summaryrefslogtreecommitdiff
path: root/block/blk-core.c (plain)
blob: c13af6192a355efbd75ca9073f236deec7d9f41c
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/blk-mq.h>
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
29#include <linux/task_io_accounting_ops.h>
30#include <linux/fault-inject.h>
31#include <linux/list_sort.h>
32#include <linux/delay.h>
33#include <linux/ratelimit.h>
34#include <linux/pm_runtime.h>
35#include <linux/blk-cgroup.h>
36
37#define CREATE_TRACE_POINTS
38#include <trace/events/block.h>
39
40#include "blk.h"
41#include "blk-mq.h"
42
43#include <linux/math64.h>
44
45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
46EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
47EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
48EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
49EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
50
51DEFINE_IDA(blk_queue_ida);
52
53/*
54 * For the allocated request tables
55 */
56struct kmem_cache *request_cachep;
57
58/*
59 * For queue allocation
60 */
61struct kmem_cache *blk_requestq_cachep;
62
63/*
64 * Controlling structure to kblockd
65 */
66static struct workqueue_struct *kblockd_workqueue;
67
68static void blk_clear_congested(struct request_list *rl, int sync)
69{
70#ifdef CONFIG_CGROUP_WRITEBACK
71 clear_wb_congested(rl->blkg->wb_congested, sync);
72#else
73 /*
74 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
75 * flip its congestion state for events on other blkcgs.
76 */
77 if (rl == &rl->q->root_rl)
78 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
79#endif
80}
81
82static void blk_set_congested(struct request_list *rl, int sync)
83{
84#ifdef CONFIG_CGROUP_WRITEBACK
85 set_wb_congested(rl->blkg->wb_congested, sync);
86#else
87 /* see blk_clear_congested() */
88 if (rl == &rl->q->root_rl)
89 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
90#endif
91}
92
93void blk_queue_congestion_threshold(struct request_queue *q)
94{
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106}
107
108/**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info. This function can only be called if @bdev is opened
114 * and the return value is never NULL.
115 */
116struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117{
118 struct request_queue *q = bdev_get_queue(bdev);
119
120 return &q->backing_dev_info;
121}
122EXPORT_SYMBOL(blk_get_backing_dev_info);
123
124void blk_rq_init(struct request_queue *q, struct request *rq)
125{
126 memset(rq, 0, sizeof(*rq));
127
128 INIT_LIST_HEAD(&rq->queuelist);
129 INIT_LIST_HEAD(&rq->timeout_list);
130 rq->cpu = -1;
131 rq->q = q;
132 rq->__sector = (sector_t) -1;
133 INIT_HLIST_NODE(&rq->hash);
134 RB_CLEAR_NODE(&rq->rb_node);
135 rq->cmd = rq->__cmd;
136 rq->cmd_len = BLK_MAX_CDB;
137 rq->tag = -1;
138 rq->start_time = jiffies;
139 set_start_time_ns(rq);
140 rq->part = NULL;
141}
142EXPORT_SYMBOL(blk_rq_init);
143
144static void req_bio_endio(struct request *rq, struct bio *bio,
145 unsigned int nbytes, int error)
146{
147 if (error)
148 bio->bi_error = error;
149
150 if (unlikely(rq->cmd_flags & REQ_QUIET))
151 bio_set_flag(bio, BIO_QUIET);
152
153 bio_advance(bio, nbytes);
154
155 /* don't actually finish bio if it's part of flush sequence */
156 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
157 bio_endio(bio);
158}
159
160void blk_dump_rq_flags(struct request *rq, char *msg)
161{
162 int bit;
163
164 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
165 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
166 (unsigned long long) rq->cmd_flags);
167
168 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
169 (unsigned long long)blk_rq_pos(rq),
170 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
171 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
172 rq->bio, rq->biotail, blk_rq_bytes(rq));
173
174 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
175 printk(KERN_INFO " cdb: ");
176 for (bit = 0; bit < BLK_MAX_CDB; bit++)
177 printk("%02x ", rq->cmd[bit]);
178 printk("\n");
179 }
180}
181EXPORT_SYMBOL(blk_dump_rq_flags);
182
183static void blk_delay_work(struct work_struct *work)
184{
185 struct request_queue *q;
186
187 q = container_of(work, struct request_queue, delay_work.work);
188 spin_lock_irq(q->queue_lock);
189 __blk_run_queue(q);
190 spin_unlock_irq(q->queue_lock);
191}
192
193/**
194 * blk_delay_queue - restart queueing after defined interval
195 * @q: The &struct request_queue in question
196 * @msecs: Delay in msecs
197 *
198 * Description:
199 * Sometimes queueing needs to be postponed for a little while, to allow
200 * resources to come back. This function will make sure that queueing is
201 * restarted around the specified time. Queue lock must be held.
202 */
203void blk_delay_queue(struct request_queue *q, unsigned long msecs)
204{
205 if (likely(!blk_queue_dead(q)))
206 queue_delayed_work(kblockd_workqueue, &q->delay_work,
207 msecs_to_jiffies(msecs));
208}
209EXPORT_SYMBOL(blk_delay_queue);
210
211/**
212 * blk_start_queue_async - asynchronously restart a previously stopped queue
213 * @q: The &struct request_queue in question
214 *
215 * Description:
216 * blk_start_queue_async() will clear the stop flag on the queue, and
217 * ensure that the request_fn for the queue is run from an async
218 * context.
219 **/
220void blk_start_queue_async(struct request_queue *q)
221{
222 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
223 blk_run_queue_async(q);
224}
225EXPORT_SYMBOL(blk_start_queue_async);
226
227/**
228 * blk_start_queue - restart a previously stopped queue
229 * @q: The &struct request_queue in question
230 *
231 * Description:
232 * blk_start_queue() will clear the stop flag on the queue, and call
233 * the request_fn for the queue if it was in a stopped state when
234 * entered. Also see blk_stop_queue(). Queue lock must be held.
235 **/
236void blk_start_queue(struct request_queue *q)
237{
238 WARN_ON(!in_interrupt() && !irqs_disabled());
239
240 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
241 __blk_run_queue(q);
242}
243EXPORT_SYMBOL(blk_start_queue);
244
245/**
246 * blk_stop_queue - stop a queue
247 * @q: The &struct request_queue in question
248 *
249 * Description:
250 * The Linux block layer assumes that a block driver will consume all
251 * entries on the request queue when the request_fn strategy is called.
252 * Often this will not happen, because of hardware limitations (queue
253 * depth settings). If a device driver gets a 'queue full' response,
254 * or if it simply chooses not to queue more I/O at one point, it can
255 * call this function to prevent the request_fn from being called until
256 * the driver has signalled it's ready to go again. This happens by calling
257 * blk_start_queue() to restart queue operations. Queue lock must be held.
258 **/
259void blk_stop_queue(struct request_queue *q)
260{
261 cancel_delayed_work(&q->delay_work);
262 queue_flag_set(QUEUE_FLAG_STOPPED, q);
263}
264EXPORT_SYMBOL(blk_stop_queue);
265
266/**
267 * blk_sync_queue - cancel any pending callbacks on a queue
268 * @q: the queue
269 *
270 * Description:
271 * The block layer may perform asynchronous callback activity
272 * on a queue, such as calling the unplug function after a timeout.
273 * A block device may call blk_sync_queue to ensure that any
274 * such activity is cancelled, thus allowing it to release resources
275 * that the callbacks might use. The caller must already have made sure
276 * that its ->make_request_fn will not re-add plugging prior to calling
277 * this function.
278 *
279 * This function does not cancel any asynchronous activity arising
280 * out of elevator or throttling code. That would require elevator_exit()
281 * and blkcg_exit_queue() to be called with queue lock initialized.
282 *
283 */
284void blk_sync_queue(struct request_queue *q)
285{
286 del_timer_sync(&q->timeout);
287 cancel_work_sync(&q->timeout_work);
288
289 if (q->mq_ops) {
290 struct blk_mq_hw_ctx *hctx;
291 int i;
292
293 queue_for_each_hw_ctx(q, hctx, i) {
294 cancel_work_sync(&hctx->run_work);
295 cancel_delayed_work_sync(&hctx->delay_work);
296 }
297 } else {
298 cancel_delayed_work_sync(&q->delay_work);
299 }
300}
301EXPORT_SYMBOL(blk_sync_queue);
302
303/**
304 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
305 * @q: The queue to run
306 *
307 * Description:
308 * Invoke request handling on a queue if there are any pending requests.
309 * May be used to restart request handling after a request has completed.
310 * This variant runs the queue whether or not the queue has been
311 * stopped. Must be called with the queue lock held and interrupts
312 * disabled. See also @blk_run_queue.
313 */
314inline void __blk_run_queue_uncond(struct request_queue *q)
315{
316 if (unlikely(blk_queue_dead(q)))
317 return;
318
319 /*
320 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
321 * the queue lock internally. As a result multiple threads may be
322 * running such a request function concurrently. Keep track of the
323 * number of active request_fn invocations such that blk_drain_queue()
324 * can wait until all these request_fn calls have finished.
325 */
326 q->request_fn_active++;
327 q->request_fn(q);
328 q->request_fn_active--;
329}
330EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
331
332/**
333 * __blk_run_queue - run a single device queue
334 * @q: The queue to run
335 *
336 * Description:
337 * See @blk_run_queue. This variant must be called with the queue lock
338 * held and interrupts disabled.
339 */
340void __blk_run_queue(struct request_queue *q)
341{
342 if (unlikely(blk_queue_stopped(q)))
343 return;
344
345 __blk_run_queue_uncond(q);
346}
347EXPORT_SYMBOL(__blk_run_queue);
348
349/**
350 * blk_run_queue_async - run a single device queue in workqueue context
351 * @q: The queue to run
352 *
353 * Description:
354 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
355 * of us. The caller must hold the queue lock.
356 */
357void blk_run_queue_async(struct request_queue *q)
358{
359 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
360 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
361}
362EXPORT_SYMBOL(blk_run_queue_async);
363
364/**
365 * blk_run_queue - run a single device queue
366 * @q: The queue to run
367 *
368 * Description:
369 * Invoke request handling on this queue, if it has pending work to do.
370 * May be used to restart queueing when a request has completed.
371 */
372void blk_run_queue(struct request_queue *q)
373{
374 unsigned long flags;
375
376 spin_lock_irqsave(q->queue_lock, flags);
377 __blk_run_queue(q);
378 spin_unlock_irqrestore(q->queue_lock, flags);
379}
380EXPORT_SYMBOL(blk_run_queue);
381
382void blk_put_queue(struct request_queue *q)
383{
384 kobject_put(&q->kobj);
385}
386EXPORT_SYMBOL(blk_put_queue);
387
388/**
389 * __blk_drain_queue - drain requests from request_queue
390 * @q: queue to drain
391 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
392 *
393 * Drain requests from @q. If @drain_all is set, all requests are drained.
394 * If not, only ELVPRIV requests are drained. The caller is responsible
395 * for ensuring that no new requests which need to be drained are queued.
396 */
397static void __blk_drain_queue(struct request_queue *q, bool drain_all)
398 __releases(q->queue_lock)
399 __acquires(q->queue_lock)
400{
401 int i;
402
403 lockdep_assert_held(q->queue_lock);
404
405 while (true) {
406 bool drain = false;
407
408 /*
409 * The caller might be trying to drain @q before its
410 * elevator is initialized.
411 */
412 if (q->elevator)
413 elv_drain_elevator(q);
414
415 blkcg_drain_queue(q);
416
417 /*
418 * This function might be called on a queue which failed
419 * driver init after queue creation or is not yet fully
420 * active yet. Some drivers (e.g. fd and loop) get unhappy
421 * in such cases. Kick queue iff dispatch queue has
422 * something on it and @q has request_fn set.
423 */
424 if (!list_empty(&q->queue_head) && q->request_fn)
425 __blk_run_queue(q);
426
427 drain |= q->nr_rqs_elvpriv;
428 drain |= q->request_fn_active;
429
430 /*
431 * Unfortunately, requests are queued at and tracked from
432 * multiple places and there's no single counter which can
433 * be drained. Check all the queues and counters.
434 */
435 if (drain_all) {
436 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
437 drain |= !list_empty(&q->queue_head);
438 for (i = 0; i < 2; i++) {
439 drain |= q->nr_rqs[i];
440 drain |= q->in_flight[i];
441 if (fq)
442 drain |= !list_empty(&fq->flush_queue[i]);
443 }
444 }
445
446 if (!drain)
447 break;
448
449 spin_unlock_irq(q->queue_lock);
450
451 msleep(10);
452
453 spin_lock_irq(q->queue_lock);
454 }
455
456 /*
457 * With queue marked dead, any woken up waiter will fail the
458 * allocation path, so the wakeup chaining is lost and we're
459 * left with hung waiters. We need to wake up those waiters.
460 */
461 if (q->request_fn) {
462 struct request_list *rl;
463
464 blk_queue_for_each_rl(rl, q)
465 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
466 wake_up_all(&rl->wait[i]);
467 }
468}
469
470/**
471 * blk_queue_bypass_start - enter queue bypass mode
472 * @q: queue of interest
473 *
474 * In bypass mode, only the dispatch FIFO queue of @q is used. This
475 * function makes @q enter bypass mode and drains all requests which were
476 * throttled or issued before. On return, it's guaranteed that no request
477 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
478 * inside queue or RCU read lock.
479 */
480void blk_queue_bypass_start(struct request_queue *q)
481{
482 spin_lock_irq(q->queue_lock);
483 q->bypass_depth++;
484 queue_flag_set(QUEUE_FLAG_BYPASS, q);
485 spin_unlock_irq(q->queue_lock);
486
487 /*
488 * Queues start drained. Skip actual draining till init is
489 * complete. This avoids lenghty delays during queue init which
490 * can happen many times during boot.
491 */
492 if (blk_queue_init_done(q)) {
493 spin_lock_irq(q->queue_lock);
494 __blk_drain_queue(q, false);
495 spin_unlock_irq(q->queue_lock);
496
497 /* ensure blk_queue_bypass() is %true inside RCU read lock */
498 synchronize_rcu();
499 }
500}
501EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
502
503/**
504 * blk_queue_bypass_end - leave queue bypass mode
505 * @q: queue of interest
506 *
507 * Leave bypass mode and restore the normal queueing behavior.
508 */
509void blk_queue_bypass_end(struct request_queue *q)
510{
511 spin_lock_irq(q->queue_lock);
512 if (!--q->bypass_depth)
513 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
514 WARN_ON_ONCE(q->bypass_depth < 0);
515 spin_unlock_irq(q->queue_lock);
516}
517EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
518
519void blk_set_queue_dying(struct request_queue *q)
520{
521 spin_lock_irq(q->queue_lock);
522 queue_flag_set(QUEUE_FLAG_DYING, q);
523 spin_unlock_irq(q->queue_lock);
524
525 if (q->mq_ops)
526 blk_mq_wake_waiters(q);
527 else {
528 struct request_list *rl;
529
530 blk_queue_for_each_rl(rl, q) {
531 if (rl->rq_pool) {
532 wake_up_all(&rl->wait[BLK_RW_SYNC]);
533 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
534 }
535 }
536 }
537}
538EXPORT_SYMBOL_GPL(blk_set_queue_dying);
539
540/**
541 * blk_cleanup_queue - shutdown a request queue
542 * @q: request queue to shutdown
543 *
544 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
545 * put it. All future requests will be failed immediately with -ENODEV.
546 */
547void blk_cleanup_queue(struct request_queue *q)
548{
549 spinlock_t *lock = q->queue_lock;
550
551 /* mark @q DYING, no new request or merges will be allowed afterwards */
552 mutex_lock(&q->sysfs_lock);
553 blk_set_queue_dying(q);
554 spin_lock_irq(lock);
555
556 /*
557 * A dying queue is permanently in bypass mode till released. Note
558 * that, unlike blk_queue_bypass_start(), we aren't performing
559 * synchronize_rcu() after entering bypass mode to avoid the delay
560 * as some drivers create and destroy a lot of queues while
561 * probing. This is still safe because blk_release_queue() will be
562 * called only after the queue refcnt drops to zero and nothing,
563 * RCU or not, would be traversing the queue by then.
564 */
565 q->bypass_depth++;
566 queue_flag_set(QUEUE_FLAG_BYPASS, q);
567
568 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
569 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
570 queue_flag_set(QUEUE_FLAG_DYING, q);
571 spin_unlock_irq(lock);
572 mutex_unlock(&q->sysfs_lock);
573
574 /*
575 * Drain all requests queued before DYING marking. Set DEAD flag to
576 * prevent that q->request_fn() gets invoked after draining finished.
577 */
578 blk_freeze_queue(q);
579 spin_lock_irq(lock);
580 if (!q->mq_ops)
581 __blk_drain_queue(q, true);
582 queue_flag_set(QUEUE_FLAG_DEAD, q);
583 spin_unlock_irq(lock);
584
585 /* for synchronous bio-based driver finish in-flight integrity i/o */
586 blk_flush_integrity();
587
588 /* @q won't process any more request, flush async actions */
589 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
590 blk_sync_queue(q);
591
592 if (q->mq_ops)
593 blk_mq_free_queue(q);
594 percpu_ref_exit(&q->q_usage_counter);
595
596 spin_lock_irq(lock);
597 if (q->queue_lock != &q->__queue_lock)
598 q->queue_lock = &q->__queue_lock;
599 spin_unlock_irq(lock);
600
601 bdi_unregister(&q->backing_dev_info);
602
603 /* @q is and will stay empty, shutdown and put */
604 blk_put_queue(q);
605}
606EXPORT_SYMBOL(blk_cleanup_queue);
607
608/* Allocate memory local to the request queue */
609static void *alloc_request_struct(gfp_t gfp_mask, void *data)
610{
611 int nid = (int)(long)data;
612 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
613}
614
615static void free_request_struct(void *element, void *unused)
616{
617 kmem_cache_free(request_cachep, element);
618}
619
620int blk_init_rl(struct request_list *rl, struct request_queue *q,
621 gfp_t gfp_mask)
622{
623 if (unlikely(rl->rq_pool))
624 return 0;
625
626 rl->q = q;
627 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
628 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
629 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
630 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
631
632 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
633 free_request_struct,
634 (void *)(long)q->node, gfp_mask,
635 q->node);
636 if (!rl->rq_pool)
637 return -ENOMEM;
638
639 return 0;
640}
641
642void blk_exit_rl(struct request_list *rl)
643{
644 if (rl->rq_pool)
645 mempool_destroy(rl->rq_pool);
646}
647
648struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
649{
650 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
651}
652EXPORT_SYMBOL(blk_alloc_queue);
653
654int blk_queue_enter(struct request_queue *q, bool nowait)
655{
656 while (true) {
657
658 if (percpu_ref_tryget_live(&q->q_usage_counter))
659 return 0;
660
661 if (nowait)
662 return -EBUSY;
663
664 wait_event(q->mq_freeze_wq,
665 !atomic_read(&q->mq_freeze_depth) ||
666 blk_queue_dying(q));
667 if (blk_queue_dying(q))
668 return -ENODEV;
669 }
670}
671
672void blk_queue_exit(struct request_queue *q)
673{
674 percpu_ref_put(&q->q_usage_counter);
675}
676
677static void blk_queue_usage_counter_release(struct percpu_ref *ref)
678{
679 struct request_queue *q =
680 container_of(ref, struct request_queue, q_usage_counter);
681
682 wake_up_all(&q->mq_freeze_wq);
683}
684
685static void blk_rq_timed_out_timer(unsigned long data)
686{
687 struct request_queue *q = (struct request_queue *)data;
688
689 kblockd_schedule_work(&q->timeout_work);
690}
691
692struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
693{
694 struct request_queue *q;
695 int err;
696
697 q = kmem_cache_alloc_node(blk_requestq_cachep,
698 gfp_mask | __GFP_ZERO, node_id);
699 if (!q)
700 return NULL;
701
702 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
703 if (q->id < 0)
704 goto fail_q;
705
706 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
707 if (!q->bio_split)
708 goto fail_id;
709
710 q->backing_dev_info.ra_pages =
711 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
712 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
713 q->backing_dev_info.name = "block";
714 q->node = node_id;
715
716 err = bdi_init(&q->backing_dev_info);
717 if (err)
718 goto fail_split;
719
720 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
721 laptop_mode_timer_fn, (unsigned long) q);
722 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
723 INIT_WORK(&q->timeout_work, NULL);
724 INIT_LIST_HEAD(&q->queue_head);
725 INIT_LIST_HEAD(&q->timeout_list);
726 INIT_LIST_HEAD(&q->icq_list);
727#ifdef CONFIG_BLK_CGROUP
728 INIT_LIST_HEAD(&q->blkg_list);
729#endif
730 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
731
732 kobject_init(&q->kobj, &blk_queue_ktype);
733
734 mutex_init(&q->sysfs_lock);
735 spin_lock_init(&q->__queue_lock);
736
737 /*
738 * By default initialize queue_lock to internal lock and driver can
739 * override it later if need be.
740 */
741 q->queue_lock = &q->__queue_lock;
742
743 /*
744 * A queue starts its life with bypass turned on to avoid
745 * unnecessary bypass on/off overhead and nasty surprises during
746 * init. The initial bypass will be finished when the queue is
747 * registered by blk_register_queue().
748 */
749 q->bypass_depth = 1;
750 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
751
752 init_waitqueue_head(&q->mq_freeze_wq);
753
754 /*
755 * Init percpu_ref in atomic mode so that it's faster to shutdown.
756 * See blk_register_queue() for details.
757 */
758 if (percpu_ref_init(&q->q_usage_counter,
759 blk_queue_usage_counter_release,
760 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
761 goto fail_bdi;
762
763 if (blkcg_init_queue(q))
764 goto fail_ref;
765
766 return q;
767
768fail_ref:
769 percpu_ref_exit(&q->q_usage_counter);
770fail_bdi:
771 bdi_destroy(&q->backing_dev_info);
772fail_split:
773 bioset_free(q->bio_split);
774fail_id:
775 ida_simple_remove(&blk_queue_ida, q->id);
776fail_q:
777 kmem_cache_free(blk_requestq_cachep, q);
778 return NULL;
779}
780EXPORT_SYMBOL(blk_alloc_queue_node);
781
782/**
783 * blk_init_queue - prepare a request queue for use with a block device
784 * @rfn: The function to be called to process requests that have been
785 * placed on the queue.
786 * @lock: Request queue spin lock
787 *
788 * Description:
789 * If a block device wishes to use the standard request handling procedures,
790 * which sorts requests and coalesces adjacent requests, then it must
791 * call blk_init_queue(). The function @rfn will be called when there
792 * are requests on the queue that need to be processed. If the device
793 * supports plugging, then @rfn may not be called immediately when requests
794 * are available on the queue, but may be called at some time later instead.
795 * Plugged queues are generally unplugged when a buffer belonging to one
796 * of the requests on the queue is needed, or due to memory pressure.
797 *
798 * @rfn is not required, or even expected, to remove all requests off the
799 * queue, but only as many as it can handle at a time. If it does leave
800 * requests on the queue, it is responsible for arranging that the requests
801 * get dealt with eventually.
802 *
803 * The queue spin lock must be held while manipulating the requests on the
804 * request queue; this lock will be taken also from interrupt context, so irq
805 * disabling is needed for it.
806 *
807 * Function returns a pointer to the initialized request queue, or %NULL if
808 * it didn't succeed.
809 *
810 * Note:
811 * blk_init_queue() must be paired with a blk_cleanup_queue() call
812 * when the block device is deactivated (such as at module unload).
813 **/
814
815struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
816{
817 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
818}
819EXPORT_SYMBOL(blk_init_queue);
820
821struct request_queue *
822blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
823{
824 struct request_queue *uninit_q, *q;
825
826 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
827 if (!uninit_q)
828 return NULL;
829
830 q = blk_init_allocated_queue(uninit_q, rfn, lock);
831 if (!q)
832 blk_cleanup_queue(uninit_q);
833
834 return q;
835}
836EXPORT_SYMBOL(blk_init_queue_node);
837
838static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
839
840struct request_queue *
841blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
842 spinlock_t *lock)
843{
844 if (!q)
845 return NULL;
846
847 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
848 if (!q->fq)
849 return NULL;
850
851 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
852 goto fail;
853
854 INIT_WORK(&q->timeout_work, blk_timeout_work);
855 q->request_fn = rfn;
856 q->prep_rq_fn = NULL;
857 q->unprep_rq_fn = NULL;
858 q->queue_flags |= QUEUE_FLAG_DEFAULT;
859
860 /* Override internal queue lock with supplied lock pointer */
861 if (lock)
862 q->queue_lock = lock;
863
864 /*
865 * This also sets hw/phys segments, boundary and size
866 */
867 blk_queue_make_request(q, blk_queue_bio);
868
869 q->sg_reserved_size = INT_MAX;
870
871 /* Protect q->elevator from elevator_change */
872 mutex_lock(&q->sysfs_lock);
873
874 /* init elevator */
875 if (elevator_init(q, NULL)) {
876 mutex_unlock(&q->sysfs_lock);
877 goto fail;
878 }
879
880 mutex_unlock(&q->sysfs_lock);
881
882 return q;
883
884fail:
885 blk_free_flush_queue(q->fq);
886 return NULL;
887}
888EXPORT_SYMBOL(blk_init_allocated_queue);
889
890bool blk_get_queue(struct request_queue *q)
891{
892 if (likely(!blk_queue_dying(q))) {
893 __blk_get_queue(q);
894 return true;
895 }
896
897 return false;
898}
899EXPORT_SYMBOL(blk_get_queue);
900
901static inline void blk_free_request(struct request_list *rl, struct request *rq)
902{
903 if (rq->cmd_flags & REQ_ELVPRIV) {
904 elv_put_request(rl->q, rq);
905 if (rq->elv.icq)
906 put_io_context(rq->elv.icq->ioc);
907 }
908
909 mempool_free(rq, rl->rq_pool);
910}
911
912/*
913 * ioc_batching returns true if the ioc is a valid batching request and
914 * should be given priority access to a request.
915 */
916static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
917{
918 if (!ioc)
919 return 0;
920
921 /*
922 * Make sure the process is able to allocate at least 1 request
923 * even if the batch times out, otherwise we could theoretically
924 * lose wakeups.
925 */
926 return ioc->nr_batch_requests == q->nr_batching ||
927 (ioc->nr_batch_requests > 0
928 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
929}
930
931/*
932 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
933 * will cause the process to be a "batcher" on all queues in the system. This
934 * is the behaviour we want though - once it gets a wakeup it should be given
935 * a nice run.
936 */
937static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
938{
939 if (!ioc || ioc_batching(q, ioc))
940 return;
941
942 ioc->nr_batch_requests = q->nr_batching;
943 ioc->last_waited = jiffies;
944}
945
946static void __freed_request(struct request_list *rl, int sync)
947{
948 struct request_queue *q = rl->q;
949
950 if (rl->count[sync] < queue_congestion_off_threshold(q))
951 blk_clear_congested(rl, sync);
952
953 if (rl->count[sync] + 1 <= q->nr_requests) {
954 if (waitqueue_active(&rl->wait[sync]))
955 wake_up(&rl->wait[sync]);
956
957 blk_clear_rl_full(rl, sync);
958 }
959}
960
961/*
962 * A request has just been released. Account for it, update the full and
963 * congestion status, wake up any waiters. Called under q->queue_lock.
964 */
965static void freed_request(struct request_list *rl, int op, unsigned int flags)
966{
967 struct request_queue *q = rl->q;
968 int sync = rw_is_sync(op, flags);
969
970 q->nr_rqs[sync]--;
971 rl->count[sync]--;
972 if (flags & REQ_ELVPRIV)
973 q->nr_rqs_elvpriv--;
974
975 __freed_request(rl, sync);
976
977 if (unlikely(rl->starved[sync ^ 1]))
978 __freed_request(rl, sync ^ 1);
979}
980
981int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
982{
983 struct request_list *rl;
984 int on_thresh, off_thresh;
985
986 spin_lock_irq(q->queue_lock);
987 q->nr_requests = nr;
988 blk_queue_congestion_threshold(q);
989 on_thresh = queue_congestion_on_threshold(q);
990 off_thresh = queue_congestion_off_threshold(q);
991
992 blk_queue_for_each_rl(rl, q) {
993 if (rl->count[BLK_RW_SYNC] >= on_thresh)
994 blk_set_congested(rl, BLK_RW_SYNC);
995 else if (rl->count[BLK_RW_SYNC] < off_thresh)
996 blk_clear_congested(rl, BLK_RW_SYNC);
997
998 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
999 blk_set_congested(rl, BLK_RW_ASYNC);
1000 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1001 blk_clear_congested(rl, BLK_RW_ASYNC);
1002
1003 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1004 blk_set_rl_full(rl, BLK_RW_SYNC);
1005 } else {
1006 blk_clear_rl_full(rl, BLK_RW_SYNC);
1007 wake_up(&rl->wait[BLK_RW_SYNC]);
1008 }
1009
1010 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1011 blk_set_rl_full(rl, BLK_RW_ASYNC);
1012 } else {
1013 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1014 wake_up(&rl->wait[BLK_RW_ASYNC]);
1015 }
1016 }
1017
1018 spin_unlock_irq(q->queue_lock);
1019 return 0;
1020}
1021
1022/*
1023 * Determine if elevator data should be initialized when allocating the
1024 * request associated with @bio.
1025 */
1026static bool blk_rq_should_init_elevator(struct bio *bio)
1027{
1028 if (!bio)
1029 return true;
1030
1031 /*
1032 * Flush requests do not use the elevator so skip initialization.
1033 * This allows a request to share the flush and elevator data.
1034 */
1035 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
1036 return false;
1037
1038 return true;
1039}
1040
1041/**
1042 * rq_ioc - determine io_context for request allocation
1043 * @bio: request being allocated is for this bio (can be %NULL)
1044 *
1045 * Determine io_context to use for request allocation for @bio. May return
1046 * %NULL if %current->io_context doesn't exist.
1047 */
1048static struct io_context *rq_ioc(struct bio *bio)
1049{
1050#ifdef CONFIG_BLK_CGROUP
1051 if (bio && bio->bi_ioc)
1052 return bio->bi_ioc;
1053#endif
1054 return current->io_context;
1055}
1056
1057/**
1058 * __get_request - get a free request
1059 * @rl: request list to allocate from
1060 * @op: REQ_OP_READ/REQ_OP_WRITE
1061 * @op_flags: rq_flag_bits
1062 * @bio: bio to allocate request for (can be %NULL)
1063 * @gfp_mask: allocation mask
1064 *
1065 * Get a free request from @q. This function may fail under memory
1066 * pressure or if @q is dead.
1067 *
1068 * Must be called with @q->queue_lock held and,
1069 * Returns ERR_PTR on failure, with @q->queue_lock held.
1070 * Returns request pointer on success, with @q->queue_lock *not held*.
1071 */
1072static struct request *__get_request(struct request_list *rl, int op,
1073 int op_flags, struct bio *bio,
1074 gfp_t gfp_mask)
1075{
1076 struct request_queue *q = rl->q;
1077 struct request *rq;
1078 struct elevator_type *et = q->elevator->type;
1079 struct io_context *ioc = rq_ioc(bio);
1080 struct io_cq *icq = NULL;
1081 const bool is_sync = rw_is_sync(op, op_flags) != 0;
1082 int may_queue;
1083
1084 if (unlikely(blk_queue_dying(q)))
1085 return ERR_PTR(-ENODEV);
1086
1087 may_queue = elv_may_queue(q, op, op_flags);
1088 if (may_queue == ELV_MQUEUE_NO)
1089 goto rq_starved;
1090
1091 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1092 if (rl->count[is_sync]+1 >= q->nr_requests) {
1093 /*
1094 * The queue will fill after this allocation, so set
1095 * it as full, and mark this process as "batching".
1096 * This process will be allowed to complete a batch of
1097 * requests, others will be blocked.
1098 */
1099 if (!blk_rl_full(rl, is_sync)) {
1100 ioc_set_batching(q, ioc);
1101 blk_set_rl_full(rl, is_sync);
1102 } else {
1103 if (may_queue != ELV_MQUEUE_MUST
1104 && !ioc_batching(q, ioc)) {
1105 /*
1106 * The queue is full and the allocating
1107 * process is not a "batcher", and not
1108 * exempted by the IO scheduler
1109 */
1110 return ERR_PTR(-ENOMEM);
1111 }
1112 }
1113 }
1114 blk_set_congested(rl, is_sync);
1115 }
1116
1117 /*
1118 * Only allow batching queuers to allocate up to 50% over the defined
1119 * limit of requests, otherwise we could have thousands of requests
1120 * allocated with any setting of ->nr_requests
1121 */
1122 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1123 return ERR_PTR(-ENOMEM);
1124
1125 q->nr_rqs[is_sync]++;
1126 rl->count[is_sync]++;
1127 rl->starved[is_sync] = 0;
1128
1129 /*
1130 * Decide whether the new request will be managed by elevator. If
1131 * so, mark @op_flags and increment elvpriv. Non-zero elvpriv will
1132 * prevent the current elevator from being destroyed until the new
1133 * request is freed. This guarantees icq's won't be destroyed and
1134 * makes creating new ones safe.
1135 *
1136 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1137 * it will be created after releasing queue_lock.
1138 */
1139 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1140 op_flags |= REQ_ELVPRIV;
1141 q->nr_rqs_elvpriv++;
1142 if (et->icq_cache && ioc)
1143 icq = ioc_lookup_icq(ioc, q);
1144 }
1145
1146 if (blk_queue_io_stat(q))
1147 op_flags |= REQ_IO_STAT;
1148 spin_unlock_irq(q->queue_lock);
1149
1150 /* allocate and init request */
1151 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1152 if (!rq)
1153 goto fail_alloc;
1154
1155 blk_rq_init(q, rq);
1156 blk_rq_set_rl(rq, rl);
1157 req_set_op_attrs(rq, op, op_flags | REQ_ALLOCED);
1158
1159 /* init elvpriv */
1160 if (op_flags & REQ_ELVPRIV) {
1161 if (unlikely(et->icq_cache && !icq)) {
1162 if (ioc)
1163 icq = ioc_create_icq(ioc, q, gfp_mask);
1164 if (!icq)
1165 goto fail_elvpriv;
1166 }
1167
1168 rq->elv.icq = icq;
1169 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1170 goto fail_elvpriv;
1171
1172 /* @rq->elv.icq holds io_context until @rq is freed */
1173 if (icq)
1174 get_io_context(icq->ioc);
1175 }
1176out:
1177 /*
1178 * ioc may be NULL here, and ioc_batching will be false. That's
1179 * OK, if the queue is under the request limit then requests need
1180 * not count toward the nr_batch_requests limit. There will always
1181 * be some limit enforced by BLK_BATCH_TIME.
1182 */
1183 if (ioc_batching(q, ioc))
1184 ioc->nr_batch_requests--;
1185
1186 trace_block_getrq(q, bio, op);
1187 return rq;
1188
1189fail_elvpriv:
1190 /*
1191 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1192 * and may fail indefinitely under memory pressure and thus
1193 * shouldn't stall IO. Treat this request as !elvpriv. This will
1194 * disturb iosched and blkcg but weird is bettern than dead.
1195 */
1196 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1197 __func__, dev_name(q->backing_dev_info.dev));
1198
1199 rq->cmd_flags &= ~REQ_ELVPRIV;
1200 rq->elv.icq = NULL;
1201
1202 spin_lock_irq(q->queue_lock);
1203 q->nr_rqs_elvpriv--;
1204 spin_unlock_irq(q->queue_lock);
1205 goto out;
1206
1207fail_alloc:
1208 /*
1209 * Allocation failed presumably due to memory. Undo anything we
1210 * might have messed up.
1211 *
1212 * Allocating task should really be put onto the front of the wait
1213 * queue, but this is pretty rare.
1214 */
1215 spin_lock_irq(q->queue_lock);
1216 freed_request(rl, op, op_flags);
1217
1218 /*
1219 * in the very unlikely event that allocation failed and no
1220 * requests for this direction was pending, mark us starved so that
1221 * freeing of a request in the other direction will notice
1222 * us. another possible fix would be to split the rq mempool into
1223 * READ and WRITE
1224 */
1225rq_starved:
1226 if (unlikely(rl->count[is_sync] == 0))
1227 rl->starved[is_sync] = 1;
1228 return ERR_PTR(-ENOMEM);
1229}
1230
1231/**
1232 * get_request - get a free request
1233 * @q: request_queue to allocate request from
1234 * @op: REQ_OP_READ/REQ_OP_WRITE
1235 * @op_flags: rq_flag_bits
1236 * @bio: bio to allocate request for (can be %NULL)
1237 * @gfp_mask: allocation mask
1238 *
1239 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1240 * this function keeps retrying under memory pressure and fails iff @q is dead.
1241 *
1242 * Must be called with @q->queue_lock held and,
1243 * Returns ERR_PTR on failure, with @q->queue_lock held.
1244 * Returns request pointer on success, with @q->queue_lock *not held*.
1245 */
1246static struct request *get_request(struct request_queue *q, int op,
1247 int op_flags, struct bio *bio,
1248 gfp_t gfp_mask)
1249{
1250 const bool is_sync = rw_is_sync(op, op_flags) != 0;
1251 DEFINE_WAIT(wait);
1252 struct request_list *rl;
1253 struct request *rq;
1254
1255 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1256retry:
1257 rq = __get_request(rl, op, op_flags, bio, gfp_mask);
1258 if (!IS_ERR(rq))
1259 return rq;
1260
1261 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1262 blk_put_rl(rl);
1263 return rq;
1264 }
1265
1266 /* wait on @rl and retry */
1267 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1268 TASK_UNINTERRUPTIBLE);
1269
1270 trace_block_sleeprq(q, bio, op);
1271
1272 spin_unlock_irq(q->queue_lock);
1273 io_schedule();
1274
1275 /*
1276 * After sleeping, we become a "batching" process and will be able
1277 * to allocate at least one request, and up to a big batch of them
1278 * for a small period time. See ioc_batching, ioc_set_batching
1279 */
1280 ioc_set_batching(q, current->io_context);
1281
1282 spin_lock_irq(q->queue_lock);
1283 finish_wait(&rl->wait[is_sync], &wait);
1284
1285 goto retry;
1286}
1287
1288static struct request *blk_old_get_request(struct request_queue *q, int rw,
1289 gfp_t gfp_mask)
1290{
1291 struct request *rq;
1292
1293 BUG_ON(rw != READ && rw != WRITE);
1294
1295 /* create ioc upfront */
1296 create_io_context(gfp_mask, q->node);
1297
1298 spin_lock_irq(q->queue_lock);
1299 rq = get_request(q, rw, 0, NULL, gfp_mask);
1300 if (IS_ERR(rq)) {
1301 spin_unlock_irq(q->queue_lock);
1302 return rq;
1303 }
1304
1305 /* q->queue_lock is unlocked at this point */
1306 rq->__data_len = 0;
1307 rq->__sector = (sector_t) -1;
1308 rq->bio = rq->biotail = NULL;
1309 return rq;
1310}
1311
1312struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1313{
1314 if (q->mq_ops)
1315 return blk_mq_alloc_request(q, rw,
1316 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1317 0 : BLK_MQ_REQ_NOWAIT);
1318 else
1319 return blk_old_get_request(q, rw, gfp_mask);
1320}
1321EXPORT_SYMBOL(blk_get_request);
1322
1323/**
1324 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1325 * @rq: request to be initialized
1326 *
1327 */
1328void blk_rq_set_block_pc(struct request *rq)
1329{
1330 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1331 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1332}
1333EXPORT_SYMBOL(blk_rq_set_block_pc);
1334
1335/**
1336 * blk_requeue_request - put a request back on queue
1337 * @q: request queue where request should be inserted
1338 * @rq: request to be inserted
1339 *
1340 * Description:
1341 * Drivers often keep queueing requests until the hardware cannot accept
1342 * more, when that condition happens we need to put the request back
1343 * on the queue. Must be called with queue lock held.
1344 */
1345void blk_requeue_request(struct request_queue *q, struct request *rq)
1346{
1347 blk_delete_timer(rq);
1348 blk_clear_rq_complete(rq);
1349 trace_block_rq_requeue(q, rq);
1350
1351 if (rq->cmd_flags & REQ_QUEUED)
1352 blk_queue_end_tag(q, rq);
1353
1354 BUG_ON(blk_queued_rq(rq));
1355
1356 elv_requeue_request(q, rq);
1357}
1358EXPORT_SYMBOL(blk_requeue_request);
1359
1360static void add_acct_request(struct request_queue *q, struct request *rq,
1361 int where)
1362{
1363 blk_account_io_start(rq, true);
1364 __elv_add_request(q, rq, where);
1365}
1366
1367static void part_round_stats_single(int cpu, struct hd_struct *part,
1368 unsigned long now)
1369{
1370 int inflight;
1371
1372 if (now == part->stamp)
1373 return;
1374
1375 inflight = part_in_flight(part);
1376 if (inflight) {
1377 __part_stat_add(cpu, part, time_in_queue,
1378 inflight * (now - part->stamp));
1379 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1380 }
1381 part->stamp = now;
1382}
1383
1384/**
1385 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1386 * @cpu: cpu number for stats access
1387 * @part: target partition
1388 *
1389 * The average IO queue length and utilisation statistics are maintained
1390 * by observing the current state of the queue length and the amount of
1391 * time it has been in this state for.
1392 *
1393 * Normally, that accounting is done on IO completion, but that can result
1394 * in more than a second's worth of IO being accounted for within any one
1395 * second, leading to >100% utilisation. To deal with that, we call this
1396 * function to do a round-off before returning the results when reading
1397 * /proc/diskstats. This accounts immediately for all queue usage up to
1398 * the current jiffies and restarts the counters again.
1399 */
1400void part_round_stats(int cpu, struct hd_struct *part)
1401{
1402 unsigned long now = jiffies;
1403
1404 if (part->partno)
1405 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1406 part_round_stats_single(cpu, part, now);
1407}
1408EXPORT_SYMBOL_GPL(part_round_stats);
1409
1410#ifdef CONFIG_PM
1411static void blk_pm_put_request(struct request *rq)
1412{
1413 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1414 pm_runtime_mark_last_busy(rq->q->dev);
1415}
1416#else
1417static inline void blk_pm_put_request(struct request *rq) {}
1418#endif
1419
1420/*
1421 * queue lock must be held
1422 */
1423void __blk_put_request(struct request_queue *q, struct request *req)
1424{
1425 if (unlikely(!q))
1426 return;
1427
1428 if (q->mq_ops) {
1429 blk_mq_free_request(req);
1430 return;
1431 }
1432
1433 blk_pm_put_request(req);
1434
1435 elv_completed_request(q, req);
1436
1437 /* this is a bio leak */
1438 WARN_ON(req->bio != NULL);
1439
1440 /*
1441 * Request may not have originated from ll_rw_blk. if not,
1442 * it didn't come out of our reserved rq pools
1443 */
1444 if (req->cmd_flags & REQ_ALLOCED) {
1445 unsigned int flags = req->cmd_flags;
1446 int op = req_op(req);
1447 struct request_list *rl = blk_rq_rl(req);
1448
1449 BUG_ON(!list_empty(&req->queuelist));
1450 BUG_ON(ELV_ON_HASH(req));
1451
1452 blk_free_request(rl, req);
1453 freed_request(rl, op, flags);
1454 blk_put_rl(rl);
1455 }
1456}
1457EXPORT_SYMBOL_GPL(__blk_put_request);
1458
1459void blk_put_request(struct request *req)
1460{
1461 struct request_queue *q = req->q;
1462
1463 if (q->mq_ops)
1464 blk_mq_free_request(req);
1465 else {
1466 unsigned long flags;
1467
1468 spin_lock_irqsave(q->queue_lock, flags);
1469 __blk_put_request(q, req);
1470 spin_unlock_irqrestore(q->queue_lock, flags);
1471 }
1472}
1473EXPORT_SYMBOL(blk_put_request);
1474
1475/**
1476 * blk_add_request_payload - add a payload to a request
1477 * @rq: request to update
1478 * @page: page backing the payload
1479 * @offset: offset in page
1480 * @len: length of the payload.
1481 *
1482 * This allows to later add a payload to an already submitted request by
1483 * a block driver. The driver needs to take care of freeing the payload
1484 * itself.
1485 *
1486 * Note that this is a quite horrible hack and nothing but handling of
1487 * discard requests should ever use it.
1488 */
1489void blk_add_request_payload(struct request *rq, struct page *page,
1490 int offset, unsigned int len)
1491{
1492 struct bio *bio = rq->bio;
1493
1494 bio->bi_io_vec->bv_page = page;
1495 bio->bi_io_vec->bv_offset = offset;
1496 bio->bi_io_vec->bv_len = len;
1497
1498 bio->bi_iter.bi_size = len;
1499 bio->bi_vcnt = 1;
1500 bio->bi_phys_segments = 1;
1501
1502 rq->__data_len = rq->resid_len = len;
1503 rq->nr_phys_segments = 1;
1504}
1505EXPORT_SYMBOL_GPL(blk_add_request_payload);
1506
1507bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1508 struct bio *bio)
1509{
1510 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1511
1512 if (!ll_back_merge_fn(q, req, bio))
1513 return false;
1514
1515 trace_block_bio_backmerge(q, req, bio);
1516
1517 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1518 blk_rq_set_mixed_merge(req);
1519
1520 req->biotail->bi_next = bio;
1521 req->biotail = bio;
1522 req->__data_len += bio->bi_iter.bi_size;
1523 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1524
1525 blk_account_io_start(req, false);
1526 return true;
1527}
1528
1529bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1530 struct bio *bio)
1531{
1532 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1533
1534 if (!ll_front_merge_fn(q, req, bio))
1535 return false;
1536
1537 trace_block_bio_frontmerge(q, req, bio);
1538
1539 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1540 blk_rq_set_mixed_merge(req);
1541
1542 bio->bi_next = req->bio;
1543 req->bio = bio;
1544
1545 req->__sector = bio->bi_iter.bi_sector;
1546 req->__data_len += bio->bi_iter.bi_size;
1547 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1548
1549 blk_account_io_start(req, false);
1550 return true;
1551}
1552
1553/**
1554 * blk_attempt_plug_merge - try to merge with %current's plugged list
1555 * @q: request_queue new bio is being queued at
1556 * @bio: new bio being queued
1557 * @request_count: out parameter for number of traversed plugged requests
1558 * @same_queue_rq: pointer to &struct request that gets filled in when
1559 * another request associated with @q is found on the plug list
1560 * (optional, may be %NULL)
1561 *
1562 * Determine whether @bio being queued on @q can be merged with a request
1563 * on %current's plugged list. Returns %true if merge was successful,
1564 * otherwise %false.
1565 *
1566 * Plugging coalesces IOs from the same issuer for the same purpose without
1567 * going through @q->queue_lock. As such it's more of an issuing mechanism
1568 * than scheduling, and the request, while may have elvpriv data, is not
1569 * added on the elevator at this point. In addition, we don't have
1570 * reliable access to the elevator outside queue lock. Only check basic
1571 * merging parameters without querying the elevator.
1572 *
1573 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1574 */
1575bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1576 unsigned int *request_count,
1577 struct request **same_queue_rq)
1578{
1579 struct blk_plug *plug;
1580 struct request *rq;
1581 bool ret = false;
1582 struct list_head *plug_list;
1583
1584 plug = current->plug;
1585 if (!plug)
1586 goto out;
1587 *request_count = 0;
1588
1589 if (q->mq_ops)
1590 plug_list = &plug->mq_list;
1591 else
1592 plug_list = &plug->list;
1593
1594 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1595 int el_ret;
1596
1597 if (rq->q == q) {
1598 (*request_count)++;
1599 /*
1600 * Only blk-mq multiple hardware queues case checks the
1601 * rq in the same queue, there should be only one such
1602 * rq in a queue
1603 **/
1604 if (same_queue_rq)
1605 *same_queue_rq = rq;
1606 }
1607
1608 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1609 continue;
1610
1611 el_ret = blk_try_merge(rq, bio);
1612 if (el_ret == ELEVATOR_BACK_MERGE) {
1613 ret = bio_attempt_back_merge(q, rq, bio);
1614 if (ret)
1615 break;
1616 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1617 ret = bio_attempt_front_merge(q, rq, bio);
1618 if (ret)
1619 break;
1620 }
1621 }
1622out:
1623 return ret;
1624}
1625
1626unsigned int blk_plug_queued_count(struct request_queue *q)
1627{
1628 struct blk_plug *plug;
1629 struct request *rq;
1630 struct list_head *plug_list;
1631 unsigned int ret = 0;
1632
1633 plug = current->plug;
1634 if (!plug)
1635 goto out;
1636
1637 if (q->mq_ops)
1638 plug_list = &plug->mq_list;
1639 else
1640 plug_list = &plug->list;
1641
1642 list_for_each_entry(rq, plug_list, queuelist) {
1643 if (rq->q == q)
1644 ret++;
1645 }
1646out:
1647 return ret;
1648}
1649
1650void init_request_from_bio(struct request *req, struct bio *bio)
1651{
1652 req->cmd_type = REQ_TYPE_FS;
1653
1654 req->cmd_flags |= bio->bi_opf & REQ_COMMON_MASK;
1655 if (bio->bi_opf & REQ_RAHEAD)
1656 req->cmd_flags |= REQ_FAILFAST_MASK;
1657
1658 req->errors = 0;
1659 req->__sector = bio->bi_iter.bi_sector;
1660 req->ioprio = bio_prio(bio);
1661 blk_rq_bio_prep(req->q, req, bio);
1662}
1663
1664static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1665{
1666 const bool sync = !!(bio->bi_opf & REQ_SYNC);
1667 struct blk_plug *plug;
1668 int el_ret, rw_flags = 0, where = ELEVATOR_INSERT_SORT;
1669 struct request *req;
1670 unsigned int request_count = 0;
1671
1672 /*
1673 * low level driver can indicate that it wants pages above a
1674 * certain limit bounced to low memory (ie for highmem, or even
1675 * ISA dma in theory)
1676 */
1677 blk_queue_bounce(q, &bio);
1678
1679 blk_queue_split(q, &bio, q->bio_split);
1680
1681 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1682 bio->bi_error = -EIO;
1683 bio_endio(bio);
1684 return BLK_QC_T_NONE;
1685 }
1686
1687 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
1688 spin_lock_irq(q->queue_lock);
1689 where = ELEVATOR_INSERT_FLUSH;
1690 goto get_rq;
1691 }
1692
1693 /*
1694 * Check if we can merge with the plugged list before grabbing
1695 * any locks.
1696 */
1697 if (!blk_queue_nomerges(q)) {
1698 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1699 return BLK_QC_T_NONE;
1700 } else
1701 request_count = blk_plug_queued_count(q);
1702
1703 spin_lock_irq(q->queue_lock);
1704
1705 el_ret = elv_merge(q, &req, bio);
1706 if (el_ret == ELEVATOR_BACK_MERGE) {
1707 if (bio_attempt_back_merge(q, req, bio)) {
1708 elv_bio_merged(q, req, bio);
1709 if (!attempt_back_merge(q, req))
1710 elv_merged_request(q, req, el_ret);
1711 goto out_unlock;
1712 }
1713 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1714 if (bio_attempt_front_merge(q, req, bio)) {
1715 elv_bio_merged(q, req, bio);
1716 if (!attempt_front_merge(q, req))
1717 elv_merged_request(q, req, el_ret);
1718 goto out_unlock;
1719 }
1720 }
1721
1722get_rq:
1723 /*
1724 * This sync check and mask will be re-done in init_request_from_bio(),
1725 * but we need to set it earlier to expose the sync flag to the
1726 * rq allocator and io schedulers.
1727 */
1728 if (sync)
1729 rw_flags |= REQ_SYNC;
1730
1731 /*
1732 * Add in META/PRIO flags, if set, before we get to the IO scheduler
1733 */
1734 rw_flags |= (bio->bi_opf & (REQ_META | REQ_PRIO));
1735
1736 /*
1737 * Grab a free request. This is might sleep but can not fail.
1738 * Returns with the queue unlocked.
1739 */
1740 req = get_request(q, bio_data_dir(bio), rw_flags, bio, GFP_NOIO);
1741 if (IS_ERR(req)) {
1742 bio->bi_error = PTR_ERR(req);
1743 bio_endio(bio);
1744 goto out_unlock;
1745 }
1746
1747 /*
1748 * After dropping the lock and possibly sleeping here, our request
1749 * may now be mergeable after it had proven unmergeable (above).
1750 * We don't worry about that case for efficiency. It won't happen
1751 * often, and the elevators are able to handle it.
1752 */
1753 init_request_from_bio(req, bio);
1754
1755 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1756 req->cpu = raw_smp_processor_id();
1757
1758 plug = current->plug;
1759 if (plug) {
1760 /*
1761 * If this is the first request added after a plug, fire
1762 * of a plug trace.
1763 */
1764 if (!request_count)
1765 trace_block_plug(q);
1766 else {
1767 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1768 blk_flush_plug_list(plug, false);
1769 trace_block_plug(q);
1770 }
1771 }
1772 list_add_tail(&req->queuelist, &plug->list);
1773 blk_account_io_start(req, true);
1774 } else {
1775 spin_lock_irq(q->queue_lock);
1776 add_acct_request(q, req, where);
1777 __blk_run_queue(q);
1778out_unlock:
1779 spin_unlock_irq(q->queue_lock);
1780 }
1781
1782 return BLK_QC_T_NONE;
1783}
1784
1785/*
1786 * If bio->bi_dev is a partition, remap the location
1787 */
1788static inline void blk_partition_remap(struct bio *bio)
1789{
1790 struct block_device *bdev = bio->bi_bdev;
1791
1792 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1793 struct hd_struct *p = bdev->bd_part;
1794
1795 bio->bi_iter.bi_sector += p->start_sect;
1796 bio->bi_bdev = bdev->bd_contains;
1797
1798 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1799 bdev->bd_dev,
1800 bio->bi_iter.bi_sector - p->start_sect);
1801 }
1802}
1803
1804static void handle_bad_sector(struct bio *bio)
1805{
1806 char b[BDEVNAME_SIZE];
1807
1808 printk(KERN_INFO "attempt to access beyond end of device\n");
1809 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1810 bdevname(bio->bi_bdev, b),
1811 bio->bi_opf,
1812 (unsigned long long)bio_end_sector(bio),
1813 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1814}
1815
1816#ifdef CONFIG_FAIL_MAKE_REQUEST
1817
1818static DECLARE_FAULT_ATTR(fail_make_request);
1819
1820static int __init setup_fail_make_request(char *str)
1821{
1822 return setup_fault_attr(&fail_make_request, str);
1823}
1824__setup("fail_make_request=", setup_fail_make_request);
1825
1826static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1827{
1828 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1829}
1830
1831static int __init fail_make_request_debugfs(void)
1832{
1833 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1834 NULL, &fail_make_request);
1835
1836 return PTR_ERR_OR_ZERO(dir);
1837}
1838
1839late_initcall(fail_make_request_debugfs);
1840
1841#else /* CONFIG_FAIL_MAKE_REQUEST */
1842
1843static inline bool should_fail_request(struct hd_struct *part,
1844 unsigned int bytes)
1845{
1846 return false;
1847}
1848
1849#endif /* CONFIG_FAIL_MAKE_REQUEST */
1850
1851/*
1852 * Check whether this bio extends beyond the end of the device.
1853 */
1854static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1855{
1856 sector_t maxsector;
1857
1858 if (!nr_sectors)
1859 return 0;
1860
1861 /* Test device or partition size, when known. */
1862 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1863 if (maxsector) {
1864 sector_t sector = bio->bi_iter.bi_sector;
1865
1866 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1867 /*
1868 * This may well happen - the kernel calls bread()
1869 * without checking the size of the device, e.g., when
1870 * mounting a device.
1871 */
1872 handle_bad_sector(bio);
1873 return 1;
1874 }
1875 }
1876
1877 return 0;
1878}
1879
1880static noinline_for_stack bool
1881generic_make_request_checks(struct bio *bio)
1882{
1883 struct request_queue *q;
1884 int nr_sectors = bio_sectors(bio);
1885 int err = -EIO;
1886 char b[BDEVNAME_SIZE];
1887 struct hd_struct *part;
1888
1889 might_sleep();
1890
1891 if (bio_check_eod(bio, nr_sectors))
1892 goto end_io;
1893
1894 q = bdev_get_queue(bio->bi_bdev);
1895 if (unlikely(!q)) {
1896 printk(KERN_ERR
1897 "generic_make_request: Trying to access "
1898 "nonexistent block-device %s (%Lu)\n",
1899 bdevname(bio->bi_bdev, b),
1900 (long long) bio->bi_iter.bi_sector);
1901 goto end_io;
1902 }
1903
1904 part = bio->bi_bdev->bd_part;
1905 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1906 should_fail_request(&part_to_disk(part)->part0,
1907 bio->bi_iter.bi_size))
1908 goto end_io;
1909
1910 /*
1911 * If this device has partitions, remap block n
1912 * of partition p to block n+start(p) of the disk.
1913 */
1914 blk_partition_remap(bio);
1915
1916 if (bio_check_eod(bio, nr_sectors))
1917 goto end_io;
1918
1919 /*
1920 * Filter flush bio's early so that make_request based
1921 * drivers without flush support don't have to worry
1922 * about them.
1923 */
1924 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
1925 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1926 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1927 if (!nr_sectors) {
1928 err = 0;
1929 goto end_io;
1930 }
1931 }
1932
1933 switch (bio_op(bio)) {
1934 case REQ_OP_DISCARD:
1935 if (!blk_queue_discard(q))
1936 goto not_supported;
1937 break;
1938 case REQ_OP_SECURE_ERASE:
1939 if (!blk_queue_secure_erase(q))
1940 goto not_supported;
1941 break;
1942 case REQ_OP_WRITE_SAME:
1943 if (!bdev_write_same(bio->bi_bdev))
1944 goto not_supported;
1945 break;
1946 default:
1947 break;
1948 }
1949
1950 /*
1951 * Various block parts want %current->io_context and lazy ioc
1952 * allocation ends up trading a lot of pain for a small amount of
1953 * memory. Just allocate it upfront. This may fail and block
1954 * layer knows how to live with it.
1955 */
1956 create_io_context(GFP_ATOMIC, q->node);
1957
1958 if (!blkcg_bio_issue_check(q, bio))
1959 return false;
1960
1961 trace_block_bio_queue(q, bio);
1962 return true;
1963
1964not_supported:
1965 err = -EOPNOTSUPP;
1966end_io:
1967 bio->bi_error = err;
1968 bio_endio(bio);
1969 return false;
1970}
1971
1972/**
1973 * generic_make_request - hand a buffer to its device driver for I/O
1974 * @bio: The bio describing the location in memory and on the device.
1975 *
1976 * generic_make_request() is used to make I/O requests of block
1977 * devices. It is passed a &struct bio, which describes the I/O that needs
1978 * to be done.
1979 *
1980 * generic_make_request() does not return any status. The
1981 * success/failure status of the request, along with notification of
1982 * completion, is delivered asynchronously through the bio->bi_end_io
1983 * function described (one day) else where.
1984 *
1985 * The caller of generic_make_request must make sure that bi_io_vec
1986 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1987 * set to describe the device address, and the
1988 * bi_end_io and optionally bi_private are set to describe how
1989 * completion notification should be signaled.
1990 *
1991 * generic_make_request and the drivers it calls may use bi_next if this
1992 * bio happens to be merged with someone else, and may resubmit the bio to
1993 * a lower device by calling into generic_make_request recursively, which
1994 * means the bio should NOT be touched after the call to ->make_request_fn.
1995 */
1996blk_qc_t generic_make_request(struct bio *bio)
1997{
1998 /*
1999 * bio_list_on_stack[0] contains bios submitted by the current
2000 * make_request_fn.
2001 * bio_list_on_stack[1] contains bios that were submitted before
2002 * the current make_request_fn, but that haven't been processed
2003 * yet.
2004 */
2005 struct bio_list bio_list_on_stack[2];
2006 blk_qc_t ret = BLK_QC_T_NONE;
2007
2008 if (!generic_make_request_checks(bio))
2009 goto out;
2010
2011 /*
2012 * We only want one ->make_request_fn to be active at a time, else
2013 * stack usage with stacked devices could be a problem. So use
2014 * current->bio_list to keep a list of requests submited by a
2015 * make_request_fn function. current->bio_list is also used as a
2016 * flag to say if generic_make_request is currently active in this
2017 * task or not. If it is NULL, then no make_request is active. If
2018 * it is non-NULL, then a make_request is active, and new requests
2019 * should be added at the tail
2020 */
2021 if (current->bio_list) {
2022 bio_list_add(&current->bio_list[0], bio);
2023 goto out;
2024 }
2025
2026 /* following loop may be a bit non-obvious, and so deserves some
2027 * explanation.
2028 * Before entering the loop, bio->bi_next is NULL (as all callers
2029 * ensure that) so we have a list with a single bio.
2030 * We pretend that we have just taken it off a longer list, so
2031 * we assign bio_list to a pointer to the bio_list_on_stack,
2032 * thus initialising the bio_list of new bios to be
2033 * added. ->make_request() may indeed add some more bios
2034 * through a recursive call to generic_make_request. If it
2035 * did, we find a non-NULL value in bio_list and re-enter the loop
2036 * from the top. In this case we really did just take the bio
2037 * of the top of the list (no pretending) and so remove it from
2038 * bio_list, and call into ->make_request() again.
2039 */
2040 BUG_ON(bio->bi_next);
2041 bio_list_init(&bio_list_on_stack[0]);
2042 current->bio_list = bio_list_on_stack;
2043 do {
2044 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2045
2046 if (likely(blk_queue_enter(q, false) == 0)) {
2047 struct bio_list lower, same;
2048
2049 /* Create a fresh bio_list for all subordinate requests */
2050 bio_list_on_stack[1] = bio_list_on_stack[0];
2051 bio_list_init(&bio_list_on_stack[0]);
2052 ret = q->make_request_fn(q, bio);
2053
2054 blk_queue_exit(q);
2055
2056 /* sort new bios into those for a lower level
2057 * and those for the same level
2058 */
2059 bio_list_init(&lower);
2060 bio_list_init(&same);
2061 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2062 if (q == bdev_get_queue(bio->bi_bdev))
2063 bio_list_add(&same, bio);
2064 else
2065 bio_list_add(&lower, bio);
2066 /* now assemble so we handle the lowest level first */
2067 bio_list_merge(&bio_list_on_stack[0], &lower);
2068 bio_list_merge(&bio_list_on_stack[0], &same);
2069 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2070 } else {
2071 bio_io_error(bio);
2072 }
2073 bio = bio_list_pop(&bio_list_on_stack[0]);
2074 } while (bio);
2075 current->bio_list = NULL; /* deactivate */
2076
2077out:
2078 return ret;
2079}
2080EXPORT_SYMBOL(generic_make_request);
2081
2082/**
2083 * submit_bio - submit a bio to the block device layer for I/O
2084 * @bio: The &struct bio which describes the I/O
2085 *
2086 * submit_bio() is very similar in purpose to generic_make_request(), and
2087 * uses that function to do most of the work. Both are fairly rough
2088 * interfaces; @bio must be presetup and ready for I/O.
2089 *
2090 */
2091blk_qc_t submit_bio(struct bio *bio)
2092{
2093 /*
2094 * If it's a regular read/write or a barrier with data attached,
2095 * go through the normal accounting stuff before submission.
2096 */
2097 if (bio_has_data(bio)) {
2098 unsigned int count;
2099
2100 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2101 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2102 else
2103 count = bio_sectors(bio);
2104
2105 if (op_is_write(bio_op(bio))) {
2106 count_vm_events(PGPGOUT, count);
2107 } else {
2108 task_io_account_read(bio->bi_iter.bi_size);
2109 count_vm_events(PGPGIN, count);
2110 }
2111
2112 if (unlikely(block_dump)) {
2113 char b[BDEVNAME_SIZE];
2114 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2115 current->comm, task_pid_nr(current),
2116 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2117 (unsigned long long)bio->bi_iter.bi_sector,
2118 bdevname(bio->bi_bdev, b),
2119 count);
2120 }
2121 }
2122
2123 return generic_make_request(bio);
2124}
2125EXPORT_SYMBOL(submit_bio);
2126
2127/**
2128 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2129 * for new the queue limits
2130 * @q: the queue
2131 * @rq: the request being checked
2132 *
2133 * Description:
2134 * @rq may have been made based on weaker limitations of upper-level queues
2135 * in request stacking drivers, and it may violate the limitation of @q.
2136 * Since the block layer and the underlying device driver trust @rq
2137 * after it is inserted to @q, it should be checked against @q before
2138 * the insertion using this generic function.
2139 *
2140 * Request stacking drivers like request-based dm may change the queue
2141 * limits when retrying requests on other queues. Those requests need
2142 * to be checked against the new queue limits again during dispatch.
2143 */
2144static int blk_cloned_rq_check_limits(struct request_queue *q,
2145 struct request *rq)
2146{
2147 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2148 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2149 return -EIO;
2150 }
2151
2152 /*
2153 * queue's settings related to segment counting like q->bounce_pfn
2154 * may differ from that of other stacking queues.
2155 * Recalculate it to check the request correctly on this queue's
2156 * limitation.
2157 */
2158 blk_recalc_rq_segments(rq);
2159 if (rq->nr_phys_segments > queue_max_segments(q)) {
2160 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2161 return -EIO;
2162 }
2163
2164 return 0;
2165}
2166
2167/**
2168 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2169 * @q: the queue to submit the request
2170 * @rq: the request being queued
2171 */
2172int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2173{
2174 unsigned long flags;
2175 int where = ELEVATOR_INSERT_BACK;
2176
2177 if (blk_cloned_rq_check_limits(q, rq))
2178 return -EIO;
2179
2180 if (rq->rq_disk &&
2181 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2182 return -EIO;
2183
2184 if (q->mq_ops) {
2185 if (blk_queue_io_stat(q))
2186 blk_account_io_start(rq, true);
2187 blk_mq_insert_request(rq, false, true, false);
2188 return 0;
2189 }
2190
2191 spin_lock_irqsave(q->queue_lock, flags);
2192 if (unlikely(blk_queue_dying(q))) {
2193 spin_unlock_irqrestore(q->queue_lock, flags);
2194 return -ENODEV;
2195 }
2196
2197 /*
2198 * Submitting request must be dequeued before calling this function
2199 * because it will be linked to another request_queue
2200 */
2201 BUG_ON(blk_queued_rq(rq));
2202
2203 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2204 where = ELEVATOR_INSERT_FLUSH;
2205
2206 add_acct_request(q, rq, where);
2207 if (where == ELEVATOR_INSERT_FLUSH)
2208 __blk_run_queue(q);
2209 spin_unlock_irqrestore(q->queue_lock, flags);
2210
2211 return 0;
2212}
2213EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2214
2215/**
2216 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2217 * @rq: request to examine
2218 *
2219 * Description:
2220 * A request could be merge of IOs which require different failure
2221 * handling. This function determines the number of bytes which
2222 * can be failed from the beginning of the request without
2223 * crossing into area which need to be retried further.
2224 *
2225 * Return:
2226 * The number of bytes to fail.
2227 *
2228 * Context:
2229 * queue_lock must be held.
2230 */
2231unsigned int blk_rq_err_bytes(const struct request *rq)
2232{
2233 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2234 unsigned int bytes = 0;
2235 struct bio *bio;
2236
2237 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2238 return blk_rq_bytes(rq);
2239
2240 /*
2241 * Currently the only 'mixing' which can happen is between
2242 * different fastfail types. We can safely fail portions
2243 * which have all the failfast bits that the first one has -
2244 * the ones which are at least as eager to fail as the first
2245 * one.
2246 */
2247 for (bio = rq->bio; bio; bio = bio->bi_next) {
2248 if ((bio->bi_opf & ff) != ff)
2249 break;
2250 bytes += bio->bi_iter.bi_size;
2251 }
2252
2253 /* this could lead to infinite loop */
2254 BUG_ON(blk_rq_bytes(rq) && !bytes);
2255 return bytes;
2256}
2257EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2258
2259void blk_account_io_completion(struct request *req, unsigned int bytes)
2260{
2261 if (blk_do_io_stat(req)) {
2262 const int rw = rq_data_dir(req);
2263 struct hd_struct *part;
2264 int cpu;
2265
2266 cpu = part_stat_lock();
2267 part = req->part;
2268 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2269 part_stat_unlock();
2270 }
2271}
2272
2273void blk_account_io_done(struct request *req)
2274{
2275 /*
2276 * Account IO completion. flush_rq isn't accounted as a
2277 * normal IO on queueing nor completion. Accounting the
2278 * containing request is enough.
2279 */
2280 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2281 unsigned long duration = jiffies - req->start_time;
2282 const int rw = rq_data_dir(req);
2283 struct hd_struct *part;
2284 int cpu;
2285
2286 cpu = part_stat_lock();
2287 part = req->part;
2288
2289 part_stat_inc(cpu, part, ios[rw]);
2290 part_stat_add(cpu, part, ticks[rw], duration);
2291 part_round_stats(cpu, part);
2292 part_dec_in_flight(part, rw);
2293
2294 hd_struct_put(part);
2295 part_stat_unlock();
2296 }
2297}
2298
2299#ifdef CONFIG_PM
2300/*
2301 * Don't process normal requests when queue is suspended
2302 * or in the process of suspending/resuming
2303 */
2304static struct request *blk_pm_peek_request(struct request_queue *q,
2305 struct request *rq)
2306{
2307 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2308 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2309 return NULL;
2310 else
2311 return rq;
2312}
2313#else
2314static inline struct request *blk_pm_peek_request(struct request_queue *q,
2315 struct request *rq)
2316{
2317 return rq;
2318}
2319#endif
2320
2321void blk_account_io_start(struct request *rq, bool new_io)
2322{
2323 struct hd_struct *part;
2324 int rw = rq_data_dir(rq);
2325 int cpu;
2326
2327 if (!blk_do_io_stat(rq))
2328 return;
2329
2330 cpu = part_stat_lock();
2331
2332 if (!new_io) {
2333 part = rq->part;
2334 part_stat_inc(cpu, part, merges[rw]);
2335 } else {
2336 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2337 if (!hd_struct_try_get(part)) {
2338 /*
2339 * The partition is already being removed,
2340 * the request will be accounted on the disk only
2341 *
2342 * We take a reference on disk->part0 although that
2343 * partition will never be deleted, so we can treat
2344 * it as any other partition.
2345 */
2346 part = &rq->rq_disk->part0;
2347 hd_struct_get(part);
2348 }
2349 part_round_stats(cpu, part);
2350 part_inc_in_flight(part, rw);
2351 rq->part = part;
2352 }
2353
2354 part_stat_unlock();
2355}
2356
2357/**
2358 * blk_peek_request - peek at the top of a request queue
2359 * @q: request queue to peek at
2360 *
2361 * Description:
2362 * Return the request at the top of @q. The returned request
2363 * should be started using blk_start_request() before LLD starts
2364 * processing it.
2365 *
2366 * Return:
2367 * Pointer to the request at the top of @q if available. Null
2368 * otherwise.
2369 *
2370 * Context:
2371 * queue_lock must be held.
2372 */
2373struct request *blk_peek_request(struct request_queue *q)
2374{
2375 struct request *rq;
2376 int ret;
2377
2378 while ((rq = __elv_next_request(q)) != NULL) {
2379
2380 rq = blk_pm_peek_request(q, rq);
2381 if (!rq)
2382 break;
2383
2384 if (!(rq->cmd_flags & REQ_STARTED)) {
2385 /*
2386 * This is the first time the device driver
2387 * sees this request (possibly after
2388 * requeueing). Notify IO scheduler.
2389 */
2390 if (rq->cmd_flags & REQ_SORTED)
2391 elv_activate_rq(q, rq);
2392
2393 /*
2394 * just mark as started even if we don't start
2395 * it, a request that has been delayed should
2396 * not be passed by new incoming requests
2397 */
2398 rq->cmd_flags |= REQ_STARTED;
2399 trace_block_rq_issue(q, rq);
2400 }
2401
2402 if (!q->boundary_rq || q->boundary_rq == rq) {
2403 q->end_sector = rq_end_sector(rq);
2404 q->boundary_rq = NULL;
2405 }
2406
2407 if (rq->cmd_flags & REQ_DONTPREP)
2408 break;
2409
2410 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2411 /*
2412 * make sure space for the drain appears we
2413 * know we can do this because max_hw_segments
2414 * has been adjusted to be one fewer than the
2415 * device can handle
2416 */
2417 rq->nr_phys_segments++;
2418 }
2419
2420 if (!q->prep_rq_fn)
2421 break;
2422
2423 ret = q->prep_rq_fn(q, rq);
2424 if (ret == BLKPREP_OK) {
2425 break;
2426 } else if (ret == BLKPREP_DEFER) {
2427 /*
2428 * the request may have been (partially) prepped.
2429 * we need to keep this request in the front to
2430 * avoid resource deadlock. REQ_STARTED will
2431 * prevent other fs requests from passing this one.
2432 */
2433 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2434 !(rq->cmd_flags & REQ_DONTPREP)) {
2435 /*
2436 * remove the space for the drain we added
2437 * so that we don't add it again
2438 */
2439 --rq->nr_phys_segments;
2440 }
2441
2442 rq = NULL;
2443 break;
2444 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2445 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2446
2447 rq->cmd_flags |= REQ_QUIET;
2448 /*
2449 * Mark this request as started so we don't trigger
2450 * any debug logic in the end I/O path.
2451 */
2452 blk_start_request(rq);
2453 __blk_end_request_all(rq, err);
2454 } else {
2455 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2456 break;
2457 }
2458 }
2459
2460 return rq;
2461}
2462EXPORT_SYMBOL(blk_peek_request);
2463
2464void blk_dequeue_request(struct request *rq)
2465{
2466 struct request_queue *q = rq->q;
2467
2468 BUG_ON(list_empty(&rq->queuelist));
2469 BUG_ON(ELV_ON_HASH(rq));
2470
2471 list_del_init(&rq->queuelist);
2472
2473 /*
2474 * the time frame between a request being removed from the lists
2475 * and to it is freed is accounted as io that is in progress at
2476 * the driver side.
2477 */
2478 if (blk_account_rq(rq)) {
2479 q->in_flight[rq_is_sync(rq)]++;
2480 set_io_start_time_ns(rq);
2481 }
2482}
2483
2484/**
2485 * blk_start_request - start request processing on the driver
2486 * @req: request to dequeue
2487 *
2488 * Description:
2489 * Dequeue @req and start timeout timer on it. This hands off the
2490 * request to the driver.
2491 *
2492 * Block internal functions which don't want to start timer should
2493 * call blk_dequeue_request().
2494 *
2495 * Context:
2496 * queue_lock must be held.
2497 */
2498void blk_start_request(struct request *req)
2499{
2500 blk_dequeue_request(req);
2501
2502 /*
2503 * We are now handing the request to the hardware, initialize
2504 * resid_len to full count and add the timeout handler.
2505 */
2506 req->resid_len = blk_rq_bytes(req);
2507 if (unlikely(blk_bidi_rq(req)))
2508 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2509
2510 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2511 blk_add_timer(req);
2512}
2513EXPORT_SYMBOL(blk_start_request);
2514
2515/**
2516 * blk_fetch_request - fetch a request from a request queue
2517 * @q: request queue to fetch a request from
2518 *
2519 * Description:
2520 * Return the request at the top of @q. The request is started on
2521 * return and LLD can start processing it immediately.
2522 *
2523 * Return:
2524 * Pointer to the request at the top of @q if available. Null
2525 * otherwise.
2526 *
2527 * Context:
2528 * queue_lock must be held.
2529 */
2530struct request *blk_fetch_request(struct request_queue *q)
2531{
2532 struct request *rq;
2533
2534 rq = blk_peek_request(q);
2535 if (rq)
2536 blk_start_request(rq);
2537 return rq;
2538}
2539EXPORT_SYMBOL(blk_fetch_request);
2540
2541/**
2542 * blk_update_request - Special helper function for request stacking drivers
2543 * @req: the request being processed
2544 * @error: %0 for success, < %0 for error
2545 * @nr_bytes: number of bytes to complete @req
2546 *
2547 * Description:
2548 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2549 * the request structure even if @req doesn't have leftover.
2550 * If @req has leftover, sets it up for the next range of segments.
2551 *
2552 * This special helper function is only for request stacking drivers
2553 * (e.g. request-based dm) so that they can handle partial completion.
2554 * Actual device drivers should use blk_end_request instead.
2555 *
2556 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2557 * %false return from this function.
2558 *
2559 * Return:
2560 * %false - this request doesn't have any more data
2561 * %true - this request has more data
2562 **/
2563bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2564{
2565 int total_bytes;
2566
2567 trace_block_rq_complete(req->q, req, nr_bytes);
2568
2569 if (!req->bio)
2570 return false;
2571
2572 /*
2573 * For fs requests, rq is just carrier of independent bio's
2574 * and each partial completion should be handled separately.
2575 * Reset per-request error on each partial completion.
2576 *
2577 * TODO: tj: This is too subtle. It would be better to let
2578 * low level drivers do what they see fit.
2579 */
2580 if (req->cmd_type == REQ_TYPE_FS)
2581 req->errors = 0;
2582
2583 if (error && req->cmd_type == REQ_TYPE_FS &&
2584 !(req->cmd_flags & REQ_QUIET)) {
2585 char *error_type;
2586
2587 switch (error) {
2588 case -ENOLINK:
2589 error_type = "recoverable transport";
2590 break;
2591 case -EREMOTEIO:
2592 error_type = "critical target";
2593 break;
2594 case -EBADE:
2595 error_type = "critical nexus";
2596 break;
2597 case -ETIMEDOUT:
2598 error_type = "timeout";
2599 break;
2600 case -ENOSPC:
2601 error_type = "critical space allocation";
2602 break;
2603 case -ENODATA:
2604 error_type = "critical medium";
2605 break;
2606 case -EIO:
2607 default:
2608 error_type = "I/O";
2609 break;
2610 }
2611 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2612 __func__, error_type, req->rq_disk ?
2613 req->rq_disk->disk_name : "?",
2614 (unsigned long long)blk_rq_pos(req));
2615
2616 }
2617
2618 blk_account_io_completion(req, nr_bytes);
2619
2620 total_bytes = 0;
2621 while (req->bio) {
2622 struct bio *bio = req->bio;
2623 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2624
2625 if (bio_bytes == bio->bi_iter.bi_size)
2626 req->bio = bio->bi_next;
2627
2628 req_bio_endio(req, bio, bio_bytes, error);
2629
2630 total_bytes += bio_bytes;
2631 nr_bytes -= bio_bytes;
2632
2633 if (!nr_bytes)
2634 break;
2635 }
2636
2637 /*
2638 * completely done
2639 */
2640 if (!req->bio) {
2641 /*
2642 * Reset counters so that the request stacking driver
2643 * can find how many bytes remain in the request
2644 * later.
2645 */
2646 req->__data_len = 0;
2647 return false;
2648 }
2649
2650 req->__data_len -= total_bytes;
2651
2652 /* update sector only for requests with clear definition of sector */
2653 if (req->cmd_type == REQ_TYPE_FS)
2654 req->__sector += total_bytes >> 9;
2655
2656 /* mixed attributes always follow the first bio */
2657 if (req->cmd_flags & REQ_MIXED_MERGE) {
2658 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2659 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2660 }
2661
2662 /*
2663 * If total number of sectors is less than the first segment
2664 * size, something has gone terribly wrong.
2665 */
2666 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2667 blk_dump_rq_flags(req, "request botched");
2668 req->__data_len = blk_rq_cur_bytes(req);
2669 }
2670
2671 /* recalculate the number of segments */
2672 blk_recalc_rq_segments(req);
2673
2674 return true;
2675}
2676EXPORT_SYMBOL_GPL(blk_update_request);
2677
2678static bool blk_update_bidi_request(struct request *rq, int error,
2679 unsigned int nr_bytes,
2680 unsigned int bidi_bytes)
2681{
2682 if (blk_update_request(rq, error, nr_bytes))
2683 return true;
2684
2685 /* Bidi request must be completed as a whole */
2686 if (unlikely(blk_bidi_rq(rq)) &&
2687 blk_update_request(rq->next_rq, error, bidi_bytes))
2688 return true;
2689
2690 if (blk_queue_add_random(rq->q))
2691 add_disk_randomness(rq->rq_disk);
2692
2693 return false;
2694}
2695
2696/**
2697 * blk_unprep_request - unprepare a request
2698 * @req: the request
2699 *
2700 * This function makes a request ready for complete resubmission (or
2701 * completion). It happens only after all error handling is complete,
2702 * so represents the appropriate moment to deallocate any resources
2703 * that were allocated to the request in the prep_rq_fn. The queue
2704 * lock is held when calling this.
2705 */
2706void blk_unprep_request(struct request *req)
2707{
2708 struct request_queue *q = req->q;
2709
2710 req->cmd_flags &= ~REQ_DONTPREP;
2711 if (q->unprep_rq_fn)
2712 q->unprep_rq_fn(q, req);
2713}
2714EXPORT_SYMBOL_GPL(blk_unprep_request);
2715
2716/*
2717 * queue lock must be held
2718 */
2719void blk_finish_request(struct request *req, int error)
2720{
2721 if (req->cmd_flags & REQ_QUEUED)
2722 blk_queue_end_tag(req->q, req);
2723
2724 BUG_ON(blk_queued_rq(req));
2725
2726 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2727 laptop_io_completion(&req->q->backing_dev_info);
2728
2729 blk_delete_timer(req);
2730
2731 if (req->cmd_flags & REQ_DONTPREP)
2732 blk_unprep_request(req);
2733
2734 blk_account_io_done(req);
2735
2736 if (req->end_io)
2737 req->end_io(req, error);
2738 else {
2739 if (blk_bidi_rq(req))
2740 __blk_put_request(req->next_rq->q, req->next_rq);
2741
2742 __blk_put_request(req->q, req);
2743 }
2744}
2745EXPORT_SYMBOL(blk_finish_request);
2746
2747/**
2748 * blk_end_bidi_request - Complete a bidi request
2749 * @rq: the request to complete
2750 * @error: %0 for success, < %0 for error
2751 * @nr_bytes: number of bytes to complete @rq
2752 * @bidi_bytes: number of bytes to complete @rq->next_rq
2753 *
2754 * Description:
2755 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2756 * Drivers that supports bidi can safely call this member for any
2757 * type of request, bidi or uni. In the later case @bidi_bytes is
2758 * just ignored.
2759 *
2760 * Return:
2761 * %false - we are done with this request
2762 * %true - still buffers pending for this request
2763 **/
2764static bool blk_end_bidi_request(struct request *rq, int error,
2765 unsigned int nr_bytes, unsigned int bidi_bytes)
2766{
2767 struct request_queue *q = rq->q;
2768 unsigned long flags;
2769
2770 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2771 return true;
2772
2773 spin_lock_irqsave(q->queue_lock, flags);
2774 blk_finish_request(rq, error);
2775 spin_unlock_irqrestore(q->queue_lock, flags);
2776
2777 return false;
2778}
2779
2780/**
2781 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2782 * @rq: the request to complete
2783 * @error: %0 for success, < %0 for error
2784 * @nr_bytes: number of bytes to complete @rq
2785 * @bidi_bytes: number of bytes to complete @rq->next_rq
2786 *
2787 * Description:
2788 * Identical to blk_end_bidi_request() except that queue lock is
2789 * assumed to be locked on entry and remains so on return.
2790 *
2791 * Return:
2792 * %false - we are done with this request
2793 * %true - still buffers pending for this request
2794 **/
2795bool __blk_end_bidi_request(struct request *rq, int error,
2796 unsigned int nr_bytes, unsigned int bidi_bytes)
2797{
2798 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2799 return true;
2800
2801 blk_finish_request(rq, error);
2802
2803 return false;
2804}
2805
2806/**
2807 * blk_end_request - Helper function for drivers to complete the request.
2808 * @rq: the request being processed
2809 * @error: %0 for success, < %0 for error
2810 * @nr_bytes: number of bytes to complete
2811 *
2812 * Description:
2813 * Ends I/O on a number of bytes attached to @rq.
2814 * If @rq has leftover, sets it up for the next range of segments.
2815 *
2816 * Return:
2817 * %false - we are done with this request
2818 * %true - still buffers pending for this request
2819 **/
2820bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2821{
2822 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2823}
2824EXPORT_SYMBOL(blk_end_request);
2825
2826/**
2827 * blk_end_request_all - Helper function for drives to finish the request.
2828 * @rq: the request to finish
2829 * @error: %0 for success, < %0 for error
2830 *
2831 * Description:
2832 * Completely finish @rq.
2833 */
2834void blk_end_request_all(struct request *rq, int error)
2835{
2836 bool pending;
2837 unsigned int bidi_bytes = 0;
2838
2839 if (unlikely(blk_bidi_rq(rq)))
2840 bidi_bytes = blk_rq_bytes(rq->next_rq);
2841
2842 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2843 BUG_ON(pending);
2844}
2845EXPORT_SYMBOL(blk_end_request_all);
2846
2847/**
2848 * blk_end_request_cur - Helper function to finish the current request chunk.
2849 * @rq: the request to finish the current chunk for
2850 * @error: %0 for success, < %0 for error
2851 *
2852 * Description:
2853 * Complete the current consecutively mapped chunk from @rq.
2854 *
2855 * Return:
2856 * %false - we are done with this request
2857 * %true - still buffers pending for this request
2858 */
2859bool blk_end_request_cur(struct request *rq, int error)
2860{
2861 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2862}
2863EXPORT_SYMBOL(blk_end_request_cur);
2864
2865/**
2866 * blk_end_request_err - Finish a request till the next failure boundary.
2867 * @rq: the request to finish till the next failure boundary for
2868 * @error: must be negative errno
2869 *
2870 * Description:
2871 * Complete @rq till the next failure boundary.
2872 *
2873 * Return:
2874 * %false - we are done with this request
2875 * %true - still buffers pending for this request
2876 */
2877bool blk_end_request_err(struct request *rq, int error)
2878{
2879 WARN_ON(error >= 0);
2880 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2881}
2882EXPORT_SYMBOL_GPL(blk_end_request_err);
2883
2884/**
2885 * __blk_end_request - Helper function for drivers to complete the request.
2886 * @rq: the request being processed
2887 * @error: %0 for success, < %0 for error
2888 * @nr_bytes: number of bytes to complete
2889 *
2890 * Description:
2891 * Must be called with queue lock held unlike blk_end_request().
2892 *
2893 * Return:
2894 * %false - we are done with this request
2895 * %true - still buffers pending for this request
2896 **/
2897bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2898{
2899 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2900}
2901EXPORT_SYMBOL(__blk_end_request);
2902
2903/**
2904 * __blk_end_request_all - Helper function for drives to finish the request.
2905 * @rq: the request to finish
2906 * @error: %0 for success, < %0 for error
2907 *
2908 * Description:
2909 * Completely finish @rq. Must be called with queue lock held.
2910 */
2911void __blk_end_request_all(struct request *rq, int error)
2912{
2913 bool pending;
2914 unsigned int bidi_bytes = 0;
2915
2916 if (unlikely(blk_bidi_rq(rq)))
2917 bidi_bytes = blk_rq_bytes(rq->next_rq);
2918
2919 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2920 BUG_ON(pending);
2921}
2922EXPORT_SYMBOL(__blk_end_request_all);
2923
2924/**
2925 * __blk_end_request_cur - Helper function to finish the current request chunk.
2926 * @rq: the request to finish the current chunk for
2927 * @error: %0 for success, < %0 for error
2928 *
2929 * Description:
2930 * Complete the current consecutively mapped chunk from @rq. Must
2931 * be called with queue lock held.
2932 *
2933 * Return:
2934 * %false - we are done with this request
2935 * %true - still buffers pending for this request
2936 */
2937bool __blk_end_request_cur(struct request *rq, int error)
2938{
2939 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2940}
2941EXPORT_SYMBOL(__blk_end_request_cur);
2942
2943/**
2944 * __blk_end_request_err - Finish a request till the next failure boundary.
2945 * @rq: the request to finish till the next failure boundary for
2946 * @error: must be negative errno
2947 *
2948 * Description:
2949 * Complete @rq till the next failure boundary. Must be called
2950 * with queue lock held.
2951 *
2952 * Return:
2953 * %false - we are done with this request
2954 * %true - still buffers pending for this request
2955 */
2956bool __blk_end_request_err(struct request *rq, int error)
2957{
2958 WARN_ON(error >= 0);
2959 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2960}
2961EXPORT_SYMBOL_GPL(__blk_end_request_err);
2962
2963void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2964 struct bio *bio)
2965{
2966 req_set_op(rq, bio_op(bio));
2967
2968 if (bio_has_data(bio))
2969 rq->nr_phys_segments = bio_phys_segments(q, bio);
2970
2971 rq->__data_len = bio->bi_iter.bi_size;
2972 rq->bio = rq->biotail = bio;
2973
2974 if (bio->bi_bdev)
2975 rq->rq_disk = bio->bi_bdev->bd_disk;
2976}
2977
2978#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2979/**
2980 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2981 * @rq: the request to be flushed
2982 *
2983 * Description:
2984 * Flush all pages in @rq.
2985 */
2986void rq_flush_dcache_pages(struct request *rq)
2987{
2988 struct req_iterator iter;
2989 struct bio_vec bvec;
2990
2991 rq_for_each_segment(bvec, rq, iter)
2992 flush_dcache_page(bvec.bv_page);
2993}
2994EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2995#endif
2996
2997/**
2998 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2999 * @q : the queue of the device being checked
3000 *
3001 * Description:
3002 * Check if underlying low-level drivers of a device are busy.
3003 * If the drivers want to export their busy state, they must set own
3004 * exporting function using blk_queue_lld_busy() first.
3005 *
3006 * Basically, this function is used only by request stacking drivers
3007 * to stop dispatching requests to underlying devices when underlying
3008 * devices are busy. This behavior helps more I/O merging on the queue
3009 * of the request stacking driver and prevents I/O throughput regression
3010 * on burst I/O load.
3011 *
3012 * Return:
3013 * 0 - Not busy (The request stacking driver should dispatch request)
3014 * 1 - Busy (The request stacking driver should stop dispatching request)
3015 */
3016int blk_lld_busy(struct request_queue *q)
3017{
3018 if (q->lld_busy_fn)
3019 return q->lld_busy_fn(q);
3020
3021 return 0;
3022}
3023EXPORT_SYMBOL_GPL(blk_lld_busy);
3024
3025/**
3026 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3027 * @rq: the clone request to be cleaned up
3028 *
3029 * Description:
3030 * Free all bios in @rq for a cloned request.
3031 */
3032void blk_rq_unprep_clone(struct request *rq)
3033{
3034 struct bio *bio;
3035
3036 while ((bio = rq->bio) != NULL) {
3037 rq->bio = bio->bi_next;
3038
3039 bio_put(bio);
3040 }
3041}
3042EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3043
3044/*
3045 * Copy attributes of the original request to the clone request.
3046 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3047 */
3048static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3049{
3050 dst->cpu = src->cpu;
3051 req_set_op_attrs(dst, req_op(src),
3052 (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE);
3053 dst->cmd_type = src->cmd_type;
3054 dst->__sector = blk_rq_pos(src);
3055 dst->__data_len = blk_rq_bytes(src);
3056 dst->nr_phys_segments = src->nr_phys_segments;
3057 dst->ioprio = src->ioprio;
3058 dst->extra_len = src->extra_len;
3059}
3060
3061/**
3062 * blk_rq_prep_clone - Helper function to setup clone request
3063 * @rq: the request to be setup
3064 * @rq_src: original request to be cloned
3065 * @bs: bio_set that bios for clone are allocated from
3066 * @gfp_mask: memory allocation mask for bio
3067 * @bio_ctr: setup function to be called for each clone bio.
3068 * Returns %0 for success, non %0 for failure.
3069 * @data: private data to be passed to @bio_ctr
3070 *
3071 * Description:
3072 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3073 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3074 * are not copied, and copying such parts is the caller's responsibility.
3075 * Also, pages which the original bios are pointing to are not copied
3076 * and the cloned bios just point same pages.
3077 * So cloned bios must be completed before original bios, which means
3078 * the caller must complete @rq before @rq_src.
3079 */
3080int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3081 struct bio_set *bs, gfp_t gfp_mask,
3082 int (*bio_ctr)(struct bio *, struct bio *, void *),
3083 void *data)
3084{
3085 struct bio *bio, *bio_src;
3086
3087 if (!bs)
3088 bs = fs_bio_set;
3089
3090 __rq_for_each_bio(bio_src, rq_src) {
3091 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3092 if (!bio)
3093 goto free_and_out;
3094
3095 if (bio_ctr && bio_ctr(bio, bio_src, data))
3096 goto free_and_out;
3097
3098 if (rq->bio) {
3099 rq->biotail->bi_next = bio;
3100 rq->biotail = bio;
3101 } else
3102 rq->bio = rq->biotail = bio;
3103 }
3104
3105 __blk_rq_prep_clone(rq, rq_src);
3106
3107 return 0;
3108
3109free_and_out:
3110 if (bio)
3111 bio_put(bio);
3112 blk_rq_unprep_clone(rq);
3113
3114 return -ENOMEM;
3115}
3116EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3117
3118int kblockd_schedule_work(struct work_struct *work)
3119{
3120 return queue_work(kblockd_workqueue, work);
3121}
3122EXPORT_SYMBOL(kblockd_schedule_work);
3123
3124int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3125{
3126 return queue_work_on(cpu, kblockd_workqueue, work);
3127}
3128EXPORT_SYMBOL(kblockd_schedule_work_on);
3129
3130int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3131 unsigned long delay)
3132{
3133 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3134}
3135EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3136
3137int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3138 unsigned long delay)
3139{
3140 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3141}
3142EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3143
3144/**
3145 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3146 * @plug: The &struct blk_plug that needs to be initialized
3147 *
3148 * Description:
3149 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3150 * pending I/O should the task end up blocking between blk_start_plug() and
3151 * blk_finish_plug(). This is important from a performance perspective, but
3152 * also ensures that we don't deadlock. For instance, if the task is blocking
3153 * for a memory allocation, memory reclaim could end up wanting to free a
3154 * page belonging to that request that is currently residing in our private
3155 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3156 * this kind of deadlock.
3157 */
3158void blk_start_plug(struct blk_plug *plug)
3159{
3160 struct task_struct *tsk = current;
3161
3162 /*
3163 * If this is a nested plug, don't actually assign it.
3164 */
3165 if (tsk->plug)
3166 return;
3167
3168 INIT_LIST_HEAD(&plug->list);
3169 INIT_LIST_HEAD(&plug->mq_list);
3170 INIT_LIST_HEAD(&plug->cb_list);
3171 /*
3172 * Store ordering should not be needed here, since a potential
3173 * preempt will imply a full memory barrier
3174 */
3175 tsk->plug = plug;
3176}
3177EXPORT_SYMBOL(blk_start_plug);
3178
3179static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3180{
3181 struct request *rqa = container_of(a, struct request, queuelist);
3182 struct request *rqb = container_of(b, struct request, queuelist);
3183
3184 return !(rqa->q < rqb->q ||
3185 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3186}
3187
3188/*
3189 * If 'from_schedule' is true, then postpone the dispatch of requests
3190 * until a safe kblockd context. We due this to avoid accidental big
3191 * additional stack usage in driver dispatch, in places where the originally
3192 * plugger did not intend it.
3193 */
3194static void queue_unplugged(struct request_queue *q, unsigned int depth,
3195 bool from_schedule)
3196 __releases(q->queue_lock)
3197{
3198 trace_block_unplug(q, depth, !from_schedule);
3199
3200 if (from_schedule)
3201 blk_run_queue_async(q);
3202 else
3203 __blk_run_queue(q);
3204 spin_unlock(q->queue_lock);
3205}
3206
3207static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3208{
3209 LIST_HEAD(callbacks);
3210
3211 while (!list_empty(&plug->cb_list)) {
3212 list_splice_init(&plug->cb_list, &callbacks);
3213
3214 while (!list_empty(&callbacks)) {
3215 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3216 struct blk_plug_cb,
3217 list);
3218 list_del(&cb->list);
3219 cb->callback(cb, from_schedule);
3220 }
3221 }
3222}
3223
3224struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3225 int size)
3226{
3227 struct blk_plug *plug = current->plug;
3228 struct blk_plug_cb *cb;
3229
3230 if (!plug)
3231 return NULL;
3232
3233 list_for_each_entry(cb, &plug->cb_list, list)
3234 if (cb->callback == unplug && cb->data == data)
3235 return cb;
3236
3237 /* Not currently on the callback list */
3238 BUG_ON(size < sizeof(*cb));
3239 cb = kzalloc(size, GFP_ATOMIC);
3240 if (cb) {
3241 cb->data = data;
3242 cb->callback = unplug;
3243 list_add(&cb->list, &plug->cb_list);
3244 }
3245 return cb;
3246}
3247EXPORT_SYMBOL(blk_check_plugged);
3248
3249void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3250{
3251 struct request_queue *q;
3252 unsigned long flags;
3253 struct request *rq;
3254 LIST_HEAD(list);
3255 unsigned int depth;
3256
3257 flush_plug_callbacks(plug, from_schedule);
3258
3259 if (!list_empty(&plug->mq_list))
3260 blk_mq_flush_plug_list(plug, from_schedule);
3261
3262 if (list_empty(&plug->list))
3263 return;
3264
3265 list_splice_init(&plug->list, &list);
3266
3267 list_sort(NULL, &list, plug_rq_cmp);
3268
3269 q = NULL;
3270 depth = 0;
3271
3272 /*
3273 * Save and disable interrupts here, to avoid doing it for every
3274 * queue lock we have to take.
3275 */
3276 local_irq_save(flags);
3277 while (!list_empty(&list)) {
3278 rq = list_entry_rq(list.next);
3279 list_del_init(&rq->queuelist);
3280 BUG_ON(!rq->q);
3281 if (rq->q != q) {
3282 /*
3283 * This drops the queue lock
3284 */
3285 if (q)
3286 queue_unplugged(q, depth, from_schedule);
3287 q = rq->q;
3288 depth = 0;
3289 spin_lock(q->queue_lock);
3290 }
3291
3292 /*
3293 * Short-circuit if @q is dead
3294 */
3295 if (unlikely(blk_queue_dying(q))) {
3296 __blk_end_request_all(rq, -ENODEV);
3297 continue;
3298 }
3299
3300 /*
3301 * rq is already accounted, so use raw insert
3302 */
3303 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3304 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3305 else
3306 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3307
3308 depth++;
3309 }
3310
3311 /*
3312 * This drops the queue lock
3313 */
3314 if (q)
3315 queue_unplugged(q, depth, from_schedule);
3316
3317 local_irq_restore(flags);
3318}
3319
3320void blk_finish_plug(struct blk_plug *plug)
3321{
3322 if (plug != current->plug)
3323 return;
3324 blk_flush_plug_list(plug, false);
3325
3326 current->plug = NULL;
3327}
3328EXPORT_SYMBOL(blk_finish_plug);
3329
3330bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3331{
3332 struct blk_plug *plug;
3333 long state;
3334 unsigned int queue_num;
3335 struct blk_mq_hw_ctx *hctx;
3336
3337 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3338 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3339 return false;
3340
3341 queue_num = blk_qc_t_to_queue_num(cookie);
3342 hctx = q->queue_hw_ctx[queue_num];
3343 hctx->poll_considered++;
3344
3345 plug = current->plug;
3346 if (plug)
3347 blk_flush_plug_list(plug, false);
3348
3349 state = current->state;
3350 while (!need_resched()) {
3351 int ret;
3352
3353 hctx->poll_invoked++;
3354
3355 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3356 if (ret > 0) {
3357 hctx->poll_success++;
3358 set_current_state(TASK_RUNNING);
3359 return true;
3360 }
3361
3362 if (signal_pending_state(state, current))
3363 set_current_state(TASK_RUNNING);
3364
3365 if (current->state == TASK_RUNNING)
3366 return true;
3367 if (ret < 0)
3368 break;
3369 cpu_relax();
3370 }
3371
3372 return false;
3373}
3374EXPORT_SYMBOL_GPL(blk_poll);
3375
3376#ifdef CONFIG_PM
3377/**
3378 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3379 * @q: the queue of the device
3380 * @dev: the device the queue belongs to
3381 *
3382 * Description:
3383 * Initialize runtime-PM-related fields for @q and start auto suspend for
3384 * @dev. Drivers that want to take advantage of request-based runtime PM
3385 * should call this function after @dev has been initialized, and its
3386 * request queue @q has been allocated, and runtime PM for it can not happen
3387 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3388 * cases, driver should call this function before any I/O has taken place.
3389 *
3390 * This function takes care of setting up using auto suspend for the device,
3391 * the autosuspend delay is set to -1 to make runtime suspend impossible
3392 * until an updated value is either set by user or by driver. Drivers do
3393 * not need to touch other autosuspend settings.
3394 *
3395 * The block layer runtime PM is request based, so only works for drivers
3396 * that use request as their IO unit instead of those directly use bio's.
3397 */
3398void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3399{
3400 q->dev = dev;
3401 q->rpm_status = RPM_ACTIVE;
3402 pm_runtime_set_autosuspend_delay(q->dev, -1);
3403 pm_runtime_use_autosuspend(q->dev);
3404}
3405EXPORT_SYMBOL(blk_pm_runtime_init);
3406
3407/**
3408 * blk_pre_runtime_suspend - Pre runtime suspend check
3409 * @q: the queue of the device
3410 *
3411 * Description:
3412 * This function will check if runtime suspend is allowed for the device
3413 * by examining if there are any requests pending in the queue. If there
3414 * are requests pending, the device can not be runtime suspended; otherwise,
3415 * the queue's status will be updated to SUSPENDING and the driver can
3416 * proceed to suspend the device.
3417 *
3418 * For the not allowed case, we mark last busy for the device so that
3419 * runtime PM core will try to autosuspend it some time later.
3420 *
3421 * This function should be called near the start of the device's
3422 * runtime_suspend callback.
3423 *
3424 * Return:
3425 * 0 - OK to runtime suspend the device
3426 * -EBUSY - Device should not be runtime suspended
3427 */
3428int blk_pre_runtime_suspend(struct request_queue *q)
3429{
3430 int ret = 0;
3431
3432 if (!q->dev)
3433 return ret;
3434
3435 spin_lock_irq(q->queue_lock);
3436 if (q->nr_pending) {
3437 ret = -EBUSY;
3438 pm_runtime_mark_last_busy(q->dev);
3439 } else {
3440 q->rpm_status = RPM_SUSPENDING;
3441 }
3442 spin_unlock_irq(q->queue_lock);
3443 return ret;
3444}
3445EXPORT_SYMBOL(blk_pre_runtime_suspend);
3446
3447/**
3448 * blk_post_runtime_suspend - Post runtime suspend processing
3449 * @q: the queue of the device
3450 * @err: return value of the device's runtime_suspend function
3451 *
3452 * Description:
3453 * Update the queue's runtime status according to the return value of the
3454 * device's runtime suspend function and mark last busy for the device so
3455 * that PM core will try to auto suspend the device at a later time.
3456 *
3457 * This function should be called near the end of the device's
3458 * runtime_suspend callback.
3459 */
3460void blk_post_runtime_suspend(struct request_queue *q, int err)
3461{
3462 if (!q->dev)
3463 return;
3464
3465 spin_lock_irq(q->queue_lock);
3466 if (!err) {
3467 q->rpm_status = RPM_SUSPENDED;
3468 } else {
3469 q->rpm_status = RPM_ACTIVE;
3470 pm_runtime_mark_last_busy(q->dev);
3471 }
3472 spin_unlock_irq(q->queue_lock);
3473}
3474EXPORT_SYMBOL(blk_post_runtime_suspend);
3475
3476/**
3477 * blk_pre_runtime_resume - Pre runtime resume processing
3478 * @q: the queue of the device
3479 *
3480 * Description:
3481 * Update the queue's runtime status to RESUMING in preparation for the
3482 * runtime resume of the device.
3483 *
3484 * This function should be called near the start of the device's
3485 * runtime_resume callback.
3486 */
3487void blk_pre_runtime_resume(struct request_queue *q)
3488{
3489 if (!q->dev)
3490 return;
3491
3492 spin_lock_irq(q->queue_lock);
3493 q->rpm_status = RPM_RESUMING;
3494 spin_unlock_irq(q->queue_lock);
3495}
3496EXPORT_SYMBOL(blk_pre_runtime_resume);
3497
3498/**
3499 * blk_post_runtime_resume - Post runtime resume processing
3500 * @q: the queue of the device
3501 * @err: return value of the device's runtime_resume function
3502 *
3503 * Description:
3504 * Update the queue's runtime status according to the return value of the
3505 * device's runtime_resume function. If it is successfully resumed, process
3506 * the requests that are queued into the device's queue when it is resuming
3507 * and then mark last busy and initiate autosuspend for it.
3508 *
3509 * This function should be called near the end of the device's
3510 * runtime_resume callback.
3511 */
3512void blk_post_runtime_resume(struct request_queue *q, int err)
3513{
3514 if (!q->dev)
3515 return;
3516
3517 spin_lock_irq(q->queue_lock);
3518 if (!err) {
3519 q->rpm_status = RPM_ACTIVE;
3520 __blk_run_queue(q);
3521 pm_runtime_mark_last_busy(q->dev);
3522 pm_request_autosuspend(q->dev);
3523 } else {
3524 q->rpm_status = RPM_SUSPENDED;
3525 }
3526 spin_unlock_irq(q->queue_lock);
3527}
3528EXPORT_SYMBOL(blk_post_runtime_resume);
3529
3530/**
3531 * blk_set_runtime_active - Force runtime status of the queue to be active
3532 * @q: the queue of the device
3533 *
3534 * If the device is left runtime suspended during system suspend the resume
3535 * hook typically resumes the device and corrects runtime status
3536 * accordingly. However, that does not affect the queue runtime PM status
3537 * which is still "suspended". This prevents processing requests from the
3538 * queue.
3539 *
3540 * This function can be used in driver's resume hook to correct queue
3541 * runtime PM status and re-enable peeking requests from the queue. It
3542 * should be called before first request is added to the queue.
3543 */
3544void blk_set_runtime_active(struct request_queue *q)
3545{
3546 spin_lock_irq(q->queue_lock);
3547 q->rpm_status = RPM_ACTIVE;
3548 pm_runtime_mark_last_busy(q->dev);
3549 pm_request_autosuspend(q->dev);
3550 spin_unlock_irq(q->queue_lock);
3551}
3552EXPORT_SYMBOL(blk_set_runtime_active);
3553#endif
3554
3555int __init blk_dev_init(void)
3556{
3557 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3558 FIELD_SIZEOF(struct request, cmd_flags));
3559
3560 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3561 kblockd_workqueue = alloc_workqueue("kblockd",
3562 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3563 if (!kblockd_workqueue)
3564 panic("Failed to create kblockd\n");
3565
3566 request_cachep = kmem_cache_create("blkdev_requests",
3567 sizeof(struct request), 0, SLAB_PANIC, NULL);
3568
3569 blk_requestq_cachep = kmem_cache_create("request_queue",
3570 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3571
3572 return 0;
3573}
3574
3575/*
3576 * Blk IO latency support. We want this to be as cheap as possible, so doing
3577 * this lockless (and avoiding atomics), a few off by a few errors in this
3578 * code is not harmful, and we don't want to do anything that is
3579 * perf-impactful.
3580 * TODO : If necessary, we can make the histograms per-cpu and aggregate
3581 * them when printing them out.
3582 */
3583ssize_t
3584blk_latency_hist_show(char* name, struct io_latency_state *s, char *buf,
3585 int buf_size)
3586{
3587 int i;
3588 int bytes_written = 0;
3589 u_int64_t num_elem, elem;
3590 int pct;
3591 u_int64_t average;
3592
3593 num_elem = s->latency_elems;
3594 if (num_elem > 0) {
3595 average = div64_u64(s->latency_sum, s->latency_elems);
3596 bytes_written += scnprintf(buf + bytes_written,
3597 buf_size - bytes_written,
3598 "IO svc_time %s Latency Histogram (n = %llu,"
3599 " average = %llu):\n", name, num_elem, average);
3600 for (i = 0;
3601 i < ARRAY_SIZE(latency_x_axis_us);
3602 i++) {
3603 elem = s->latency_y_axis[i];
3604 pct = div64_u64(elem * 100, num_elem);
3605 bytes_written += scnprintf(buf + bytes_written,
3606 PAGE_SIZE - bytes_written,
3607 "\t< %6lluus%15llu%15d%%\n",
3608 latency_x_axis_us[i],
3609 elem, pct);
3610 }
3611 /* Last element in y-axis table is overflow */
3612 elem = s->latency_y_axis[i];
3613 pct = div64_u64(elem * 100, num_elem);
3614 bytes_written += scnprintf(buf + bytes_written,
3615 PAGE_SIZE - bytes_written,
3616 "\t>=%6lluus%15llu%15d%%\n",
3617 latency_x_axis_us[i - 1], elem, pct);
3618 }
3619
3620 return bytes_written;
3621}
3622EXPORT_SYMBOL(blk_latency_hist_show);
3623