summaryrefslogtreecommitdiff
path: root/block/cfq-iosched.c (plain)
blob: 650d69e0f6f7eb987e1f1e5dddb54964f5351c55
1/*
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/ktime.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include <linux/blk-cgroup.h>
18#include "blk.h"
19
20/*
21 * tunables
22 */
23/* max queue in one round of service */
24static const int cfq_quantum = 8;
25static const u64 cfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
30static const u64 cfq_slice_sync = NSEC_PER_SEC / 10;
31static u64 cfq_slice_async = NSEC_PER_SEC / 25;
32static const int cfq_slice_async_rq = 2;
33static u64 cfq_slice_idle = NSEC_PER_SEC / 125;
34static u64 cfq_group_idle = NSEC_PER_SEC / 125;
35static const u64 cfq_target_latency = (u64)NSEC_PER_SEC * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
37
38/*
39 * offset from end of queue service tree for idle class
40 */
41#define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
42/* offset from end of group service tree under time slice mode */
43#define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5)
44/* offset from end of group service under IOPS mode */
45#define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5)
46
47/*
48 * below this threshold, we consider thinktime immediate
49 */
50#define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
51
52#define CFQ_SLICE_SCALE (5)
53#define CFQ_HW_QUEUE_MIN (5)
54#define CFQ_SERVICE_SHIFT 12
55
56#define CFQQ_SEEK_THR (sector_t)(8 * 100)
57#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
58#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
59#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
60
61#define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
62#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
63#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
64
65static struct kmem_cache *cfq_pool;
66
67#define CFQ_PRIO_LISTS IOPRIO_BE_NR
68#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
69#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
70
71#define sample_valid(samples) ((samples) > 80)
72#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
73
74/* blkio-related constants */
75#define CFQ_WEIGHT_LEGACY_MIN 10
76#define CFQ_WEIGHT_LEGACY_DFL 500
77#define CFQ_WEIGHT_LEGACY_MAX 1000
78
79struct cfq_ttime {
80 u64 last_end_request;
81
82 u64 ttime_total;
83 u64 ttime_mean;
84 unsigned long ttime_samples;
85};
86
87/*
88 * Most of our rbtree usage is for sorting with min extraction, so
89 * if we cache the leftmost node we don't have to walk down the tree
90 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
91 * move this into the elevator for the rq sorting as well.
92 */
93struct cfq_rb_root {
94 struct rb_root rb;
95 struct rb_node *left;
96 unsigned count;
97 u64 min_vdisktime;
98 struct cfq_ttime ttime;
99};
100#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
101 .ttime = {.last_end_request = ktime_get_ns(),},}
102
103/*
104 * Per process-grouping structure
105 */
106struct cfq_queue {
107 /* reference count */
108 int ref;
109 /* various state flags, see below */
110 unsigned int flags;
111 /* parent cfq_data */
112 struct cfq_data *cfqd;
113 /* service_tree member */
114 struct rb_node rb_node;
115 /* service_tree key */
116 u64 rb_key;
117 /* prio tree member */
118 struct rb_node p_node;
119 /* prio tree root we belong to, if any */
120 struct rb_root *p_root;
121 /* sorted list of pending requests */
122 struct rb_root sort_list;
123 /* if fifo isn't expired, next request to serve */
124 struct request *next_rq;
125 /* requests queued in sort_list */
126 int queued[2];
127 /* currently allocated requests */
128 int allocated[2];
129 /* fifo list of requests in sort_list */
130 struct list_head fifo;
131
132 /* time when queue got scheduled in to dispatch first request. */
133 u64 dispatch_start;
134 u64 allocated_slice;
135 u64 slice_dispatch;
136 /* time when first request from queue completed and slice started. */
137 u64 slice_start;
138 u64 slice_end;
139 s64 slice_resid;
140
141 /* pending priority requests */
142 int prio_pending;
143 /* number of requests that are on the dispatch list or inside driver */
144 int dispatched;
145
146 /* io prio of this group */
147 unsigned short ioprio, org_ioprio;
148 unsigned short ioprio_class, org_ioprio_class;
149
150 pid_t pid;
151
152 u32 seek_history;
153 sector_t last_request_pos;
154
155 struct cfq_rb_root *service_tree;
156 struct cfq_queue *new_cfqq;
157 struct cfq_group *cfqg;
158 /* Number of sectors dispatched from queue in single dispatch round */
159 unsigned long nr_sectors;
160};
161
162/*
163 * First index in the service_trees.
164 * IDLE is handled separately, so it has negative index
165 */
166enum wl_class_t {
167 BE_WORKLOAD = 0,
168 RT_WORKLOAD = 1,
169 IDLE_WORKLOAD = 2,
170 CFQ_PRIO_NR,
171};
172
173/*
174 * Second index in the service_trees.
175 */
176enum wl_type_t {
177 ASYNC_WORKLOAD = 0,
178 SYNC_NOIDLE_WORKLOAD = 1,
179 SYNC_WORKLOAD = 2
180};
181
182struct cfqg_stats {
183#ifdef CONFIG_CFQ_GROUP_IOSCHED
184 /* number of ios merged */
185 struct blkg_rwstat merged;
186 /* total time spent on device in ns, may not be accurate w/ queueing */
187 struct blkg_rwstat service_time;
188 /* total time spent waiting in scheduler queue in ns */
189 struct blkg_rwstat wait_time;
190 /* number of IOs queued up */
191 struct blkg_rwstat queued;
192 /* total disk time and nr sectors dispatched by this group */
193 struct blkg_stat time;
194#ifdef CONFIG_DEBUG_BLK_CGROUP
195 /* time not charged to this cgroup */
196 struct blkg_stat unaccounted_time;
197 /* sum of number of ios queued across all samples */
198 struct blkg_stat avg_queue_size_sum;
199 /* count of samples taken for average */
200 struct blkg_stat avg_queue_size_samples;
201 /* how many times this group has been removed from service tree */
202 struct blkg_stat dequeue;
203 /* total time spent waiting for it to be assigned a timeslice. */
204 struct blkg_stat group_wait_time;
205 /* time spent idling for this blkcg_gq */
206 struct blkg_stat idle_time;
207 /* total time with empty current active q with other requests queued */
208 struct blkg_stat empty_time;
209 /* fields after this shouldn't be cleared on stat reset */
210 uint64_t start_group_wait_time;
211 uint64_t start_idle_time;
212 uint64_t start_empty_time;
213 uint16_t flags;
214#endif /* CONFIG_DEBUG_BLK_CGROUP */
215#endif /* CONFIG_CFQ_GROUP_IOSCHED */
216};
217
218/* Per-cgroup data */
219struct cfq_group_data {
220 /* must be the first member */
221 struct blkcg_policy_data cpd;
222
223 unsigned int weight;
224 unsigned int leaf_weight;
225 u64 group_idle;
226};
227
228/* This is per cgroup per device grouping structure */
229struct cfq_group {
230 /* must be the first member */
231 struct blkg_policy_data pd;
232
233 /* group service_tree member */
234 struct rb_node rb_node;
235
236 /* group service_tree key */
237 u64 vdisktime;
238
239 /*
240 * The number of active cfqgs and sum of their weights under this
241 * cfqg. This covers this cfqg's leaf_weight and all children's
242 * weights, but does not cover weights of further descendants.
243 *
244 * If a cfqg is on the service tree, it's active. An active cfqg
245 * also activates its parent and contributes to the children_weight
246 * of the parent.
247 */
248 int nr_active;
249 unsigned int children_weight;
250
251 /*
252 * vfraction is the fraction of vdisktime that the tasks in this
253 * cfqg are entitled to. This is determined by compounding the
254 * ratios walking up from this cfqg to the root.
255 *
256 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
257 * vfractions on a service tree is approximately 1. The sum may
258 * deviate a bit due to rounding errors and fluctuations caused by
259 * cfqgs entering and leaving the service tree.
260 */
261 unsigned int vfraction;
262
263 /*
264 * There are two weights - (internal) weight is the weight of this
265 * cfqg against the sibling cfqgs. leaf_weight is the wight of
266 * this cfqg against the child cfqgs. For the root cfqg, both
267 * weights are kept in sync for backward compatibility.
268 */
269 unsigned int weight;
270 unsigned int new_weight;
271 unsigned int dev_weight;
272
273 unsigned int leaf_weight;
274 unsigned int new_leaf_weight;
275 unsigned int dev_leaf_weight;
276
277 /* number of cfqq currently on this group */
278 int nr_cfqq;
279
280 /*
281 * Per group busy queues average. Useful for workload slice calc. We
282 * create the array for each prio class but at run time it is used
283 * only for RT and BE class and slot for IDLE class remains unused.
284 * This is primarily done to avoid confusion and a gcc warning.
285 */
286 unsigned int busy_queues_avg[CFQ_PRIO_NR];
287 /*
288 * rr lists of queues with requests. We maintain service trees for
289 * RT and BE classes. These trees are subdivided in subclasses
290 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
291 * class there is no subclassification and all the cfq queues go on
292 * a single tree service_tree_idle.
293 * Counts are embedded in the cfq_rb_root
294 */
295 struct cfq_rb_root service_trees[2][3];
296 struct cfq_rb_root service_tree_idle;
297
298 u64 saved_wl_slice;
299 enum wl_type_t saved_wl_type;
300 enum wl_class_t saved_wl_class;
301
302 /* number of requests that are on the dispatch list or inside driver */
303 int dispatched;
304 struct cfq_ttime ttime;
305 struct cfqg_stats stats; /* stats for this cfqg */
306
307 /* async queue for each priority case */
308 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
309 struct cfq_queue *async_idle_cfqq;
310
311 u64 group_idle;
312};
313
314struct cfq_io_cq {
315 struct io_cq icq; /* must be the first member */
316 struct cfq_queue *cfqq[2];
317 struct cfq_ttime ttime;
318 int ioprio; /* the current ioprio */
319#ifdef CONFIG_CFQ_GROUP_IOSCHED
320 uint64_t blkcg_serial_nr; /* the current blkcg serial */
321#endif
322};
323
324/*
325 * Per block device queue structure
326 */
327struct cfq_data {
328 struct request_queue *queue;
329 /* Root service tree for cfq_groups */
330 struct cfq_rb_root grp_service_tree;
331 struct cfq_group *root_group;
332
333 /*
334 * The priority currently being served
335 */
336 enum wl_class_t serving_wl_class;
337 enum wl_type_t serving_wl_type;
338 u64 workload_expires;
339 struct cfq_group *serving_group;
340
341 /*
342 * Each priority tree is sorted by next_request position. These
343 * trees are used when determining if two or more queues are
344 * interleaving requests (see cfq_close_cooperator).
345 */
346 struct rb_root prio_trees[CFQ_PRIO_LISTS];
347
348 unsigned int busy_queues;
349 unsigned int busy_sync_queues;
350
351 int rq_in_driver;
352 int rq_in_flight[2];
353
354 /*
355 * queue-depth detection
356 */
357 int rq_queued;
358 int hw_tag;
359 /*
360 * hw_tag can be
361 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
362 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
363 * 0 => no NCQ
364 */
365 int hw_tag_est_depth;
366 unsigned int hw_tag_samples;
367
368 /*
369 * idle window management
370 */
371 struct hrtimer idle_slice_timer;
372 struct work_struct unplug_work;
373
374 struct cfq_queue *active_queue;
375 struct cfq_io_cq *active_cic;
376
377 sector_t last_position;
378
379 /*
380 * tunables, see top of file
381 */
382 unsigned int cfq_quantum;
383 unsigned int cfq_back_penalty;
384 unsigned int cfq_back_max;
385 unsigned int cfq_slice_async_rq;
386 unsigned int cfq_latency;
387 u64 cfq_fifo_expire[2];
388 u64 cfq_slice[2];
389 u64 cfq_slice_idle;
390 u64 cfq_group_idle;
391 u64 cfq_target_latency;
392
393 /*
394 * Fallback dummy cfqq for extreme OOM conditions
395 */
396 struct cfq_queue oom_cfqq;
397
398 u64 last_delayed_sync;
399};
400
401static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
402static void cfq_put_queue(struct cfq_queue *cfqq);
403
404static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
405 enum wl_class_t class,
406 enum wl_type_t type)
407{
408 if (!cfqg)
409 return NULL;
410
411 if (class == IDLE_WORKLOAD)
412 return &cfqg->service_tree_idle;
413
414 return &cfqg->service_trees[class][type];
415}
416
417enum cfqq_state_flags {
418 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
419 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
420 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
421 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
422 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
423 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
424 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
425 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
426 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
427 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
428 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
429 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
430 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
431};
432
433#define CFQ_CFQQ_FNS(name) \
434static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
435{ \
436 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
437} \
438static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
439{ \
440 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
441} \
442static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
443{ \
444 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
445}
446
447CFQ_CFQQ_FNS(on_rr);
448CFQ_CFQQ_FNS(wait_request);
449CFQ_CFQQ_FNS(must_dispatch);
450CFQ_CFQQ_FNS(must_alloc_slice);
451CFQ_CFQQ_FNS(fifo_expire);
452CFQ_CFQQ_FNS(idle_window);
453CFQ_CFQQ_FNS(prio_changed);
454CFQ_CFQQ_FNS(slice_new);
455CFQ_CFQQ_FNS(sync);
456CFQ_CFQQ_FNS(coop);
457CFQ_CFQQ_FNS(split_coop);
458CFQ_CFQQ_FNS(deep);
459CFQ_CFQQ_FNS(wait_busy);
460#undef CFQ_CFQQ_FNS
461
462#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
463
464/* cfqg stats flags */
465enum cfqg_stats_flags {
466 CFQG_stats_waiting = 0,
467 CFQG_stats_idling,
468 CFQG_stats_empty,
469};
470
471#define CFQG_FLAG_FNS(name) \
472static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
473{ \
474 stats->flags |= (1 << CFQG_stats_##name); \
475} \
476static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
477{ \
478 stats->flags &= ~(1 << CFQG_stats_##name); \
479} \
480static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
481{ \
482 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
483} \
484
485CFQG_FLAG_FNS(waiting)
486CFQG_FLAG_FNS(idling)
487CFQG_FLAG_FNS(empty)
488#undef CFQG_FLAG_FNS
489
490/* This should be called with the queue_lock held. */
491static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
492{
493 unsigned long long now;
494
495 if (!cfqg_stats_waiting(stats))
496 return;
497
498 now = sched_clock();
499 if (time_after64(now, stats->start_group_wait_time))
500 blkg_stat_add(&stats->group_wait_time,
501 now - stats->start_group_wait_time);
502 cfqg_stats_clear_waiting(stats);
503}
504
505/* This should be called with the queue_lock held. */
506static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
507 struct cfq_group *curr_cfqg)
508{
509 struct cfqg_stats *stats = &cfqg->stats;
510
511 if (cfqg_stats_waiting(stats))
512 return;
513 if (cfqg == curr_cfqg)
514 return;
515 stats->start_group_wait_time = sched_clock();
516 cfqg_stats_mark_waiting(stats);
517}
518
519/* This should be called with the queue_lock held. */
520static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
521{
522 unsigned long long now;
523
524 if (!cfqg_stats_empty(stats))
525 return;
526
527 now = sched_clock();
528 if (time_after64(now, stats->start_empty_time))
529 blkg_stat_add(&stats->empty_time,
530 now - stats->start_empty_time);
531 cfqg_stats_clear_empty(stats);
532}
533
534static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
535{
536 blkg_stat_add(&cfqg->stats.dequeue, 1);
537}
538
539static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
540{
541 struct cfqg_stats *stats = &cfqg->stats;
542
543 if (blkg_rwstat_total(&stats->queued))
544 return;
545
546 /*
547 * group is already marked empty. This can happen if cfqq got new
548 * request in parent group and moved to this group while being added
549 * to service tree. Just ignore the event and move on.
550 */
551 if (cfqg_stats_empty(stats))
552 return;
553
554 stats->start_empty_time = sched_clock();
555 cfqg_stats_mark_empty(stats);
556}
557
558static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
559{
560 struct cfqg_stats *stats = &cfqg->stats;
561
562 if (cfqg_stats_idling(stats)) {
563 unsigned long long now = sched_clock();
564
565 if (time_after64(now, stats->start_idle_time))
566 blkg_stat_add(&stats->idle_time,
567 now - stats->start_idle_time);
568 cfqg_stats_clear_idling(stats);
569 }
570}
571
572static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
573{
574 struct cfqg_stats *stats = &cfqg->stats;
575
576 BUG_ON(cfqg_stats_idling(stats));
577
578 stats->start_idle_time = sched_clock();
579 cfqg_stats_mark_idling(stats);
580}
581
582static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
583{
584 struct cfqg_stats *stats = &cfqg->stats;
585
586 blkg_stat_add(&stats->avg_queue_size_sum,
587 blkg_rwstat_total(&stats->queued));
588 blkg_stat_add(&stats->avg_queue_size_samples, 1);
589 cfqg_stats_update_group_wait_time(stats);
590}
591
592#else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
593
594static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
595static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
596static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
597static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
598static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
599static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
600static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
601
602#endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
603
604#ifdef CONFIG_CFQ_GROUP_IOSCHED
605
606static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
607{
608 return pd ? container_of(pd, struct cfq_group, pd) : NULL;
609}
610
611static struct cfq_group_data
612*cpd_to_cfqgd(struct blkcg_policy_data *cpd)
613{
614 return cpd ? container_of(cpd, struct cfq_group_data, cpd) : NULL;
615}
616
617static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
618{
619 return pd_to_blkg(&cfqg->pd);
620}
621
622static struct blkcg_policy blkcg_policy_cfq;
623
624static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
625{
626 return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
627}
628
629static struct cfq_group_data *blkcg_to_cfqgd(struct blkcg *blkcg)
630{
631 return cpd_to_cfqgd(blkcg_to_cpd(blkcg, &blkcg_policy_cfq));
632}
633
634static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
635{
636 struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
637
638 return pblkg ? blkg_to_cfqg(pblkg) : NULL;
639}
640
641static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
642 struct cfq_group *ancestor)
643{
644 return cgroup_is_descendant(cfqg_to_blkg(cfqg)->blkcg->css.cgroup,
645 cfqg_to_blkg(ancestor)->blkcg->css.cgroup);
646}
647
648static inline void cfqg_get(struct cfq_group *cfqg)
649{
650 return blkg_get(cfqg_to_blkg(cfqg));
651}
652
653static inline void cfqg_put(struct cfq_group *cfqg)
654{
655 return blkg_put(cfqg_to_blkg(cfqg));
656}
657
658#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
659 char __pbuf[128]; \
660 \
661 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
662 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
663 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
664 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
665 __pbuf, ##args); \
666} while (0)
667
668#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
669 char __pbuf[128]; \
670 \
671 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
672 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
673} while (0)
674
675static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
676 struct cfq_group *curr_cfqg, int op,
677 int op_flags)
678{
679 blkg_rwstat_add(&cfqg->stats.queued, op, op_flags, 1);
680 cfqg_stats_end_empty_time(&cfqg->stats);
681 cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
682}
683
684static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
685 uint64_t time, unsigned long unaccounted_time)
686{
687 blkg_stat_add(&cfqg->stats.time, time);
688#ifdef CONFIG_DEBUG_BLK_CGROUP
689 blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
690#endif
691}
692
693static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int op,
694 int op_flags)
695{
696 blkg_rwstat_add(&cfqg->stats.queued, op, op_flags, -1);
697}
698
699static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int op,
700 int op_flags)
701{
702 blkg_rwstat_add(&cfqg->stats.merged, op, op_flags, 1);
703}
704
705static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
706 uint64_t start_time, uint64_t io_start_time, int op,
707 int op_flags)
708{
709 struct cfqg_stats *stats = &cfqg->stats;
710 unsigned long long now = sched_clock();
711
712 if (time_after64(now, io_start_time))
713 blkg_rwstat_add(&stats->service_time, op, op_flags,
714 now - io_start_time);
715 if (time_after64(io_start_time, start_time))
716 blkg_rwstat_add(&stats->wait_time, op, op_flags,
717 io_start_time - start_time);
718}
719
720/* @stats = 0 */
721static void cfqg_stats_reset(struct cfqg_stats *stats)
722{
723 /* queued stats shouldn't be cleared */
724 blkg_rwstat_reset(&stats->merged);
725 blkg_rwstat_reset(&stats->service_time);
726 blkg_rwstat_reset(&stats->wait_time);
727 blkg_stat_reset(&stats->time);
728#ifdef CONFIG_DEBUG_BLK_CGROUP
729 blkg_stat_reset(&stats->unaccounted_time);
730 blkg_stat_reset(&stats->avg_queue_size_sum);
731 blkg_stat_reset(&stats->avg_queue_size_samples);
732 blkg_stat_reset(&stats->dequeue);
733 blkg_stat_reset(&stats->group_wait_time);
734 blkg_stat_reset(&stats->idle_time);
735 blkg_stat_reset(&stats->empty_time);
736#endif
737}
738
739/* @to += @from */
740static void cfqg_stats_add_aux(struct cfqg_stats *to, struct cfqg_stats *from)
741{
742 /* queued stats shouldn't be cleared */
743 blkg_rwstat_add_aux(&to->merged, &from->merged);
744 blkg_rwstat_add_aux(&to->service_time, &from->service_time);
745 blkg_rwstat_add_aux(&to->wait_time, &from->wait_time);
746 blkg_stat_add_aux(&from->time, &from->time);
747#ifdef CONFIG_DEBUG_BLK_CGROUP
748 blkg_stat_add_aux(&to->unaccounted_time, &from->unaccounted_time);
749 blkg_stat_add_aux(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
750 blkg_stat_add_aux(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
751 blkg_stat_add_aux(&to->dequeue, &from->dequeue);
752 blkg_stat_add_aux(&to->group_wait_time, &from->group_wait_time);
753 blkg_stat_add_aux(&to->idle_time, &from->idle_time);
754 blkg_stat_add_aux(&to->empty_time, &from->empty_time);
755#endif
756}
757
758/*
759 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
760 * recursive stats can still account for the amount used by this cfqg after
761 * it's gone.
762 */
763static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
764{
765 struct cfq_group *parent = cfqg_parent(cfqg);
766
767 lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
768
769 if (unlikely(!parent))
770 return;
771
772 cfqg_stats_add_aux(&parent->stats, &cfqg->stats);
773 cfqg_stats_reset(&cfqg->stats);
774}
775
776#else /* CONFIG_CFQ_GROUP_IOSCHED */
777
778static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
779static inline bool cfqg_is_descendant(struct cfq_group *cfqg,
780 struct cfq_group *ancestor)
781{
782 return true;
783}
784static inline void cfqg_get(struct cfq_group *cfqg) { }
785static inline void cfqg_put(struct cfq_group *cfqg) { }
786
787#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
788 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
789 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
790 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
791 ##args)
792#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
793
794static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
795 struct cfq_group *curr_cfqg, int op, int op_flags) { }
796static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
797 uint64_t time, unsigned long unaccounted_time) { }
798static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int op,
799 int op_flags) { }
800static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int op,
801 int op_flags) { }
802static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
803 uint64_t start_time, uint64_t io_start_time, int op,
804 int op_flags) { }
805
806#endif /* CONFIG_CFQ_GROUP_IOSCHED */
807
808static inline u64 get_group_idle(struct cfq_data *cfqd)
809{
810#ifdef CONFIG_CFQ_GROUP_IOSCHED
811 struct cfq_queue *cfqq = cfqd->active_queue;
812
813 if (cfqq && cfqq->cfqg)
814 return cfqq->cfqg->group_idle;
815#endif
816 return cfqd->cfq_group_idle;
817}
818
819#define cfq_log(cfqd, fmt, args...) \
820 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
821
822/* Traverses through cfq group service trees */
823#define for_each_cfqg_st(cfqg, i, j, st) \
824 for (i = 0; i <= IDLE_WORKLOAD; i++) \
825 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
826 : &cfqg->service_tree_idle; \
827 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
828 (i == IDLE_WORKLOAD && j == 0); \
829 j++, st = i < IDLE_WORKLOAD ? \
830 &cfqg->service_trees[i][j]: NULL) \
831
832static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
833 struct cfq_ttime *ttime, bool group_idle)
834{
835 u64 slice;
836 if (!sample_valid(ttime->ttime_samples))
837 return false;
838 if (group_idle)
839 slice = get_group_idle(cfqd);
840 else
841 slice = cfqd->cfq_slice_idle;
842 return ttime->ttime_mean > slice;
843}
844
845static inline bool iops_mode(struct cfq_data *cfqd)
846{
847 /*
848 * If we are not idling on queues and it is a NCQ drive, parallel
849 * execution of requests is on and measuring time is not possible
850 * in most of the cases until and unless we drive shallower queue
851 * depths and that becomes a performance bottleneck. In such cases
852 * switch to start providing fairness in terms of number of IOs.
853 */
854 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
855 return true;
856 else
857 return false;
858}
859
860static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
861{
862 if (cfq_class_idle(cfqq))
863 return IDLE_WORKLOAD;
864 if (cfq_class_rt(cfqq))
865 return RT_WORKLOAD;
866 return BE_WORKLOAD;
867}
868
869
870static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
871{
872 if (!cfq_cfqq_sync(cfqq))
873 return ASYNC_WORKLOAD;
874 if (!cfq_cfqq_idle_window(cfqq))
875 return SYNC_NOIDLE_WORKLOAD;
876 return SYNC_WORKLOAD;
877}
878
879static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
880 struct cfq_data *cfqd,
881 struct cfq_group *cfqg)
882{
883 if (wl_class == IDLE_WORKLOAD)
884 return cfqg->service_tree_idle.count;
885
886 return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
887 cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
888 cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
889}
890
891static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
892 struct cfq_group *cfqg)
893{
894 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
895 cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
896}
897
898static void cfq_dispatch_insert(struct request_queue *, struct request *);
899static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
900 struct cfq_io_cq *cic, struct bio *bio);
901
902static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
903{
904 /* cic->icq is the first member, %NULL will convert to %NULL */
905 return container_of(icq, struct cfq_io_cq, icq);
906}
907
908static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
909 struct io_context *ioc)
910{
911 if (ioc)
912 return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
913 return NULL;
914}
915
916static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
917{
918 return cic->cfqq[is_sync];
919}
920
921static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
922 bool is_sync)
923{
924 cic->cfqq[is_sync] = cfqq;
925}
926
927static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
928{
929 return cic->icq.q->elevator->elevator_data;
930}
931
932/*
933 * We regard a request as SYNC, if it's either a read or has the SYNC bit
934 * set (in which case it could also be direct WRITE).
935 */
936static inline bool cfq_bio_sync(struct bio *bio)
937{
938 return bio_data_dir(bio) == READ || (bio->bi_opf & REQ_SYNC);
939}
940
941/*
942 * scheduler run of queue, if there are requests pending and no one in the
943 * driver that will restart queueing
944 */
945static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
946{
947 if (cfqd->busy_queues) {
948 cfq_log(cfqd, "schedule dispatch");
949 kblockd_schedule_work(&cfqd->unplug_work);
950 }
951}
952
953/*
954 * Scale schedule slice based on io priority. Use the sync time slice only
955 * if a queue is marked sync and has sync io queued. A sync queue with async
956 * io only, should not get full sync slice length.
957 */
958static inline u64 cfq_prio_slice(struct cfq_data *cfqd, bool sync,
959 unsigned short prio)
960{
961 u64 base_slice = cfqd->cfq_slice[sync];
962 u64 slice = div_u64(base_slice, CFQ_SLICE_SCALE);
963
964 WARN_ON(prio >= IOPRIO_BE_NR);
965
966 return base_slice + (slice * (4 - prio));
967}
968
969static inline u64
970cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
971{
972 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
973}
974
975/**
976 * cfqg_scale_charge - scale disk time charge according to cfqg weight
977 * @charge: disk time being charged
978 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
979 *
980 * Scale @charge according to @vfraction, which is in range (0, 1]. The
981 * scaling is inversely proportional.
982 *
983 * scaled = charge / vfraction
984 *
985 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
986 */
987static inline u64 cfqg_scale_charge(u64 charge,
988 unsigned int vfraction)
989{
990 u64 c = charge << CFQ_SERVICE_SHIFT; /* make it fixed point */
991
992 /* charge / vfraction */
993 c <<= CFQ_SERVICE_SHIFT;
994 return div_u64(c, vfraction);
995}
996
997static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
998{
999 s64 delta = (s64)(vdisktime - min_vdisktime);
1000 if (delta > 0)
1001 min_vdisktime = vdisktime;
1002
1003 return min_vdisktime;
1004}
1005
1006static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
1007{
1008 s64 delta = (s64)(vdisktime - min_vdisktime);
1009 if (delta < 0)
1010 min_vdisktime = vdisktime;
1011
1012 return min_vdisktime;
1013}
1014
1015static void update_min_vdisktime(struct cfq_rb_root *st)
1016{
1017 struct cfq_group *cfqg;
1018
1019 if (st->left) {
1020 cfqg = rb_entry_cfqg(st->left);
1021 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
1022 cfqg->vdisktime);
1023 }
1024}
1025
1026/*
1027 * get averaged number of queues of RT/BE priority.
1028 * average is updated, with a formula that gives more weight to higher numbers,
1029 * to quickly follows sudden increases and decrease slowly
1030 */
1031
1032static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
1033 struct cfq_group *cfqg, bool rt)
1034{
1035 unsigned min_q, max_q;
1036 unsigned mult = cfq_hist_divisor - 1;
1037 unsigned round = cfq_hist_divisor / 2;
1038 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1039
1040 min_q = min(cfqg->busy_queues_avg[rt], busy);
1041 max_q = max(cfqg->busy_queues_avg[rt], busy);
1042 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1043 cfq_hist_divisor;
1044 return cfqg->busy_queues_avg[rt];
1045}
1046
1047static inline u64
1048cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1049{
1050 return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1051}
1052
1053static inline u64
1054cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1055{
1056 u64 slice = cfq_prio_to_slice(cfqd, cfqq);
1057 if (cfqd->cfq_latency) {
1058 /*
1059 * interested queues (we consider only the ones with the same
1060 * priority class in the cfq group)
1061 */
1062 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1063 cfq_class_rt(cfqq));
1064 u64 sync_slice = cfqd->cfq_slice[1];
1065 u64 expect_latency = sync_slice * iq;
1066 u64 group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1067
1068 if (expect_latency > group_slice) {
1069 u64 base_low_slice = 2 * cfqd->cfq_slice_idle;
1070 u64 low_slice;
1071
1072 /* scale low_slice according to IO priority
1073 * and sync vs async */
1074 low_slice = div64_u64(base_low_slice*slice, sync_slice);
1075 low_slice = min(slice, low_slice);
1076 /* the adapted slice value is scaled to fit all iqs
1077 * into the target latency */
1078 slice = div64_u64(slice*group_slice, expect_latency);
1079 slice = max(slice, low_slice);
1080 }
1081 }
1082 return slice;
1083}
1084
1085static inline void
1086cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1087{
1088 u64 slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1089 u64 now = ktime_get_ns();
1090
1091 cfqq->slice_start = now;
1092 cfqq->slice_end = now + slice;
1093 cfqq->allocated_slice = slice;
1094 cfq_log_cfqq(cfqd, cfqq, "set_slice=%llu", cfqq->slice_end - now);
1095}
1096
1097/*
1098 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1099 * isn't valid until the first request from the dispatch is activated
1100 * and the slice time set.
1101 */
1102static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1103{
1104 if (cfq_cfqq_slice_new(cfqq))
1105 return false;
1106 if (ktime_get_ns() < cfqq->slice_end)
1107 return false;
1108
1109 return true;
1110}
1111
1112/*
1113 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1114 * We choose the request that is closest to the head right now. Distance
1115 * behind the head is penalized and only allowed to a certain extent.
1116 */
1117static struct request *
1118cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1119{
1120 sector_t s1, s2, d1 = 0, d2 = 0;
1121 unsigned long back_max;
1122#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1123#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1124 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1125
1126 if (rq1 == NULL || rq1 == rq2)
1127 return rq2;
1128 if (rq2 == NULL)
1129 return rq1;
1130
1131 if (rq_is_sync(rq1) != rq_is_sync(rq2))
1132 return rq_is_sync(rq1) ? rq1 : rq2;
1133
1134 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1135 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1136
1137 s1 = blk_rq_pos(rq1);
1138 s2 = blk_rq_pos(rq2);
1139
1140 /*
1141 * by definition, 1KiB is 2 sectors
1142 */
1143 back_max = cfqd->cfq_back_max * 2;
1144
1145 /*
1146 * Strict one way elevator _except_ in the case where we allow
1147 * short backward seeks which are biased as twice the cost of a
1148 * similar forward seek.
1149 */
1150 if (s1 >= last)
1151 d1 = s1 - last;
1152 else if (s1 + back_max >= last)
1153 d1 = (last - s1) * cfqd->cfq_back_penalty;
1154 else
1155 wrap |= CFQ_RQ1_WRAP;
1156
1157 if (s2 >= last)
1158 d2 = s2 - last;
1159 else if (s2 + back_max >= last)
1160 d2 = (last - s2) * cfqd->cfq_back_penalty;
1161 else
1162 wrap |= CFQ_RQ2_WRAP;
1163
1164 /* Found required data */
1165
1166 /*
1167 * By doing switch() on the bit mask "wrap" we avoid having to
1168 * check two variables for all permutations: --> faster!
1169 */
1170 switch (wrap) {
1171 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1172 if (d1 < d2)
1173 return rq1;
1174 else if (d2 < d1)
1175 return rq2;
1176 else {
1177 if (s1 >= s2)
1178 return rq1;
1179 else
1180 return rq2;
1181 }
1182
1183 case CFQ_RQ2_WRAP:
1184 return rq1;
1185 case CFQ_RQ1_WRAP:
1186 return rq2;
1187 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1188 default:
1189 /*
1190 * Since both rqs are wrapped,
1191 * start with the one that's further behind head
1192 * (--> only *one* back seek required),
1193 * since back seek takes more time than forward.
1194 */
1195 if (s1 <= s2)
1196 return rq1;
1197 else
1198 return rq2;
1199 }
1200}
1201
1202/*
1203 * The below is leftmost cache rbtree addon
1204 */
1205static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1206{
1207 /* Service tree is empty */
1208 if (!root->count)
1209 return NULL;
1210
1211 if (!root->left)
1212 root->left = rb_first(&root->rb);
1213
1214 if (root->left)
1215 return rb_entry(root->left, struct cfq_queue, rb_node);
1216
1217 return NULL;
1218}
1219
1220static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1221{
1222 if (!root->left)
1223 root->left = rb_first(&root->rb);
1224
1225 if (root->left)
1226 return rb_entry_cfqg(root->left);
1227
1228 return NULL;
1229}
1230
1231static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1232{
1233 rb_erase(n, root);
1234 RB_CLEAR_NODE(n);
1235}
1236
1237static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1238{
1239 if (root->left == n)
1240 root->left = NULL;
1241 rb_erase_init(n, &root->rb);
1242 --root->count;
1243}
1244
1245/*
1246 * would be nice to take fifo expire time into account as well
1247 */
1248static struct request *
1249cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1250 struct request *last)
1251{
1252 struct rb_node *rbnext = rb_next(&last->rb_node);
1253 struct rb_node *rbprev = rb_prev(&last->rb_node);
1254 struct request *next = NULL, *prev = NULL;
1255
1256 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1257
1258 if (rbprev)
1259 prev = rb_entry_rq(rbprev);
1260
1261 if (rbnext)
1262 next = rb_entry_rq(rbnext);
1263 else {
1264 rbnext = rb_first(&cfqq->sort_list);
1265 if (rbnext && rbnext != &last->rb_node)
1266 next = rb_entry_rq(rbnext);
1267 }
1268
1269 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1270}
1271
1272static u64 cfq_slice_offset(struct cfq_data *cfqd,
1273 struct cfq_queue *cfqq)
1274{
1275 /*
1276 * just an approximation, should be ok.
1277 */
1278 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1279 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1280}
1281
1282static inline s64
1283cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1284{
1285 return cfqg->vdisktime - st->min_vdisktime;
1286}
1287
1288static void
1289__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1290{
1291 struct rb_node **node = &st->rb.rb_node;
1292 struct rb_node *parent = NULL;
1293 struct cfq_group *__cfqg;
1294 s64 key = cfqg_key(st, cfqg);
1295 int left = 1;
1296
1297 while (*node != NULL) {
1298 parent = *node;
1299 __cfqg = rb_entry_cfqg(parent);
1300
1301 if (key < cfqg_key(st, __cfqg))
1302 node = &parent->rb_left;
1303 else {
1304 node = &parent->rb_right;
1305 left = 0;
1306 }
1307 }
1308
1309 if (left)
1310 st->left = &cfqg->rb_node;
1311
1312 rb_link_node(&cfqg->rb_node, parent, node);
1313 rb_insert_color(&cfqg->rb_node, &st->rb);
1314}
1315
1316/*
1317 * This has to be called only on activation of cfqg
1318 */
1319static void
1320cfq_update_group_weight(struct cfq_group *cfqg)
1321{
1322 if (cfqg->new_weight) {
1323 cfqg->weight = cfqg->new_weight;
1324 cfqg->new_weight = 0;
1325 }
1326}
1327
1328static void
1329cfq_update_group_leaf_weight(struct cfq_group *cfqg)
1330{
1331 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1332
1333 if (cfqg->new_leaf_weight) {
1334 cfqg->leaf_weight = cfqg->new_leaf_weight;
1335 cfqg->new_leaf_weight = 0;
1336 }
1337}
1338
1339static void
1340cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1341{
1342 unsigned int vfr = 1 << CFQ_SERVICE_SHIFT; /* start with 1 */
1343 struct cfq_group *pos = cfqg;
1344 struct cfq_group *parent;
1345 bool propagate;
1346
1347 /* add to the service tree */
1348 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1349
1350 /*
1351 * Update leaf_weight. We cannot update weight at this point
1352 * because cfqg might already have been activated and is
1353 * contributing its current weight to the parent's child_weight.
1354 */
1355 cfq_update_group_leaf_weight(cfqg);
1356 __cfq_group_service_tree_add(st, cfqg);
1357
1358 /*
1359 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1360 * entitled to. vfraction is calculated by walking the tree
1361 * towards the root calculating the fraction it has at each level.
1362 * The compounded ratio is how much vfraction @cfqg owns.
1363 *
1364 * Start with the proportion tasks in this cfqg has against active
1365 * children cfqgs - its leaf_weight against children_weight.
1366 */
1367 propagate = !pos->nr_active++;
1368 pos->children_weight += pos->leaf_weight;
1369 vfr = vfr * pos->leaf_weight / pos->children_weight;
1370
1371 /*
1372 * Compound ->weight walking up the tree. Both activation and
1373 * vfraction calculation are done in the same loop. Propagation
1374 * stops once an already activated node is met. vfraction
1375 * calculation should always continue to the root.
1376 */
1377 while ((parent = cfqg_parent(pos))) {
1378 if (propagate) {
1379 cfq_update_group_weight(pos);
1380 propagate = !parent->nr_active++;
1381 parent->children_weight += pos->weight;
1382 }
1383 vfr = vfr * pos->weight / parent->children_weight;
1384 pos = parent;
1385 }
1386
1387 cfqg->vfraction = max_t(unsigned, vfr, 1);
1388}
1389
1390static inline u64 cfq_get_cfqg_vdisktime_delay(struct cfq_data *cfqd)
1391{
1392 if (!iops_mode(cfqd))
1393 return CFQ_SLICE_MODE_GROUP_DELAY;
1394 else
1395 return CFQ_IOPS_MODE_GROUP_DELAY;
1396}
1397
1398static void
1399cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1400{
1401 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1402 struct cfq_group *__cfqg;
1403 struct rb_node *n;
1404
1405 cfqg->nr_cfqq++;
1406 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1407 return;
1408
1409 /*
1410 * Currently put the group at the end. Later implement something
1411 * so that groups get lesser vtime based on their weights, so that
1412 * if group does not loose all if it was not continuously backlogged.
1413 */
1414 n = rb_last(&st->rb);
1415 if (n) {
1416 __cfqg = rb_entry_cfqg(n);
1417 cfqg->vdisktime = __cfqg->vdisktime +
1418 cfq_get_cfqg_vdisktime_delay(cfqd);
1419 } else
1420 cfqg->vdisktime = st->min_vdisktime;
1421 cfq_group_service_tree_add(st, cfqg);
1422}
1423
1424static void
1425cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1426{
1427 struct cfq_group *pos = cfqg;
1428 bool propagate;
1429
1430 /*
1431 * Undo activation from cfq_group_service_tree_add(). Deactivate
1432 * @cfqg and propagate deactivation upwards.
1433 */
1434 propagate = !--pos->nr_active;
1435 pos->children_weight -= pos->leaf_weight;
1436
1437 while (propagate) {
1438 struct cfq_group *parent = cfqg_parent(pos);
1439
1440 /* @pos has 0 nr_active at this point */
1441 WARN_ON_ONCE(pos->children_weight);
1442 pos->vfraction = 0;
1443
1444 if (!parent)
1445 break;
1446
1447 propagate = !--parent->nr_active;
1448 parent->children_weight -= pos->weight;
1449 pos = parent;
1450 }
1451
1452 /* remove from the service tree */
1453 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1454 cfq_rb_erase(&cfqg->rb_node, st);
1455}
1456
1457static void
1458cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1459{
1460 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1461
1462 BUG_ON(cfqg->nr_cfqq < 1);
1463 cfqg->nr_cfqq--;
1464
1465 /* If there are other cfq queues under this group, don't delete it */
1466 if (cfqg->nr_cfqq)
1467 return;
1468
1469 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1470 cfq_group_service_tree_del(st, cfqg);
1471 cfqg->saved_wl_slice = 0;
1472 cfqg_stats_update_dequeue(cfqg);
1473}
1474
1475static inline u64 cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1476 u64 *unaccounted_time)
1477{
1478 u64 slice_used;
1479 u64 now = ktime_get_ns();
1480
1481 /*
1482 * Queue got expired before even a single request completed or
1483 * got expired immediately after first request completion.
1484 */
1485 if (!cfqq->slice_start || cfqq->slice_start == now) {
1486 /*
1487 * Also charge the seek time incurred to the group, otherwise
1488 * if there are mutiple queues in the group, each can dispatch
1489 * a single request on seeky media and cause lots of seek time
1490 * and group will never know it.
1491 */
1492 slice_used = max_t(u64, (now - cfqq->dispatch_start),
1493 jiffies_to_nsecs(1));
1494 } else {
1495 slice_used = now - cfqq->slice_start;
1496 if (slice_used > cfqq->allocated_slice) {
1497 *unaccounted_time = slice_used - cfqq->allocated_slice;
1498 slice_used = cfqq->allocated_slice;
1499 }
1500 if (cfqq->slice_start > cfqq->dispatch_start)
1501 *unaccounted_time += cfqq->slice_start -
1502 cfqq->dispatch_start;
1503 }
1504
1505 return slice_used;
1506}
1507
1508static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1509 struct cfq_queue *cfqq)
1510{
1511 struct cfq_rb_root *st = &cfqd->grp_service_tree;
1512 u64 used_sl, charge, unaccounted_sl = 0;
1513 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1514 - cfqg->service_tree_idle.count;
1515 unsigned int vfr;
1516 u64 now = ktime_get_ns();
1517
1518 BUG_ON(nr_sync < 0);
1519 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1520
1521 if (iops_mode(cfqd))
1522 charge = cfqq->slice_dispatch;
1523 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1524 charge = cfqq->allocated_slice;
1525
1526 /*
1527 * Can't update vdisktime while on service tree and cfqg->vfraction
1528 * is valid only while on it. Cache vfr, leave the service tree,
1529 * update vdisktime and go back on. The re-addition to the tree
1530 * will also update the weights as necessary.
1531 */
1532 vfr = cfqg->vfraction;
1533 cfq_group_service_tree_del(st, cfqg);
1534 cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1535 cfq_group_service_tree_add(st, cfqg);
1536
1537 /* This group is being expired. Save the context */
1538 if (cfqd->workload_expires > now) {
1539 cfqg->saved_wl_slice = cfqd->workload_expires - now;
1540 cfqg->saved_wl_type = cfqd->serving_wl_type;
1541 cfqg->saved_wl_class = cfqd->serving_wl_class;
1542 } else
1543 cfqg->saved_wl_slice = 0;
1544
1545 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1546 st->min_vdisktime);
1547 cfq_log_cfqq(cfqq->cfqd, cfqq,
1548 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1549 used_sl, cfqq->slice_dispatch, charge,
1550 iops_mode(cfqd), cfqq->nr_sectors);
1551 cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1552 cfqg_stats_set_start_empty_time(cfqg);
1553}
1554
1555/**
1556 * cfq_init_cfqg_base - initialize base part of a cfq_group
1557 * @cfqg: cfq_group to initialize
1558 *
1559 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1560 * is enabled or not.
1561 */
1562static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1563{
1564 struct cfq_rb_root *st;
1565 int i, j;
1566
1567 for_each_cfqg_st(cfqg, i, j, st)
1568 *st = CFQ_RB_ROOT;
1569 RB_CLEAR_NODE(&cfqg->rb_node);
1570
1571 cfqg->ttime.last_end_request = ktime_get_ns();
1572}
1573
1574#ifdef CONFIG_CFQ_GROUP_IOSCHED
1575static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1576 bool on_dfl, bool reset_dev, bool is_leaf_weight);
1577
1578static void cfqg_stats_exit(struct cfqg_stats *stats)
1579{
1580 blkg_rwstat_exit(&stats->merged);
1581 blkg_rwstat_exit(&stats->service_time);
1582 blkg_rwstat_exit(&stats->wait_time);
1583 blkg_rwstat_exit(&stats->queued);
1584 blkg_stat_exit(&stats->time);
1585#ifdef CONFIG_DEBUG_BLK_CGROUP
1586 blkg_stat_exit(&stats->unaccounted_time);
1587 blkg_stat_exit(&stats->avg_queue_size_sum);
1588 blkg_stat_exit(&stats->avg_queue_size_samples);
1589 blkg_stat_exit(&stats->dequeue);
1590 blkg_stat_exit(&stats->group_wait_time);
1591 blkg_stat_exit(&stats->idle_time);
1592 blkg_stat_exit(&stats->empty_time);
1593#endif
1594}
1595
1596static int cfqg_stats_init(struct cfqg_stats *stats, gfp_t gfp)
1597{
1598 if (blkg_rwstat_init(&stats->merged, gfp) ||
1599 blkg_rwstat_init(&stats->service_time, gfp) ||
1600 blkg_rwstat_init(&stats->wait_time, gfp) ||
1601 blkg_rwstat_init(&stats->queued, gfp) ||
1602 blkg_stat_init(&stats->time, gfp))
1603 goto err;
1604
1605#ifdef CONFIG_DEBUG_BLK_CGROUP
1606 if (blkg_stat_init(&stats->unaccounted_time, gfp) ||
1607 blkg_stat_init(&stats->avg_queue_size_sum, gfp) ||
1608 blkg_stat_init(&stats->avg_queue_size_samples, gfp) ||
1609 blkg_stat_init(&stats->dequeue, gfp) ||
1610 blkg_stat_init(&stats->group_wait_time, gfp) ||
1611 blkg_stat_init(&stats->idle_time, gfp) ||
1612 blkg_stat_init(&stats->empty_time, gfp))
1613 goto err;
1614#endif
1615 return 0;
1616err:
1617 cfqg_stats_exit(stats);
1618 return -ENOMEM;
1619}
1620
1621static struct blkcg_policy_data *cfq_cpd_alloc(gfp_t gfp)
1622{
1623 struct cfq_group_data *cgd;
1624
1625 cgd = kzalloc(sizeof(*cgd), gfp);
1626 if (!cgd)
1627 return NULL;
1628 return &cgd->cpd;
1629}
1630
1631static void cfq_cpd_init(struct blkcg_policy_data *cpd)
1632{
1633 struct cfq_group_data *cgd = cpd_to_cfqgd(cpd);
1634 unsigned int weight = cgroup_subsys_on_dfl(io_cgrp_subsys) ?
1635 CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1636
1637 if (cpd_to_blkcg(cpd) == &blkcg_root)
1638 weight *= 2;
1639
1640 cgd->weight = weight;
1641 cgd->leaf_weight = weight;
1642 cgd->group_idle = cfq_group_idle;
1643}
1644
1645static void cfq_cpd_free(struct blkcg_policy_data *cpd)
1646{
1647 kfree(cpd_to_cfqgd(cpd));
1648}
1649
1650static void cfq_cpd_bind(struct blkcg_policy_data *cpd)
1651{
1652 struct blkcg *blkcg = cpd_to_blkcg(cpd);
1653 bool on_dfl = cgroup_subsys_on_dfl(io_cgrp_subsys);
1654 unsigned int weight = on_dfl ? CGROUP_WEIGHT_DFL : CFQ_WEIGHT_LEGACY_DFL;
1655
1656 if (blkcg == &blkcg_root)
1657 weight *= 2;
1658
1659 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, false));
1660 WARN_ON_ONCE(__cfq_set_weight(&blkcg->css, weight, on_dfl, true, true));
1661}
1662
1663static struct blkg_policy_data *cfq_pd_alloc(gfp_t gfp, int node)
1664{
1665 struct cfq_group *cfqg;
1666
1667 cfqg = kzalloc_node(sizeof(*cfqg), gfp, node);
1668 if (!cfqg)
1669 return NULL;
1670
1671 cfq_init_cfqg_base(cfqg);
1672 if (cfqg_stats_init(&cfqg->stats, gfp)) {
1673 kfree(cfqg);
1674 return NULL;
1675 }
1676
1677 return &cfqg->pd;
1678}
1679
1680static void cfq_pd_init(struct blkg_policy_data *pd)
1681{
1682 struct cfq_group *cfqg = pd_to_cfqg(pd);
1683 struct cfq_group_data *cgd = blkcg_to_cfqgd(pd->blkg->blkcg);
1684
1685 cfqg->weight = cgd->weight;
1686 cfqg->leaf_weight = cgd->leaf_weight;
1687 cfqg->group_idle = cgd->group_idle;
1688}
1689
1690static void cfq_pd_offline(struct blkg_policy_data *pd)
1691{
1692 struct cfq_group *cfqg = pd_to_cfqg(pd);
1693 int i;
1694
1695 for (i = 0; i < IOPRIO_BE_NR; i++) {
1696 if (cfqg->async_cfqq[0][i])
1697 cfq_put_queue(cfqg->async_cfqq[0][i]);
1698 if (cfqg->async_cfqq[1][i])
1699 cfq_put_queue(cfqg->async_cfqq[1][i]);
1700 }
1701
1702 if (cfqg->async_idle_cfqq)
1703 cfq_put_queue(cfqg->async_idle_cfqq);
1704
1705 /*
1706 * @blkg is going offline and will be ignored by
1707 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1708 * that they don't get lost. If IOs complete after this point, the
1709 * stats for them will be lost. Oh well...
1710 */
1711 cfqg_stats_xfer_dead(cfqg);
1712}
1713
1714static void cfq_pd_free(struct blkg_policy_data *pd)
1715{
1716 struct cfq_group *cfqg = pd_to_cfqg(pd);
1717
1718 cfqg_stats_exit(&cfqg->stats);
1719 return kfree(cfqg);
1720}
1721
1722static void cfq_pd_reset_stats(struct blkg_policy_data *pd)
1723{
1724 struct cfq_group *cfqg = pd_to_cfqg(pd);
1725
1726 cfqg_stats_reset(&cfqg->stats);
1727}
1728
1729static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
1730 struct blkcg *blkcg)
1731{
1732 struct blkcg_gq *blkg;
1733
1734 blkg = blkg_lookup(blkcg, cfqd->queue);
1735 if (likely(blkg))
1736 return blkg_to_cfqg(blkg);
1737 return NULL;
1738}
1739
1740static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1741{
1742 cfqq->cfqg = cfqg;
1743 /* cfqq reference on cfqg */
1744 cfqg_get(cfqg);
1745}
1746
1747static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1748 struct blkg_policy_data *pd, int off)
1749{
1750 struct cfq_group *cfqg = pd_to_cfqg(pd);
1751
1752 if (!cfqg->dev_weight)
1753 return 0;
1754 return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1755}
1756
1757static int cfqg_print_weight_device(struct seq_file *sf, void *v)
1758{
1759 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1760 cfqg_prfill_weight_device, &blkcg_policy_cfq,
1761 0, false);
1762 return 0;
1763}
1764
1765static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1766 struct blkg_policy_data *pd, int off)
1767{
1768 struct cfq_group *cfqg = pd_to_cfqg(pd);
1769
1770 if (!cfqg->dev_leaf_weight)
1771 return 0;
1772 return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1773}
1774
1775static int cfqg_print_leaf_weight_device(struct seq_file *sf, void *v)
1776{
1777 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1778 cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq,
1779 0, false);
1780 return 0;
1781}
1782
1783static int cfq_print_weight(struct seq_file *sf, void *v)
1784{
1785 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1786 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1787 unsigned int val = 0;
1788
1789 if (cgd)
1790 val = cgd->weight;
1791
1792 seq_printf(sf, "%u\n", val);
1793 return 0;
1794}
1795
1796static int cfq_print_leaf_weight(struct seq_file *sf, void *v)
1797{
1798 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1799 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1800 unsigned int val = 0;
1801
1802 if (cgd)
1803 val = cgd->leaf_weight;
1804
1805 seq_printf(sf, "%u\n", val);
1806 return 0;
1807}
1808
1809static int cfq_print_group_idle(struct seq_file *sf, void *v)
1810{
1811 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1812 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
1813 u64 val = 0;
1814
1815 if (cgd)
1816 val = cgd->group_idle;
1817
1818 seq_printf(sf, "%llu\n", div_u64(val, NSEC_PER_USEC));
1819 return 0;
1820}
1821
1822static ssize_t __cfqg_set_weight_device(struct kernfs_open_file *of,
1823 char *buf, size_t nbytes, loff_t off,
1824 bool on_dfl, bool is_leaf_weight)
1825{
1826 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1827 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1828 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1829 struct blkg_conf_ctx ctx;
1830 struct cfq_group *cfqg;
1831 struct cfq_group_data *cfqgd;
1832 int ret;
1833 u64 v;
1834
1835 ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1836 if (ret)
1837 return ret;
1838
1839 if (sscanf(ctx.body, "%llu", &v) == 1) {
1840 /* require "default" on dfl */
1841 ret = -ERANGE;
1842 if (!v && on_dfl)
1843 goto out_finish;
1844 } else if (!strcmp(strim(ctx.body), "default")) {
1845 v = 0;
1846 } else {
1847 ret = -EINVAL;
1848 goto out_finish;
1849 }
1850
1851 cfqg = blkg_to_cfqg(ctx.blkg);
1852 cfqgd = blkcg_to_cfqgd(blkcg);
1853
1854 ret = -ERANGE;
1855 if (!v || (v >= min && v <= max)) {
1856 if (!is_leaf_weight) {
1857 cfqg->dev_weight = v;
1858 cfqg->new_weight = v ?: cfqgd->weight;
1859 } else {
1860 cfqg->dev_leaf_weight = v;
1861 cfqg->new_leaf_weight = v ?: cfqgd->leaf_weight;
1862 }
1863 ret = 0;
1864 }
1865out_finish:
1866 blkg_conf_finish(&ctx);
1867 return ret ?: nbytes;
1868}
1869
1870static ssize_t cfqg_set_weight_device(struct kernfs_open_file *of,
1871 char *buf, size_t nbytes, loff_t off)
1872{
1873 return __cfqg_set_weight_device(of, buf, nbytes, off, false, false);
1874}
1875
1876static ssize_t cfqg_set_leaf_weight_device(struct kernfs_open_file *of,
1877 char *buf, size_t nbytes, loff_t off)
1878{
1879 return __cfqg_set_weight_device(of, buf, nbytes, off, false, true);
1880}
1881
1882static int __cfq_set_weight(struct cgroup_subsys_state *css, u64 val,
1883 bool on_dfl, bool reset_dev, bool is_leaf_weight)
1884{
1885 unsigned int min = on_dfl ? CGROUP_WEIGHT_MIN : CFQ_WEIGHT_LEGACY_MIN;
1886 unsigned int max = on_dfl ? CGROUP_WEIGHT_MAX : CFQ_WEIGHT_LEGACY_MAX;
1887 struct blkcg *blkcg = css_to_blkcg(css);
1888 struct blkcg_gq *blkg;
1889 struct cfq_group_data *cfqgd;
1890 int ret = 0;
1891
1892 if (val < min || val > max)
1893 return -ERANGE;
1894
1895 spin_lock_irq(&blkcg->lock);
1896 cfqgd = blkcg_to_cfqgd(blkcg);
1897 if (!cfqgd) {
1898 ret = -EINVAL;
1899 goto out;
1900 }
1901
1902 if (!is_leaf_weight)
1903 cfqgd->weight = val;
1904 else
1905 cfqgd->leaf_weight = val;
1906
1907 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1908 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1909
1910 if (!cfqg)
1911 continue;
1912
1913 if (!is_leaf_weight) {
1914 if (reset_dev)
1915 cfqg->dev_weight = 0;
1916 if (!cfqg->dev_weight)
1917 cfqg->new_weight = cfqgd->weight;
1918 } else {
1919 if (reset_dev)
1920 cfqg->dev_leaf_weight = 0;
1921 if (!cfqg->dev_leaf_weight)
1922 cfqg->new_leaf_weight = cfqgd->leaf_weight;
1923 }
1924 }
1925
1926out:
1927 spin_unlock_irq(&blkcg->lock);
1928 return ret;
1929}
1930
1931static int cfq_set_weight(struct cgroup_subsys_state *css, struct cftype *cft,
1932 u64 val)
1933{
1934 return __cfq_set_weight(css, val, false, false, false);
1935}
1936
1937static int cfq_set_leaf_weight(struct cgroup_subsys_state *css,
1938 struct cftype *cft, u64 val)
1939{
1940 return __cfq_set_weight(css, val, false, false, true);
1941}
1942
1943static int cfq_set_group_idle(struct cgroup_subsys_state *css,
1944 struct cftype *cft, u64 val)
1945{
1946 struct blkcg *blkcg = css_to_blkcg(css);
1947 struct cfq_group_data *cfqgd;
1948 struct blkcg_gq *blkg;
1949 int ret = 0;
1950
1951 spin_lock_irq(&blkcg->lock);
1952 cfqgd = blkcg_to_cfqgd(blkcg);
1953 if (!cfqgd) {
1954 ret = -EINVAL;
1955 goto out;
1956 }
1957
1958 cfqgd->group_idle = val * NSEC_PER_USEC;
1959
1960 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
1961 struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1962
1963 if (!cfqg)
1964 continue;
1965
1966 cfqg->group_idle = cfqgd->group_idle;
1967 }
1968
1969out:
1970 spin_unlock_irq(&blkcg->lock);
1971 return ret;
1972}
1973
1974static int cfqg_print_stat(struct seq_file *sf, void *v)
1975{
1976 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_stat,
1977 &blkcg_policy_cfq, seq_cft(sf)->private, false);
1978 return 0;
1979}
1980
1981static int cfqg_print_rwstat(struct seq_file *sf, void *v)
1982{
1983 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), blkg_prfill_rwstat,
1984 &blkcg_policy_cfq, seq_cft(sf)->private, true);
1985 return 0;
1986}
1987
1988static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1989 struct blkg_policy_data *pd, int off)
1990{
1991 u64 sum = blkg_stat_recursive_sum(pd_to_blkg(pd),
1992 &blkcg_policy_cfq, off);
1993 return __blkg_prfill_u64(sf, pd, sum);
1994}
1995
1996static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1997 struct blkg_policy_data *pd, int off)
1998{
1999 struct blkg_rwstat sum = blkg_rwstat_recursive_sum(pd_to_blkg(pd),
2000 &blkcg_policy_cfq, off);
2001 return __blkg_prfill_rwstat(sf, pd, &sum);
2002}
2003
2004static int cfqg_print_stat_recursive(struct seq_file *sf, void *v)
2005{
2006 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
2007 cfqg_prfill_stat_recursive, &blkcg_policy_cfq,
2008 seq_cft(sf)->private, false);
2009 return 0;
2010}
2011
2012static int cfqg_print_rwstat_recursive(struct seq_file *sf, void *v)
2013{
2014 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
2015 cfqg_prfill_rwstat_recursive, &blkcg_policy_cfq,
2016 seq_cft(sf)->private, true);
2017 return 0;
2018}
2019
2020static u64 cfqg_prfill_sectors(struct seq_file *sf, struct blkg_policy_data *pd,
2021 int off)
2022{
2023 u64 sum = blkg_rwstat_total(&pd->blkg->stat_bytes);
2024
2025 return __blkg_prfill_u64(sf, pd, sum >> 9);
2026}
2027
2028static int cfqg_print_stat_sectors(struct seq_file *sf, void *v)
2029{
2030 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
2031 cfqg_prfill_sectors, &blkcg_policy_cfq, 0, false);
2032 return 0;
2033}
2034
2035static u64 cfqg_prfill_sectors_recursive(struct seq_file *sf,
2036 struct blkg_policy_data *pd, int off)
2037{
2038 struct blkg_rwstat tmp = blkg_rwstat_recursive_sum(pd->blkg, NULL,
2039 offsetof(struct blkcg_gq, stat_bytes));
2040 u64 sum = atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_READ]) +
2041 atomic64_read(&tmp.aux_cnt[BLKG_RWSTAT_WRITE]);
2042
2043 return __blkg_prfill_u64(sf, pd, sum >> 9);
2044}
2045
2046static int cfqg_print_stat_sectors_recursive(struct seq_file *sf, void *v)
2047{
2048 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
2049 cfqg_prfill_sectors_recursive, &blkcg_policy_cfq, 0,
2050 false);
2051 return 0;
2052}
2053
2054#ifdef CONFIG_DEBUG_BLK_CGROUP
2055static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
2056 struct blkg_policy_data *pd, int off)
2057{
2058 struct cfq_group *cfqg = pd_to_cfqg(pd);
2059 u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
2060 u64 v = 0;
2061
2062 if (samples) {
2063 v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
2064 v = div64_u64(v, samples);
2065 }
2066 __blkg_prfill_u64(sf, pd, v);
2067 return 0;
2068}
2069
2070/* print avg_queue_size */
2071static int cfqg_print_avg_queue_size(struct seq_file *sf, void *v)
2072{
2073 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
2074 cfqg_prfill_avg_queue_size, &blkcg_policy_cfq,
2075 0, false);
2076 return 0;
2077}
2078#endif /* CONFIG_DEBUG_BLK_CGROUP */
2079
2080static struct cftype cfq_blkcg_legacy_files[] = {
2081 /* on root, weight is mapped to leaf_weight */
2082 {
2083 .name = "weight_device",
2084 .flags = CFTYPE_ONLY_ON_ROOT,
2085 .seq_show = cfqg_print_leaf_weight_device,
2086 .write = cfqg_set_leaf_weight_device,
2087 },
2088 {
2089 .name = "weight",
2090 .flags = CFTYPE_ONLY_ON_ROOT,
2091 .seq_show = cfq_print_leaf_weight,
2092 .write_u64 = cfq_set_leaf_weight,
2093 },
2094
2095 /* no such mapping necessary for !roots */
2096 {
2097 .name = "weight_device",
2098 .flags = CFTYPE_NOT_ON_ROOT,
2099 .seq_show = cfqg_print_weight_device,
2100 .write = cfqg_set_weight_device,
2101 },
2102 {
2103 .name = "weight",
2104 .flags = CFTYPE_NOT_ON_ROOT,
2105 .seq_show = cfq_print_weight,
2106 .write_u64 = cfq_set_weight,
2107 },
2108
2109 {
2110 .name = "leaf_weight_device",
2111 .seq_show = cfqg_print_leaf_weight_device,
2112 .write = cfqg_set_leaf_weight_device,
2113 },
2114 {
2115 .name = "leaf_weight",
2116 .seq_show = cfq_print_leaf_weight,
2117 .write_u64 = cfq_set_leaf_weight,
2118 },
2119 {
2120 .name = "group_idle",
2121 .seq_show = cfq_print_group_idle,
2122 .write_u64 = cfq_set_group_idle,
2123 },
2124
2125 /* statistics, covers only the tasks in the cfqg */
2126 {
2127 .name = "time",
2128 .private = offsetof(struct cfq_group, stats.time),
2129 .seq_show = cfqg_print_stat,
2130 },
2131 {
2132 .name = "sectors",
2133 .seq_show = cfqg_print_stat_sectors,
2134 },
2135 {
2136 .name = "io_service_bytes",
2137 .private = (unsigned long)&blkcg_policy_cfq,
2138 .seq_show = blkg_print_stat_bytes,
2139 },
2140 {
2141 .name = "io_serviced",
2142 .private = (unsigned long)&blkcg_policy_cfq,
2143 .seq_show = blkg_print_stat_ios,
2144 },
2145 {
2146 .name = "io_service_time",
2147 .private = offsetof(struct cfq_group, stats.service_time),
2148 .seq_show = cfqg_print_rwstat,
2149 },
2150 {
2151 .name = "io_wait_time",
2152 .private = offsetof(struct cfq_group, stats.wait_time),
2153 .seq_show = cfqg_print_rwstat,
2154 },
2155 {
2156 .name = "io_merged",
2157 .private = offsetof(struct cfq_group, stats.merged),
2158 .seq_show = cfqg_print_rwstat,
2159 },
2160 {
2161 .name = "io_queued",
2162 .private = offsetof(struct cfq_group, stats.queued),
2163 .seq_show = cfqg_print_rwstat,
2164 },
2165
2166 /* the same statictics which cover the cfqg and its descendants */
2167 {
2168 .name = "time_recursive",
2169 .private = offsetof(struct cfq_group, stats.time),
2170 .seq_show = cfqg_print_stat_recursive,
2171 },
2172 {
2173 .name = "sectors_recursive",
2174 .seq_show = cfqg_print_stat_sectors_recursive,
2175 },
2176 {
2177 .name = "io_service_bytes_recursive",
2178 .private = (unsigned long)&blkcg_policy_cfq,
2179 .seq_show = blkg_print_stat_bytes_recursive,
2180 },
2181 {
2182 .name = "io_serviced_recursive",
2183 .private = (unsigned long)&blkcg_policy_cfq,
2184 .seq_show = blkg_print_stat_ios_recursive,
2185 },
2186 {
2187 .name = "io_service_time_recursive",
2188 .private = offsetof(struct cfq_group, stats.service_time),
2189 .seq_show = cfqg_print_rwstat_recursive,
2190 },
2191 {
2192 .name = "io_wait_time_recursive",
2193 .private = offsetof(struct cfq_group, stats.wait_time),
2194 .seq_show = cfqg_print_rwstat_recursive,
2195 },
2196 {
2197 .name = "io_merged_recursive",
2198 .private = offsetof(struct cfq_group, stats.merged),
2199 .seq_show = cfqg_print_rwstat_recursive,
2200 },
2201 {
2202 .name = "io_queued_recursive",
2203 .private = offsetof(struct cfq_group, stats.queued),
2204 .seq_show = cfqg_print_rwstat_recursive,
2205 },
2206#ifdef CONFIG_DEBUG_BLK_CGROUP
2207 {
2208 .name = "avg_queue_size",
2209 .seq_show = cfqg_print_avg_queue_size,
2210 },
2211 {
2212 .name = "group_wait_time",
2213 .private = offsetof(struct cfq_group, stats.group_wait_time),
2214 .seq_show = cfqg_print_stat,
2215 },
2216 {
2217 .name = "idle_time",
2218 .private = offsetof(struct cfq_group, stats.idle_time),
2219 .seq_show = cfqg_print_stat,
2220 },
2221 {
2222 .name = "empty_time",
2223 .private = offsetof(struct cfq_group, stats.empty_time),
2224 .seq_show = cfqg_print_stat,
2225 },
2226 {
2227 .name = "dequeue",
2228 .private = offsetof(struct cfq_group, stats.dequeue),
2229 .seq_show = cfqg_print_stat,
2230 },
2231 {
2232 .name = "unaccounted_time",
2233 .private = offsetof(struct cfq_group, stats.unaccounted_time),
2234 .seq_show = cfqg_print_stat,
2235 },
2236#endif /* CONFIG_DEBUG_BLK_CGROUP */
2237 { } /* terminate */
2238};
2239
2240static int cfq_print_weight_on_dfl(struct seq_file *sf, void *v)
2241{
2242 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
2243 struct cfq_group_data *cgd = blkcg_to_cfqgd(blkcg);
2244
2245 seq_printf(sf, "default %u\n", cgd->weight);
2246 blkcg_print_blkgs(sf, blkcg, cfqg_prfill_weight_device,
2247 &blkcg_policy_cfq, 0, false);
2248 return 0;
2249}
2250
2251static ssize_t cfq_set_weight_on_dfl(struct kernfs_open_file *of,
2252 char *buf, size_t nbytes, loff_t off)
2253{
2254 char *endp;
2255 int ret;
2256 u64 v;
2257
2258 buf = strim(buf);
2259
2260 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2261 v = simple_strtoull(buf, &endp, 0);
2262 if (*endp == '\0' || sscanf(buf, "default %llu", &v) == 1) {
2263 ret = __cfq_set_weight(of_css(of), v, true, false, false);
2264 return ret ?: nbytes;
2265 }
2266
2267 /* "MAJ:MIN WEIGHT" */
2268 return __cfqg_set_weight_device(of, buf, nbytes, off, true, false);
2269}
2270
2271static struct cftype cfq_blkcg_files[] = {
2272 {
2273 .name = "weight",
2274 .flags = CFTYPE_NOT_ON_ROOT,
2275 .seq_show = cfq_print_weight_on_dfl,
2276 .write = cfq_set_weight_on_dfl,
2277 },
2278 { } /* terminate */
2279};
2280
2281#else /* GROUP_IOSCHED */
2282static struct cfq_group *cfq_lookup_cfqg(struct cfq_data *cfqd,
2283 struct blkcg *blkcg)
2284{
2285 return cfqd->root_group;
2286}
2287
2288static inline void
2289cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
2290 cfqq->cfqg = cfqg;
2291}
2292
2293#endif /* GROUP_IOSCHED */
2294
2295/*
2296 * The cfqd->service_trees holds all pending cfq_queue's that have
2297 * requests waiting to be processed. It is sorted in the order that
2298 * we will service the queues.
2299 */
2300static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2301 bool add_front)
2302{
2303 struct rb_node **p, *parent;
2304 struct cfq_queue *__cfqq;
2305 u64 rb_key;
2306 struct cfq_rb_root *st;
2307 int left;
2308 int new_cfqq = 1;
2309 u64 now = ktime_get_ns();
2310
2311 st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2312 if (cfq_class_idle(cfqq)) {
2313 rb_key = CFQ_IDLE_DELAY;
2314 parent = rb_last(&st->rb);
2315 if (parent && parent != &cfqq->rb_node) {
2316 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2317 rb_key += __cfqq->rb_key;
2318 } else
2319 rb_key += now;
2320 } else if (!add_front) {
2321 /*
2322 * Get our rb key offset. Subtract any residual slice
2323 * value carried from last service. A negative resid
2324 * count indicates slice overrun, and this should position
2325 * the next service time further away in the tree.
2326 */
2327 rb_key = cfq_slice_offset(cfqd, cfqq) + now;
2328 rb_key -= cfqq->slice_resid;
2329 cfqq->slice_resid = 0;
2330 } else {
2331 rb_key = -NSEC_PER_SEC;
2332 __cfqq = cfq_rb_first(st);
2333 rb_key += __cfqq ? __cfqq->rb_key : now;
2334 }
2335
2336 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2337 new_cfqq = 0;
2338 /*
2339 * same position, nothing more to do
2340 */
2341 if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2342 return;
2343
2344 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2345 cfqq->service_tree = NULL;
2346 }
2347
2348 left = 1;
2349 parent = NULL;
2350 cfqq->service_tree = st;
2351 p = &st->rb.rb_node;
2352 while (*p) {
2353 parent = *p;
2354 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2355
2356 /*
2357 * sort by key, that represents service time.
2358 */
2359 if (rb_key < __cfqq->rb_key)
2360 p = &parent->rb_left;
2361 else {
2362 p = &parent->rb_right;
2363 left = 0;
2364 }
2365 }
2366
2367 if (left)
2368 st->left = &cfqq->rb_node;
2369
2370 cfqq->rb_key = rb_key;
2371 rb_link_node(&cfqq->rb_node, parent, p);
2372 rb_insert_color(&cfqq->rb_node, &st->rb);
2373 st->count++;
2374 if (add_front || !new_cfqq)
2375 return;
2376 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2377}
2378
2379static struct cfq_queue *
2380cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2381 sector_t sector, struct rb_node **ret_parent,
2382 struct rb_node ***rb_link)
2383{
2384 struct rb_node **p, *parent;
2385 struct cfq_queue *cfqq = NULL;
2386
2387 parent = NULL;
2388 p = &root->rb_node;
2389 while (*p) {
2390 struct rb_node **n;
2391
2392 parent = *p;
2393 cfqq = rb_entry(parent, struct cfq_queue, p_node);
2394
2395 /*
2396 * Sort strictly based on sector. Smallest to the left,
2397 * largest to the right.
2398 */
2399 if (sector > blk_rq_pos(cfqq->next_rq))
2400 n = &(*p)->rb_right;
2401 else if (sector < blk_rq_pos(cfqq->next_rq))
2402 n = &(*p)->rb_left;
2403 else
2404 break;
2405 p = n;
2406 cfqq = NULL;
2407 }
2408
2409 *ret_parent = parent;
2410 if (rb_link)
2411 *rb_link = p;
2412 return cfqq;
2413}
2414
2415static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2416{
2417 struct rb_node **p, *parent;
2418 struct cfq_queue *__cfqq;
2419
2420 if (cfqq->p_root) {
2421 rb_erase(&cfqq->p_node, cfqq->p_root);
2422 cfqq->p_root = NULL;
2423 }
2424
2425 if (cfq_class_idle(cfqq))
2426 return;
2427 if (!cfqq->next_rq)
2428 return;
2429
2430 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2431 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2432 blk_rq_pos(cfqq->next_rq), &parent, &p);
2433 if (!__cfqq) {
2434 rb_link_node(&cfqq->p_node, parent, p);
2435 rb_insert_color(&cfqq->p_node, cfqq->p_root);
2436 } else
2437 cfqq->p_root = NULL;
2438}
2439
2440/*
2441 * Update cfqq's position in the service tree.
2442 */
2443static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2444{
2445 /*
2446 * Resorting requires the cfqq to be on the RR list already.
2447 */
2448 if (cfq_cfqq_on_rr(cfqq)) {
2449 cfq_service_tree_add(cfqd, cfqq, 0);
2450 cfq_prio_tree_add(cfqd, cfqq);
2451 }
2452}
2453
2454/*
2455 * add to busy list of queues for service, trying to be fair in ordering
2456 * the pending list according to last request service
2457 */
2458static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2459{
2460 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2461 BUG_ON(cfq_cfqq_on_rr(cfqq));
2462 cfq_mark_cfqq_on_rr(cfqq);
2463 cfqd->busy_queues++;
2464 if (cfq_cfqq_sync(cfqq))
2465 cfqd->busy_sync_queues++;
2466
2467 cfq_resort_rr_list(cfqd, cfqq);
2468}
2469
2470/*
2471 * Called when the cfqq no longer has requests pending, remove it from
2472 * the service tree.
2473 */
2474static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2475{
2476 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2477 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2478 cfq_clear_cfqq_on_rr(cfqq);
2479
2480 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2481 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2482 cfqq->service_tree = NULL;
2483 }
2484 if (cfqq->p_root) {
2485 rb_erase(&cfqq->p_node, cfqq->p_root);
2486 cfqq->p_root = NULL;
2487 }
2488
2489 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2490 BUG_ON(!cfqd->busy_queues);
2491 cfqd->busy_queues--;
2492 if (cfq_cfqq_sync(cfqq))
2493 cfqd->busy_sync_queues--;
2494}
2495
2496/*
2497 * rb tree support functions
2498 */
2499static void cfq_del_rq_rb(struct request *rq)
2500{
2501 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2502 const int sync = rq_is_sync(rq);
2503
2504 BUG_ON(!cfqq->queued[sync]);
2505 cfqq->queued[sync]--;
2506
2507 elv_rb_del(&cfqq->sort_list, rq);
2508
2509 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2510 /*
2511 * Queue will be deleted from service tree when we actually
2512 * expire it later. Right now just remove it from prio tree
2513 * as it is empty.
2514 */
2515 if (cfqq->p_root) {
2516 rb_erase(&cfqq->p_node, cfqq->p_root);
2517 cfqq->p_root = NULL;
2518 }
2519 }
2520}
2521
2522static void cfq_add_rq_rb(struct request *rq)
2523{
2524 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2525 struct cfq_data *cfqd = cfqq->cfqd;
2526 struct request *prev;
2527
2528 cfqq->queued[rq_is_sync(rq)]++;
2529
2530 elv_rb_add(&cfqq->sort_list, rq);
2531
2532 if (!cfq_cfqq_on_rr(cfqq))
2533 cfq_add_cfqq_rr(cfqd, cfqq);
2534
2535 /*
2536 * check if this request is a better next-serve candidate
2537 */
2538 prev = cfqq->next_rq;
2539 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2540
2541 /*
2542 * adjust priority tree position, if ->next_rq changes
2543 */
2544 if (prev != cfqq->next_rq)
2545 cfq_prio_tree_add(cfqd, cfqq);
2546
2547 BUG_ON(!cfqq->next_rq);
2548}
2549
2550static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2551{
2552 elv_rb_del(&cfqq->sort_list, rq);
2553 cfqq->queued[rq_is_sync(rq)]--;
2554 cfqg_stats_update_io_remove(RQ_CFQG(rq), req_op(rq), rq->cmd_flags);
2555 cfq_add_rq_rb(rq);
2556 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2557 req_op(rq), rq->cmd_flags);
2558}
2559
2560static struct request *
2561cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2562{
2563 struct task_struct *tsk = current;
2564 struct cfq_io_cq *cic;
2565 struct cfq_queue *cfqq;
2566
2567 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2568 if (!cic)
2569 return NULL;
2570
2571 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2572 if (cfqq)
2573 return elv_rb_find(&cfqq->sort_list, bio_end_sector(bio));
2574
2575 return NULL;
2576}
2577
2578static void cfq_activate_request(struct request_queue *q, struct request *rq)
2579{
2580 struct cfq_data *cfqd = q->elevator->elevator_data;
2581
2582 cfqd->rq_in_driver++;
2583 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2584 cfqd->rq_in_driver);
2585
2586 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2587}
2588
2589static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2590{
2591 struct cfq_data *cfqd = q->elevator->elevator_data;
2592
2593 WARN_ON(!cfqd->rq_in_driver);
2594 cfqd->rq_in_driver--;
2595 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2596 cfqd->rq_in_driver);
2597}
2598
2599static void cfq_remove_request(struct request *rq)
2600{
2601 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2602
2603 if (cfqq->next_rq == rq)
2604 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2605
2606 list_del_init(&rq->queuelist);
2607 cfq_del_rq_rb(rq);
2608
2609 cfqq->cfqd->rq_queued--;
2610 cfqg_stats_update_io_remove(RQ_CFQG(rq), req_op(rq), rq->cmd_flags);
2611 if (rq->cmd_flags & REQ_PRIO) {
2612 WARN_ON(!cfqq->prio_pending);
2613 cfqq->prio_pending--;
2614 }
2615}
2616
2617static int cfq_merge(struct request_queue *q, struct request **req,
2618 struct bio *bio)
2619{
2620 struct cfq_data *cfqd = q->elevator->elevator_data;
2621 struct request *__rq;
2622
2623 __rq = cfq_find_rq_fmerge(cfqd, bio);
2624 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2625 *req = __rq;
2626 return ELEVATOR_FRONT_MERGE;
2627 }
2628
2629 return ELEVATOR_NO_MERGE;
2630}
2631
2632static void cfq_merged_request(struct request_queue *q, struct request *req,
2633 int type)
2634{
2635 if (type == ELEVATOR_FRONT_MERGE) {
2636 struct cfq_queue *cfqq = RQ_CFQQ(req);
2637
2638 cfq_reposition_rq_rb(cfqq, req);
2639 }
2640}
2641
2642static void cfq_bio_merged(struct request_queue *q, struct request *req,
2643 struct bio *bio)
2644{
2645 cfqg_stats_update_io_merged(RQ_CFQG(req), bio_op(bio), bio->bi_opf);
2646}
2647
2648static void
2649cfq_merged_requests(struct request_queue *q, struct request *rq,
2650 struct request *next)
2651{
2652 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2653 struct cfq_data *cfqd = q->elevator->elevator_data;
2654
2655 /*
2656 * reposition in fifo if next is older than rq
2657 */
2658 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2659 next->fifo_time < rq->fifo_time &&
2660 cfqq == RQ_CFQQ(next)) {
2661 list_move(&rq->queuelist, &next->queuelist);
2662 rq->fifo_time = next->fifo_time;
2663 }
2664
2665 if (cfqq->next_rq == next)
2666 cfqq->next_rq = rq;
2667 cfq_remove_request(next);
2668 cfqg_stats_update_io_merged(RQ_CFQG(rq), req_op(next), next->cmd_flags);
2669
2670 cfqq = RQ_CFQQ(next);
2671 /*
2672 * all requests of this queue are merged to other queues, delete it
2673 * from the service tree. If it's the active_queue,
2674 * cfq_dispatch_requests() will choose to expire it or do idle
2675 */
2676 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2677 cfqq != cfqd->active_queue)
2678 cfq_del_cfqq_rr(cfqd, cfqq);
2679}
2680
2681static int cfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2682 struct bio *bio)
2683{
2684 struct cfq_data *cfqd = q->elevator->elevator_data;
2685 struct cfq_io_cq *cic;
2686 struct cfq_queue *cfqq;
2687
2688 /*
2689 * Disallow merge of a sync bio into an async request.
2690 */
2691 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2692 return false;
2693
2694 /*
2695 * Lookup the cfqq that this bio will be queued with and allow
2696 * merge only if rq is queued there.
2697 */
2698 cic = cfq_cic_lookup(cfqd, current->io_context);
2699 if (!cic)
2700 return false;
2701
2702 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2703 return cfqq == RQ_CFQQ(rq);
2704}
2705
2706static int cfq_allow_rq_merge(struct request_queue *q, struct request *rq,
2707 struct request *next)
2708{
2709 return RQ_CFQQ(rq) == RQ_CFQQ(next);
2710}
2711
2712static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2713{
2714 hrtimer_try_to_cancel(&cfqd->idle_slice_timer);
2715 cfqg_stats_update_idle_time(cfqq->cfqg);
2716}
2717
2718static void __cfq_set_active_queue(struct cfq_data *cfqd,
2719 struct cfq_queue *cfqq)
2720{
2721 if (cfqq) {
2722 cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2723 cfqd->serving_wl_class, cfqd->serving_wl_type);
2724 cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2725 cfqq->slice_start = 0;
2726 cfqq->dispatch_start = ktime_get_ns();
2727 cfqq->allocated_slice = 0;
2728 cfqq->slice_end = 0;
2729 cfqq->slice_dispatch = 0;
2730 cfqq->nr_sectors = 0;
2731
2732 cfq_clear_cfqq_wait_request(cfqq);
2733 cfq_clear_cfqq_must_dispatch(cfqq);
2734 cfq_clear_cfqq_must_alloc_slice(cfqq);
2735 cfq_clear_cfqq_fifo_expire(cfqq);
2736 cfq_mark_cfqq_slice_new(cfqq);
2737
2738 cfq_del_timer(cfqd, cfqq);
2739 }
2740
2741 cfqd->active_queue = cfqq;
2742}
2743
2744/*
2745 * current cfqq expired its slice (or was too idle), select new one
2746 */
2747static void
2748__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2749 bool timed_out)
2750{
2751 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2752
2753 if (cfq_cfqq_wait_request(cfqq))
2754 cfq_del_timer(cfqd, cfqq);
2755
2756 cfq_clear_cfqq_wait_request(cfqq);
2757 cfq_clear_cfqq_wait_busy(cfqq);
2758
2759 /*
2760 * If this cfqq is shared between multiple processes, check to
2761 * make sure that those processes are still issuing I/Os within
2762 * the mean seek distance. If not, it may be time to break the
2763 * queues apart again.
2764 */
2765 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2766 cfq_mark_cfqq_split_coop(cfqq);
2767
2768 /*
2769 * store what was left of this slice, if the queue idled/timed out
2770 */
2771 if (timed_out) {
2772 if (cfq_cfqq_slice_new(cfqq))
2773 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2774 else
2775 cfqq->slice_resid = cfqq->slice_end - ktime_get_ns();
2776 cfq_log_cfqq(cfqd, cfqq, "resid=%lld", cfqq->slice_resid);
2777 }
2778
2779 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2780
2781 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2782 cfq_del_cfqq_rr(cfqd, cfqq);
2783
2784 cfq_resort_rr_list(cfqd, cfqq);
2785
2786 if (cfqq == cfqd->active_queue)
2787 cfqd->active_queue = NULL;
2788
2789 if (cfqd->active_cic) {
2790 put_io_context(cfqd->active_cic->icq.ioc);
2791 cfqd->active_cic = NULL;
2792 }
2793}
2794
2795static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2796{
2797 struct cfq_queue *cfqq = cfqd->active_queue;
2798
2799 if (cfqq)
2800 __cfq_slice_expired(cfqd, cfqq, timed_out);
2801}
2802
2803/*
2804 * Get next queue for service. Unless we have a queue preemption,
2805 * we'll simply select the first cfqq in the service tree.
2806 */
2807static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2808{
2809 struct cfq_rb_root *st = st_for(cfqd->serving_group,
2810 cfqd->serving_wl_class, cfqd->serving_wl_type);
2811
2812 if (!cfqd->rq_queued)
2813 return NULL;
2814
2815 /* There is nothing to dispatch */
2816 if (!st)
2817 return NULL;
2818 if (RB_EMPTY_ROOT(&st->rb))
2819 return NULL;
2820 return cfq_rb_first(st);
2821}
2822
2823static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2824{
2825 struct cfq_group *cfqg;
2826 struct cfq_queue *cfqq;
2827 int i, j;
2828 struct cfq_rb_root *st;
2829
2830 if (!cfqd->rq_queued)
2831 return NULL;
2832
2833 cfqg = cfq_get_next_cfqg(cfqd);
2834 if (!cfqg)
2835 return NULL;
2836
2837 for_each_cfqg_st(cfqg, i, j, st)
2838 if ((cfqq = cfq_rb_first(st)) != NULL)
2839 return cfqq;
2840 return NULL;
2841}
2842
2843/*
2844 * Get and set a new active queue for service.
2845 */
2846static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2847 struct cfq_queue *cfqq)
2848{
2849 if (!cfqq)
2850 cfqq = cfq_get_next_queue(cfqd);
2851
2852 __cfq_set_active_queue(cfqd, cfqq);
2853 return cfqq;
2854}
2855
2856static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2857 struct request *rq)
2858{
2859 if (blk_rq_pos(rq) >= cfqd->last_position)
2860 return blk_rq_pos(rq) - cfqd->last_position;
2861 else
2862 return cfqd->last_position - blk_rq_pos(rq);
2863}
2864
2865static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2866 struct request *rq)
2867{
2868 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2869}
2870
2871static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2872 struct cfq_queue *cur_cfqq)
2873{
2874 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2875 struct rb_node *parent, *node;
2876 struct cfq_queue *__cfqq;
2877 sector_t sector = cfqd->last_position;
2878
2879 if (RB_EMPTY_ROOT(root))
2880 return NULL;
2881
2882 /*
2883 * First, if we find a request starting at the end of the last
2884 * request, choose it.
2885 */
2886 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2887 if (__cfqq)
2888 return __cfqq;
2889
2890 /*
2891 * If the exact sector wasn't found, the parent of the NULL leaf
2892 * will contain the closest sector.
2893 */
2894 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
2895 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2896 return __cfqq;
2897
2898 if (blk_rq_pos(__cfqq->next_rq) < sector)
2899 node = rb_next(&__cfqq->p_node);
2900 else
2901 node = rb_prev(&__cfqq->p_node);
2902 if (!node)
2903 return NULL;
2904
2905 __cfqq = rb_entry(node, struct cfq_queue, p_node);
2906 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2907 return __cfqq;
2908
2909 return NULL;
2910}
2911
2912/*
2913 * cfqd - obvious
2914 * cur_cfqq - passed in so that we don't decide that the current queue is
2915 * closely cooperating with itself.
2916 *
2917 * So, basically we're assuming that that cur_cfqq has dispatched at least
2918 * one request, and that cfqd->last_position reflects a position on the disk
2919 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2920 * assumption.
2921 */
2922static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2923 struct cfq_queue *cur_cfqq)
2924{
2925 struct cfq_queue *cfqq;
2926
2927 if (cfq_class_idle(cur_cfqq))
2928 return NULL;
2929 if (!cfq_cfqq_sync(cur_cfqq))
2930 return NULL;
2931 if (CFQQ_SEEKY(cur_cfqq))
2932 return NULL;
2933
2934 /*
2935 * Don't search priority tree if it's the only queue in the group.
2936 */
2937 if (cur_cfqq->cfqg->nr_cfqq == 1)
2938 return NULL;
2939
2940 /*
2941 * We should notice if some of the queues are cooperating, eg
2942 * working closely on the same area of the disk. In that case,
2943 * we can group them together and don't waste time idling.
2944 */
2945 cfqq = cfqq_close(cfqd, cur_cfqq);
2946 if (!cfqq)
2947 return NULL;
2948
2949 /* If new queue belongs to different cfq_group, don't choose it */
2950 if (cur_cfqq->cfqg != cfqq->cfqg)
2951 return NULL;
2952
2953 /*
2954 * It only makes sense to merge sync queues.
2955 */
2956 if (!cfq_cfqq_sync(cfqq))
2957 return NULL;
2958 if (CFQQ_SEEKY(cfqq))
2959 return NULL;
2960
2961 /*
2962 * Do not merge queues of different priority classes
2963 */
2964 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2965 return NULL;
2966
2967 return cfqq;
2968}
2969
2970/*
2971 * Determine whether we should enforce idle window for this queue.
2972 */
2973
2974static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2975{
2976 enum wl_class_t wl_class = cfqq_class(cfqq);
2977 struct cfq_rb_root *st = cfqq->service_tree;
2978
2979 BUG_ON(!st);
2980 BUG_ON(!st->count);
2981
2982 if (!cfqd->cfq_slice_idle)
2983 return false;
2984
2985 /* We never do for idle class queues. */
2986 if (wl_class == IDLE_WORKLOAD)
2987 return false;
2988
2989 /* We do for queues that were marked with idle window flag. */
2990 if (cfq_cfqq_idle_window(cfqq) &&
2991 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2992 return true;
2993
2994 /*
2995 * Otherwise, we do only if they are the last ones
2996 * in their service tree.
2997 */
2998 if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2999 !cfq_io_thinktime_big(cfqd, &st->ttime, false))
3000 return true;
3001 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
3002 return false;
3003}
3004
3005static void cfq_arm_slice_timer(struct cfq_data *cfqd)
3006{
3007 struct cfq_queue *cfqq = cfqd->active_queue;
3008 struct cfq_rb_root *st = cfqq->service_tree;
3009 struct cfq_io_cq *cic;
3010 u64 sl, group_idle = 0;
3011 u64 now = ktime_get_ns();
3012
3013 /*
3014 * SSD device without seek penalty, disable idling. But only do so
3015 * for devices that support queuing, otherwise we still have a problem
3016 * with sync vs async workloads.
3017 */
3018 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag &&
3019 !get_group_idle(cfqd))
3020 return;
3021
3022 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
3023 WARN_ON(cfq_cfqq_slice_new(cfqq));
3024
3025 /*
3026 * idle is disabled, either manually or by past process history
3027 */
3028 if (!cfq_should_idle(cfqd, cfqq)) {
3029 /* no queue idling. Check for group idling */
3030 group_idle = get_group_idle(cfqd);
3031 if (!group_idle)
3032 return;
3033 }
3034
3035 /*
3036 * still active requests from this queue, don't idle
3037 */
3038 if (cfqq->dispatched)
3039 return;
3040
3041 /*
3042 * task has exited, don't wait
3043 */
3044 cic = cfqd->active_cic;
3045 if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
3046 return;
3047
3048 /*
3049 * If our average think time is larger than the remaining time
3050 * slice, then don't idle. This avoids overrunning the allotted
3051 * time slice.
3052 */
3053 if (sample_valid(cic->ttime.ttime_samples) &&
3054 (cfqq->slice_end - now < cic->ttime.ttime_mean)) {
3055 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%llu",
3056 cic->ttime.ttime_mean);
3057 return;
3058 }
3059
3060 /*
3061 * There are other queues in the group or this is the only group and
3062 * it has too big thinktime, don't do group idle.
3063 */
3064 if (group_idle &&
3065 (cfqq->cfqg->nr_cfqq > 1 ||
3066 cfq_io_thinktime_big(cfqd, &st->ttime, true)))
3067 return;
3068
3069 cfq_mark_cfqq_wait_request(cfqq);
3070
3071 if (group_idle)
3072 sl = group_idle;
3073 else
3074 sl = cfqd->cfq_slice_idle;
3075
3076 hrtimer_start(&cfqd->idle_slice_timer, ns_to_ktime(sl),
3077 HRTIMER_MODE_REL);
3078 cfqg_stats_set_start_idle_time(cfqq->cfqg);
3079 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %llu group_idle: %d", sl,
3080 group_idle ? 1 : 0);
3081}
3082
3083/*
3084 * Move request from internal lists to the request queue dispatch list.
3085 */
3086static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
3087{
3088 struct cfq_data *cfqd = q->elevator->elevator_data;
3089 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3090
3091 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
3092
3093 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
3094 cfq_remove_request(rq);
3095 cfqq->dispatched++;
3096 (RQ_CFQG(rq))->dispatched++;
3097 elv_dispatch_sort(q, rq);
3098
3099 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
3100 cfqq->nr_sectors += blk_rq_sectors(rq);
3101}
3102
3103/*
3104 * return expired entry, or NULL to just start from scratch in rbtree
3105 */
3106static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
3107{
3108 struct request *rq = NULL;
3109
3110 if (cfq_cfqq_fifo_expire(cfqq))
3111 return NULL;
3112
3113 cfq_mark_cfqq_fifo_expire(cfqq);
3114
3115 if (list_empty(&cfqq->fifo))
3116 return NULL;
3117
3118 rq = rq_entry_fifo(cfqq->fifo.next);
3119 if (ktime_get_ns() < rq->fifo_time)
3120 rq = NULL;
3121
3122 return rq;
3123}
3124
3125static inline int
3126cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3127{
3128 const int base_rq = cfqd->cfq_slice_async_rq;
3129
3130 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
3131
3132 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
3133}
3134
3135/*
3136 * Must be called with the queue_lock held.
3137 */
3138static int cfqq_process_refs(struct cfq_queue *cfqq)
3139{
3140 int process_refs, io_refs;
3141
3142 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
3143 process_refs = cfqq->ref - io_refs;
3144 BUG_ON(process_refs < 0);
3145 return process_refs;
3146}
3147
3148static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
3149{
3150 int process_refs, new_process_refs;
3151 struct cfq_queue *__cfqq;
3152
3153 /*
3154 * If there are no process references on the new_cfqq, then it is
3155 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3156 * chain may have dropped their last reference (not just their
3157 * last process reference).
3158 */
3159 if (!cfqq_process_refs(new_cfqq))
3160 return;
3161
3162 /* Avoid a circular list and skip interim queue merges */
3163 while ((__cfqq = new_cfqq->new_cfqq)) {
3164 if (__cfqq == cfqq)
3165 return;
3166 new_cfqq = __cfqq;
3167 }
3168
3169 process_refs = cfqq_process_refs(cfqq);
3170 new_process_refs = cfqq_process_refs(new_cfqq);
3171 /*
3172 * If the process for the cfqq has gone away, there is no
3173 * sense in merging the queues.
3174 */
3175 if (process_refs == 0 || new_process_refs == 0)
3176 return;
3177
3178 /*
3179 * Merge in the direction of the lesser amount of work.
3180 */
3181 if (new_process_refs >= process_refs) {
3182 cfqq->new_cfqq = new_cfqq;
3183 new_cfqq->ref += process_refs;
3184 } else {
3185 new_cfqq->new_cfqq = cfqq;
3186 cfqq->ref += new_process_refs;
3187 }
3188}
3189
3190static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
3191 struct cfq_group *cfqg, enum wl_class_t wl_class)
3192{
3193 struct cfq_queue *queue;
3194 int i;
3195 bool key_valid = false;
3196 u64 lowest_key = 0;
3197 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
3198
3199 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
3200 /* select the one with lowest rb_key */
3201 queue = cfq_rb_first(st_for(cfqg, wl_class, i));
3202 if (queue &&
3203 (!key_valid || queue->rb_key < lowest_key)) {
3204 lowest_key = queue->rb_key;
3205 cur_best = i;
3206 key_valid = true;
3207 }
3208 }
3209
3210 return cur_best;
3211}
3212
3213static void
3214choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
3215{
3216 u64 slice;
3217 unsigned count;
3218 struct cfq_rb_root *st;
3219 u64 group_slice;
3220 enum wl_class_t original_class = cfqd->serving_wl_class;
3221 u64 now = ktime_get_ns();
3222
3223 /* Choose next priority. RT > BE > IDLE */
3224 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
3225 cfqd->serving_wl_class = RT_WORKLOAD;
3226 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
3227 cfqd->serving_wl_class = BE_WORKLOAD;
3228 else {
3229 cfqd->serving_wl_class = IDLE_WORKLOAD;
3230 cfqd->workload_expires = now + jiffies_to_nsecs(1);
3231 return;
3232 }
3233
3234 if (original_class != cfqd->serving_wl_class)
3235 goto new_workload;
3236
3237 /*
3238 * For RT and BE, we have to choose also the type
3239 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3240 * expiration time
3241 */
3242 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3243 count = st->count;
3244
3245 /*
3246 * check workload expiration, and that we still have other queues ready
3247 */
3248 if (count && !(now > cfqd->workload_expires))
3249 return;
3250
3251new_workload:
3252 /* otherwise select new workload type */
3253 cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
3254 cfqd->serving_wl_class);
3255 st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
3256 count = st->count;
3257
3258 /*
3259 * the workload slice is computed as a fraction of target latency
3260 * proportional to the number of queues in that workload, over
3261 * all the queues in the same priority class
3262 */
3263 group_slice = cfq_group_slice(cfqd, cfqg);
3264
3265 slice = div_u64(group_slice * count,
3266 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
3267 cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
3268 cfqg)));
3269
3270 if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
3271 u64 tmp;
3272
3273 /*
3274 * Async queues are currently system wide. Just taking
3275 * proportion of queues with-in same group will lead to higher
3276 * async ratio system wide as generally root group is going
3277 * to have higher weight. A more accurate thing would be to
3278 * calculate system wide asnc/sync ratio.
3279 */
3280 tmp = cfqd->cfq_target_latency *
3281 cfqg_busy_async_queues(cfqd, cfqg);
3282 tmp = div_u64(tmp, cfqd->busy_queues);
3283 slice = min_t(u64, slice, tmp);
3284
3285 /* async workload slice is scaled down according to
3286 * the sync/async slice ratio. */
3287 slice = div64_u64(slice*cfqd->cfq_slice[0], cfqd->cfq_slice[1]);
3288 } else
3289 /* sync workload slice is at least 2 * cfq_slice_idle */
3290 slice = max(slice, 2 * cfqd->cfq_slice_idle);
3291
3292 slice = max_t(u64, slice, CFQ_MIN_TT);
3293 cfq_log(cfqd, "workload slice:%llu", slice);
3294 cfqd->workload_expires = now + slice;
3295}
3296
3297static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
3298{
3299 struct cfq_rb_root *st = &cfqd->grp_service_tree;
3300 struct cfq_group *cfqg;
3301
3302 if (RB_EMPTY_ROOT(&st->rb))
3303 return NULL;
3304 cfqg = cfq_rb_first_group(st);
3305 update_min_vdisktime(st);
3306 return cfqg;
3307}
3308
3309static void cfq_choose_cfqg(struct cfq_data *cfqd)
3310{
3311 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3312 u64 now = ktime_get_ns();
3313
3314 cfqd->serving_group = cfqg;
3315
3316 /* Restore the workload type data */
3317 if (cfqg->saved_wl_slice) {
3318 cfqd->workload_expires = now + cfqg->saved_wl_slice;
3319 cfqd->serving_wl_type = cfqg->saved_wl_type;
3320 cfqd->serving_wl_class = cfqg->saved_wl_class;
3321 } else
3322 cfqd->workload_expires = now - 1;
3323
3324 choose_wl_class_and_type(cfqd, cfqg);
3325}
3326
3327/*
3328 * Select a queue for service. If we have a current active queue,
3329 * check whether to continue servicing it, or retrieve and set a new one.
3330 */
3331static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3332{
3333 struct cfq_queue *cfqq, *new_cfqq = NULL;
3334 u64 now = ktime_get_ns();
3335
3336 cfqq = cfqd->active_queue;
3337 if (!cfqq)
3338 goto new_queue;
3339
3340 if (!cfqd->rq_queued)
3341 return NULL;
3342
3343 /*
3344 * We were waiting for group to get backlogged. Expire the queue
3345 */
3346 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3347 goto expire;
3348
3349 /*
3350 * The active queue has run out of time, expire it and select new.
3351 */
3352 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3353 /*
3354 * If slice had not expired at the completion of last request
3355 * we might not have turned on wait_busy flag. Don't expire
3356 * the queue yet. Allow the group to get backlogged.
3357 *
3358 * The very fact that we have used the slice, that means we
3359 * have been idling all along on this queue and it should be
3360 * ok to wait for this request to complete.
3361 */
3362 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3363 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3364 cfqq = NULL;
3365 goto keep_queue;
3366 } else
3367 goto check_group_idle;
3368 }
3369
3370 /*
3371 * The active queue has requests and isn't expired, allow it to
3372 * dispatch.
3373 */
3374 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3375 goto keep_queue;
3376
3377 /*
3378 * If another queue has a request waiting within our mean seek
3379 * distance, let it run. The expire code will check for close
3380 * cooperators and put the close queue at the front of the service
3381 * tree. If possible, merge the expiring queue with the new cfqq.
3382 */
3383 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3384 if (new_cfqq) {
3385 if (!cfqq->new_cfqq)
3386 cfq_setup_merge(cfqq, new_cfqq);
3387 goto expire;
3388 }
3389
3390 /*
3391 * No requests pending. If the active queue still has requests in
3392 * flight or is idling for a new request, allow either of these
3393 * conditions to happen (or time out) before selecting a new queue.
3394 */
3395 if (hrtimer_active(&cfqd->idle_slice_timer)) {
3396 cfqq = NULL;
3397 goto keep_queue;
3398 }
3399
3400 /*
3401 * This is a deep seek queue, but the device is much faster than
3402 * the queue can deliver, don't idle
3403 **/
3404 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3405 (cfq_cfqq_slice_new(cfqq) ||
3406 (cfqq->slice_end - now > now - cfqq->slice_start))) {
3407 cfq_clear_cfqq_deep(cfqq);
3408 cfq_clear_cfqq_idle_window(cfqq);
3409 }
3410
3411 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3412 cfqq = NULL;
3413 goto keep_queue;
3414 }
3415
3416 /*
3417 * If group idle is enabled and there are requests dispatched from
3418 * this group, wait for requests to complete.
3419 */
3420check_group_idle:
3421 if (get_group_idle(cfqd) && cfqq->cfqg->nr_cfqq == 1 &&
3422 cfqq->cfqg->dispatched &&
3423 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3424 cfqq = NULL;
3425 goto keep_queue;
3426 }
3427
3428expire:
3429 cfq_slice_expired(cfqd, 0);
3430new_queue:
3431 /*
3432 * Current queue expired. Check if we have to switch to a new
3433 * service tree
3434 */
3435 if (!new_cfqq)
3436 cfq_choose_cfqg(cfqd);
3437
3438 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3439keep_queue:
3440 return cfqq;
3441}
3442
3443static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3444{
3445 int dispatched = 0;
3446
3447 while (cfqq->next_rq) {
3448 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3449 dispatched++;
3450 }
3451
3452 BUG_ON(!list_empty(&cfqq->fifo));
3453
3454 /* By default cfqq is not expired if it is empty. Do it explicitly */
3455 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3456 return dispatched;
3457}
3458
3459/*
3460 * Drain our current requests. Used for barriers and when switching
3461 * io schedulers on-the-fly.
3462 */
3463static int cfq_forced_dispatch(struct cfq_data *cfqd)
3464{
3465 struct cfq_queue *cfqq;
3466 int dispatched = 0;
3467
3468 /* Expire the timeslice of the current active queue first */
3469 cfq_slice_expired(cfqd, 0);
3470 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3471 __cfq_set_active_queue(cfqd, cfqq);
3472 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3473 }
3474
3475 BUG_ON(cfqd->busy_queues);
3476
3477 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3478 return dispatched;
3479}
3480
3481static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3482 struct cfq_queue *cfqq)
3483{
3484 u64 now = ktime_get_ns();
3485
3486 /* the queue hasn't finished any request, can't estimate */
3487 if (cfq_cfqq_slice_new(cfqq))
3488 return true;
3489 if (now + cfqd->cfq_slice_idle * cfqq->dispatched > cfqq->slice_end)
3490 return true;
3491
3492 return false;
3493}
3494
3495static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3496{
3497 unsigned int max_dispatch;
3498
3499 if (cfq_cfqq_must_dispatch(cfqq))
3500 return true;
3501
3502 /*
3503 * Drain async requests before we start sync IO
3504 */
3505 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3506 return false;
3507
3508 /*
3509 * If this is an async queue and we have sync IO in flight, let it wait
3510 */
3511 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3512 return false;
3513
3514 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3515 if (cfq_class_idle(cfqq))
3516 max_dispatch = 1;
3517
3518 /*
3519 * Does this cfqq already have too much IO in flight?
3520 */
3521 if (cfqq->dispatched >= max_dispatch) {
3522 bool promote_sync = false;
3523 /*
3524 * idle queue must always only have a single IO in flight
3525 */
3526 if (cfq_class_idle(cfqq))
3527 return false;
3528
3529 /*
3530 * If there is only one sync queue
3531 * we can ignore async queue here and give the sync
3532 * queue no dispatch limit. The reason is a sync queue can
3533 * preempt async queue, limiting the sync queue doesn't make
3534 * sense. This is useful for aiostress test.
3535 */
3536 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3537 promote_sync = true;
3538
3539 /*
3540 * We have other queues, don't allow more IO from this one
3541 */
3542 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3543 !promote_sync)
3544 return false;
3545
3546 /*
3547 * Sole queue user, no limit
3548 */
3549 if (cfqd->busy_queues == 1 || promote_sync)
3550 max_dispatch = -1;
3551 else
3552 /*
3553 * Normally we start throttling cfqq when cfq_quantum/2
3554 * requests have been dispatched. But we can drive
3555 * deeper queue depths at the beginning of slice
3556 * subjected to upper limit of cfq_quantum.
3557 * */
3558 max_dispatch = cfqd->cfq_quantum;
3559 }
3560
3561 /*
3562 * Async queues must wait a bit before being allowed dispatch.
3563 * We also ramp up the dispatch depth gradually for async IO,
3564 * based on the last sync IO we serviced
3565 */
3566 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3567 u64 last_sync = ktime_get_ns() - cfqd->last_delayed_sync;
3568 unsigned int depth;
3569
3570 depth = div64_u64(last_sync, cfqd->cfq_slice[1]);
3571 if (!depth && !cfqq->dispatched)
3572 depth = 1;
3573 if (depth < max_dispatch)
3574 max_dispatch = depth;
3575 }
3576
3577 /*
3578 * If we're below the current max, allow a dispatch
3579 */
3580 return cfqq->dispatched < max_dispatch;
3581}
3582
3583/*
3584 * Dispatch a request from cfqq, moving them to the request queue
3585 * dispatch list.
3586 */
3587static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3588{
3589 struct request *rq;
3590
3591 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3592
3593 rq = cfq_check_fifo(cfqq);
3594 if (rq)
3595 cfq_mark_cfqq_must_dispatch(cfqq);
3596
3597 if (!cfq_may_dispatch(cfqd, cfqq))
3598 return false;
3599
3600 /*
3601 * follow expired path, else get first next available
3602 */
3603 if (!rq)
3604 rq = cfqq->next_rq;
3605 else
3606 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
3607
3608 /*
3609 * insert request into driver dispatch list
3610 */
3611 cfq_dispatch_insert(cfqd->queue, rq);
3612
3613 if (!cfqd->active_cic) {
3614 struct cfq_io_cq *cic = RQ_CIC(rq);
3615
3616 atomic_long_inc(&cic->icq.ioc->refcount);
3617 cfqd->active_cic = cic;
3618 }
3619
3620 return true;
3621}
3622
3623/*
3624 * Find the cfqq that we need to service and move a request from that to the
3625 * dispatch list
3626 */
3627static int cfq_dispatch_requests(struct request_queue *q, int force)
3628{
3629 struct cfq_data *cfqd = q->elevator->elevator_data;
3630 struct cfq_queue *cfqq;
3631
3632 if (!cfqd->busy_queues)
3633 return 0;
3634
3635 if (unlikely(force))
3636 return cfq_forced_dispatch(cfqd);
3637
3638 cfqq = cfq_select_queue(cfqd);
3639 if (!cfqq)
3640 return 0;
3641
3642 /*
3643 * Dispatch a request from this cfqq, if it is allowed
3644 */
3645 if (!cfq_dispatch_request(cfqd, cfqq))
3646 return 0;
3647
3648 cfqq->slice_dispatch++;
3649 cfq_clear_cfqq_must_dispatch(cfqq);
3650
3651 /*
3652 * expire an async queue immediately if it has used up its slice. idle
3653 * queue always expire after 1 dispatch round.
3654 */
3655 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3656 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3657 cfq_class_idle(cfqq))) {
3658 cfqq->slice_end = ktime_get_ns() + 1;
3659 cfq_slice_expired(cfqd, 0);
3660 }
3661
3662 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3663 return 1;
3664}
3665
3666/*
3667 * task holds one reference to the queue, dropped when task exits. each rq
3668 * in-flight on this queue also holds a reference, dropped when rq is freed.
3669 *
3670 * Each cfq queue took a reference on the parent group. Drop it now.
3671 * queue lock must be held here.
3672 */
3673static void cfq_put_queue(struct cfq_queue *cfqq)
3674{
3675 struct cfq_data *cfqd = cfqq->cfqd;
3676 struct cfq_group *cfqg;
3677
3678 BUG_ON(cfqq->ref <= 0);
3679
3680 cfqq->ref--;
3681 if (cfqq->ref)
3682 return;
3683
3684 cfq_log_cfqq(cfqd, cfqq, "put_queue");
3685 BUG_ON(rb_first(&cfqq->sort_list));
3686 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3687 cfqg = cfqq->cfqg;
3688
3689 if (unlikely(cfqd->active_queue == cfqq)) {
3690 __cfq_slice_expired(cfqd, cfqq, 0);
3691 cfq_schedule_dispatch(cfqd);
3692 }
3693
3694 BUG_ON(cfq_cfqq_on_rr(cfqq));
3695 kmem_cache_free(cfq_pool, cfqq);
3696 cfqg_put(cfqg);
3697}
3698
3699static void cfq_put_cooperator(struct cfq_queue *cfqq)
3700{
3701 struct cfq_queue *__cfqq, *next;
3702
3703 /*
3704 * If this queue was scheduled to merge with another queue, be
3705 * sure to drop the reference taken on that queue (and others in
3706 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3707 */
3708 __cfqq = cfqq->new_cfqq;
3709 while (__cfqq) {
3710 if (__cfqq == cfqq) {
3711 WARN(1, "cfqq->new_cfqq loop detected\n");
3712 break;
3713 }
3714 next = __cfqq->new_cfqq;
3715 cfq_put_queue(__cfqq);
3716 __cfqq = next;
3717 }
3718}
3719
3720static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3721{
3722 if (unlikely(cfqq == cfqd->active_queue)) {
3723 __cfq_slice_expired(cfqd, cfqq, 0);
3724 cfq_schedule_dispatch(cfqd);
3725 }
3726
3727 cfq_put_cooperator(cfqq);
3728
3729 cfq_put_queue(cfqq);
3730}
3731
3732static void cfq_init_icq(struct io_cq *icq)
3733{
3734 struct cfq_io_cq *cic = icq_to_cic(icq);
3735
3736 cic->ttime.last_end_request = ktime_get_ns();
3737}
3738
3739static void cfq_exit_icq(struct io_cq *icq)
3740{
3741 struct cfq_io_cq *cic = icq_to_cic(icq);
3742 struct cfq_data *cfqd = cic_to_cfqd(cic);
3743
3744 if (cic_to_cfqq(cic, false)) {
3745 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, false));
3746 cic_set_cfqq(cic, NULL, false);
3747 }
3748
3749 if (cic_to_cfqq(cic, true)) {
3750 cfq_exit_cfqq(cfqd, cic_to_cfqq(cic, true));
3751 cic_set_cfqq(cic, NULL, true);
3752 }
3753}
3754
3755static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3756{
3757 struct task_struct *tsk = current;
3758 int ioprio_class;
3759
3760 if (!cfq_cfqq_prio_changed(cfqq))
3761 return;
3762
3763 ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3764 switch (ioprio_class) {
3765 default:
3766 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3767 case IOPRIO_CLASS_NONE:
3768 /*
3769 * no prio set, inherit CPU scheduling settings
3770 */
3771 cfqq->ioprio = task_nice_ioprio(tsk);
3772 cfqq->ioprio_class = task_nice_ioclass(tsk);
3773 break;
3774 case IOPRIO_CLASS_RT:
3775 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3776 cfqq->ioprio_class = IOPRIO_CLASS_RT;
3777 break;
3778 case IOPRIO_CLASS_BE:
3779 cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3780 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3781 break;
3782 case IOPRIO_CLASS_IDLE:
3783 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3784 cfqq->ioprio = 7;
3785 cfq_clear_cfqq_idle_window(cfqq);
3786 break;
3787 }
3788
3789 /*
3790 * keep track of original prio settings in case we have to temporarily
3791 * elevate the priority of this queue
3792 */
3793 cfqq->org_ioprio = cfqq->ioprio;
3794 cfqq->org_ioprio_class = cfqq->ioprio_class;
3795 cfq_clear_cfqq_prio_changed(cfqq);
3796}
3797
3798static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3799{
3800 int ioprio = cic->icq.ioc->ioprio;
3801 struct cfq_data *cfqd = cic_to_cfqd(cic);
3802 struct cfq_queue *cfqq;
3803
3804 /*
3805 * Check whether ioprio has changed. The condition may trigger
3806 * spuriously on a newly created cic but there's no harm.
3807 */
3808 if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3809 return;
3810
3811 cfqq = cic_to_cfqq(cic, false);
3812 if (cfqq) {
3813 cfq_put_queue(cfqq);
3814 cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio);
3815 cic_set_cfqq(cic, cfqq, false);
3816 }
3817
3818 cfqq = cic_to_cfqq(cic, true);
3819 if (cfqq)
3820 cfq_mark_cfqq_prio_changed(cfqq);
3821
3822 cic->ioprio = ioprio;
3823}
3824
3825static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3826 pid_t pid, bool is_sync)
3827{
3828 RB_CLEAR_NODE(&cfqq->rb_node);
3829 RB_CLEAR_NODE(&cfqq->p_node);
3830 INIT_LIST_HEAD(&cfqq->fifo);
3831
3832 cfqq->ref = 0;
3833 cfqq->cfqd = cfqd;
3834
3835 cfq_mark_cfqq_prio_changed(cfqq);
3836
3837 if (is_sync) {
3838 if (!cfq_class_idle(cfqq))
3839 cfq_mark_cfqq_idle_window(cfqq);
3840 cfq_mark_cfqq_sync(cfqq);
3841 }
3842 cfqq->pid = pid;
3843}
3844
3845#ifdef CONFIG_CFQ_GROUP_IOSCHED
3846static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3847{
3848 struct cfq_data *cfqd = cic_to_cfqd(cic);
3849 struct cfq_queue *cfqq;
3850 uint64_t serial_nr;
3851
3852 rcu_read_lock();
3853 serial_nr = bio_blkcg(bio)->css.serial_nr;
3854 rcu_read_unlock();
3855
3856 /*
3857 * Check whether blkcg has changed. The condition may trigger
3858 * spuriously on a newly created cic but there's no harm.
3859 */
3860 if (unlikely(!cfqd) || likely(cic->blkcg_serial_nr == serial_nr))
3861 return;
3862
3863 /*
3864 * Drop reference to queues. New queues will be assigned in new
3865 * group upon arrival of fresh requests.
3866 */
3867 cfqq = cic_to_cfqq(cic, false);
3868 if (cfqq) {
3869 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3870 cic_set_cfqq(cic, NULL, false);
3871 cfq_put_queue(cfqq);
3872 }
3873
3874 cfqq = cic_to_cfqq(cic, true);
3875 if (cfqq) {
3876 cfq_log_cfqq(cfqd, cfqq, "changed cgroup");
3877 cic_set_cfqq(cic, NULL, true);
3878 cfq_put_queue(cfqq);
3879 }
3880
3881 cic->blkcg_serial_nr = serial_nr;
3882}
3883#else
3884static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3885#endif /* CONFIG_CFQ_GROUP_IOSCHED */
3886
3887static struct cfq_queue **
3888cfq_async_queue_prio(struct cfq_group *cfqg, int ioprio_class, int ioprio)
3889{
3890 switch (ioprio_class) {
3891 case IOPRIO_CLASS_RT:
3892 return &cfqg->async_cfqq[0][ioprio];
3893 case IOPRIO_CLASS_NONE:
3894 ioprio = IOPRIO_NORM;
3895 /* fall through */
3896 case IOPRIO_CLASS_BE:
3897 return &cfqg->async_cfqq[1][ioprio];
3898 case IOPRIO_CLASS_IDLE:
3899 return &cfqg->async_idle_cfqq;
3900 default:
3901 BUG();
3902 }
3903}
3904
3905static struct cfq_queue *
3906cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3907 struct bio *bio)
3908{
3909 int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3910 int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3911 struct cfq_queue **async_cfqq = NULL;
3912 struct cfq_queue *cfqq;
3913 struct cfq_group *cfqg;
3914
3915 rcu_read_lock();
3916 cfqg = cfq_lookup_cfqg(cfqd, bio_blkcg(bio));
3917 if (!cfqg) {
3918 cfqq = &cfqd->oom_cfqq;
3919 goto out;
3920 }
3921
3922 if (!is_sync) {
3923 if (!ioprio_valid(cic->ioprio)) {
3924 struct task_struct *tsk = current;
3925 ioprio = task_nice_ioprio(tsk);
3926 ioprio_class = task_nice_ioclass(tsk);
3927 }
3928 async_cfqq = cfq_async_queue_prio(cfqg, ioprio_class, ioprio);
3929 cfqq = *async_cfqq;
3930 if (cfqq)
3931 goto out;
3932 }
3933
3934 cfqq = kmem_cache_alloc_node(cfq_pool,
3935 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
3936 cfqd->queue->node);
3937 if (!cfqq) {
3938 cfqq = &cfqd->oom_cfqq;
3939 goto out;
3940 }
3941
3942 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3943 cfq_init_prio_data(cfqq, cic);
3944 cfq_link_cfqq_cfqg(cfqq, cfqg);
3945 cfq_log_cfqq(cfqd, cfqq, "alloced");
3946
3947 if (async_cfqq) {
3948 /* a new async queue is created, pin and remember */
3949 cfqq->ref++;
3950 *async_cfqq = cfqq;
3951 }
3952out:
3953 cfqq->ref++;
3954 rcu_read_unlock();
3955 return cfqq;
3956}
3957
3958static void
3959__cfq_update_io_thinktime(struct cfq_ttime *ttime, u64 slice_idle)
3960{
3961 u64 elapsed = ktime_get_ns() - ttime->last_end_request;
3962 elapsed = min(elapsed, 2UL * slice_idle);
3963
3964 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3965 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
3966 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
3967 ttime->ttime_samples);
3968}
3969
3970static void
3971cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3972 struct cfq_io_cq *cic)
3973{
3974 if (cfq_cfqq_sync(cfqq)) {
3975 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3976 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3977 cfqd->cfq_slice_idle);
3978 }
3979#ifdef CONFIG_CFQ_GROUP_IOSCHED
3980 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, get_group_idle(cfqd));
3981#endif
3982}
3983
3984static void
3985cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3986 struct request *rq)
3987{
3988 sector_t sdist = 0;
3989 sector_t n_sec = blk_rq_sectors(rq);
3990 if (cfqq->last_request_pos) {
3991 if (cfqq->last_request_pos < blk_rq_pos(rq))
3992 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3993 else
3994 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3995 }
3996
3997 cfqq->seek_history <<= 1;
3998 if (blk_queue_nonrot(cfqd->queue))
3999 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
4000 else
4001 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
4002}
4003
4004/*
4005 * Disable idle window if the process thinks too long or seeks so much that
4006 * it doesn't matter
4007 */
4008static void
4009cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4010 struct cfq_io_cq *cic)
4011{
4012 int old_idle, enable_idle;
4013
4014 /*
4015 * Don't idle for async or idle io prio class
4016 */
4017 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
4018 return;
4019
4020 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
4021
4022 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
4023 cfq_mark_cfqq_deep(cfqq);
4024
4025 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
4026 enable_idle = 0;
4027 else if (!atomic_read(&cic->icq.ioc->active_ref) ||
4028 !cfqd->cfq_slice_idle ||
4029 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
4030 enable_idle = 0;
4031 else if (sample_valid(cic->ttime.ttime_samples)) {
4032 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
4033 enable_idle = 0;
4034 else
4035 enable_idle = 1;
4036 }
4037
4038 if (old_idle != enable_idle) {
4039 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
4040 if (enable_idle)
4041 cfq_mark_cfqq_idle_window(cfqq);
4042 else
4043 cfq_clear_cfqq_idle_window(cfqq);
4044 }
4045}
4046
4047/*
4048 * Check if new_cfqq should preempt the currently active queue. Return 0 for
4049 * no or if we aren't sure, a 1 will cause a preempt.
4050 */
4051static bool
4052cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
4053 struct request *rq)
4054{
4055 struct cfq_queue *cfqq;
4056
4057 cfqq = cfqd->active_queue;
4058 if (!cfqq)
4059 return false;
4060
4061 if (cfq_class_idle(new_cfqq))
4062 return false;
4063
4064 if (cfq_class_idle(cfqq))
4065 return true;
4066
4067 /*
4068 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
4069 */
4070 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
4071 return false;
4072
4073 /*
4074 * if the new request is sync, but the currently running queue is
4075 * not, let the sync request have priority.
4076 */
4077 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
4078 return true;
4079
4080 /*
4081 * Treat ancestors of current cgroup the same way as current cgroup.
4082 * For anybody else we disallow preemption to guarantee service
4083 * fairness among cgroups.
4084 */
4085 if (!cfqg_is_descendant(cfqq->cfqg, new_cfqq->cfqg))
4086 return false;
4087
4088 if (cfq_slice_used(cfqq))
4089 return true;
4090
4091 /*
4092 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4093 */
4094 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
4095 return true;
4096
4097 WARN_ON_ONCE(cfqq->ioprio_class != new_cfqq->ioprio_class);
4098 /* Allow preemption only if we are idling on sync-noidle tree */
4099 if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
4100 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
4101 RB_EMPTY_ROOT(&cfqq->sort_list))
4102 return true;
4103
4104 /*
4105 * So both queues are sync. Let the new request get disk time if
4106 * it's a metadata request and the current queue is doing regular IO.
4107 */
4108 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
4109 return true;
4110
4111 /* An idle queue should not be idle now for some reason */
4112 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
4113 return true;
4114
4115 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
4116 return false;
4117
4118 /*
4119 * if this request is as-good as one we would expect from the
4120 * current cfqq, let it preempt
4121 */
4122 if (cfq_rq_close(cfqd, cfqq, rq))
4123 return true;
4124
4125 return false;
4126}
4127
4128/*
4129 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4130 * let it have half of its nominal slice.
4131 */
4132static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4133{
4134 enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
4135
4136 cfq_log_cfqq(cfqd, cfqq, "preempt");
4137 cfq_slice_expired(cfqd, 1);
4138
4139 /*
4140 * workload type is changed, don't save slice, otherwise preempt
4141 * doesn't happen
4142 */
4143 if (old_type != cfqq_type(cfqq))
4144 cfqq->cfqg->saved_wl_slice = 0;
4145
4146 /*
4147 * Put the new queue at the front of the of the current list,
4148 * so we know that it will be selected next.
4149 */
4150 BUG_ON(!cfq_cfqq_on_rr(cfqq));
4151
4152 cfq_service_tree_add(cfqd, cfqq, 1);
4153
4154 cfqq->slice_end = 0;
4155 cfq_mark_cfqq_slice_new(cfqq);
4156}
4157
4158/*
4159 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4160 * something we should do about it
4161 */
4162static void
4163cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
4164 struct request *rq)
4165{
4166 struct cfq_io_cq *cic = RQ_CIC(rq);
4167
4168 cfqd->rq_queued++;
4169 if (rq->cmd_flags & REQ_PRIO)
4170 cfqq->prio_pending++;
4171
4172 cfq_update_io_thinktime(cfqd, cfqq, cic);
4173 cfq_update_io_seektime(cfqd, cfqq, rq);
4174 cfq_update_idle_window(cfqd, cfqq, cic);
4175
4176 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4177
4178 if (cfqq == cfqd->active_queue) {
4179 /*
4180 * Remember that we saw a request from this process, but
4181 * don't start queuing just yet. Otherwise we risk seeing lots
4182 * of tiny requests, because we disrupt the normal plugging
4183 * and merging. If the request is already larger than a single
4184 * page, let it rip immediately. For that case we assume that
4185 * merging is already done. Ditto for a busy system that
4186 * has other work pending, don't risk delaying until the
4187 * idle timer unplug to continue working.
4188 */
4189 if (cfq_cfqq_wait_request(cfqq)) {
4190 if (blk_rq_bytes(rq) > PAGE_SIZE ||
4191 cfqd->busy_queues > 1) {
4192 cfq_del_timer(cfqd, cfqq);
4193 cfq_clear_cfqq_wait_request(cfqq);
4194 __blk_run_queue(cfqd->queue);
4195 } else {
4196 cfqg_stats_update_idle_time(cfqq->cfqg);
4197 cfq_mark_cfqq_must_dispatch(cfqq);
4198 }
4199 }
4200 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
4201 /*
4202 * not the active queue - expire current slice if it is
4203 * idle and has expired it's mean thinktime or this new queue
4204 * has some old slice time left and is of higher priority or
4205 * this new queue is RT and the current one is BE
4206 */
4207 cfq_preempt_queue(cfqd, cfqq);
4208 __blk_run_queue(cfqd->queue);
4209 }
4210}
4211
4212static void cfq_insert_request(struct request_queue *q, struct request *rq)
4213{
4214 struct cfq_data *cfqd = q->elevator->elevator_data;
4215 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4216
4217 cfq_log_cfqq(cfqd, cfqq, "insert_request");
4218 cfq_init_prio_data(cfqq, RQ_CIC(rq));
4219
4220 rq->fifo_time = ktime_get_ns() + cfqd->cfq_fifo_expire[rq_is_sync(rq)];
4221 list_add_tail(&rq->queuelist, &cfqq->fifo);
4222 cfq_add_rq_rb(rq);
4223 cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group, req_op(rq),
4224 rq->cmd_flags);
4225 cfq_rq_enqueued(cfqd, cfqq, rq);
4226}
4227
4228/*
4229 * Update hw_tag based on peak queue depth over 50 samples under
4230 * sufficient load.
4231 */
4232static void cfq_update_hw_tag(struct cfq_data *cfqd)
4233{
4234 struct cfq_queue *cfqq = cfqd->active_queue;
4235
4236 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
4237 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
4238
4239 if (cfqd->hw_tag == 1)
4240 return;
4241
4242 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
4243 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
4244 return;
4245
4246 /*
4247 * If active queue hasn't enough requests and can idle, cfq might not
4248 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4249 * case
4250 */
4251 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
4252 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
4253 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
4254 return;
4255
4256 if (cfqd->hw_tag_samples++ < 50)
4257 return;
4258
4259 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
4260 cfqd->hw_tag = 1;
4261 else
4262 cfqd->hw_tag = 0;
4263}
4264
4265static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
4266{
4267 struct cfq_io_cq *cic = cfqd->active_cic;
4268 u64 now = ktime_get_ns();
4269
4270 /* If the queue already has requests, don't wait */
4271 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4272 return false;
4273
4274 /* If there are other queues in the group, don't wait */
4275 if (cfqq->cfqg->nr_cfqq > 1)
4276 return false;
4277
4278 /* the only queue in the group, but think time is big */
4279 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
4280 return false;
4281
4282 if (cfq_slice_used(cfqq))
4283 return true;
4284
4285 /* if slice left is less than think time, wait busy */
4286 if (cic && sample_valid(cic->ttime.ttime_samples)
4287 && (cfqq->slice_end - now < cic->ttime.ttime_mean))
4288 return true;
4289
4290 /*
4291 * If think times is less than a jiffy than ttime_mean=0 and above
4292 * will not be true. It might happen that slice has not expired yet
4293 * but will expire soon (4-5 ns) during select_queue(). To cover the
4294 * case where think time is less than a jiffy, mark the queue wait
4295 * busy if only 1 jiffy is left in the slice.
4296 */
4297 if (cfqq->slice_end - now <= jiffies_to_nsecs(1))
4298 return true;
4299
4300 return false;
4301}
4302
4303static void cfq_completed_request(struct request_queue *q, struct request *rq)
4304{
4305 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4306 struct cfq_data *cfqd = cfqq->cfqd;
4307 const int sync = rq_is_sync(rq);
4308 u64 now = ktime_get_ns();
4309
4310 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4311 !!(rq->cmd_flags & REQ_NOIDLE));
4312
4313 cfq_update_hw_tag(cfqd);
4314
4315 WARN_ON(!cfqd->rq_in_driver);
4316 WARN_ON(!cfqq->dispatched);
4317 cfqd->rq_in_driver--;
4318 cfqq->dispatched--;
4319 (RQ_CFQG(rq))->dispatched--;
4320 cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4321 rq_io_start_time_ns(rq), req_op(rq),
4322 rq->cmd_flags);
4323
4324 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4325
4326 if (sync) {
4327 struct cfq_rb_root *st;
4328
4329 RQ_CIC(rq)->ttime.last_end_request = now;
4330
4331 if (cfq_cfqq_on_rr(cfqq))
4332 st = cfqq->service_tree;
4333 else
4334 st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4335 cfqq_type(cfqq));
4336
4337 st->ttime.last_end_request = now;
4338 /*
4339 * We have to do this check in jiffies since start_time is in
4340 * jiffies and it is not trivial to convert to ns. If
4341 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4342 * will become problematic but so far we are fine (the default
4343 * is 128 ms).
4344 */
4345 if (!time_after(rq->start_time +
4346 nsecs_to_jiffies(cfqd->cfq_fifo_expire[1]),
4347 jiffies))
4348 cfqd->last_delayed_sync = now;
4349 }
4350
4351#ifdef CONFIG_CFQ_GROUP_IOSCHED
4352 cfqq->cfqg->ttime.last_end_request = now;
4353#endif
4354
4355 /*
4356 * If this is the active queue, check if it needs to be expired,
4357 * or if we want to idle in case it has no pending requests.
4358 */
4359 if (cfqd->active_queue == cfqq) {
4360 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4361
4362 if (cfq_cfqq_slice_new(cfqq)) {
4363 cfq_set_prio_slice(cfqd, cfqq);
4364 cfq_clear_cfqq_slice_new(cfqq);
4365 }
4366
4367 /*
4368 * Should we wait for next request to come in before we expire
4369 * the queue.
4370 */
4371 if (cfq_should_wait_busy(cfqd, cfqq)) {
4372 u64 extend_sl = cfqd->cfq_slice_idle;
4373 if (!cfqd->cfq_slice_idle)
4374 extend_sl = get_group_idle(cfqd);
4375 cfqq->slice_end = now + extend_sl;
4376 cfq_mark_cfqq_wait_busy(cfqq);
4377 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4378 }
4379
4380 /*
4381 * Idling is not enabled on:
4382 * - expired queues
4383 * - idle-priority queues
4384 * - async queues
4385 * - queues with still some requests queued
4386 * - when there is a close cooperator
4387 */
4388 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4389 cfq_slice_expired(cfqd, 1);
4390 else if (sync && cfqq_empty &&
4391 !cfq_close_cooperator(cfqd, cfqq)) {
4392 cfq_arm_slice_timer(cfqd);
4393 }
4394 }
4395
4396 if (!cfqd->rq_in_driver)
4397 cfq_schedule_dispatch(cfqd);
4398}
4399
4400static void cfqq_boost_on_prio(struct cfq_queue *cfqq, int op_flags)
4401{
4402 /*
4403 * If REQ_PRIO is set, boost class and prio level, if it's below
4404 * BE/NORM. If prio is not set, restore the potentially boosted
4405 * class/prio level.
4406 */
4407 if (!(op_flags & REQ_PRIO)) {
4408 cfqq->ioprio_class = cfqq->org_ioprio_class;
4409 cfqq->ioprio = cfqq->org_ioprio;
4410 } else {
4411 if (cfq_class_idle(cfqq))
4412 cfqq->ioprio_class = IOPRIO_CLASS_BE;
4413 if (cfqq->ioprio > IOPRIO_NORM)
4414 cfqq->ioprio = IOPRIO_NORM;
4415 }
4416}
4417
4418static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4419{
4420 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4421 cfq_mark_cfqq_must_alloc_slice(cfqq);
4422 return ELV_MQUEUE_MUST;
4423 }
4424
4425 return ELV_MQUEUE_MAY;
4426}
4427
4428static int cfq_may_queue(struct request_queue *q, int op, int op_flags)
4429{
4430 struct cfq_data *cfqd = q->elevator->elevator_data;
4431 struct task_struct *tsk = current;
4432 struct cfq_io_cq *cic;
4433 struct cfq_queue *cfqq;
4434
4435 /*
4436 * don't force setup of a queue from here, as a call to may_queue
4437 * does not necessarily imply that a request actually will be queued.
4438 * so just lookup a possibly existing queue, or return 'may queue'
4439 * if that fails
4440 */
4441 cic = cfq_cic_lookup(cfqd, tsk->io_context);
4442 if (!cic)
4443 return ELV_MQUEUE_MAY;
4444
4445 cfqq = cic_to_cfqq(cic, rw_is_sync(op, op_flags));
4446 if (cfqq) {
4447 cfq_init_prio_data(cfqq, cic);
4448 cfqq_boost_on_prio(cfqq, op_flags);
4449
4450 return __cfq_may_queue(cfqq);
4451 }
4452
4453 return ELV_MQUEUE_MAY;
4454}
4455
4456/*
4457 * queue lock held here
4458 */
4459static void cfq_put_request(struct request *rq)
4460{
4461 struct cfq_queue *cfqq = RQ_CFQQ(rq);
4462
4463 if (cfqq) {
4464 const int rw = rq_data_dir(rq);
4465
4466 BUG_ON(!cfqq->allocated[rw]);
4467 cfqq->allocated[rw]--;
4468
4469 /* Put down rq reference on cfqg */
4470 cfqg_put(RQ_CFQG(rq));
4471 rq->elv.priv[0] = NULL;
4472 rq->elv.priv[1] = NULL;
4473
4474 cfq_put_queue(cfqq);
4475 }
4476}
4477
4478static struct cfq_queue *
4479cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4480 struct cfq_queue *cfqq)
4481{
4482 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4483 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4484 cfq_mark_cfqq_coop(cfqq->new_cfqq);
4485 cfq_put_queue(cfqq);
4486 return cic_to_cfqq(cic, 1);
4487}
4488
4489/*
4490 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4491 * was the last process referring to said cfqq.
4492 */
4493static struct cfq_queue *
4494split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4495{
4496 if (cfqq_process_refs(cfqq) == 1) {
4497 cfqq->pid = current->pid;
4498 cfq_clear_cfqq_coop(cfqq);
4499 cfq_clear_cfqq_split_coop(cfqq);
4500 return cfqq;
4501 }
4502
4503 cic_set_cfqq(cic, NULL, 1);
4504
4505 cfq_put_cooperator(cfqq);
4506
4507 cfq_put_queue(cfqq);
4508 return NULL;
4509}
4510/*
4511 * Allocate cfq data structures associated with this request.
4512 */
4513static int
4514cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4515 gfp_t gfp_mask)
4516{
4517 struct cfq_data *cfqd = q->elevator->elevator_data;
4518 struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4519 const int rw = rq_data_dir(rq);
4520 const bool is_sync = rq_is_sync(rq);
4521 struct cfq_queue *cfqq;
4522
4523 spin_lock_irq(q->queue_lock);
4524
4525 check_ioprio_changed(cic, bio);
4526 check_blkcg_changed(cic, bio);
4527new_queue:
4528 cfqq = cic_to_cfqq(cic, is_sync);
4529 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4530 if (cfqq)
4531 cfq_put_queue(cfqq);
4532 cfqq = cfq_get_queue(cfqd, is_sync, cic, bio);
4533 cic_set_cfqq(cic, cfqq, is_sync);
4534 } else {
4535 /*
4536 * If the queue was seeky for too long, break it apart.
4537 */
4538 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4539 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4540 cfqq = split_cfqq(cic, cfqq);
4541 if (!cfqq)
4542 goto new_queue;
4543 }
4544
4545 /*
4546 * Check to see if this queue is scheduled to merge with
4547 * another, closely cooperating queue. The merging of
4548 * queues happens here as it must be done in process context.
4549 * The reference on new_cfqq was taken in merge_cfqqs.
4550 */
4551 if (cfqq->new_cfqq)
4552 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4553 }
4554
4555 cfqq->allocated[rw]++;
4556
4557 cfqq->ref++;
4558 cfqg_get(cfqq->cfqg);
4559 rq->elv.priv[0] = cfqq;
4560 rq->elv.priv[1] = cfqq->cfqg;
4561 spin_unlock_irq(q->queue_lock);
4562 return 0;
4563}
4564
4565static void cfq_kick_queue(struct work_struct *work)
4566{
4567 struct cfq_data *cfqd =
4568 container_of(work, struct cfq_data, unplug_work);
4569 struct request_queue *q = cfqd->queue;
4570
4571 spin_lock_irq(q->queue_lock);
4572 __blk_run_queue(cfqd->queue);
4573 spin_unlock_irq(q->queue_lock);
4574}
4575
4576/*
4577 * Timer running if the active_queue is currently idling inside its time slice
4578 */
4579static enum hrtimer_restart cfq_idle_slice_timer(struct hrtimer *timer)
4580{
4581 struct cfq_data *cfqd = container_of(timer, struct cfq_data,
4582 idle_slice_timer);
4583 struct cfq_queue *cfqq;
4584 unsigned long flags;
4585 int timed_out = 1;
4586
4587 cfq_log(cfqd, "idle timer fired");
4588
4589 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4590
4591 cfqq = cfqd->active_queue;
4592 if (cfqq) {
4593 timed_out = 0;
4594
4595 /*
4596 * We saw a request before the queue expired, let it through
4597 */
4598 if (cfq_cfqq_must_dispatch(cfqq))
4599 goto out_kick;
4600
4601 /*
4602 * expired
4603 */
4604 if (cfq_slice_used(cfqq))
4605 goto expire;
4606
4607 /*
4608 * only expire and reinvoke request handler, if there are
4609 * other queues with pending requests
4610 */
4611 if (!cfqd->busy_queues)
4612 goto out_cont;
4613
4614 /*
4615 * not expired and it has a request pending, let it dispatch
4616 */
4617 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4618 goto out_kick;
4619
4620 /*
4621 * Queue depth flag is reset only when the idle didn't succeed
4622 */
4623 cfq_clear_cfqq_deep(cfqq);
4624 }
4625expire:
4626 cfq_slice_expired(cfqd, timed_out);
4627out_kick:
4628 cfq_schedule_dispatch(cfqd);
4629out_cont:
4630 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4631 return HRTIMER_NORESTART;
4632}
4633
4634static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4635{
4636 hrtimer_cancel(&cfqd->idle_slice_timer);
4637 cancel_work_sync(&cfqd->unplug_work);
4638}
4639
4640static void cfq_exit_queue(struct elevator_queue *e)
4641{
4642 struct cfq_data *cfqd = e->elevator_data;
4643 struct request_queue *q = cfqd->queue;
4644
4645 cfq_shutdown_timer_wq(cfqd);
4646
4647 spin_lock_irq(q->queue_lock);
4648
4649 if (cfqd->active_queue)
4650 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4651
4652 spin_unlock_irq(q->queue_lock);
4653
4654 cfq_shutdown_timer_wq(cfqd);
4655
4656#ifdef CONFIG_CFQ_GROUP_IOSCHED
4657 blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4658#else
4659 kfree(cfqd->root_group);
4660#endif
4661 kfree(cfqd);
4662}
4663
4664static int cfq_init_queue(struct request_queue *q, struct elevator_type *e)
4665{
4666 struct cfq_data *cfqd;
4667 struct blkcg_gq *blkg __maybe_unused;
4668 int i, ret;
4669 struct elevator_queue *eq;
4670
4671 eq = elevator_alloc(q, e);
4672 if (!eq)
4673 return -ENOMEM;
4674
4675 cfqd = kzalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
4676 if (!cfqd) {
4677 kobject_put(&eq->kobj);
4678 return -ENOMEM;
4679 }
4680 eq->elevator_data = cfqd;
4681
4682 cfqd->queue = q;
4683 spin_lock_irq(q->queue_lock);
4684 q->elevator = eq;
4685 spin_unlock_irq(q->queue_lock);
4686
4687 /* Init root service tree */
4688 cfqd->grp_service_tree = CFQ_RB_ROOT;
4689
4690 /* Init root group and prefer root group over other groups by default */
4691#ifdef CONFIG_CFQ_GROUP_IOSCHED
4692 ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4693 if (ret)
4694 goto out_free;
4695
4696 cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4697#else
4698 ret = -ENOMEM;
4699 cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4700 GFP_KERNEL, cfqd->queue->node);
4701 if (!cfqd->root_group)
4702 goto out_free;
4703
4704 cfq_init_cfqg_base(cfqd->root_group);
4705 cfqd->root_group->weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4706 cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_LEGACY_DFL;
4707#endif
4708
4709 /*
4710 * Not strictly needed (since RB_ROOT just clears the node and we
4711 * zeroed cfqd on alloc), but better be safe in case someone decides
4712 * to add magic to the rb code
4713 */
4714 for (i = 0; i < CFQ_PRIO_LISTS; i++)
4715 cfqd->prio_trees[i] = RB_ROOT;
4716
4717 /*
4718 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4719 * Grab a permanent reference to it, so that the normal code flow
4720 * will not attempt to free it. oom_cfqq is linked to root_group
4721 * but shouldn't hold a reference as it'll never be unlinked. Lose
4722 * the reference from linking right away.
4723 */
4724 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4725 cfqd->oom_cfqq.ref++;
4726
4727 spin_lock_irq(q->queue_lock);
4728 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4729 cfqg_put(cfqd->root_group);
4730 spin_unlock_irq(q->queue_lock);
4731
4732 hrtimer_init(&cfqd->idle_slice_timer, CLOCK_MONOTONIC,
4733 HRTIMER_MODE_REL);
4734 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4735
4736 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4737
4738 cfqd->cfq_quantum = cfq_quantum;
4739 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4740 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4741 cfqd->cfq_back_max = cfq_back_max;
4742 cfqd->cfq_back_penalty = cfq_back_penalty;
4743 cfqd->cfq_slice[0] = cfq_slice_async;
4744 cfqd->cfq_slice[1] = cfq_slice_sync;
4745 cfqd->cfq_target_latency = cfq_target_latency;
4746 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4747 cfqd->cfq_slice_idle = cfq_slice_idle;
4748 cfqd->cfq_group_idle = cfq_group_idle;
4749 cfqd->cfq_latency = 1;
4750 cfqd->hw_tag = -1;
4751 /*
4752 * we optimistically start assuming sync ops weren't delayed in last
4753 * second, in order to have larger depth for async operations.
4754 */
4755 cfqd->last_delayed_sync = ktime_get_ns() - NSEC_PER_SEC;
4756 return 0;
4757
4758out_free:
4759 kfree(cfqd);
4760 kobject_put(&eq->kobj);
4761 return ret;
4762}
4763
4764static void cfq_registered_queue(struct request_queue *q)
4765{
4766 struct elevator_queue *e = q->elevator;
4767 struct cfq_data *cfqd = e->elevator_data;
4768
4769 /*
4770 * Default to IOPS mode with no idling for SSDs
4771 */
4772 if (blk_queue_nonrot(q))
4773 cfqd->cfq_slice_idle = 0;
4774}
4775
4776/*
4777 * sysfs parts below -->
4778 */
4779static ssize_t
4780cfq_var_show(unsigned int var, char *page)
4781{
4782 return sprintf(page, "%u\n", var);
4783}
4784
4785static ssize_t
4786cfq_var_store(unsigned int *var, const char *page, size_t count)
4787{
4788 char *p = (char *) page;
4789
4790 *var = simple_strtoul(p, &p, 10);
4791 return count;
4792}
4793
4794#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4795static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4796{ \
4797 struct cfq_data *cfqd = e->elevator_data; \
4798 u64 __data = __VAR; \
4799 if (__CONV) \
4800 __data = div_u64(__data, NSEC_PER_MSEC); \
4801 return cfq_var_show(__data, (page)); \
4802}
4803SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4804SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4805SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4806SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4807SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4808SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4809SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4810SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4811SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4812SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4813SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4814SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4815#undef SHOW_FUNCTION
4816
4817#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4818static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4819{ \
4820 struct cfq_data *cfqd = e->elevator_data; \
4821 u64 __data = __VAR; \
4822 __data = div_u64(__data, NSEC_PER_USEC); \
4823 return cfq_var_show(__data, (page)); \
4824}
4825USEC_SHOW_FUNCTION(cfq_slice_idle_us_show, cfqd->cfq_slice_idle);
4826USEC_SHOW_FUNCTION(cfq_group_idle_us_show, cfqd->cfq_group_idle);
4827USEC_SHOW_FUNCTION(cfq_slice_sync_us_show, cfqd->cfq_slice[1]);
4828USEC_SHOW_FUNCTION(cfq_slice_async_us_show, cfqd->cfq_slice[0]);
4829USEC_SHOW_FUNCTION(cfq_target_latency_us_show, cfqd->cfq_target_latency);
4830#undef USEC_SHOW_FUNCTION
4831
4832#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4833static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4834{ \
4835 struct cfq_data *cfqd = e->elevator_data; \
4836 unsigned int __data; \
4837 int ret = cfq_var_store(&__data, (page), count); \
4838 if (__data < (MIN)) \
4839 __data = (MIN); \
4840 else if (__data > (MAX)) \
4841 __data = (MAX); \
4842 if (__CONV) \
4843 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4844 else \
4845 *(__PTR) = __data; \
4846 return ret; \
4847}
4848STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4849STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4850 UINT_MAX, 1);
4851STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4852 UINT_MAX, 1);
4853STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4854STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4855 UINT_MAX, 0);
4856STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4857STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4858STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4859STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4860STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4861 UINT_MAX, 0);
4862STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4863STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4864#undef STORE_FUNCTION
4865
4866#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4867static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4868{ \
4869 struct cfq_data *cfqd = e->elevator_data; \
4870 unsigned int __data; \
4871 int ret = cfq_var_store(&__data, (page), count); \
4872 if (__data < (MIN)) \
4873 __data = (MIN); \
4874 else if (__data > (MAX)) \
4875 __data = (MAX); \
4876 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4877 return ret; \
4878}
4879USEC_STORE_FUNCTION(cfq_slice_idle_us_store, &cfqd->cfq_slice_idle, 0, UINT_MAX);
4880USEC_STORE_FUNCTION(cfq_group_idle_us_store, &cfqd->cfq_group_idle, 0, UINT_MAX);
4881USEC_STORE_FUNCTION(cfq_slice_sync_us_store, &cfqd->cfq_slice[1], 1, UINT_MAX);
4882USEC_STORE_FUNCTION(cfq_slice_async_us_store, &cfqd->cfq_slice[0], 1, UINT_MAX);
4883USEC_STORE_FUNCTION(cfq_target_latency_us_store, &cfqd->cfq_target_latency, 1, UINT_MAX);
4884#undef USEC_STORE_FUNCTION
4885
4886#define CFQ_ATTR(name) \
4887 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4888
4889static struct elv_fs_entry cfq_attrs[] = {
4890 CFQ_ATTR(quantum),
4891 CFQ_ATTR(fifo_expire_sync),
4892 CFQ_ATTR(fifo_expire_async),
4893 CFQ_ATTR(back_seek_max),
4894 CFQ_ATTR(back_seek_penalty),
4895 CFQ_ATTR(slice_sync),
4896 CFQ_ATTR(slice_sync_us),
4897 CFQ_ATTR(slice_async),
4898 CFQ_ATTR(slice_async_us),
4899 CFQ_ATTR(slice_async_rq),
4900 CFQ_ATTR(slice_idle),
4901 CFQ_ATTR(slice_idle_us),
4902 CFQ_ATTR(group_idle),
4903 CFQ_ATTR(group_idle_us),
4904 CFQ_ATTR(low_latency),
4905 CFQ_ATTR(target_latency),
4906 CFQ_ATTR(target_latency_us),
4907 __ATTR_NULL
4908};
4909
4910static struct elevator_type iosched_cfq = {
4911 .ops = {
4912 .elevator_merge_fn = cfq_merge,
4913 .elevator_merged_fn = cfq_merged_request,
4914 .elevator_merge_req_fn = cfq_merged_requests,
4915 .elevator_allow_bio_merge_fn = cfq_allow_bio_merge,
4916 .elevator_allow_rq_merge_fn = cfq_allow_rq_merge,
4917 .elevator_bio_merged_fn = cfq_bio_merged,
4918 .elevator_dispatch_fn = cfq_dispatch_requests,
4919 .elevator_add_req_fn = cfq_insert_request,
4920 .elevator_activate_req_fn = cfq_activate_request,
4921 .elevator_deactivate_req_fn = cfq_deactivate_request,
4922 .elevator_completed_req_fn = cfq_completed_request,
4923 .elevator_former_req_fn = elv_rb_former_request,
4924 .elevator_latter_req_fn = elv_rb_latter_request,
4925 .elevator_init_icq_fn = cfq_init_icq,
4926 .elevator_exit_icq_fn = cfq_exit_icq,
4927 .elevator_set_req_fn = cfq_set_request,
4928 .elevator_put_req_fn = cfq_put_request,
4929 .elevator_may_queue_fn = cfq_may_queue,
4930 .elevator_init_fn = cfq_init_queue,
4931 .elevator_exit_fn = cfq_exit_queue,
4932 .elevator_registered_fn = cfq_registered_queue,
4933 },
4934 .icq_size = sizeof(struct cfq_io_cq),
4935 .icq_align = __alignof__(struct cfq_io_cq),
4936 .elevator_attrs = cfq_attrs,
4937 .elevator_name = "cfq",
4938 .elevator_owner = THIS_MODULE,
4939};
4940
4941#ifdef CONFIG_CFQ_GROUP_IOSCHED
4942static struct blkcg_policy blkcg_policy_cfq = {
4943 .dfl_cftypes = cfq_blkcg_files,
4944 .legacy_cftypes = cfq_blkcg_legacy_files,
4945
4946 .cpd_alloc_fn = cfq_cpd_alloc,
4947 .cpd_init_fn = cfq_cpd_init,
4948 .cpd_free_fn = cfq_cpd_free,
4949 .cpd_bind_fn = cfq_cpd_bind,
4950
4951 .pd_alloc_fn = cfq_pd_alloc,
4952 .pd_init_fn = cfq_pd_init,
4953 .pd_offline_fn = cfq_pd_offline,
4954 .pd_free_fn = cfq_pd_free,
4955 .pd_reset_stats_fn = cfq_pd_reset_stats,
4956};
4957#endif
4958
4959static int __init cfq_init(void)
4960{
4961 int ret;
4962
4963#ifdef CONFIG_CFQ_GROUP_IOSCHED
4964 ret = blkcg_policy_register(&blkcg_policy_cfq);
4965 if (ret)
4966 return ret;
4967#else
4968 cfq_group_idle = 0;
4969#endif
4970
4971 ret = -ENOMEM;
4972 cfq_pool = KMEM_CACHE(cfq_queue, 0);
4973 if (!cfq_pool)
4974 goto err_pol_unreg;
4975
4976 ret = elv_register(&iosched_cfq);
4977 if (ret)
4978 goto err_free_pool;
4979
4980 return 0;
4981
4982err_free_pool:
4983 kmem_cache_destroy(cfq_pool);
4984err_pol_unreg:
4985#ifdef CONFIG_CFQ_GROUP_IOSCHED
4986 blkcg_policy_unregister(&blkcg_policy_cfq);
4987#endif
4988 return ret;
4989}
4990
4991static void __exit cfq_exit(void)
4992{
4993#ifdef CONFIG_CFQ_GROUP_IOSCHED
4994 blkcg_policy_unregister(&blkcg_policy_cfq);
4995#endif
4996 elv_unregister(&iosched_cfq);
4997 kmem_cache_destroy(cfq_pool);
4998}
4999
5000module_init(cfq_init);
5001module_exit(cfq_exit);
5002
5003MODULE_AUTHOR("Jens Axboe");
5004MODULE_LICENSE("GPL");
5005MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
5006