410 if (textlen < 0) {
1411 len = textlen;
1412 break;
1413 }
1414 idx = log_next(idx);
1415 seq++;
1416 prev = msg->flags;
1417
1418 raw_spin_unlock_irq(&logbuf_lock);
1419 if (copy_to_user(buf + len, text, textlen))
1420 len = -EFAULT;
1421 else
1422 len += textlen;
1423 raw_spin_lock_irq(&logbuf_lock);
1424
1425 if (seq < log_first_seq) {
1426 /* messages are gone, move to next one */
1427 seq = log_first_seq;
1428 idx = log_first_idx;
1429 prev = 0;
1430 }
1431 }
1432 }
1433
1434 if (clear) {
1435 clear_seq = log_next_seq;
1436 clear_idx = log_next_idx;
1437 }
1438 raw_spin_unlock_irq(&logbuf_lock);
1439
1440 kfree(text);
1441 return len;
1442}
1443
1444int do_syslog(int type, char __user *buf, int len, int source)
1445{
1446 bool clear = false;
1447 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1448 int error;
1449
1450 error = check_syslog_permissions(type, source);
1451 if (error)
1452 goto out;
1453
1454 switch (type) {
1455 case SYSLOG_ACTION_CLOSE: /* Close log */
1456 break;
1457 case SYSLOG_ACTION_OPEN: /* Open log */
1458 break;
1459 case SYSLOG_ACTION_READ: /* Read from log */
1460 error = -EINVAL;
1461 if (!buf || len < 0)
1462 goto out;
1463 error = 0;
1464 if (!len)
1465 goto out;
1466 if (!access_ok(VERIFY_WRITE, buf, len)) {
1467 error = -EFAULT;
1468 goto out;
1469 }
1470 error = wait_event_interruptible(log_wait,
1471 syslog_seq != log_next_seq);
1472 if (error)
1473 goto out;
1474 error = syslog_print(buf, len);
1475 break;
1476 /* Read/clear last kernel messages */
1477 case SYSLOG_ACTION_READ_CLEAR:
1478 clear = true;
1479 /* FALL THRU */
1480 /* Read last kernel messages */
1481 case SYSLOG_ACTION_READ_ALL:
1482 error = -EINVAL;
1483 if (!buf || len < 0)
1484 goto out;
1485 error = 0;
1486 if (!len)
1487 goto out;
1488 if (!access_ok(VERIFY_WRITE, buf, len)) {
1489 error = -EFAULT;
1490 goto out;
1491 }
1492 error = syslog_print_all(buf, len, clear);
1493 break;
1494 /* Clear ring buffer */
1495 case SYSLOG_ACTION_CLEAR:
1496 syslog_print_all(NULL, 0, true);
1497 break;
1498 /* Disable logging to console */
1499 case SYSLOG_ACTION_CONSOLE_OFF:
1500 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1501 saved_console_loglevel = console_loglevel;
1502 console_loglevel = minimum_console_loglevel;
1503 break;
1504 /* Enable logging to console */
1505 case SYSLOG_ACTION_CONSOLE_ON:
1506 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1507 console_loglevel = saved_console_loglevel;
1508 saved_console_loglevel = LOGLEVEL_DEFAULT;
1509 }
1510 break;
1511 /* Set level of messages printed to console */
1512 case SYSLOG_ACTION_CONSOLE_LEVEL:
1513 error = -EINVAL;
1514 if (len < 1 || len > 8)
1515 goto out;
1516 if (len < minimum_console_loglevel)
1517 len = minimum_console_loglevel;
1518 console_loglevel = len;
1519 /* Implicitly re-enable logging to console */
1520 saved_console_loglevel = LOGLEVEL_DEFAULT;
1521 error = 0;
1522 break;
1523 /* Number of chars in the log buffer */
1524 case SYSLOG_ACTION_SIZE_UNREAD:
1525 raw_spin_lock_irq(&logbuf_lock);
1526 if (syslog_seq < log_first_seq) {
1527 /* messages are gone, move to first one */
1528 syslog_seq = log_first_seq;
1529 syslog_idx = log_first_idx;
1530 syslog_prev = 0;
1531 syslog_partial = 0;
1532 }
1533 if (source == SYSLOG_FROM_PROC) {
1534 /*
1535 * Short-cut for poll(/"proc/kmsg") which simply checks
1536 * for pending data, not the size; return the count of
1537 * records, not the length.
1538 */
1539 error = log_next_seq - syslog_seq;
1540 } else {
1541 u64 seq = syslog_seq;
1542 u32 idx = syslog_idx;
1543 enum log_flags prev = syslog_prev;
1544
1545 error = 0;
1546 while (seq < log_next_seq) {
1547 struct printk_log *msg = log_from_idx(idx);
1548
1549 error += msg_print_text(msg, prev, true, NULL, 0);
1550 idx = log_next(idx);
1551 seq++;
1552 prev = msg->flags;
1553 }
1554 error -= syslog_partial;
1555 }
1556 raw_spin_unlock_irq(&logbuf_lock);
1557 break;
1558 /* Size of the log buffer */
1559 case SYSLOG_ACTION_SIZE_BUFFER:
1560 error = log_buf_len;
1561 break;
1562 default:
1563 error = -EINVAL;
1564 break;
1565 }
1566out:
1567 return error;
1568}
1569
1570SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1571{
1572 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1573}
1574
1575/*
1576 * Call the console drivers, asking them to write out
1577 * log_buf[start] to log_buf[end - 1].
1578 * The console_lock must be held.
1579 */
1580static void call_console_drivers(int level,
1581 const char *ext_text, size_t ext_len,
1582 const char *text, size_t len)
1583{
1584 struct console *con;
1585
1586 trace_console_rcuidle(text, len);
1587
1588 if (!console_drivers)
1589 return;
1590
1591 for_each_console(con) {
1592 if (exclusive_console && con != exclusive_console)
1593 continue;
1594 if (!(con->flags & CON_ENABLED))
1595 continue;
1596 if (!con->write)
1597 continue;
1598 if (!cpu_online(smp_processor_id()) &&
1599 !(con->flags & CON_ANYTIME))
1600 continue;
1601 if (con->flags & CON_EXTENDED)
1602 con->write(con, ext_text, ext_len);
1603 else
1604 con->write(con, text, len);
1605 }
1606}
1607
1608/*
1609 * Zap console related locks when oopsing.
1610 * To leave time for slow consoles to print a full oops,
1611 * only zap at most once every 30 seconds.
1612 */
1613static void zap_locks(void)
1614{
1615 static unsigned long oops_timestamp;
1616
1617 if (time_after_eq(jiffies, oops_timestamp) &&
1618 !time_after(jiffies, oops_timestamp + 30 * HZ))
1619 return;
1620
1621 oops_timestamp = jiffies;
1622
1623 debug_locks_off();
1624 /* If a crash is occurring, make sure we can't deadlock */
1625 raw_spin_lock_init(&logbuf_lock);
1626 /* And make sure that we print immediately */
1627 sema_init(&console_sem, 1);
1628}
1629
1630int printk_delay_msec __read_mostly;
1631
1632static inline void printk_delay(void)
1633{
1634 if (unlikely(printk_delay_msec)) {
1635 int m = printk_delay_msec;
1636
1637 while (m--) {
1638 mdelay(1);
1639 touch_nmi_watchdog();
1640 }
1641 }
1642}
1643
1644/*
1645 * Continuation lines are buffered, and not committed to the record buffer
1646 * until the line is complete, or a race forces it. The line fragments
1647 * though, are printed immediately to the consoles to ensure everything has
1648 * reached the console in case of a kernel crash.
1649 */
1650static struct cont {
1651 char buf[LOG_LINE_MAX];
1652 size_t len; /* length == 0 means unused buffer */
1653 size_t cons; /* bytes written to console */
1654 struct task_struct *owner; /* task of first print*/
1655 u64 ts_nsec; /* time of first print */
1656 u8 level; /* log level of first message */
1657 u8 facility; /* log facility of first message */
1658 enum log_flags flags; /* prefix, newline flags */
1659 bool flushed:1; /* buffer sealed and committed */
1660} cont;
1661
1662static void cont_flush(void)
1663{
1664 if (cont.flushed)
1665 return;
1666 if (cont.len == 0)
1667 return;
1668 if (cont.cons) {
1669 /*
1670 * If a fragment of this line was directly flushed to the
1671 * console; wait for the console to pick up the rest of the
1672 * line. LOG_NOCONS suppresses a duplicated output.
1673 */
1674 log_store(cont.facility, cont.level, cont.flags | LOG_NOCONS,
1675 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1676 cont.flushed = true;
1677 } else {
1678 /*
1679 * If no fragment of this line ever reached the console,
1680 * just submit it to the store and free the buffer.
1681 */
1682 log_store(cont.facility, cont.level, cont.flags, 0,
1683 NULL, 0, cont.buf, cont.len);
1684 cont.len = 0;
1685 }
1686}
1687
1688static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1689{
1690 if (cont.len && cont.flushed)
1691 return false;
1692
1693 /*
1694 * If ext consoles are present, flush and skip in-kernel
1695 * continuation. See nr_ext_console_drivers definition. Also, if
1696 * the line gets too long, split it up in separate records.
1697 */
1698 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1699 cont_flush();
1700 return false;
1701 }
1702
1703 if (!cont.len) {
1704 cont.facility = facility;
1705 cont.level = level;
1706 cont.owner = current;
1707 cont.ts_nsec = local_clock();
1708 cont.flags = flags;
1709 cont.cons = 0;
1710 cont.flushed = false;
1711 }
1712
1713 memcpy(cont.buf + cont.len, text, len);
1714 cont.len += len;
1715
1716 // The original flags come from the first line,
1717 // but later continuations can add a newline.
1718 if (flags & LOG_NEWLINE) {
1719 cont.flags |= LOG_NEWLINE;
1720 cont_flush();
1721 }
1722
1723 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1724 cont_flush();
1725
1726 return true;
1727}
1728
1729static size_t cont_print_text(char *text, size_t size)
1730{
1731 size_t textlen = 0;
1732 size_t len;
1733
1734 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1735 textlen += print_time(cont.ts_nsec, text);
1736 size -= textlen;
1737 }
1738
1739 len = cont.len - cont.cons;
1740 if (len > 0) {
1741 if (len+1 > size)
1742 len = size-1;
1743 memcpy(text + textlen, cont.buf + cont.cons, len);
1744 textlen += len;
1745 cont.cons = cont.len;
1746 }
1747
1748 if (cont.flushed) {
1749 if (cont.flags & LOG_NEWLINE)
1750 text[textlen++] = '\n';
1751 /* got everything, release buffer */
1752 cont.len = 0;
1753 }
1754 return textlen;
1755}
1756
1757#define AML_LOSE_CONTLINE_DEF 1
1758
1759static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1760{
1761 /*
1762 * If an earlier line was buffered, and we're a continuation
1763 * write from the same process, try to add it to the buffer.
1764 */
1765 if (cont.len) {
1766#if (AML_LOSE_CONTLINE_DEF == 1)
1767 if (cont.owner == current && !(lflags & LOG_PREFIX)) {
1768#else
1769 if (cont.owner == current && (lflags & LOG_CONT)) {
1770#endif
1771 if (cont_add(facility, level, lflags, text, text_len))
1772 return text_len;
1773 }
1774 /* Otherwise, make sure it's flushed */
1775 cont_flush();
1776 }
1777
1778 /* Skip empty continuation lines that couldn't be added - they just flush */
1779 if (!text_len && (lflags & LOG_CONT))
1780 return 0;
1781
1782 /* If it doesn't end in a newline, try to buffer the current line */
1783 if (!(lflags & LOG_NEWLINE)) {
1784 if (cont_add(facility, level, lflags, text, text_len))
1785 return text_len;
1786 }
1787
1788 /* Store it in the record log */
1789 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1790}
1791
1792asmlinkage int vprintk_emit(int facility, int level,
1793 const char *dict, size_t dictlen,
1794 const char *fmt, va_list args)
1795{
1796 static bool recursion_bug;
1797 static char textbuf[LOG_LINE_MAX];
1798 char *text = textbuf;
1799 size_t text_len = 0;
1800 enum log_flags lflags = 0;
1801 unsigned long flags;
1802 int this_cpu;
1803 int printed_len = 0;
1804 int nmi_message_lost;
1805 bool in_sched = false;
1806 /* cpu currently holding logbuf_lock in this function */
1807 static unsigned int logbuf_cpu = UINT_MAX;
1808
1809 if (level == LOGLEVEL_SCHED) {
1810 level = LOGLEVEL_DEFAULT;
1811 in_sched = true;
1812 }
1813
1814 boot_delay_msec(level);
1815 printk_delay();
1816
1817 local_irq_save(flags);
1818 this_cpu = smp_processor_id();
1819
1820 /*
1821 * Ouch, printk recursed into itself!
1822 */
1823 if (unlikely(logbuf_cpu == this_cpu)) {
1824 /*
1825 * If a crash is occurring during printk() on this CPU,
1826 * then try to get the crash message out but make sure
1827 * we can't deadlock. Otherwise just return to avoid the
1828 * recursion and return - but flag the recursion so that
1829 * it can be printed at the next appropriate moment:
1830 */
1831 if (!oops_in_progress && !lockdep_recursing(current)) {
1832 recursion_bug = true;
1833 local_irq_restore(flags);
1834 return 0;
1835 }
1836 zap_locks();
1837 }
1838
1839 lockdep_off();
1840 /* This stops the holder of console_sem just where we want him */
1841 raw_spin_lock(&logbuf_lock);
1842 logbuf_cpu = this_cpu;
1843
1844 if (unlikely(recursion_bug)) {
1845 static const char recursion_msg[] =
1846 "BUG: recent printk recursion!";
1847
1848 recursion_bug = false;
1849 /* emit KERN_CRIT message */
1850 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1851 NULL, 0, recursion_msg,
1852 strlen(recursion_msg));
1853 }
1854
1855 nmi_message_lost = get_nmi_message_lost();
1856 if (unlikely(nmi_message_lost)) {
1857 text_len = scnprintf(textbuf, sizeof(textbuf),
1858 "BAD LUCK: lost %d message(s) from NMI context!",
1859 nmi_message_lost);
1860 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1861 NULL, 0, textbuf, text_len);
1862 }
1863
1864 /*
1865 * The printf needs to come first; we need the syslog
1866 * prefix which might be passed-in as a parameter.
1867 */
1868 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1869
1870 /* mark and strip a trailing newline */
1871 if (text_len && text[text_len-1] == '\n') {
1872 text_len--;
1873 lflags |= LOG_NEWLINE;
1874 }
1875
1876 /* strip kernel syslog prefix and extract log level or control flags */
1877 if (facility == 0) {
1878 int kern_level;
1879
1880 while ((kern_level = printk_get_level(text)) != 0) {
1881 switch (kern_level) {
1882 case '0' ... '7':
1883 if (level == LOGLEVEL_DEFAULT)
1884 level = kern_level - '0';
1885 /* fallthrough */
1886 case 'd': /* KERN_DEFAULT */
1887 lflags |= LOG_PREFIX;
1888 break;
1889 case 'c': /* KERN_CONT */
1890 lflags |= LOG_CONT;
1891 }
1892
1893 text_len -= 2;
1894 text += 2;
1895 }
1896 }
1897
1898#ifdef CONFIG_EARLY_PRINTK_DIRECT
1899 printascii(text);
1900#endif
1901
1902 if (level == LOGLEVEL_DEFAULT)
1903 level = default_message_loglevel;
1904
1905 if (dict)
1906 lflags |= LOG_PREFIX|LOG_NEWLINE;
1907
1908 printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1909
1910 logbuf_cpu = UINT_MAX;
1911 raw_spin_unlock(&logbuf_lock);
1912 lockdep_on();
1913 local_irq_restore(flags);
1914
1915 /* If called from the scheduler, we can not call up(). */
1916 if (!in_sched) {
1917 lockdep_off();
1918 /*
1919 * Try to acquire and then immediately release the console
1920 * semaphore. The release will print out buffers and wake up
1921 * /dev/kmsg and syslog() users.
1922 */
1923 if (console_trylock())
1924 console_unlock();
1925 lockdep_on();
1926 }
1927
1928 return printed_len;
1929}
1930EXPORT_SYMBOL(vprintk_emit);
1931
1932asmlinkage int vprintk(const char *fmt, va_list args)
1933{
1934 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1935}
1936EXPORT_SYMBOL(vprintk);
1937
1938asmlinkage int printk_emit(int facility, int level,
1939 const char *dict, size_t dictlen,
1940 const char *fmt, ...)
1941{
1942 va_list args;
1943 int r;
1944
1945 va_start(args, fmt);
1946 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1947 va_end(args);
1948
1949 return r;
1950}
1951EXPORT_SYMBOL(printk_emit);
1952
1953int vprintk_default(const char *fmt, va_list args)
1954{
1955 int r;
1956
1957#ifdef CONFIG_KGDB_KDB
1958 if (unlikely(kdb_trap_printk)) {
1959 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1960 return r;
1961 }
1962#endif
1963 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1964
1965 return r;
1966}
1967EXPORT_SYMBOL_GPL(vprintk_default);
1968
1969/**
1970 * printk - print a kernel message
1971 * @fmt: format string
1972 *
1973 * This is printk(). It can be called from any context. We want it to work.
1974 *
1975 * We try to grab the console_lock. If we succeed, it's easy - we log the
1976 * output and call the console drivers. If we fail to get the semaphore, we
1977 * place the output into the log buffer and return. The current holder of
1978 * the console_sem will notice the new output in console_unlock(); and will
1979 * send it to the consoles before releasing the lock.
1980 *
1981 * One effect of this deferred printing is that code which calls printk() and
1982 * then changes console_loglevel may break. This is because console_loglevel
1983 * is inspected when the actual printing occurs.
1984 *
1985 * See also:
1986 * printf(3)
1987 *
1988 * See the vsnprintf() documentation for format string extensions over C99.
1989 */
1990asmlinkage __visible int printk(const char *fmt, ...)
1991{
1992 va_list args;
1993 int r;
1994
1995 va_start(args, fmt);
1996 r = vprintk_func(fmt, args);
1997 va_end(args);
1998
1999 return r;
2000}
2001EXPORT_SYMBOL(printk);
2002
2003#else /* CONFIG_PRINTK */
2004
2005#define LOG_LINE_MAX 0
2006#define PREFIX_MAX 0
2007
2008static u64 syslog_seq;
2009static u32 syslog_idx;
2010static u64 console_seq;
2011static u32 console_idx;
2012static enum log_flags syslog_prev;
2013static u64 log_first_seq;
2014static u32 log_first_idx;
2015static u64 log_next_seq;
2016static enum log_flags console_prev;
2017static struct cont {
2018 size_t len;
2019 size_t cons;
2020 u8 level;
2021 bool flushed:1;
2022} cont;
2023static char *log_text(const struct printk_log *msg) { return NULL; }
2024static char *log_dict(const struct printk_log *msg) { return NULL; }
2025static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2026static u32 log_next(u32 idx) { return 0; }
2027static ssize_t msg_print_ext_header(char *buf, size_t size,
2028 struct printk_log *msg, u64 seq,
2029 enum log_flags prev_flags) { return 0; }
2030static ssize_t msg_print_ext_body(char *buf, size_t size,
2031 char *dict, size_t dict_len,
2032 char *text, size_t text_len) { return 0; }
2033static void call_console_drivers(int level,
2034 const char *ext_text, size_t ext_len,
2035 const char *text, size_t len) {}
2036static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
2037 bool syslog, char *buf, size_t size) { return 0; }
2038static size_t cont_print_text(char *text, size_t size) { return 0; }
2039static bool suppress_message_printing(int level) { return false; }
2040
2041/* Still needs to be defined for users */
2042DEFINE_PER_CPU(printk_func_t, printk_func);
2043
2044#endif /* CONFIG_PRINTK */
2045
2046#ifdef CONFIG_EARLY_PRINTK
2047struct console *early_console;
2048
2049asmlinkage __visible void early_printk(const char *fmt, ...)
2050{
2051 va_list ap;
2052 char buf[512];
2053 int n;
2054
2055 if (!early_console)
2056 return;
2057
2058 va_start(ap, fmt);
2059 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2060 va_end(ap);
2061
2062 early_console->write(early_console, buf, n);
2063}
2064#endif
2065
2066static int __add_preferred_console(char *name, int idx, char *options,
2067 char *brl_options)
2068{
2069 struct console_cmdline *c;
2070 int i;
2071
2072 /*
2073 * See if this tty is not yet registered, and
2074 * if we have a slot free.
2075 */
2076 for (i = 0, c = console_cmdline;
2077 i < MAX_CMDLINECONSOLES && c->name[0];
2078 i++, c++) {
2079 if (strcmp(c->name, name) == 0 && c->index == idx) {
2080 if (!brl_options)
2081 selected_console = i;
2082 return 0;
2083 }
2084 }
2085 if (i == MAX_CMDLINECONSOLES)
2086 return -E2BIG;
2087 if (!brl_options)
2088 selected_console = i;
2089 strlcpy(c->name, name, sizeof(c->name));
2090 c->options = options;
2091 braille_set_options(c, brl_options);
2092
2093 c->index = idx;
2094 return 0;
2095}
2096/*
2097 * Set up a console. Called via do_early_param() in init/main.c
2098 * for each "console=" parameter in the boot command line.
2099 */
2100static int __init console_setup(char *str)
2101{
2102 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2103 char *s, *options, *brl_options = NULL;
2104 int idx;
2105
2106 if (_braille_console_setup(&str, &brl_options))
2107 return 1;
2108
2109 /*
2110 * Decode str into name, index, options.
2111 */
2112 if (str[0] >= '0' && str[0] <= '9') {
2113 strcpy(buf, "ttyS");
2114 strncpy(buf + 4, str, sizeof(buf) - 5);
2115 } else {
2116 strncpy(buf, str, sizeof(buf) - 1);
2117 }
2118 buf[sizeof(buf) - 1] = 0;
2119 options = strchr(str, ',');
2120 if (options)
2121 *(options++) = 0;
2122#ifdef __sparc__
2123 if (!strcmp(str, "ttya"))
2124 strcpy(buf, "ttyS0");
2125 if (!strcmp(str, "ttyb"))
2126 strcpy(buf, "ttyS1");
2127#endif
2128 for (s = buf; *s; s++)
2129 if (isdigit(*s) || *s == ',')
2130 break;
2131 idx = simple_strtoul(s, NULL, 10);
2132 *s = 0;
2133
2134 __add_preferred_console(buf, idx, options, brl_options);
2135 console_set_on_cmdline = 1;
2136 return 1;
2137}
2138__setup("console=", console_setup);
2139
2140/**
2141 * add_preferred_console - add a device to the list of preferred consoles.
2142 * @name: device name
2143 * @idx: device index
2144 * @options: options for this console
2145 *
2146 * The last preferred console added will be used for kernel messages
2147 * and stdin/out/err for init. Normally this is used by console_setup
2148 * above to handle user-supplied console arguments; however it can also
2149 * be used by arch-specific code either to override the user or more
2150 * commonly to provide a default console (ie from PROM variables) when
2151 * the user has not supplied one.
2152 */
2153int add_preferred_console(char *name, int idx, char *options)
2154{
2155 return __add_preferred_console(name, idx, options, NULL);
2156}
2157
2158bool console_suspend_enabled = true;
2159EXPORT_SYMBOL(console_suspend_enabled);
2160
2161static int __init console_suspend_disable(char *str)
2162{
2163 console_suspend_enabled = false;
2164 return 1;
2165}
2166__setup("no_console_suspend", console_suspend_disable);
2167module_param_named(console_suspend, console_suspend_enabled,
2168 bool, S_IRUGO | S_IWUSR);
2169MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2170 " and hibernate operations");
2171
2172/**
2173 * suspend_console - suspend the console subsystem
2174 *
2175 * This disables printk() while we go into suspend states
2176 */
2177void suspend_console(void)
2178{
2179 if (!console_suspend_enabled)
2180 return;
2181 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2182 console_lock();
2183 console_suspended = 1;
2184 up_console_sem();
2185}
2186
2187void resume_console(void)
2188{
2189 if (!console_suspend_enabled)
2190 return;
2191 down_console_sem();
2192 console_suspended = 0;
2193 console_unlock();
2194}
2195
2196/**
2197 * console_cpu_notify - print deferred console messages after CPU hotplug
2198 * @self: notifier struct
2199 * @action: CPU hotplug event
2200 * @hcpu: unused
2201 *
2202 * If printk() is called from a CPU that is not online yet, the messages
2203 * will be spooled but will not show up on the console. This function is
2204 * called when a new CPU comes online (or fails to come up), and ensures
2205 * that any such output gets printed.
2206 */
2207static int console_cpu_notify(struct notifier_block *self,
2208 unsigned long action, void *hcpu)
2209{
2210 switch (action) {
2211 case CPU_ONLINE:
2212 case CPU_DEAD:
2213 case CPU_DOWN_FAILED:
2214 case CPU_UP_CANCELED:
2215 console_lock();
2216 console_unlock();
2217 }
2218 return NOTIFY_OK;
2219}
2220
2221/**
2222 * console_lock - lock the console system for exclusive use.
2223 *
2224 * Acquires a lock which guarantees that the caller has
2225 * exclusive access to the console system and the console_drivers list.
2226 *
2227 * Can sleep, returns nothing.
2228 */
2229void console_lock(void)
2230{
2231 might_sleep();
2232
2233 down_console_sem();
2234 if (console_suspended)
2235 return;
2236 console_locked = 1;
2237 console_may_schedule = 1;
2238}
2239EXPORT_SYMBOL(console_lock);
2240
2241/**
2242 * console_trylock - try to lock the console system for exclusive use.
2243 *
2244 * Try to acquire a lock which guarantees that the caller has exclusive
2245 * access to the console system and the console_drivers list.
2246 *
2247 * returns 1 on success, and 0 on failure to acquire the lock.
2248 */
2249int console_trylock(void)
2250{
2251 if (down_trylock_console_sem())
2252 return 0;
2253 if (console_suspended) {
2254 up_console_sem();
2255 return 0;
2256 }
2257 console_locked = 1;
2258 /*
2259 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2260 * safe to schedule (e.g. calling printk while holding a spin_lock),
2261 * because preempt_disable()/preempt_enable() are just barriers there
2262 * and preempt_count() is always 0.
2263 *
2264 * RCU read sections have a separate preemption counter when
2265 * PREEMPT_RCU enabled thus we must take extra care and check
2266 * rcu_preempt_depth(), otherwise RCU read sections modify
2267 * preempt_count().
2268 */
2269 console_may_schedule = !oops_in_progress &&
2270 preemptible() &&
2271 !rcu_preempt_depth();
2272 return 1;
2273}
2274EXPORT_SYMBOL(console_trylock);
2275
2276int is_console_locked(void)
2277{
2278 return console_locked;
2279}
2280
2281/*
2282 * Check if we have any console that is capable of printing while cpu is
2283 * booting or shutting down. Requires console_sem.
2284 */
2285static int have_callable_console(void)
2286{
2287 struct console *con;
2288
2289 for_each_console(con)
2290 if ((con->flags & CON_ENABLED) &&
2291 (con->flags & CON_ANYTIME))
2292 return 1;
2293
2294 return 0;
2295}
2296
2297/*
2298 * Can we actually use the console at this time on this cpu?
2299 *
2300 * Console drivers may assume that per-cpu resources have been allocated. So
2301 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2302 * call them until this CPU is officially up.
2303 */
2304static inline int can_use_console(void)
2305{
2306 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2307}
2308
2309static void console_cont_flush(char *text, size_t size)
2310{
2311 unsigned long flags;
2312 size_t len;
2313
2314 raw_spin_lock_irqsave(&logbuf_lock, flags);
2315
2316 if (!cont.len)
2317 goto out;
2318
2319 if (suppress_message_printing(cont.level)) {
2320 cont.cons = cont.len;
2321 if (cont.flushed)
2322 cont.len = 0;
2323 goto out;
2324 }
2325
2326 /*
2327 * We still queue earlier records, likely because the console was
2328 * busy. The earlier ones need to be printed before this one, we
2329 * did not flush any fragment so far, so just let it queue up.
2330 */
2331 if (console_seq < log_next_seq && !cont.cons)
2332 goto out;
2333
2334 len = cont_print_text(text, size);
2335 raw_spin_unlock(&logbuf_lock);
2336 stop_critical_timings();
2337 call_console_drivers(cont.level, NULL, 0, text, len);
2338 start_critical_timings();
2339 local_irq_restore(flags);
2340 return;
2341out:
2342 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2343}
2344
2345/**
2346 * console_unlock - unlock the console system
2347 *
2348 * Releases the console_lock which the caller holds on the console system
2349 * and the console driver list.
2350 *
2351 * While the console_lock was held, console output may have been buffered
2352 * by printk(). If this is the case, console_unlock(); emits
2353 * the output prior to releasing the lock.
2354 *
2355 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2356 *
2357 * console_unlock(); may be called from any context.
2358 */
2359void console_unlock(void)
2360{
2361 static char ext_text[CONSOLE_EXT_LOG_MAX];
2362 static char text[LOG_LINE_MAX + PREFIX_MAX];
2363 static u64 seen_seq;
2364 unsigned long flags;
2365 bool wake_klogd = false;
2366 bool do_cond_resched, retry;
2367
2368 if (console_suspended) {
2369 up_console_sem();
2370 return;
2371 }
2372
2373 /*
2374 * Console drivers are called with interrupts disabled, so
2375 * @console_may_schedule should be cleared before; however, we may
2376 * end up dumping a lot of lines, for example, if called from
2377 * console registration path, and should invoke cond_resched()
2378 * between lines if allowable. Not doing so can cause a very long
2379 * scheduling stall on a slow console leading to RCU stall and
2380 * softlockup warnings which exacerbate the issue with more
2381 * messages practically incapacitating the system.
2382 *
2383 * console_trylock() is not able to detect the preemptive
2384 * context reliably. Therefore the value must be stored before
2385 * and cleared after the the "again" goto label.
2386 */
2387 do_cond_resched = console_may_schedule;
2388again:
2389 console_may_schedule = 0;
2390
2391 /*
2392 * We released the console_sem lock, so we need to recheck if
2393 * cpu is online and (if not) is there at least one CON_ANYTIME
2394 * console.
2395 */
2396 if (!can_use_console()) {
2397 console_locked = 0;
2398 up_console_sem();
2399 return;
2400 }
2401
2402 /* flush buffered message fragment immediately to console */
2403 console_cont_flush(text, sizeof(text));
2404
2405 for (;;) {
2406 struct printk_log *msg;
2407 size_t ext_len = 0;
2408 size_t len;
2409 int level;
2410
2411 raw_spin_lock_irqsave(&logbuf_lock, flags);
2412 if (seen_seq != log_next_seq) {
2413 wake_klogd = true;
2414 seen_seq = log_next_seq;
2415 }
2416
2417 if (console_seq < log_first_seq) {
2418 len = sprintf(text, "** %u printk messages dropped ** ",
2419 (unsigned)(log_first_seq - console_seq));
2420
2421 /* messages are gone, move to first one */
2422 console_seq = log_first_seq;
2423 console_idx = log_first_idx;
2424 console_prev = 0;
2425 } else {
2426 len = 0;
2427 }
2428skip:
2429 if (console_seq == log_next_seq)
2430 break;
2431
2432 msg = log_from_idx(console_idx);
2433 level = msg->level;
2434 if ((msg->flags & LOG_NOCONS) ||
2435 suppress_message_printing(level)) {
2436 /*
2437 * Skip record we have buffered and already printed
2438 * directly to the console when we received it, and
2439 * record that has level above the console loglevel.
2440 */
2441 console_idx = log_next(console_idx);
2442 console_seq++;
2443 /*
2444 * We will get here again when we register a new
2445 * CON_PRINTBUFFER console. Clear the flag so we
2446 * will properly dump everything later.
2447 */
2448 msg->flags &= ~LOG_NOCONS;
2449 console_prev = msg->flags;
2450 goto skip;
2451 }
2452
2453 len += msg_print_text(msg, console_prev, false,
2454 text + len, sizeof(text) - len);
2455 if (nr_ext_console_drivers) {
2456 ext_len = msg_print_ext_header(ext_text,
2457 sizeof(ext_text),
2458 msg, console_seq, console_prev);
2459 ext_len += msg_print_ext_body(ext_text + ext_len,
2460 sizeof(ext_text) - ext_len,
2461 log_dict(msg), msg->dict_len,
2462 log_text(msg), msg->text_len);
2463 }
2464 console_idx = log_next(console_idx);
2465 console_seq++;
2466 console_prev = msg->flags;
2467 raw_spin_unlock(&logbuf_lock);
2468
2469 stop_critical_timings(); /* don't trace print latency */
2470 call_console_drivers(level, ext_text, ext_len, text, len);
2471 start_critical_timings();
2472 local_irq_restore(flags);
2473
2474 if (do_cond_resched)
2475 cond_resched();
2476 }
2477 console_locked = 0;
2478
2479 /* Release the exclusive_console once it is used */
2480 if (unlikely(exclusive_console))
2481 exclusive_console = NULL;
2482
2483 raw_spin_unlock(&logbuf_lock);
2484
2485 up_console_sem();
2486
2487 /*
2488 * Someone could have filled up the buffer again, so re-check if there's
2489 * something to flush. In case we cannot trylock the console_sem again,
2490 * there's a new owner and the console_unlock() from them will do the
2491 * flush, no worries.
2492 */
2493 raw_spin_lock(&logbuf_lock);
2494 retry = console_seq != log_next_seq;
2495 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2496
2497 if (retry && console_trylock())
2498 goto again;
2499
2500 if (wake_klogd)
2501 wake_up_klogd();
2502}
2503EXPORT_SYMBOL(console_unlock);
2504
2505/**
2506 * console_conditional_schedule - yield the CPU if required
2507 *
2508 * If the console code is currently allowed to sleep, and
2509 * if this CPU should yield the CPU to another task, do
2510 * so here.
2511 *
2512 * Must be called within console_lock();.
2513 */
2514void __sched console_conditional_schedule(void)
2515{
2516 if (console_may_schedule)
2517 cond_resched();
2518}
2519EXPORT_SYMBOL(console_conditional_schedule);
2520
2521void console_unblank(void)
2522{
2523 struct console *c;
2524
2525 /*
2526 * console_unblank can no longer be called in interrupt context unless
2527 * oops_in_progress is set to 1..
2528 */
2529 if (oops_in_progress) {
2530 if (down_trylock_console_sem() != 0)
2531 return;
2532 } else
2533 console_lock();
2534
2535 console_locked = 1;
2536 console_may_schedule = 0;
2537 for_each_console(c)
2538 if ((c->flags & CON_ENABLED) && c->unblank)
2539 c->unblank();
2540 console_unlock();
2541}
2542
2543/**
2544 * console_flush_on_panic - flush console content on panic
2545 *
2546 * Immediately output all pending messages no matter what.
2547 */
2548void console_flush_on_panic(void)
2549{
2550 /*
2551 * If someone else is holding the console lock, trylock will fail
2552 * and may_schedule may be set. Ignore and proceed to unlock so
2553 * that messages are flushed out. As this can be called from any
2554 * context and we don't want to get preempted while flushing,
2555 * ensure may_schedule is cleared.
2556 */
2557 console_trylock();
2558 console_may_schedule = 0;
2559 console_unlock();
2560}
2561
2562/*
2563 * Return the console tty driver structure and its associated index
2564 */
2565struct tty_driver *console_device(int *index)
2566{
2567 struct console *c;
2568 struct tty_driver *driver = NULL;
2569
2570 console_lock();
2571 for_each_console(c) {
2572 if (!c->device)
2573 continue;
2574 driver = c->device(c, index);
2575 if (driver)
2576 break;
2577 }
2578 console_unlock();
2579 return driver;
2580}
2581
2582/*
2583 * Prevent further output on the passed console device so that (for example)
2584 * serial drivers can disable console output before suspending a port, and can
2585 * re-enable output afterwards.
2586 */
2587void console_stop(struct console *console)
2588{
2589 console_lock();
2590 console->flags &= ~CON_ENABLED;
2591 console_unlock();
2592}
2593EXPORT_SYMBOL(console_stop);
2594
2595void console_start(struct console *console)
2596{
2597 console_lock();
2598 console->flags |= CON_ENABLED;
2599 console_unlock();
2600}
2601EXPORT_SYMBOL(console_start);
2602
2603static int __read_mostly keep_bootcon;
2604
2605static int __init keep_bootcon_setup(char *str)
2606{
2607 keep_bootcon = 1;
2608 pr_info("debug: skip boot console de-registration.\n");
2609
2610 return 0;
2611}
2612
2613early_param("keep_bootcon", keep_bootcon_setup);
2614
2615/*
2616 * The console driver calls this routine during kernel initialization
2617 * to register the console printing procedure with printk() and to
2618 * print any messages that were printed by the kernel before the
2619 * console driver was initialized.
2620 *
2621 * This can happen pretty early during the boot process (because of
2622 * early_printk) - sometimes before setup_arch() completes - be careful
2623 * of what kernel features are used - they may not be initialised yet.
2624 *
2625 * There are two types of consoles - bootconsoles (early_printk) and
2626 * "real" consoles (everything which is not a bootconsole) which are
2627 * handled differently.
2628 * - Any number of bootconsoles can be registered at any time.
2629 * - As soon as a "real" console is registered, all bootconsoles
2630 * will be unregistered automatically.
2631 * - Once a "real" console is registered, any attempt to register a
2632 * bootconsoles will be rejected
2633 */
2634void register_console(struct console *newcon)
2635{
2636 int i;
2637 unsigned long flags;
2638 struct console *bcon = NULL;
2639 struct console_cmdline *c;
2640
2641 if (console_drivers)
2642 for_each_console(bcon)
2643 if (WARN(bcon == newcon,
2644 "console '%s%d' already registered\n",
2645 bcon->name, bcon->index))
2646 return;
2647
2648 /*
2649 * before we register a new CON_BOOT console, make sure we don't
2650 * already have a valid console
2651 */
2652 if (console_drivers && newcon->flags & CON_BOOT) {
2653 /* find the last or real console */
2654 for_each_console(bcon) {
2655 if (!(bcon->flags & CON_BOOT)) {
2656 pr_info("Too late to register bootconsole %s%d\n",
2657 newcon->name, newcon->index);
2658 return;
2659 }
2660 }
2661 }
2662
2663 if (console_drivers && console_drivers->flags & CON_BOOT)
2664 bcon = console_drivers;
2665
2666 if (preferred_console < 0 || bcon || !console_drivers)
2667 preferred_console = selected_console;
2668
2669 /*
2670 * See if we want to use this console driver. If we
2671 * didn't select a console we take the first one
2672 * that registers here.
2673 */
2674 if (preferred_console < 0) {
2675 if (newcon->index < 0)
2676 newcon->index = 0;
2677 if (newcon->setup == NULL ||
2678 newcon->setup(newcon, NULL) == 0) {
2679 newcon->flags |= CON_ENABLED;
2680 if (newcon->device) {
2681 newcon->flags |= CON_CONSDEV;
2682 preferred_console = 0;
2683 }
2684 }
2685 }
2686
2687 /*
2688 * See if this console matches one we selected on
2689 * the command line.
2690 */
2691 for (i = 0, c = console_cmdline;
2692 i < MAX_CMDLINECONSOLES && c->name[0];
2693 i++, c++) {
2694 if (!newcon->match ||
2695 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2696 /* default matching */
2697 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2698 if (strcmp(c->name, newcon->name) != 0)
2699 continue;
2700 if (newcon->index >= 0 &&
2701 newcon->index != c->index)
2702 continue;
2703 if (newcon->index < 0)
2704 newcon->index = c->index;
2705
2706 if (_braille_register_console(newcon, c))
2707 return;
2708
2709 if (newcon->setup &&
2710 newcon->setup(newcon, c->options) != 0)
2711 break;
2712 }
2713
2714 newcon->flags |= CON_ENABLED;
2715 if (i == selected_console) {
2716 newcon->flags |= CON_CONSDEV;
2717 preferred_console = selected_console;
2718 }
2719 break;
2720 }
2721
2722 if (!(newcon->flags & CON_ENABLED))
2723 return;
2724
2725 /*
2726 * If we have a bootconsole, and are switching to a real console,
2727 * don't print everything out again, since when the boot console, and
2728 * the real console are the same physical device, it's annoying to
2729 * see the beginning boot messages twice
2730 */
2731 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2732 newcon->flags &= ~CON_PRINTBUFFER;
2733
2734 /*
2735 * Put this console in the list - keep the
2736 * preferred driver at the head of the list.
2737 */
2738 console_lock();
2739 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2740 newcon->next = console_drivers;
2741 console_drivers = newcon;
2742 if (newcon->next)
2743 newcon->next->flags &= ~CON_CONSDEV;
2744 } else {
2745 newcon->next = console_drivers->next;
2746 console_drivers->next = newcon;
2747 }
2748
2749 if (newcon->flags & CON_EXTENDED)
2750 if (!nr_ext_console_drivers++)
2751 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2752
2753 if (newcon->flags & CON_PRINTBUFFER) {
2754 /*
2755 * console_unlock(); will print out the buffered messages
2756 * for us.
2757 */
2758 raw_spin_lock_irqsave(&logbuf_lock, flags);
2759 console_seq = syslog_seq;
2760 console_idx = syslog_idx;
2761 console_prev = syslog_prev;
2762 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2763 /*
2764 * We're about to replay the log buffer. Only do this to the
2765 * just-registered console to avoid excessive message spam to
2766 * the already-registered consoles.
2767 */
2768 exclusive_console = newcon;
2769 }
2770 console_unlock();
2771 console_sysfs_notify();
2772
2773 /*
2774 * By unregistering the bootconsoles after we enable the real console
2775 * we get the "console xxx enabled" message on all the consoles -
2776 * boot consoles, real consoles, etc - this is to ensure that end
2777 * users know there might be something in the kernel's log buffer that
2778 * went to the bootconsole (that they do not see on the real console)
2779 */
2780 pr_info("%sconsole [%s%d] enabled\n",
2781 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2782 newcon->name, newcon->index);
2783 if (bcon &&
2784 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2785 !keep_bootcon) {
2786 /* We need to iterate through all boot consoles, to make
2787 * sure we print everything out, before we unregister them.
2788 */
2789 for_each_console(bcon)
2790 if (bcon->flags & CON_BOOT)
2791 unregister_console(bcon);
2792 }
2793}
2794EXPORT_SYMBOL(register_console);
2795
2796int unregister_console(struct console *console)
2797{
2798 struct console *a, *b;
2799 int res;
2800
2801 pr_info("%sconsole [%s%d] disabled\n",
2802 (console->flags & CON_BOOT) ? "boot" : "" ,
2803 console->name, console->index);
2804
2805 res = _braille_unregister_console(console);
2806 if (res)
2807 return res;
2808
2809 res = 1;
2810 console_lock();
2811 if (console_drivers == console) {
2812 console_drivers=console->next;
2813 res = 0;
2814 } else if (console_drivers) {
2815 for (a=console_drivers->next, b=console_drivers ;
2816 a; b=a, a=b->next) {
2817 if (a == console) {
2818 b->next = a->next;
2819 res = 0;
2820 break;
2821 }
2822 }
2823 }
2824
2825 if (!res && (console->flags & CON_EXTENDED))
2826 nr_ext_console_drivers--;
2827
2828 /*
2829 * If this isn't the last console and it has CON_CONSDEV set, we
2830 * need to set it on the next preferred console.
2831 */
2832 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2833 console_drivers->flags |= CON_CONSDEV;
2834
2835 console->flags &= ~CON_ENABLED;
2836 console_unlock();
2837 console_sysfs_notify();
2838 return res;
2839}
2840EXPORT_SYMBOL(unregister_console);
2841
2842/*
2843 * Some boot consoles access data that is in the init section and which will
2844 * be discarded after the initcalls have been run. To make sure that no code
2845 * will access this data, unregister the boot consoles in a late initcall.
2846 *
2847 * If for some reason, such as deferred probe or the driver being a loadable
2848 * module, the real console hasn't registered yet at this point, there will
2849 * be a brief interval in which no messages are logged to the console, which
2850 * makes it difficult to diagnose problems that occur during this time.
2851 *
2852 * To mitigate this problem somewhat, only unregister consoles whose memory
2853 * intersects with the init section. Note that code exists elsewhere to get
2854 * rid of the boot console as soon as the proper console shows up, so there
2855 * won't be side-effects from postponing the removal.
2856 */
2857static int __init printk_late_init(void)
2858{
2859 struct console *con;
2860
2861 for_each_console(con) {
2862 if (!keep_bootcon && con->flags & CON_BOOT) {
2863 /*
2864 * Make sure to unregister boot consoles whose data
2865 * resides in the init section before the init section
2866 * is discarded. Boot consoles whose data will stick
2867 * around will automatically be unregistered when the
2868 * proper console replaces them.
2869 */
2870 if (init_section_intersects(con, sizeof(*con)))
2871 unregister_console(con);
2872 }
2873 }
2874 hotcpu_notifier(console_cpu_notify, 0);
2875 return 0;
2876}
2877late_initcall(printk_late_init);
2878
2879#if defined CONFIG_PRINTK
2880/*
2881 * Delayed printk version, for scheduler-internal messages:
2882 */
2883#define PRINTK_PENDING_WAKEUP 0x01
2884#define PRINTK_PENDING_OUTPUT 0x02
2885
2886static DEFINE_PER_CPU(int, printk_pending);
2887
2888static void wake_up_klogd_work_func(struct irq_work *irq_work)
2889{
2890 int pending = __this_cpu_xchg(printk_pending, 0);
2891
2892 if (pending & PRINTK_PENDING_OUTPUT) {
2893 /* If trylock fails, someone else is doing the printing */
2894 if (console_trylock())
2895 console_unlock();
2896 }
2897
2898 if (pending & PRINTK_PENDING_WAKEUP)
2899 wake_up_interruptible(&log_wait);
2900}
2901
2902static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2903 .func = wake_up_klogd_work_func,
2904 .flags = IRQ_WORK_LAZY,
2905};
2906
2907void wake_up_klogd(void)
2908{
2909 preempt_disable();
2910 if (waitqueue_active(&log_wait)) {
2911 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2912 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2913 }
2914 preempt_enable();
2915}
2916
2917int printk_deferred(const char *fmt, ...)
2918{
2919 va_list args;
2920 int r;
2921
2922 preempt_disable();
2923 va_start(args, fmt);
2924 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2925 va_end(args);
2926
2927 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2928 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2929 preempt_enable();
2930
2931 return r;
2932}
2933
2934/*
2935 * printk rate limiting, lifted from the networking subsystem.
2936 *
2937 * This enforces a rate limit: not more than 10 kernel messages
2938 * every 5s to make a denial-of-service attack impossible.
2939 */
2940DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2941
2942int __printk_ratelimit(const char *func)
2943{
2944 return ___ratelimit(&printk_ratelimit_state, func);
2945}
2946EXPORT_SYMBOL(__printk_ratelimit);
2947
2948/**
2949 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2950 * @caller_jiffies: pointer to caller's state
2951 * @interval_msecs: minimum interval between prints
2952 *
2953 * printk_timed_ratelimit() returns true if more than @interval_msecs
2954 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2955 * returned true.
2956 */
2957bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2958 unsigned int interval_msecs)
2959{
2960 unsigned long elapsed = jiffies - *caller_jiffies;
2961
2962 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2963 return false;
2964
2965 *caller_jiffies = jiffies;
2966 return true;
2967}
2968EXPORT_SYMBOL(printk_timed_ratelimit);
2969
2970static DEFINE_SPINLOCK(dump_list_lock);
2971static LIST_HEAD(dump_list);
2972
2973/**
2974 * kmsg_dump_register - register a kernel log dumper.
2975 * @dumper: pointer to the kmsg_dumper structure
2976 *
2977 * Adds a kernel log dumper to the system. The dump callback in the
2978 * structure will be called when the kernel oopses or panics and must be
2979 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2980 */
2981int kmsg_dump_register(struct kmsg_dumper *dumper)
2982{
2983 unsigned long flags;
2984 int err = -EBUSY;
2985
2986 /* The dump callback needs to be set */
2987 if (!dumper->dump)
2988 return -EINVAL;
2989
2990 spin_lock_irqsave(&dump_list_lock, flags);
2991 /* Don't allow registering multiple times */
2992 if (!dumper->registered) {
2993 dumper->registered = 1;
2994 list_add_tail_rcu(&dumper->list, &dump_list);
2995 err = 0;
2996 }
2997 spin_unlock_irqrestore(&dump_list_lock, flags);
2998
2999 return err;
3000}
3001EXPORT_SYMBOL_GPL(kmsg_dump_register);
3002
3003/**
3004 * kmsg_dump_unregister - unregister a kmsg dumper.
3005 * @dumper: pointer to the kmsg_dumper structure
3006 *
3007 * Removes a dump device from the system. Returns zero on success and
3008 * %-EINVAL otherwise.
3009 */
3010int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3011{
3012 unsigned long flags;
3013 int err = -EINVAL;
3014
3015 spin_lock_irqsave(&dump_list_lock, flags);
3016 if (dumper->registered) {
3017 dumper->registered = 0;
3018 list_del_rcu(&dumper->list);
3019 err = 0;
3020 }
3021 spin_unlock_irqrestore(&dump_list_lock, flags);
3022 synchronize_rcu();
3023
3024 return err;
3025}
3026EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3027
3028static bool always_kmsg_dump;
3029module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3030
3031/**
3032 * kmsg_dump - dump kernel log to kernel message dumpers.
3033 * @reason: the reason (oops, panic etc) for dumping
3034 *
3035 * Call each of the registered dumper's dump() callback, which can
3036 * retrieve the kmsg records with kmsg_dump_get_line() or
3037 * kmsg_dump_get_buffer().
3038 */
3039void kmsg_dump(enum kmsg_dump_reason reason)
3040{
3041 struct kmsg_dumper *dumper;
3042 unsigned long flags;
3043
3044 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3045 return;
3046
3047 rcu_read_lock();
3048 list_for_each_entry_rcu(dumper, &dump_list, list) {
3049 if (dumper->max_reason && reason > dumper->max_reason)
3050 continue;
3051
3052 /* initialize iterator with data about the stored records */
3053 dumper->active = true;
3054
3055 raw_spin_lock_irqsave(&logbuf_lock, flags);
3056 dumper->cur_seq = clear_seq;
3057 dumper->cur_idx = clear_idx;
3058 dumper->next_seq = log_next_seq;
3059 dumper->next_idx = log_next_idx;
3060 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3061
3062 /* invoke dumper which will iterate over records */
3063 dumper->dump(dumper, reason);
3064
3065 /* reset iterator */
3066 dumper->active = false;
3067 }
3068 rcu_read_unlock();
3069}
3070
3071/**
3072 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3073 * @dumper: registered kmsg dumper
3074 * @syslog: include the "<4>" prefixes
3075 * @line: buffer to copy the line to
3076 * @size: maximum size of the buffer
3077 * @len: length of line placed into buffer
3078 *
3079 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3080 * record, and copy one record into the provided buffer.
3081 *
3082 * Consecutive calls will return the next available record moving
3083 * towards the end of the buffer with the youngest messages.
3084 *
3085 * A return value of FALSE indicates that there are no more records to
3086 * read.
3087 *
3088 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3089 */
3090bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3091 char *line, size_t size, size_t *len)
3092{
3093 struct printk_log *msg;
3094 size_t l = 0;
3095 bool ret = false;
3096
3097 if (!dumper->active)
3098 goto out;
3099
3100 if (dumper->cur_seq < log_first_seq) {
3101 /* messages are gone, move to first available one */
3102 dumper->cur_seq = log_first_seq;
3103 dumper->cur_idx = log_first_idx;
3104 }
3105
3106 /* last entry */
3107 if (dumper->cur_seq >= log_next_seq)
3108 goto out;
3109
3110 msg = log_from_idx(dumper->cur_idx);
3111 l = msg_print_text(msg, 0, syslog, line, size);
3112
3113 dumper->cur_idx = log_next(dumper->cur_idx);
3114 dumper->cur_seq++;
3115 ret = true;
3116out:
3117 if (len)
3118 *len = l;
3119 return ret;
3120}
3121
3122/**
3123 * kmsg_dump_get_line - retrieve one kmsg log line
3124 * @dumper: registered kmsg dumper
3125 * @syslog: include the "<4>" prefixes
3126 * @line: buffer to copy the line to
3127 * @size: maximum size of the buffer
3128 * @len: length of line placed into buffer
3129 *
3130 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3131 * record, and copy one record into the provided buffer.
3132 *
3133 * Consecutive calls will return the next available record moving
3134 * towards the end of the buffer with the youngest messages.
3135 *
3136 * A return value of FALSE indicates that there are no more records to
3137 * read.
3138 */
3139bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3140 char *line, size_t size, size_t *len)
3141{
3142 unsigned long flags;
3143 bool ret;
3144
3145 raw_spin_lock_irqsave(&logbuf_lock, flags);
3146 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3147 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3148
3149 return ret;
3150}
3151EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3152
3153/**
3154 * kmsg_dump_get_buffer - copy kmsg log lines
3155 * @dumper: registered kmsg dumper
3156 * @syslog: include the "<4>" prefixes
3157 * @buf: buffer to copy the line to
3158 * @size: maximum size of the buffer
3159 * @len: length of line placed into buffer
3160 *
3161 * Start at the end of the kmsg buffer and fill the provided buffer
3162 * with as many of the the *youngest* kmsg records that fit into it.
3163 * If the buffer is large enough, all available kmsg records will be
3164 * copied with a single call.
3165 *
3166 * Consecutive calls will fill the buffer with the next block of
3167 * available older records, not including the earlier retrieved ones.
3168 *
3169 * A return value of FALSE indicates that there are no more records to
3170 * read.
3171 */
3172bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3173 char *buf, size_t size, size_t *len)
3174{
3175 unsigned long flags;
3176 u64 seq;
3177 u32 idx;
3178 u64 next_seq;
3179 u32 next_idx;
3180 enum log_flags prev;
3181 size_t l = 0;
3182 bool ret = false;
3183
3184 if (!dumper->active)
3185 goto out;
3186
3187 raw_spin_lock_irqsave(&logbuf_lock, flags);
3188 if (dumper->cur_seq < log_first_seq) {
3189 /* messages are gone, move to first available one */
3190 dumper->cur_seq = log_first_seq;
3191 dumper->cur_idx = log_first_idx;
3192 }
3193
3194 /* last entry */
3195 if (dumper->cur_seq >= dumper->next_seq) {
3196 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3197 goto out;
3198 }
3199
3200 /* calculate length of entire buffer */
3201 seq = dumper->cur_seq;
3202 idx = dumper->cur_idx;
3203 prev = 0;
3204 while (seq < dumper->next_seq) {
3205 struct printk_log *msg = log_from_idx(idx);
3206
3207 l += msg_print_text(msg, prev, true, NULL, 0);
3208 idx = log_next(idx);
3209 seq++;
3210 prev = msg->flags;
3211 }
3212
3213 /* move first record forward until length fits into the buffer */
3214 seq = dumper->cur_seq;
3215 idx = dumper->cur_idx;
3216 prev = 0;
3217 while (l > size && seq < dumper->next_seq) {
3218 struct printk_log *msg = log_from_idx(idx);
3219
3220 l -= msg_print_text(msg, prev, true, NULL, 0);
3221 idx = log_next(idx);
3222 seq++;
3223 prev = msg->flags;
3224 }
3225
3226 /* last message in next interation */
3227 next_seq = seq;
3228 next_idx = idx;
3229
3230 l = 0;
3231 while (seq < dumper->next_seq) {
3232 struct printk_log *msg = log_from_idx(idx);
3233
3234 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3235 idx = log_next(idx);
3236 seq++;
3237 prev = msg->flags;
3238 }
3239
3240 dumper->next_seq = next_seq;
3241 dumper->next_idx = next_idx;
3242 ret = true;
3243 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3244out:
3245 if (len)
3246 *len = l;
3247 return ret;
3248}
3249EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3250
3251/**
3252 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3253 * @dumper: registered kmsg dumper
3254 *
3255 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3256 * kmsg_dump_get_buffer() can be called again and used multiple
3257 * times within the same dumper.dump() callback.
3258 *
3259 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3260 */
3261void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3262{
3263 dumper->cur_seq = clear_seq;
3264 dumper->cur_idx = clear_idx;
3265 dumper->next_seq = log_next_seq;
3266 dumper->next_idx = log_next_idx;
3267}
3268
3269/**
3270 * kmsg_dump_rewind - reset the interator
3271 * @dumper: registered kmsg dumper
3272 *
3273 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3274 * kmsg_dump_get_buffer() can be called again and used multiple
3275 * times within the same dumper.dump() callback.
3276 */
3277void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3278{
3279 unsigned long flags;
3280
3281 raw_spin_lock_irqsave(&logbuf_lock, flags);
3282 kmsg_dump_rewind_nolock(dumper);
3283 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3284}
3285EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3286
3287static char dump_stack_arch_desc_str[128];
3288
3289/**
3290 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3291 * @fmt: printf-style format string
3292 * @...: arguments for the format string
3293 *
3294 * The configured string will be printed right after utsname during task
3295 * dumps. Usually used to add arch-specific system identifiers. If an
3296 * arch wants to make use of such an ID string, it should initialize this
3297 * as soon as possible during boot.
3298 */
3299void __init dump_stack_set_arch_desc(const char *fmt, ...)
3300{
3301 va_list args;
3302
3303 va_start(args, fmt);
3304 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3305 fmt, args);
3306 va_end(args);
3307}
3308
3309/**
3310 * dump_stack_print_info - print generic debug info for dump_stack()
3311 * @log_lvl: log level
3312 *
3313 * Arch-specific dump_stack() implementations can use this function to
3314 * print out the same debug information as the generic dump_stack().
3315 */
3316void dump_stack_print_info(const char *log_lvl)
3317{
3318 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3319 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3320 print_tainted(), init_utsname()->release,
3321 (int)strcspn(init_utsname()->version, " "),
3322 init_utsname()->version);
3323
3324 if (dump_stack_arch_desc_str[0] != '\0')
3325 printk("%sHardware name: %s\n",
3326 log_lvl, dump_stack_arch_desc_str);
3327
3328 print_worker_info(log_lvl, current);
3329}
3330
3331/**
3332 * show_regs_print_info - print generic debug info for show_regs()
3333 * @log_lvl: log level
3334 *
3335 * show_regs() implementations can use this function to print out generic
3336 * debug information.
3337 */
3338void show_regs_print_info(const char *log_lvl)
3339{
3340 dump_stack_print_info(log_lvl);
3341
3342 printk("%stask: %p task.stack: %p\n",
3343 log_lvl, current, task_stack_page(current));
3344}
3345
3346#endif
3347