summaryrefslogtreecommitdiff
path: root/block/blk-throttle.c (plain)
blob: 3a4c9a3c1427fc7802c5dee58d131ed6aa638b91
1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
12#include <linux/blk-cgroup.h>
13#include "blk.h"
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
21/* Throttling is performed over 100ms slice and after that slice is renewed */
22static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
24static struct blkcg_policy blkcg_policy_throtl;
25
26/* A workqueue to queue throttle related work */
27static struct workqueue_struct *kthrotld_workqueue;
28
29/*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56};
57
58struct throtl_service_queue {
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
76 struct timer_list pending_timer; /* fires on first_pending_disptime */
77};
78
79enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
82};
83
84#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
86struct throtl_grp {
87 /* must be the first member */
88 struct blkg_policy_data pd;
89
90 /* active throtl group service_queue member */
91 struct rb_node rb_node;
92
93 /* throtl_data this group belongs to */
94 struct throtl_data *td;
95
96 /* this group's service queue */
97 struct throtl_service_queue service_queue;
98
99 /*
100 * qnode_on_self is used when bios are directly queued to this
101 * throtl_grp so that local bios compete fairly with bios
102 * dispatched from children. qnode_on_parent is used when bios are
103 * dispatched from this throtl_grp into its parent and will compete
104 * with the sibling qnode_on_parents and the parent's
105 * qnode_on_self.
106 */
107 struct throtl_qnode qnode_on_self[2];
108 struct throtl_qnode qnode_on_parent[2];
109
110 /*
111 * Dispatch time in jiffies. This is the estimated time when group
112 * will unthrottle and is ready to dispatch more bio. It is used as
113 * key to sort active groups in service tree.
114 */
115 unsigned long disptime;
116
117 unsigned int flags;
118
119 /* are there any throtl rules between this group and td? */
120 bool has_rules[2];
121
122 /* bytes per second rate limits */
123 uint64_t bps[2];
124
125 /* IOPS limits */
126 unsigned int iops[2];
127
128 /* Number of bytes disptached in current slice */
129 uint64_t bytes_disp[2];
130 /* Number of bio's dispatched in current slice */
131 unsigned int io_disp[2];
132
133 /* When did we start a new slice */
134 unsigned long slice_start[2];
135 unsigned long slice_end[2];
136};
137
138struct throtl_data
139{
140 /* service tree for active throtl groups */
141 struct throtl_service_queue service_queue;
142
143 struct request_queue *queue;
144
145 /* Total Number of queued bios on READ and WRITE lists */
146 unsigned int nr_queued[2];
147
148 /* Work for dispatching throttled bios */
149 struct work_struct dispatch_work;
150};
151
152static void throtl_pending_timer_fn(unsigned long arg);
153
154static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
155{
156 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
157}
158
159static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
160{
161 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
162}
163
164static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
165{
166 return pd_to_blkg(&tg->pd);
167}
168
169/**
170 * sq_to_tg - return the throl_grp the specified service queue belongs to
171 * @sq: the throtl_service_queue of interest
172 *
173 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
174 * embedded in throtl_data, %NULL is returned.
175 */
176static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
177{
178 if (sq && sq->parent_sq)
179 return container_of(sq, struct throtl_grp, service_queue);
180 else
181 return NULL;
182}
183
184/**
185 * sq_to_td - return throtl_data the specified service queue belongs to
186 * @sq: the throtl_service_queue of interest
187 *
188 * A service_queue can be embeded in either a throtl_grp or throtl_data.
189 * Determine the associated throtl_data accordingly and return it.
190 */
191static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
192{
193 struct throtl_grp *tg = sq_to_tg(sq);
194
195 if (tg)
196 return tg->td;
197 else
198 return container_of(sq, struct throtl_data, service_queue);
199}
200
201/**
202 * throtl_log - log debug message via blktrace
203 * @sq: the service_queue being reported
204 * @fmt: printf format string
205 * @args: printf args
206 *
207 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
208 * throtl_grp; otherwise, just "throtl".
209 */
210#define throtl_log(sq, fmt, args...) do { \
211 struct throtl_grp *__tg = sq_to_tg((sq)); \
212 struct throtl_data *__td = sq_to_td((sq)); \
213 \
214 (void)__td; \
215 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
216 break; \
217 if ((__tg)) { \
218 char __pbuf[128]; \
219 \
220 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
221 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
222 } else { \
223 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
224 } \
225} while (0)
226
227static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
228{
229 INIT_LIST_HEAD(&qn->node);
230 bio_list_init(&qn->bios);
231 qn->tg = tg;
232}
233
234/**
235 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
236 * @bio: bio being added
237 * @qn: qnode to add bio to
238 * @queued: the service_queue->queued[] list @qn belongs to
239 *
240 * Add @bio to @qn and put @qn on @queued if it's not already on.
241 * @qn->tg's reference count is bumped when @qn is activated. See the
242 * comment on top of throtl_qnode definition for details.
243 */
244static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
245 struct list_head *queued)
246{
247 bio_list_add(&qn->bios, bio);
248 if (list_empty(&qn->node)) {
249 list_add_tail(&qn->node, queued);
250 blkg_get(tg_to_blkg(qn->tg));
251 }
252}
253
254/**
255 * throtl_peek_queued - peek the first bio on a qnode list
256 * @queued: the qnode list to peek
257 */
258static struct bio *throtl_peek_queued(struct list_head *queued)
259{
260 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
261 struct bio *bio;
262
263 if (list_empty(queued))
264 return NULL;
265
266 bio = bio_list_peek(&qn->bios);
267 WARN_ON_ONCE(!bio);
268 return bio;
269}
270
271/**
272 * throtl_pop_queued - pop the first bio form a qnode list
273 * @queued: the qnode list to pop a bio from
274 * @tg_to_put: optional out argument for throtl_grp to put
275 *
276 * Pop the first bio from the qnode list @queued. After popping, the first
277 * qnode is removed from @queued if empty or moved to the end of @queued so
278 * that the popping order is round-robin.
279 *
280 * When the first qnode is removed, its associated throtl_grp should be put
281 * too. If @tg_to_put is NULL, this function automatically puts it;
282 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
283 * responsible for putting it.
284 */
285static struct bio *throtl_pop_queued(struct list_head *queued,
286 struct throtl_grp **tg_to_put)
287{
288 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
289 struct bio *bio;
290
291 if (list_empty(queued))
292 return NULL;
293
294 bio = bio_list_pop(&qn->bios);
295 WARN_ON_ONCE(!bio);
296
297 if (bio_list_empty(&qn->bios)) {
298 list_del_init(&qn->node);
299 if (tg_to_put)
300 *tg_to_put = qn->tg;
301 else
302 blkg_put(tg_to_blkg(qn->tg));
303 } else {
304 list_move_tail(&qn->node, queued);
305 }
306
307 return bio;
308}
309
310/* init a service_queue, assumes the caller zeroed it */
311static void throtl_service_queue_init(struct throtl_service_queue *sq)
312{
313 INIT_LIST_HEAD(&sq->queued[0]);
314 INIT_LIST_HEAD(&sq->queued[1]);
315 sq->pending_tree = RB_ROOT;
316 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
317 (unsigned long)sq);
318}
319
320static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
321{
322 struct throtl_grp *tg;
323 int rw;
324
325 tg = kzalloc_node(sizeof(*tg), gfp, node);
326 if (!tg)
327 return NULL;
328
329 throtl_service_queue_init(&tg->service_queue);
330
331 for (rw = READ; rw <= WRITE; rw++) {
332 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
333 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
334 }
335
336 RB_CLEAR_NODE(&tg->rb_node);
337 tg->bps[READ] = -1;
338 tg->bps[WRITE] = -1;
339 tg->iops[READ] = -1;
340 tg->iops[WRITE] = -1;
341
342 return &tg->pd;
343}
344
345static void throtl_pd_init(struct blkg_policy_data *pd)
346{
347 struct throtl_grp *tg = pd_to_tg(pd);
348 struct blkcg_gq *blkg = tg_to_blkg(tg);
349 struct throtl_data *td = blkg->q->td;
350 struct throtl_service_queue *sq = &tg->service_queue;
351
352 /*
353 * If on the default hierarchy, we switch to properly hierarchical
354 * behavior where limits on a given throtl_grp are applied to the
355 * whole subtree rather than just the group itself. e.g. If 16M
356 * read_bps limit is set on the root group, the whole system can't
357 * exceed 16M for the device.
358 *
359 * If not on the default hierarchy, the broken flat hierarchy
360 * behavior is retained where all throtl_grps are treated as if
361 * they're all separate root groups right below throtl_data.
362 * Limits of a group don't interact with limits of other groups
363 * regardless of the position of the group in the hierarchy.
364 */
365 sq->parent_sq = &td->service_queue;
366 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
367 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
368 tg->td = td;
369}
370
371/*
372 * Set has_rules[] if @tg or any of its parents have limits configured.
373 * This doesn't require walking up to the top of the hierarchy as the
374 * parent's has_rules[] is guaranteed to be correct.
375 */
376static void tg_update_has_rules(struct throtl_grp *tg)
377{
378 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
379 int rw;
380
381 for (rw = READ; rw <= WRITE; rw++)
382 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
383 (tg->bps[rw] != -1 || tg->iops[rw] != -1);
384}
385
386static void throtl_pd_online(struct blkg_policy_data *pd)
387{
388 /*
389 * We don't want new groups to escape the limits of its ancestors.
390 * Update has_rules[] after a new group is brought online.
391 */
392 tg_update_has_rules(pd_to_tg(pd));
393}
394
395static void throtl_pd_free(struct blkg_policy_data *pd)
396{
397 struct throtl_grp *tg = pd_to_tg(pd);
398
399 del_timer_sync(&tg->service_queue.pending_timer);
400 kfree(tg);
401}
402
403static struct throtl_grp *
404throtl_rb_first(struct throtl_service_queue *parent_sq)
405{
406 /* Service tree is empty */
407 if (!parent_sq->nr_pending)
408 return NULL;
409
410 if (!parent_sq->first_pending)
411 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
412
413 if (parent_sq->first_pending)
414 return rb_entry_tg(parent_sq->first_pending);
415
416 return NULL;
417}
418
419static void rb_erase_init(struct rb_node *n, struct rb_root *root)
420{
421 rb_erase(n, root);
422 RB_CLEAR_NODE(n);
423}
424
425static void throtl_rb_erase(struct rb_node *n,
426 struct throtl_service_queue *parent_sq)
427{
428 if (parent_sq->first_pending == n)
429 parent_sq->first_pending = NULL;
430 rb_erase_init(n, &parent_sq->pending_tree);
431 --parent_sq->nr_pending;
432}
433
434static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
435{
436 struct throtl_grp *tg;
437
438 tg = throtl_rb_first(parent_sq);
439 if (!tg)
440 return;
441
442 parent_sq->first_pending_disptime = tg->disptime;
443}
444
445static void tg_service_queue_add(struct throtl_grp *tg)
446{
447 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
448 struct rb_node **node = &parent_sq->pending_tree.rb_node;
449 struct rb_node *parent = NULL;
450 struct throtl_grp *__tg;
451 unsigned long key = tg->disptime;
452 int left = 1;
453
454 while (*node != NULL) {
455 parent = *node;
456 __tg = rb_entry_tg(parent);
457
458 if (time_before(key, __tg->disptime))
459 node = &parent->rb_left;
460 else {
461 node = &parent->rb_right;
462 left = 0;
463 }
464 }
465
466 if (left)
467 parent_sq->first_pending = &tg->rb_node;
468
469 rb_link_node(&tg->rb_node, parent, node);
470 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
471}
472
473static void __throtl_enqueue_tg(struct throtl_grp *tg)
474{
475 tg_service_queue_add(tg);
476 tg->flags |= THROTL_TG_PENDING;
477 tg->service_queue.parent_sq->nr_pending++;
478}
479
480static void throtl_enqueue_tg(struct throtl_grp *tg)
481{
482 if (!(tg->flags & THROTL_TG_PENDING))
483 __throtl_enqueue_tg(tg);
484}
485
486static void __throtl_dequeue_tg(struct throtl_grp *tg)
487{
488 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
489 tg->flags &= ~THROTL_TG_PENDING;
490}
491
492static void throtl_dequeue_tg(struct throtl_grp *tg)
493{
494 if (tg->flags & THROTL_TG_PENDING)
495 __throtl_dequeue_tg(tg);
496}
497
498/* Call with queue lock held */
499static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
500 unsigned long expires)
501{
502 unsigned long max_expire = jiffies + 8 * throtl_slice;
503
504 /*
505 * Since we are adjusting the throttle limit dynamically, the sleep
506 * time calculated according to previous limit might be invalid. It's
507 * possible the cgroup sleep time is very long and no other cgroups
508 * have IO running so notify the limit changes. Make sure the cgroup
509 * doesn't sleep too long to avoid the missed notification.
510 */
511 if (time_after(expires, max_expire))
512 expires = max_expire;
513 mod_timer(&sq->pending_timer, expires);
514 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
515 expires - jiffies, jiffies);
516}
517
518/**
519 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
520 * @sq: the service_queue to schedule dispatch for
521 * @force: force scheduling
522 *
523 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
524 * dispatch time of the first pending child. Returns %true if either timer
525 * is armed or there's no pending child left. %false if the current
526 * dispatch window is still open and the caller should continue
527 * dispatching.
528 *
529 * If @force is %true, the dispatch timer is always scheduled and this
530 * function is guaranteed to return %true. This is to be used when the
531 * caller can't dispatch itself and needs to invoke pending_timer
532 * unconditionally. Note that forced scheduling is likely to induce short
533 * delay before dispatch starts even if @sq->first_pending_disptime is not
534 * in the future and thus shouldn't be used in hot paths.
535 */
536static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
537 bool force)
538{
539 /* any pending children left? */
540 if (!sq->nr_pending)
541 return true;
542
543 update_min_dispatch_time(sq);
544
545 /* is the next dispatch time in the future? */
546 if (force || time_after(sq->first_pending_disptime, jiffies)) {
547 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
548 return true;
549 }
550
551 /* tell the caller to continue dispatching */
552 return false;
553}
554
555static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
556 bool rw, unsigned long start)
557{
558 tg->bytes_disp[rw] = 0;
559 tg->io_disp[rw] = 0;
560
561 /*
562 * Previous slice has expired. We must have trimmed it after last
563 * bio dispatch. That means since start of last slice, we never used
564 * that bandwidth. Do try to make use of that bandwidth while giving
565 * credit.
566 */
567 if (time_after_eq(start, tg->slice_start[rw]))
568 tg->slice_start[rw] = start;
569
570 tg->slice_end[rw] = jiffies + throtl_slice;
571 throtl_log(&tg->service_queue,
572 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
573 rw == READ ? 'R' : 'W', tg->slice_start[rw],
574 tg->slice_end[rw], jiffies);
575}
576
577static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
578{
579 tg->bytes_disp[rw] = 0;
580 tg->io_disp[rw] = 0;
581 tg->slice_start[rw] = jiffies;
582 tg->slice_end[rw] = jiffies + throtl_slice;
583 throtl_log(&tg->service_queue,
584 "[%c] new slice start=%lu end=%lu jiffies=%lu",
585 rw == READ ? 'R' : 'W', tg->slice_start[rw],
586 tg->slice_end[rw], jiffies);
587}
588
589static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
590 unsigned long jiffy_end)
591{
592 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
593}
594
595static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
596 unsigned long jiffy_end)
597{
598 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
599 throtl_log(&tg->service_queue,
600 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
601 rw == READ ? 'R' : 'W', tg->slice_start[rw],
602 tg->slice_end[rw], jiffies);
603}
604
605/* Determine if previously allocated or extended slice is complete or not */
606static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
607{
608 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
609 return false;
610
611 return 1;
612}
613
614/* Trim the used slices and adjust slice start accordingly */
615static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
616{
617 unsigned long nr_slices, time_elapsed, io_trim;
618 u64 bytes_trim, tmp;
619
620 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
621
622 /*
623 * If bps are unlimited (-1), then time slice don't get
624 * renewed. Don't try to trim the slice if slice is used. A new
625 * slice will start when appropriate.
626 */
627 if (throtl_slice_used(tg, rw))
628 return;
629
630 /*
631 * A bio has been dispatched. Also adjust slice_end. It might happen
632 * that initially cgroup limit was very low resulting in high
633 * slice_end, but later limit was bumped up and bio was dispached
634 * sooner, then we need to reduce slice_end. A high bogus slice_end
635 * is bad because it does not allow new slice to start.
636 */
637
638 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
639
640 time_elapsed = jiffies - tg->slice_start[rw];
641
642 nr_slices = time_elapsed / throtl_slice;
643
644 if (!nr_slices)
645 return;
646 tmp = tg->bps[rw] * throtl_slice * nr_slices;
647 do_div(tmp, HZ);
648 bytes_trim = tmp;
649
650 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
651
652 if (!bytes_trim && !io_trim)
653 return;
654
655 if (tg->bytes_disp[rw] >= bytes_trim)
656 tg->bytes_disp[rw] -= bytes_trim;
657 else
658 tg->bytes_disp[rw] = 0;
659
660 if (tg->io_disp[rw] >= io_trim)
661 tg->io_disp[rw] -= io_trim;
662 else
663 tg->io_disp[rw] = 0;
664
665 tg->slice_start[rw] += nr_slices * throtl_slice;
666
667 throtl_log(&tg->service_queue,
668 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
669 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
670 tg->slice_start[rw], tg->slice_end[rw], jiffies);
671}
672
673static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
674 unsigned long *wait)
675{
676 bool rw = bio_data_dir(bio);
677 unsigned int io_allowed;
678 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
679 u64 tmp;
680
681 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
682
683 /* Slice has just started. Consider one slice interval */
684 if (!jiffy_elapsed)
685 jiffy_elapsed_rnd = throtl_slice;
686
687 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
688
689 /*
690 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
691 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
692 * will allow dispatch after 1 second and after that slice should
693 * have been trimmed.
694 */
695
696 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
697 do_div(tmp, HZ);
698
699 if (tmp > UINT_MAX)
700 io_allowed = UINT_MAX;
701 else
702 io_allowed = tmp;
703
704 if (tg->io_disp[rw] + 1 <= io_allowed) {
705 if (wait)
706 *wait = 0;
707 return true;
708 }
709
710 /* Calc approx time to dispatch */
711 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
712
713 if (jiffy_wait > jiffy_elapsed)
714 jiffy_wait = jiffy_wait - jiffy_elapsed;
715 else
716 jiffy_wait = 1;
717
718 if (wait)
719 *wait = jiffy_wait;
720 return 0;
721}
722
723static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
724 unsigned long *wait)
725{
726 bool rw = bio_data_dir(bio);
727 u64 bytes_allowed, extra_bytes, tmp;
728 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
729
730 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
731
732 /* Slice has just started. Consider one slice interval */
733 if (!jiffy_elapsed)
734 jiffy_elapsed_rnd = throtl_slice;
735
736 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
737
738 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
739 do_div(tmp, HZ);
740 bytes_allowed = tmp;
741
742 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
743 if (wait)
744 *wait = 0;
745 return true;
746 }
747
748 /* Calc approx time to dispatch */
749 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
750 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
751
752 if (!jiffy_wait)
753 jiffy_wait = 1;
754
755 /*
756 * This wait time is without taking into consideration the rounding
757 * up we did. Add that time also.
758 */
759 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
760 if (wait)
761 *wait = jiffy_wait;
762 return 0;
763}
764
765/*
766 * Returns whether one can dispatch a bio or not. Also returns approx number
767 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
768 */
769static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
770 unsigned long *wait)
771{
772 bool rw = bio_data_dir(bio);
773 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
774
775 /*
776 * Currently whole state machine of group depends on first bio
777 * queued in the group bio list. So one should not be calling
778 * this function with a different bio if there are other bios
779 * queued.
780 */
781 BUG_ON(tg->service_queue.nr_queued[rw] &&
782 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
783
784 /* If tg->bps = -1, then BW is unlimited */
785 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
786 if (wait)
787 *wait = 0;
788 return true;
789 }
790
791 /*
792 * If previous slice expired, start a new one otherwise renew/extend
793 * existing slice to make sure it is at least throtl_slice interval
794 * long since now. New slice is started only for empty throttle group.
795 * If there is queued bio, that means there should be an active
796 * slice and it should be extended instead.
797 */
798 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
799 throtl_start_new_slice(tg, rw);
800 else {
801 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
802 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
803 }
804
805 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
806 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
807 if (wait)
808 *wait = 0;
809 return 1;
810 }
811
812 max_wait = max(bps_wait, iops_wait);
813
814 if (wait)
815 *wait = max_wait;
816
817 if (time_before(tg->slice_end[rw], jiffies + max_wait))
818 throtl_extend_slice(tg, rw, jiffies + max_wait);
819
820 return 0;
821}
822
823static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
824{
825 bool rw = bio_data_dir(bio);
826
827 /* Charge the bio to the group */
828 tg->bytes_disp[rw] += bio->bi_iter.bi_size;
829 tg->io_disp[rw]++;
830
831 /*
832 * REQ_THROTTLED is used to prevent the same bio to be throttled
833 * more than once as a throttled bio will go through blk-throtl the
834 * second time when it eventually gets issued. Set it when a bio
835 * is being charged to a tg.
836 */
837 if (!(bio->bi_opf & REQ_THROTTLED))
838 bio->bi_opf |= REQ_THROTTLED;
839}
840
841/**
842 * throtl_add_bio_tg - add a bio to the specified throtl_grp
843 * @bio: bio to add
844 * @qn: qnode to use
845 * @tg: the target throtl_grp
846 *
847 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
848 * tg->qnode_on_self[] is used.
849 */
850static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
851 struct throtl_grp *tg)
852{
853 struct throtl_service_queue *sq = &tg->service_queue;
854 bool rw = bio_data_dir(bio);
855
856 if (!qn)
857 qn = &tg->qnode_on_self[rw];
858
859 /*
860 * If @tg doesn't currently have any bios queued in the same
861 * direction, queueing @bio can change when @tg should be
862 * dispatched. Mark that @tg was empty. This is automatically
863 * cleaered on the next tg_update_disptime().
864 */
865 if (!sq->nr_queued[rw])
866 tg->flags |= THROTL_TG_WAS_EMPTY;
867
868 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
869
870 sq->nr_queued[rw]++;
871 throtl_enqueue_tg(tg);
872}
873
874static void tg_update_disptime(struct throtl_grp *tg)
875{
876 struct throtl_service_queue *sq = &tg->service_queue;
877 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
878 struct bio *bio;
879
880 if ((bio = throtl_peek_queued(&sq->queued[READ])))
881 tg_may_dispatch(tg, bio, &read_wait);
882
883 if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
884 tg_may_dispatch(tg, bio, &write_wait);
885
886 min_wait = min(read_wait, write_wait);
887 disptime = jiffies + min_wait;
888
889 /* Update dispatch time */
890 throtl_dequeue_tg(tg);
891 tg->disptime = disptime;
892 throtl_enqueue_tg(tg);
893
894 /* see throtl_add_bio_tg() */
895 tg->flags &= ~THROTL_TG_WAS_EMPTY;
896}
897
898static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
899 struct throtl_grp *parent_tg, bool rw)
900{
901 if (throtl_slice_used(parent_tg, rw)) {
902 throtl_start_new_slice_with_credit(parent_tg, rw,
903 child_tg->slice_start[rw]);
904 }
905
906}
907
908static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
909{
910 struct throtl_service_queue *sq = &tg->service_queue;
911 struct throtl_service_queue *parent_sq = sq->parent_sq;
912 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
913 struct throtl_grp *tg_to_put = NULL;
914 struct bio *bio;
915
916 /*
917 * @bio is being transferred from @tg to @parent_sq. Popping a bio
918 * from @tg may put its reference and @parent_sq might end up
919 * getting released prematurely. Remember the tg to put and put it
920 * after @bio is transferred to @parent_sq.
921 */
922 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
923 sq->nr_queued[rw]--;
924
925 throtl_charge_bio(tg, bio);
926
927 /*
928 * If our parent is another tg, we just need to transfer @bio to
929 * the parent using throtl_add_bio_tg(). If our parent is
930 * @td->service_queue, @bio is ready to be issued. Put it on its
931 * bio_lists[] and decrease total number queued. The caller is
932 * responsible for issuing these bios.
933 */
934 if (parent_tg) {
935 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
936 start_parent_slice_with_credit(tg, parent_tg, rw);
937 } else {
938 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
939 &parent_sq->queued[rw]);
940 BUG_ON(tg->td->nr_queued[rw] <= 0);
941 tg->td->nr_queued[rw]--;
942 }
943
944 throtl_trim_slice(tg, rw);
945
946 if (tg_to_put)
947 blkg_put(tg_to_blkg(tg_to_put));
948}
949
950static int throtl_dispatch_tg(struct throtl_grp *tg)
951{
952 struct throtl_service_queue *sq = &tg->service_queue;
953 unsigned int nr_reads = 0, nr_writes = 0;
954 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
955 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
956 struct bio *bio;
957
958 /* Try to dispatch 75% READS and 25% WRITES */
959
960 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
961 tg_may_dispatch(tg, bio, NULL)) {
962
963 tg_dispatch_one_bio(tg, bio_data_dir(bio));
964 nr_reads++;
965
966 if (nr_reads >= max_nr_reads)
967 break;
968 }
969
970 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
971 tg_may_dispatch(tg, bio, NULL)) {
972
973 tg_dispatch_one_bio(tg, bio_data_dir(bio));
974 nr_writes++;
975
976 if (nr_writes >= max_nr_writes)
977 break;
978 }
979
980 return nr_reads + nr_writes;
981}
982
983static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
984{
985 unsigned int nr_disp = 0;
986
987 while (1) {
988 struct throtl_grp *tg = throtl_rb_first(parent_sq);
989 struct throtl_service_queue *sq = &tg->service_queue;
990
991 if (!tg)
992 break;
993
994 if (time_before(jiffies, tg->disptime))
995 break;
996
997 throtl_dequeue_tg(tg);
998
999 nr_disp += throtl_dispatch_tg(tg);
1000
1001 if (sq->nr_queued[0] || sq->nr_queued[1])
1002 tg_update_disptime(tg);
1003
1004 if (nr_disp >= throtl_quantum)
1005 break;
1006 }
1007
1008 return nr_disp;
1009}
1010
1011/**
1012 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1013 * @arg: the throtl_service_queue being serviced
1014 *
1015 * This timer is armed when a child throtl_grp with active bio's become
1016 * pending and queued on the service_queue's pending_tree and expires when
1017 * the first child throtl_grp should be dispatched. This function
1018 * dispatches bio's from the children throtl_grps to the parent
1019 * service_queue.
1020 *
1021 * If the parent's parent is another throtl_grp, dispatching is propagated
1022 * by either arming its pending_timer or repeating dispatch directly. If
1023 * the top-level service_tree is reached, throtl_data->dispatch_work is
1024 * kicked so that the ready bio's are issued.
1025 */
1026static void throtl_pending_timer_fn(unsigned long arg)
1027{
1028 struct throtl_service_queue *sq = (void *)arg;
1029 struct throtl_grp *tg = sq_to_tg(sq);
1030 struct throtl_data *td = sq_to_td(sq);
1031 struct request_queue *q = td->queue;
1032 struct throtl_service_queue *parent_sq;
1033 bool dispatched;
1034 int ret;
1035
1036 spin_lock_irq(q->queue_lock);
1037again:
1038 parent_sq = sq->parent_sq;
1039 dispatched = false;
1040
1041 while (true) {
1042 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1043 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1044 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1045
1046 ret = throtl_select_dispatch(sq);
1047 if (ret) {
1048 throtl_log(sq, "bios disp=%u", ret);
1049 dispatched = true;
1050 }
1051
1052 if (throtl_schedule_next_dispatch(sq, false))
1053 break;
1054
1055 /* this dispatch windows is still open, relax and repeat */
1056 spin_unlock_irq(q->queue_lock);
1057 cpu_relax();
1058 spin_lock_irq(q->queue_lock);
1059 }
1060
1061 if (!dispatched)
1062 goto out_unlock;
1063
1064 if (parent_sq) {
1065 /* @parent_sq is another throl_grp, propagate dispatch */
1066 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1067 tg_update_disptime(tg);
1068 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1069 /* window is already open, repeat dispatching */
1070 sq = parent_sq;
1071 tg = sq_to_tg(sq);
1072 goto again;
1073 }
1074 }
1075 } else {
1076 /* reached the top-level, queue issueing */
1077 queue_work(kthrotld_workqueue, &td->dispatch_work);
1078 }
1079out_unlock:
1080 spin_unlock_irq(q->queue_lock);
1081}
1082
1083/**
1084 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1085 * @work: work item being executed
1086 *
1087 * This function is queued for execution when bio's reach the bio_lists[]
1088 * of throtl_data->service_queue. Those bio's are ready and issued by this
1089 * function.
1090 */
1091static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1092{
1093 struct throtl_data *td = container_of(work, struct throtl_data,
1094 dispatch_work);
1095 struct throtl_service_queue *td_sq = &td->service_queue;
1096 struct request_queue *q = td->queue;
1097 struct bio_list bio_list_on_stack;
1098 struct bio *bio;
1099 struct blk_plug plug;
1100 int rw;
1101
1102 bio_list_init(&bio_list_on_stack);
1103
1104 spin_lock_irq(q->queue_lock);
1105 for (rw = READ; rw <= WRITE; rw++)
1106 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1107 bio_list_add(&bio_list_on_stack, bio);
1108 spin_unlock_irq(q->queue_lock);
1109
1110 if (!bio_list_empty(&bio_list_on_stack)) {
1111 blk_start_plug(&plug);
1112 while((bio = bio_list_pop(&bio_list_on_stack)))
1113 generic_make_request(bio);
1114 blk_finish_plug(&plug);
1115 }
1116}
1117
1118static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1119 int off)
1120{
1121 struct throtl_grp *tg = pd_to_tg(pd);
1122 u64 v = *(u64 *)((void *)tg + off);
1123
1124 if (v == -1)
1125 return 0;
1126 return __blkg_prfill_u64(sf, pd, v);
1127}
1128
1129static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1130 int off)
1131{
1132 struct throtl_grp *tg = pd_to_tg(pd);
1133 unsigned int v = *(unsigned int *)((void *)tg + off);
1134
1135 if (v == -1)
1136 return 0;
1137 return __blkg_prfill_u64(sf, pd, v);
1138}
1139
1140static int tg_print_conf_u64(struct seq_file *sf, void *v)
1141{
1142 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1143 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1144 return 0;
1145}
1146
1147static int tg_print_conf_uint(struct seq_file *sf, void *v)
1148{
1149 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1150 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1151 return 0;
1152}
1153
1154static void tg_conf_updated(struct throtl_grp *tg)
1155{
1156 struct throtl_service_queue *sq = &tg->service_queue;
1157 struct cgroup_subsys_state *pos_css;
1158 struct blkcg_gq *blkg;
1159
1160 throtl_log(&tg->service_queue,
1161 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1162 tg->bps[READ], tg->bps[WRITE],
1163 tg->iops[READ], tg->iops[WRITE]);
1164
1165 /*
1166 * Update has_rules[] flags for the updated tg's subtree. A tg is
1167 * considered to have rules if either the tg itself or any of its
1168 * ancestors has rules. This identifies groups without any
1169 * restrictions in the whole hierarchy and allows them to bypass
1170 * blk-throttle.
1171 */
1172 blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1173 tg_update_has_rules(blkg_to_tg(blkg));
1174
1175 /*
1176 * We're already holding queue_lock and know @tg is valid. Let's
1177 * apply the new config directly.
1178 *
1179 * Restart the slices for both READ and WRITES. It might happen
1180 * that a group's limit are dropped suddenly and we don't want to
1181 * account recently dispatched IO with new low rate.
1182 */
1183 throtl_start_new_slice(tg, 0);
1184 throtl_start_new_slice(tg, 1);
1185
1186 if (tg->flags & THROTL_TG_PENDING) {
1187 tg_update_disptime(tg);
1188 throtl_schedule_next_dispatch(sq->parent_sq, true);
1189 }
1190}
1191
1192static ssize_t tg_set_conf(struct kernfs_open_file *of,
1193 char *buf, size_t nbytes, loff_t off, bool is_u64)
1194{
1195 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1196 struct blkg_conf_ctx ctx;
1197 struct throtl_grp *tg;
1198 int ret;
1199 u64 v;
1200
1201 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1202 if (ret)
1203 return ret;
1204
1205 ret = -EINVAL;
1206 if (sscanf(ctx.body, "%llu", &v) != 1)
1207 goto out_finish;
1208 if (!v)
1209 v = -1;
1210
1211 tg = blkg_to_tg(ctx.blkg);
1212
1213 if (is_u64)
1214 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1215 else
1216 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1217
1218 tg_conf_updated(tg);
1219 ret = 0;
1220out_finish:
1221 blkg_conf_finish(&ctx);
1222 return ret ?: nbytes;
1223}
1224
1225static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1226 char *buf, size_t nbytes, loff_t off)
1227{
1228 return tg_set_conf(of, buf, nbytes, off, true);
1229}
1230
1231static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1232 char *buf, size_t nbytes, loff_t off)
1233{
1234 return tg_set_conf(of, buf, nbytes, off, false);
1235}
1236
1237static struct cftype throtl_legacy_files[] = {
1238 {
1239 .name = "throttle.read_bps_device",
1240 .private = offsetof(struct throtl_grp, bps[READ]),
1241 .seq_show = tg_print_conf_u64,
1242 .write = tg_set_conf_u64,
1243 },
1244 {
1245 .name = "throttle.write_bps_device",
1246 .private = offsetof(struct throtl_grp, bps[WRITE]),
1247 .seq_show = tg_print_conf_u64,
1248 .write = tg_set_conf_u64,
1249 },
1250 {
1251 .name = "throttle.read_iops_device",
1252 .private = offsetof(struct throtl_grp, iops[READ]),
1253 .seq_show = tg_print_conf_uint,
1254 .write = tg_set_conf_uint,
1255 },
1256 {
1257 .name = "throttle.write_iops_device",
1258 .private = offsetof(struct throtl_grp, iops[WRITE]),
1259 .seq_show = tg_print_conf_uint,
1260 .write = tg_set_conf_uint,
1261 },
1262 {
1263 .name = "throttle.io_service_bytes",
1264 .private = (unsigned long)&blkcg_policy_throtl,
1265 .seq_show = blkg_print_stat_bytes,
1266 },
1267 {
1268 .name = "throttle.io_serviced",
1269 .private = (unsigned long)&blkcg_policy_throtl,
1270 .seq_show = blkg_print_stat_ios,
1271 },
1272 { } /* terminate */
1273};
1274
1275static u64 tg_prfill_max(struct seq_file *sf, struct blkg_policy_data *pd,
1276 int off)
1277{
1278 struct throtl_grp *tg = pd_to_tg(pd);
1279 const char *dname = blkg_dev_name(pd->blkg);
1280 char bufs[4][21] = { "max", "max", "max", "max" };
1281
1282 if (!dname)
1283 return 0;
1284 if (tg->bps[READ] == -1 && tg->bps[WRITE] == -1 &&
1285 tg->iops[READ] == -1 && tg->iops[WRITE] == -1)
1286 return 0;
1287
1288 if (tg->bps[READ] != -1)
1289 snprintf(bufs[0], sizeof(bufs[0]), "%llu", tg->bps[READ]);
1290 if (tg->bps[WRITE] != -1)
1291 snprintf(bufs[1], sizeof(bufs[1]), "%llu", tg->bps[WRITE]);
1292 if (tg->iops[READ] != -1)
1293 snprintf(bufs[2], sizeof(bufs[2]), "%u", tg->iops[READ]);
1294 if (tg->iops[WRITE] != -1)
1295 snprintf(bufs[3], sizeof(bufs[3]), "%u", tg->iops[WRITE]);
1296
1297 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
1298 dname, bufs[0], bufs[1], bufs[2], bufs[3]);
1299 return 0;
1300}
1301
1302static int tg_print_max(struct seq_file *sf, void *v)
1303{
1304 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_max,
1305 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1306 return 0;
1307}
1308
1309static ssize_t tg_set_max(struct kernfs_open_file *of,
1310 char *buf, size_t nbytes, loff_t off)
1311{
1312 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1313 struct blkg_conf_ctx ctx;
1314 struct throtl_grp *tg;
1315 u64 v[4];
1316 int ret;
1317
1318 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1319 if (ret)
1320 return ret;
1321
1322 tg = blkg_to_tg(ctx.blkg);
1323
1324 v[0] = tg->bps[READ];
1325 v[1] = tg->bps[WRITE];
1326 v[2] = tg->iops[READ];
1327 v[3] = tg->iops[WRITE];
1328
1329 while (true) {
1330 char tok[27]; /* wiops=18446744073709551616 */
1331 char *p;
1332 u64 val = -1;
1333 int len;
1334
1335 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1336 break;
1337 if (tok[0] == '\0')
1338 break;
1339 ctx.body += len;
1340
1341 ret = -EINVAL;
1342 p = tok;
1343 strsep(&p, "=");
1344 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1345 goto out_finish;
1346
1347 ret = -ERANGE;
1348 if (!val)
1349 goto out_finish;
1350
1351 ret = -EINVAL;
1352 if (!strcmp(tok, "rbps"))
1353 v[0] = val;
1354 else if (!strcmp(tok, "wbps"))
1355 v[1] = val;
1356 else if (!strcmp(tok, "riops"))
1357 v[2] = min_t(u64, val, UINT_MAX);
1358 else if (!strcmp(tok, "wiops"))
1359 v[3] = min_t(u64, val, UINT_MAX);
1360 else
1361 goto out_finish;
1362 }
1363
1364 tg->bps[READ] = v[0];
1365 tg->bps[WRITE] = v[1];
1366 tg->iops[READ] = v[2];
1367 tg->iops[WRITE] = v[3];
1368
1369 tg_conf_updated(tg);
1370 ret = 0;
1371out_finish:
1372 blkg_conf_finish(&ctx);
1373 return ret ?: nbytes;
1374}
1375
1376static struct cftype throtl_files[] = {
1377 {
1378 .name = "max",
1379 .flags = CFTYPE_NOT_ON_ROOT,
1380 .seq_show = tg_print_max,
1381 .write = tg_set_max,
1382 },
1383 { } /* terminate */
1384};
1385
1386static void throtl_shutdown_wq(struct request_queue *q)
1387{
1388 struct throtl_data *td = q->td;
1389
1390 cancel_work_sync(&td->dispatch_work);
1391}
1392
1393static struct blkcg_policy blkcg_policy_throtl = {
1394 .dfl_cftypes = throtl_files,
1395 .legacy_cftypes = throtl_legacy_files,
1396
1397 .pd_alloc_fn = throtl_pd_alloc,
1398 .pd_init_fn = throtl_pd_init,
1399 .pd_online_fn = throtl_pd_online,
1400 .pd_free_fn = throtl_pd_free,
1401};
1402
1403bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
1404 struct bio *bio)
1405{
1406 struct throtl_qnode *qn = NULL;
1407 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1408 struct throtl_service_queue *sq;
1409 bool rw = bio_data_dir(bio);
1410 bool throttled = false;
1411
1412 WARN_ON_ONCE(!rcu_read_lock_held());
1413
1414 /* see throtl_charge_bio() */
1415 if ((bio->bi_opf & REQ_THROTTLED) || !tg->has_rules[rw])
1416 goto out;
1417
1418 spin_lock_irq(q->queue_lock);
1419
1420 if (unlikely(blk_queue_bypass(q)))
1421 goto out_unlock;
1422
1423 sq = &tg->service_queue;
1424
1425 while (true) {
1426 /* throtl is FIFO - if bios are already queued, should queue */
1427 if (sq->nr_queued[rw])
1428 break;
1429
1430 /* if above limits, break to queue */
1431 if (!tg_may_dispatch(tg, bio, NULL))
1432 break;
1433
1434 /* within limits, let's charge and dispatch directly */
1435 throtl_charge_bio(tg, bio);
1436
1437 /*
1438 * We need to trim slice even when bios are not being queued
1439 * otherwise it might happen that a bio is not queued for
1440 * a long time and slice keeps on extending and trim is not
1441 * called for a long time. Now if limits are reduced suddenly
1442 * we take into account all the IO dispatched so far at new
1443 * low rate and * newly queued IO gets a really long dispatch
1444 * time.
1445 *
1446 * So keep on trimming slice even if bio is not queued.
1447 */
1448 throtl_trim_slice(tg, rw);
1449
1450 /*
1451 * @bio passed through this layer without being throttled.
1452 * Climb up the ladder. If we''re already at the top, it
1453 * can be executed directly.
1454 */
1455 qn = &tg->qnode_on_parent[rw];
1456 sq = sq->parent_sq;
1457 tg = sq_to_tg(sq);
1458 if (!tg)
1459 goto out_unlock;
1460 }
1461
1462 /* out-of-limit, queue to @tg */
1463 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1464 rw == READ ? 'R' : 'W',
1465 tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1466 tg->io_disp[rw], tg->iops[rw],
1467 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1468
1469 bio_associate_current(bio);
1470 tg->td->nr_queued[rw]++;
1471 throtl_add_bio_tg(bio, qn, tg);
1472 throttled = true;
1473
1474 /*
1475 * Update @tg's dispatch time and force schedule dispatch if @tg
1476 * was empty before @bio. The forced scheduling isn't likely to
1477 * cause undue delay as @bio is likely to be dispatched directly if
1478 * its @tg's disptime is not in the future.
1479 */
1480 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1481 tg_update_disptime(tg);
1482 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1483 }
1484
1485out_unlock:
1486 spin_unlock_irq(q->queue_lock);
1487out:
1488 /*
1489 * As multiple blk-throtls may stack in the same issue path, we
1490 * don't want bios to leave with the flag set. Clear the flag if
1491 * being issued.
1492 */
1493 if (!throttled)
1494 bio->bi_opf &= ~REQ_THROTTLED;
1495 return throttled;
1496}
1497
1498/*
1499 * Dispatch all bios from all children tg's queued on @parent_sq. On
1500 * return, @parent_sq is guaranteed to not have any active children tg's
1501 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1502 */
1503static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1504{
1505 struct throtl_grp *tg;
1506
1507 while ((tg = throtl_rb_first(parent_sq))) {
1508 struct throtl_service_queue *sq = &tg->service_queue;
1509 struct bio *bio;
1510
1511 throtl_dequeue_tg(tg);
1512
1513 while ((bio = throtl_peek_queued(&sq->queued[READ])))
1514 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1515 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1516 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1517 }
1518}
1519
1520/**
1521 * blk_throtl_drain - drain throttled bios
1522 * @q: request_queue to drain throttled bios for
1523 *
1524 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1525 */
1526void blk_throtl_drain(struct request_queue *q)
1527 __releases(q->queue_lock) __acquires(q->queue_lock)
1528{
1529 struct throtl_data *td = q->td;
1530 struct blkcg_gq *blkg;
1531 struct cgroup_subsys_state *pos_css;
1532 struct bio *bio;
1533 int rw;
1534
1535 queue_lockdep_assert_held(q);
1536 rcu_read_lock();
1537
1538 /*
1539 * Drain each tg while doing post-order walk on the blkg tree, so
1540 * that all bios are propagated to td->service_queue. It'd be
1541 * better to walk service_queue tree directly but blkg walk is
1542 * easier.
1543 */
1544 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1545 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1546
1547 /* finally, transfer bios from top-level tg's into the td */
1548 tg_drain_bios(&td->service_queue);
1549
1550 rcu_read_unlock();
1551 spin_unlock_irq(q->queue_lock);
1552
1553 /* all bios now should be in td->service_queue, issue them */
1554 for (rw = READ; rw <= WRITE; rw++)
1555 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1556 NULL)))
1557 generic_make_request(bio);
1558
1559 spin_lock_irq(q->queue_lock);
1560}
1561
1562int blk_throtl_init(struct request_queue *q)
1563{
1564 struct throtl_data *td;
1565 int ret;
1566
1567 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1568 if (!td)
1569 return -ENOMEM;
1570
1571 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1572 throtl_service_queue_init(&td->service_queue);
1573
1574 q->td = td;
1575 td->queue = q;
1576
1577 /* activate policy */
1578 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1579 if (ret)
1580 kfree(td);
1581 return ret;
1582}
1583
1584void blk_throtl_exit(struct request_queue *q)
1585{
1586 BUG_ON(!q->td);
1587 throtl_shutdown_wq(q);
1588 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1589 kfree(q->td);
1590}
1591
1592static int __init throtl_init(void)
1593{
1594 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1595 if (!kthrotld_workqueue)
1596 panic("Failed to create kthrotld\n");
1597
1598 return blkcg_policy_register(&blkcg_policy_throtl);
1599}
1600
1601module_init(throtl_init);
1602