summaryrefslogtreecommitdiff
path: root/fs/aio.c (plain)
blob: c3fc8029439764dfb8df37ce52e03f09b8617307
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11#define pr_fmt(fmt) "%s: " fmt, __func__
12
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/errno.h>
16#include <linux/time.h>
17#include <linux/aio_abi.h>
18#include <linux/export.h>
19#include <linux/syscalls.h>
20#include <linux/backing-dev.h>
21#include <linux/uio.h>
22
23#include <linux/sched.h>
24#include <linux/fs.h>
25#include <linux/file.h>
26#include <linux/mm.h>
27#include <linux/mman.h>
28#include <linux/mmu_context.h>
29#include <linux/percpu.h>
30#include <linux/slab.h>
31#include <linux/timer.h>
32#include <linux/aio.h>
33#include <linux/highmem.h>
34#include <linux/workqueue.h>
35#include <linux/security.h>
36#include <linux/eventfd.h>
37#include <linux/blkdev.h>
38#include <linux/compat.h>
39#include <linux/migrate.h>
40#include <linux/ramfs.h>
41#include <linux/percpu-refcount.h>
42#include <linux/mount.h>
43#include <linux/nospec.h>
44
45#include <asm/kmap_types.h>
46#include <asm/uaccess.h>
47
48#include "internal.h"
49
50#define AIO_RING_MAGIC 0xa10a10a1
51#define AIO_RING_COMPAT_FEATURES 1
52#define AIO_RING_INCOMPAT_FEATURES 0
53struct aio_ring {
54 unsigned id; /* kernel internal index number */
55 unsigned nr; /* number of io_events */
56 unsigned head; /* Written to by userland or under ring_lock
57 * mutex by aio_read_events_ring(). */
58 unsigned tail;
59
60 unsigned magic;
61 unsigned compat_features;
62 unsigned incompat_features;
63 unsigned header_length; /* size of aio_ring */
64
65
66 struct io_event io_events[0];
67}; /* 128 bytes + ring size */
68
69#define AIO_RING_PAGES 8
70
71struct kioctx_table {
72 struct rcu_head rcu;
73 unsigned nr;
74 struct kioctx __rcu *table[];
75};
76
77struct kioctx_cpu {
78 unsigned reqs_available;
79};
80
81struct ctx_rq_wait {
82 struct completion comp;
83 atomic_t count;
84};
85
86struct kioctx {
87 struct percpu_ref users;
88 atomic_t dead;
89
90 struct percpu_ref reqs;
91
92 unsigned long user_id;
93
94 struct __percpu kioctx_cpu *cpu;
95
96 /*
97 * For percpu reqs_available, number of slots we move to/from global
98 * counter at a time:
99 */
100 unsigned req_batch;
101 /*
102 * This is what userspace passed to io_setup(), it's not used for
103 * anything but counting against the global max_reqs quota.
104 *
105 * The real limit is nr_events - 1, which will be larger (see
106 * aio_setup_ring())
107 */
108 unsigned max_reqs;
109
110 /* Size of ringbuffer, in units of struct io_event */
111 unsigned nr_events;
112
113 unsigned long mmap_base;
114 unsigned long mmap_size;
115
116 struct page **ring_pages;
117 long nr_pages;
118
119 struct rcu_head free_rcu;
120 struct work_struct free_work; /* see free_ioctx() */
121
122 /*
123 * signals when all in-flight requests are done
124 */
125 struct ctx_rq_wait *rq_wait;
126
127 struct {
128 /*
129 * This counts the number of available slots in the ringbuffer,
130 * so we avoid overflowing it: it's decremented (if positive)
131 * when allocating a kiocb and incremented when the resulting
132 * io_event is pulled off the ringbuffer.
133 *
134 * We batch accesses to it with a percpu version.
135 */
136 atomic_t reqs_available;
137 } ____cacheline_aligned_in_smp;
138
139 struct {
140 spinlock_t ctx_lock;
141 struct list_head active_reqs; /* used for cancellation */
142 } ____cacheline_aligned_in_smp;
143
144 struct {
145 struct mutex ring_lock;
146 wait_queue_head_t wait;
147 } ____cacheline_aligned_in_smp;
148
149 struct {
150 unsigned tail;
151 unsigned completed_events;
152 spinlock_t completion_lock;
153 } ____cacheline_aligned_in_smp;
154
155 struct page *internal_pages[AIO_RING_PAGES];
156 struct file *aio_ring_file;
157
158 unsigned id;
159};
160
161/*
162 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
163 * cancelled or completed (this makes a certain amount of sense because
164 * successful cancellation - io_cancel() - does deliver the completion to
165 * userspace).
166 *
167 * And since most things don't implement kiocb cancellation and we'd really like
168 * kiocb completion to be lockless when possible, we use ki_cancel to
169 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
170 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
171 */
172#define KIOCB_CANCELLED ((void *) (~0ULL))
173
174struct aio_kiocb {
175 struct kiocb common;
176
177 struct kioctx *ki_ctx;
178 kiocb_cancel_fn *ki_cancel;
179
180 struct iocb __user *ki_user_iocb; /* user's aiocb */
181 __u64 ki_user_data; /* user's data for completion */
182
183 struct list_head ki_list; /* the aio core uses this
184 * for cancellation */
185
186 /*
187 * If the aio_resfd field of the userspace iocb is not zero,
188 * this is the underlying eventfd context to deliver events to.
189 */
190 struct eventfd_ctx *ki_eventfd;
191};
192
193/*------ sysctl variables----*/
194static DEFINE_SPINLOCK(aio_nr_lock);
195unsigned long aio_nr; /* current system wide number of aio requests */
196unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
197/*----end sysctl variables---*/
198
199static struct kmem_cache *kiocb_cachep;
200static struct kmem_cache *kioctx_cachep;
201
202static struct vfsmount *aio_mnt;
203
204static const struct file_operations aio_ring_fops;
205static const struct address_space_operations aio_ctx_aops;
206
207static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
208{
209 struct qstr this = QSTR_INIT("[aio]", 5);
210 struct file *file;
211 struct path path;
212 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
213 if (IS_ERR(inode))
214 return ERR_CAST(inode);
215
216 inode->i_mapping->a_ops = &aio_ctx_aops;
217 inode->i_mapping->private_data = ctx;
218 inode->i_size = PAGE_SIZE * nr_pages;
219
220 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
221 if (!path.dentry) {
222 iput(inode);
223 return ERR_PTR(-ENOMEM);
224 }
225 path.mnt = mntget(aio_mnt);
226
227 d_instantiate(path.dentry, inode);
228 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
229 if (IS_ERR(file)) {
230 path_put(&path);
231 return file;
232 }
233
234 file->f_flags = O_RDWR;
235 return file;
236}
237
238static struct dentry *aio_mount(struct file_system_type *fs_type,
239 int flags, const char *dev_name, void *data)
240{
241 static const struct dentry_operations ops = {
242 .d_dname = simple_dname,
243 };
244 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
245 AIO_RING_MAGIC);
246
247 if (!IS_ERR(root))
248 root->d_sb->s_iflags |= SB_I_NOEXEC;
249 return root;
250}
251
252/* aio_setup
253 * Creates the slab caches used by the aio routines, panic on
254 * failure as this is done early during the boot sequence.
255 */
256static int __init aio_setup(void)
257{
258 static struct file_system_type aio_fs = {
259 .name = "aio",
260 .mount = aio_mount,
261 .kill_sb = kill_anon_super,
262 };
263 aio_mnt = kern_mount(&aio_fs);
264 if (IS_ERR(aio_mnt))
265 panic("Failed to create aio fs mount.");
266
267 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
268 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
269
270 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
271
272 return 0;
273}
274__initcall(aio_setup);
275
276static void put_aio_ring_file(struct kioctx *ctx)
277{
278 struct file *aio_ring_file = ctx->aio_ring_file;
279 struct address_space *i_mapping;
280
281 if (aio_ring_file) {
282 truncate_setsize(aio_ring_file->f_inode, 0);
283
284 /* Prevent further access to the kioctx from migratepages */
285 i_mapping = aio_ring_file->f_inode->i_mapping;
286 spin_lock(&i_mapping->private_lock);
287 i_mapping->private_data = NULL;
288 ctx->aio_ring_file = NULL;
289 spin_unlock(&i_mapping->private_lock);
290
291 fput(aio_ring_file);
292 }
293}
294
295static void aio_free_ring(struct kioctx *ctx)
296{
297 int i;
298
299 /* Disconnect the kiotx from the ring file. This prevents future
300 * accesses to the kioctx from page migration.
301 */
302 put_aio_ring_file(ctx);
303
304 for (i = 0; i < ctx->nr_pages; i++) {
305 struct page *page;
306 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
307 page_count(ctx->ring_pages[i]));
308 page = ctx->ring_pages[i];
309 if (!page)
310 continue;
311 ctx->ring_pages[i] = NULL;
312 put_page(page);
313 }
314
315 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
316 kfree(ctx->ring_pages);
317 ctx->ring_pages = NULL;
318 }
319}
320
321static int aio_ring_mremap(struct vm_area_struct *vma)
322{
323 struct file *file = vma->vm_file;
324 struct mm_struct *mm = vma->vm_mm;
325 struct kioctx_table *table;
326 int i, res = -EINVAL;
327
328 spin_lock(&mm->ioctx_lock);
329 rcu_read_lock();
330 table = rcu_dereference(mm->ioctx_table);
331 for (i = 0; i < table->nr; i++) {
332 struct kioctx *ctx;
333
334 ctx = rcu_dereference(table->table[i]);
335 if (ctx && ctx->aio_ring_file == file) {
336 if (!atomic_read(&ctx->dead)) {
337 ctx->user_id = ctx->mmap_base = vma->vm_start;
338 res = 0;
339 }
340 break;
341 }
342 }
343
344 rcu_read_unlock();
345 spin_unlock(&mm->ioctx_lock);
346 return res;
347}
348
349static const struct vm_operations_struct aio_ring_vm_ops = {
350 .mremap = aio_ring_mremap,
351#if IS_ENABLED(CONFIG_MMU)
352 .fault = filemap_fault,
353 .map_pages = filemap_map_pages,
354 .page_mkwrite = filemap_page_mkwrite,
355#endif
356};
357
358static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
359{
360 vma->vm_flags |= VM_DONTEXPAND;
361 vma->vm_ops = &aio_ring_vm_ops;
362 return 0;
363}
364
365static const struct file_operations aio_ring_fops = {
366 .mmap = aio_ring_mmap,
367};
368
369#if IS_ENABLED(CONFIG_MIGRATION)
370static int aio_migratepage(struct address_space *mapping, struct page *new,
371 struct page *old, enum migrate_mode mode)
372{
373 struct kioctx *ctx;
374 unsigned long flags;
375 pgoff_t idx;
376 int rc;
377
378 rc = 0;
379
380 /* mapping->private_lock here protects against the kioctx teardown. */
381 spin_lock(&mapping->private_lock);
382 ctx = mapping->private_data;
383 if (!ctx) {
384 rc = -EINVAL;
385 goto out;
386 }
387
388 /* The ring_lock mutex. The prevents aio_read_events() from writing
389 * to the ring's head, and prevents page migration from mucking in
390 * a partially initialized kiotx.
391 */
392 if (!mutex_trylock(&ctx->ring_lock)) {
393 rc = -EAGAIN;
394 goto out;
395 }
396
397 idx = old->index;
398 if (idx < (pgoff_t)ctx->nr_pages) {
399 /* Make sure the old page hasn't already been changed */
400 if (ctx->ring_pages[idx] != old)
401 rc = -EAGAIN;
402 } else
403 rc = -EINVAL;
404
405 if (rc != 0)
406 goto out_unlock;
407
408 /* Writeback must be complete */
409 BUG_ON(PageWriteback(old));
410 get_page(new);
411
412 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
413 if (rc != MIGRATEPAGE_SUCCESS) {
414 put_page(new);
415 goto out_unlock;
416 }
417
418 /* Take completion_lock to prevent other writes to the ring buffer
419 * while the old page is copied to the new. This prevents new
420 * events from being lost.
421 */
422 spin_lock_irqsave(&ctx->completion_lock, flags);
423 migrate_page_copy(new, old);
424 BUG_ON(ctx->ring_pages[idx] != old);
425 ctx->ring_pages[idx] = new;
426 spin_unlock_irqrestore(&ctx->completion_lock, flags);
427
428 /* The old page is no longer accessible. */
429 put_page(old);
430
431out_unlock:
432 mutex_unlock(&ctx->ring_lock);
433out:
434 spin_unlock(&mapping->private_lock);
435 return rc;
436}
437#endif
438
439static const struct address_space_operations aio_ctx_aops = {
440 .set_page_dirty = __set_page_dirty_no_writeback,
441#if IS_ENABLED(CONFIG_MIGRATION)
442 .migratepage = aio_migratepage,
443#endif
444};
445
446static int aio_setup_ring(struct kioctx *ctx)
447{
448 struct aio_ring *ring;
449 unsigned nr_events = ctx->max_reqs;
450 struct mm_struct *mm = current->mm;
451 unsigned long size, unused;
452 int nr_pages;
453 int i;
454 struct file *file;
455
456 /* Compensate for the ring buffer's head/tail overlap entry */
457 nr_events += 2; /* 1 is required, 2 for good luck */
458
459 size = sizeof(struct aio_ring);
460 size += sizeof(struct io_event) * nr_events;
461
462 nr_pages = PFN_UP(size);
463 if (nr_pages < 0)
464 return -EINVAL;
465
466 file = aio_private_file(ctx, nr_pages);
467 if (IS_ERR(file)) {
468 ctx->aio_ring_file = NULL;
469 return -ENOMEM;
470 }
471
472 ctx->aio_ring_file = file;
473 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
474 / sizeof(struct io_event);
475
476 ctx->ring_pages = ctx->internal_pages;
477 if (nr_pages > AIO_RING_PAGES) {
478 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
479 GFP_KERNEL);
480 if (!ctx->ring_pages) {
481 put_aio_ring_file(ctx);
482 return -ENOMEM;
483 }
484 }
485
486 for (i = 0; i < nr_pages; i++) {
487 struct page *page;
488 page = find_or_create_page(file->f_inode->i_mapping,
489 i, GFP_HIGHUSER | __GFP_ZERO);
490 if (!page)
491 break;
492 pr_debug("pid(%d) page[%d]->count=%d\n",
493 current->pid, i, page_count(page));
494 SetPageUptodate(page);
495 unlock_page(page);
496
497 ctx->ring_pages[i] = page;
498 }
499 ctx->nr_pages = i;
500
501 if (unlikely(i != nr_pages)) {
502 aio_free_ring(ctx);
503 return -ENOMEM;
504 }
505
506 ctx->mmap_size = nr_pages * PAGE_SIZE;
507 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
508
509 if (down_write_killable(&mm->mmap_sem)) {
510 ctx->mmap_size = 0;
511 aio_free_ring(ctx);
512 return -EINTR;
513 }
514
515 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
516 PROT_READ | PROT_WRITE,
517 MAP_SHARED, 0, &unused);
518 up_write(&mm->mmap_sem);
519 if (IS_ERR((void *)ctx->mmap_base)) {
520 ctx->mmap_size = 0;
521 aio_free_ring(ctx);
522 return -ENOMEM;
523 }
524
525 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
526
527 ctx->user_id = ctx->mmap_base;
528 ctx->nr_events = nr_events; /* trusted copy */
529
530 ring = kmap_atomic(ctx->ring_pages[0]);
531 ring->nr = nr_events; /* user copy */
532 ring->id = ~0U;
533 ring->head = ring->tail = 0;
534 ring->magic = AIO_RING_MAGIC;
535 ring->compat_features = AIO_RING_COMPAT_FEATURES;
536 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
537 ring->header_length = sizeof(struct aio_ring);
538 kunmap_atomic(ring);
539 flush_dcache_page(ctx->ring_pages[0]);
540
541 return 0;
542}
543
544#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
545#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
546#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
547
548void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
549{
550 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
551 struct kioctx *ctx = req->ki_ctx;
552 unsigned long flags;
553
554 spin_lock_irqsave(&ctx->ctx_lock, flags);
555
556 if (!req->ki_list.next)
557 list_add(&req->ki_list, &ctx->active_reqs);
558
559 req->ki_cancel = cancel;
560
561 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
562}
563EXPORT_SYMBOL(kiocb_set_cancel_fn);
564
565static int kiocb_cancel(struct aio_kiocb *kiocb)
566{
567 kiocb_cancel_fn *old, *cancel;
568
569 /*
570 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
571 * actually has a cancel function, hence the cmpxchg()
572 */
573
574 cancel = ACCESS_ONCE(kiocb->ki_cancel);
575 do {
576 if (!cancel || cancel == KIOCB_CANCELLED)
577 return -EINVAL;
578
579 old = cancel;
580 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
581 } while (cancel != old);
582
583 return cancel(&kiocb->common);
584}
585
586/*
587 * free_ioctx() should be RCU delayed to synchronize against the RCU
588 * protected lookup_ioctx() and also needs process context to call
589 * aio_free_ring(), so the double bouncing through kioctx->free_rcu and
590 * ->free_work.
591 */
592static void free_ioctx(struct work_struct *work)
593{
594 struct kioctx *ctx = container_of(work, struct kioctx, free_work);
595
596 pr_debug("freeing %p\n", ctx);
597
598 aio_free_ring(ctx);
599 free_percpu(ctx->cpu);
600 percpu_ref_exit(&ctx->reqs);
601 percpu_ref_exit(&ctx->users);
602 kmem_cache_free(kioctx_cachep, ctx);
603}
604
605static void free_ioctx_rcufn(struct rcu_head *head)
606{
607 struct kioctx *ctx = container_of(head, struct kioctx, free_rcu);
608
609 INIT_WORK(&ctx->free_work, free_ioctx);
610 schedule_work(&ctx->free_work);
611}
612
613static void free_ioctx_reqs(struct percpu_ref *ref)
614{
615 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
616
617 /* At this point we know that there are no any in-flight requests */
618 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
619 complete(&ctx->rq_wait->comp);
620
621 /* Synchronize against RCU protected table->table[] dereferences */
622 call_rcu(&ctx->free_rcu, free_ioctx_rcufn);
623}
624
625/*
626 * When this function runs, the kioctx has been removed from the "hash table"
627 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
628 * now it's safe to cancel any that need to be.
629 */
630static void free_ioctx_users(struct percpu_ref *ref)
631{
632 struct kioctx *ctx = container_of(ref, struct kioctx, users);
633 struct aio_kiocb *req;
634
635 spin_lock_irq(&ctx->ctx_lock);
636
637 while (!list_empty(&ctx->active_reqs)) {
638 req = list_first_entry(&ctx->active_reqs,
639 struct aio_kiocb, ki_list);
640 kiocb_cancel(req);
641 list_del_init(&req->ki_list);
642 }
643
644 spin_unlock_irq(&ctx->ctx_lock);
645
646 percpu_ref_kill(&ctx->reqs);
647 percpu_ref_put(&ctx->reqs);
648}
649
650static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
651{
652 unsigned i, new_nr;
653 struct kioctx_table *table, *old;
654 struct aio_ring *ring;
655
656 spin_lock(&mm->ioctx_lock);
657 table = rcu_dereference_raw(mm->ioctx_table);
658
659 while (1) {
660 if (table)
661 for (i = 0; i < table->nr; i++)
662 if (!rcu_access_pointer(table->table[i])) {
663 ctx->id = i;
664 rcu_assign_pointer(table->table[i], ctx);
665 spin_unlock(&mm->ioctx_lock);
666
667 /* While kioctx setup is in progress,
668 * we are protected from page migration
669 * changes ring_pages by ->ring_lock.
670 */
671 ring = kmap_atomic(ctx->ring_pages[0]);
672 ring->id = ctx->id;
673 kunmap_atomic(ring);
674 return 0;
675 }
676
677 new_nr = (table ? table->nr : 1) * 4;
678 spin_unlock(&mm->ioctx_lock);
679
680 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
681 new_nr, GFP_KERNEL);
682 if (!table)
683 return -ENOMEM;
684
685 table->nr = new_nr;
686
687 spin_lock(&mm->ioctx_lock);
688 old = rcu_dereference_raw(mm->ioctx_table);
689
690 if (!old) {
691 rcu_assign_pointer(mm->ioctx_table, table);
692 } else if (table->nr > old->nr) {
693 memcpy(table->table, old->table,
694 old->nr * sizeof(struct kioctx *));
695
696 rcu_assign_pointer(mm->ioctx_table, table);
697 kfree_rcu(old, rcu);
698 } else {
699 kfree(table);
700 table = old;
701 }
702 }
703}
704
705static void aio_nr_sub(unsigned nr)
706{
707 spin_lock(&aio_nr_lock);
708 if (WARN_ON(aio_nr - nr > aio_nr))
709 aio_nr = 0;
710 else
711 aio_nr -= nr;
712 spin_unlock(&aio_nr_lock);
713}
714
715/* ioctx_alloc
716 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
717 */
718static struct kioctx *ioctx_alloc(unsigned nr_events)
719{
720 struct mm_struct *mm = current->mm;
721 struct kioctx *ctx;
722 int err = -ENOMEM;
723
724 /*
725 * We keep track of the number of available ringbuffer slots, to prevent
726 * overflow (reqs_available), and we also use percpu counters for this.
727 *
728 * So since up to half the slots might be on other cpu's percpu counters
729 * and unavailable, double nr_events so userspace sees what they
730 * expected: additionally, we move req_batch slots to/from percpu
731 * counters at a time, so make sure that isn't 0:
732 */
733 nr_events = max(nr_events, num_possible_cpus() * 4);
734 nr_events *= 2;
735
736 /* Prevent overflows */
737 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
738 pr_debug("ENOMEM: nr_events too high\n");
739 return ERR_PTR(-EINVAL);
740 }
741
742 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
743 return ERR_PTR(-EAGAIN);
744
745 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
746 if (!ctx)
747 return ERR_PTR(-ENOMEM);
748
749 ctx->max_reqs = nr_events;
750
751 spin_lock_init(&ctx->ctx_lock);
752 spin_lock_init(&ctx->completion_lock);
753 mutex_init(&ctx->ring_lock);
754 /* Protect against page migration throughout kiotx setup by keeping
755 * the ring_lock mutex held until setup is complete. */
756 mutex_lock(&ctx->ring_lock);
757 init_waitqueue_head(&ctx->wait);
758
759 INIT_LIST_HEAD(&ctx->active_reqs);
760
761 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
762 goto err;
763
764 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
765 goto err;
766
767 ctx->cpu = alloc_percpu(struct kioctx_cpu);
768 if (!ctx->cpu)
769 goto err;
770
771 err = aio_setup_ring(ctx);
772 if (err < 0)
773 goto err;
774
775 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
776 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
777 if (ctx->req_batch < 1)
778 ctx->req_batch = 1;
779
780 /* limit the number of system wide aios */
781 spin_lock(&aio_nr_lock);
782 if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
783 aio_nr + nr_events < aio_nr) {
784 spin_unlock(&aio_nr_lock);
785 err = -EAGAIN;
786 goto err_ctx;
787 }
788 aio_nr += ctx->max_reqs;
789 spin_unlock(&aio_nr_lock);
790
791 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
792 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
793
794 err = ioctx_add_table(ctx, mm);
795 if (err)
796 goto err_cleanup;
797
798 /* Release the ring_lock mutex now that all setup is complete. */
799 mutex_unlock(&ctx->ring_lock);
800
801 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
802 ctx, ctx->user_id, mm, ctx->nr_events);
803 return ctx;
804
805err_cleanup:
806 aio_nr_sub(ctx->max_reqs);
807err_ctx:
808 atomic_set(&ctx->dead, 1);
809 if (ctx->mmap_size)
810 vm_munmap(ctx->mmap_base, ctx->mmap_size);
811 aio_free_ring(ctx);
812err:
813 mutex_unlock(&ctx->ring_lock);
814 free_percpu(ctx->cpu);
815 percpu_ref_exit(&ctx->reqs);
816 percpu_ref_exit(&ctx->users);
817 kmem_cache_free(kioctx_cachep, ctx);
818 pr_debug("error allocating ioctx %d\n", err);
819 return ERR_PTR(err);
820}
821
822/* kill_ioctx
823 * Cancels all outstanding aio requests on an aio context. Used
824 * when the processes owning a context have all exited to encourage
825 * the rapid destruction of the kioctx.
826 */
827static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
828 struct ctx_rq_wait *wait)
829{
830 struct kioctx_table *table;
831
832 spin_lock(&mm->ioctx_lock);
833 if (atomic_xchg(&ctx->dead, 1)) {
834 spin_unlock(&mm->ioctx_lock);
835 return -EINVAL;
836 }
837
838 table = rcu_dereference_raw(mm->ioctx_table);
839 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
840 RCU_INIT_POINTER(table->table[ctx->id], NULL);
841 spin_unlock(&mm->ioctx_lock);
842
843 /* free_ioctx_reqs() will do the necessary RCU synchronization */
844 wake_up_all(&ctx->wait);
845
846 /*
847 * It'd be more correct to do this in free_ioctx(), after all
848 * the outstanding kiocbs have finished - but by then io_destroy
849 * has already returned, so io_setup() could potentially return
850 * -EAGAIN with no ioctxs actually in use (as far as userspace
851 * could tell).
852 */
853 aio_nr_sub(ctx->max_reqs);
854
855 if (ctx->mmap_size)
856 vm_munmap(ctx->mmap_base, ctx->mmap_size);
857
858 ctx->rq_wait = wait;
859 percpu_ref_kill(&ctx->users);
860 return 0;
861}
862
863/*
864 * exit_aio: called when the last user of mm goes away. At this point, there is
865 * no way for any new requests to be submited or any of the io_* syscalls to be
866 * called on the context.
867 *
868 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
869 * them.
870 */
871void exit_aio(struct mm_struct *mm)
872{
873 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
874 struct ctx_rq_wait wait;
875 int i, skipped;
876
877 if (!table)
878 return;
879
880 atomic_set(&wait.count, table->nr);
881 init_completion(&wait.comp);
882
883 skipped = 0;
884 for (i = 0; i < table->nr; ++i) {
885 struct kioctx *ctx =
886 rcu_dereference_protected(table->table[i], true);
887
888 if (!ctx) {
889 skipped++;
890 continue;
891 }
892
893 /*
894 * We don't need to bother with munmap() here - exit_mmap(mm)
895 * is coming and it'll unmap everything. And we simply can't,
896 * this is not necessarily our ->mm.
897 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
898 * that it needs to unmap the area, just set it to 0.
899 */
900 ctx->mmap_size = 0;
901 kill_ioctx(mm, ctx, &wait);
902 }
903
904 if (!atomic_sub_and_test(skipped, &wait.count)) {
905 /* Wait until all IO for the context are done. */
906 wait_for_completion(&wait.comp);
907 }
908
909 RCU_INIT_POINTER(mm->ioctx_table, NULL);
910 kfree(table);
911}
912
913static void put_reqs_available(struct kioctx *ctx, unsigned nr)
914{
915 struct kioctx_cpu *kcpu;
916 unsigned long flags;
917
918 local_irq_save(flags);
919 kcpu = this_cpu_ptr(ctx->cpu);
920 kcpu->reqs_available += nr;
921
922 while (kcpu->reqs_available >= ctx->req_batch * 2) {
923 kcpu->reqs_available -= ctx->req_batch;
924 atomic_add(ctx->req_batch, &ctx->reqs_available);
925 }
926
927 local_irq_restore(flags);
928}
929
930static bool get_reqs_available(struct kioctx *ctx)
931{
932 struct kioctx_cpu *kcpu;
933 bool ret = false;
934 unsigned long flags;
935
936 local_irq_save(flags);
937 kcpu = this_cpu_ptr(ctx->cpu);
938 if (!kcpu->reqs_available) {
939 int old, avail = atomic_read(&ctx->reqs_available);
940
941 do {
942 if (avail < ctx->req_batch)
943 goto out;
944
945 old = avail;
946 avail = atomic_cmpxchg(&ctx->reqs_available,
947 avail, avail - ctx->req_batch);
948 } while (avail != old);
949
950 kcpu->reqs_available += ctx->req_batch;
951 }
952
953 ret = true;
954 kcpu->reqs_available--;
955out:
956 local_irq_restore(flags);
957 return ret;
958}
959
960/* refill_reqs_available
961 * Updates the reqs_available reference counts used for tracking the
962 * number of free slots in the completion ring. This can be called
963 * from aio_complete() (to optimistically update reqs_available) or
964 * from aio_get_req() (the we're out of events case). It must be
965 * called holding ctx->completion_lock.
966 */
967static void refill_reqs_available(struct kioctx *ctx, unsigned head,
968 unsigned tail)
969{
970 unsigned events_in_ring, completed;
971
972 /* Clamp head since userland can write to it. */
973 head %= ctx->nr_events;
974 if (head <= tail)
975 events_in_ring = tail - head;
976 else
977 events_in_ring = ctx->nr_events - (head - tail);
978
979 completed = ctx->completed_events;
980 if (events_in_ring < completed)
981 completed -= events_in_ring;
982 else
983 completed = 0;
984
985 if (!completed)
986 return;
987
988 ctx->completed_events -= completed;
989 put_reqs_available(ctx, completed);
990}
991
992/* user_refill_reqs_available
993 * Called to refill reqs_available when aio_get_req() encounters an
994 * out of space in the completion ring.
995 */
996static void user_refill_reqs_available(struct kioctx *ctx)
997{
998 spin_lock_irq(&ctx->completion_lock);
999 if (ctx->completed_events) {
1000 struct aio_ring *ring;
1001 unsigned head;
1002
1003 /* Access of ring->head may race with aio_read_events_ring()
1004 * here, but that's okay since whether we read the old version
1005 * or the new version, and either will be valid. The important
1006 * part is that head cannot pass tail since we prevent
1007 * aio_complete() from updating tail by holding
1008 * ctx->completion_lock. Even if head is invalid, the check
1009 * against ctx->completed_events below will make sure we do the
1010 * safe/right thing.
1011 */
1012 ring = kmap_atomic(ctx->ring_pages[0]);
1013 head = ring->head;
1014 kunmap_atomic(ring);
1015
1016 refill_reqs_available(ctx, head, ctx->tail);
1017 }
1018
1019 spin_unlock_irq(&ctx->completion_lock);
1020}
1021
1022/* aio_get_req
1023 * Allocate a slot for an aio request.
1024 * Returns NULL if no requests are free.
1025 */
1026static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1027{
1028 struct aio_kiocb *req;
1029
1030 if (!get_reqs_available(ctx)) {
1031 user_refill_reqs_available(ctx);
1032 if (!get_reqs_available(ctx))
1033 return NULL;
1034 }
1035
1036 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1037 if (unlikely(!req))
1038 goto out_put;
1039
1040 percpu_ref_get(&ctx->reqs);
1041
1042 req->ki_ctx = ctx;
1043 return req;
1044out_put:
1045 put_reqs_available(ctx, 1);
1046 return NULL;
1047}
1048
1049static void kiocb_free(struct aio_kiocb *req)
1050{
1051 if (req->common.ki_filp)
1052 fput(req->common.ki_filp);
1053 if (req->ki_eventfd != NULL)
1054 eventfd_ctx_put(req->ki_eventfd);
1055 kmem_cache_free(kiocb_cachep, req);
1056}
1057
1058static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1059{
1060 struct aio_ring __user *ring = (void __user *)ctx_id;
1061 struct mm_struct *mm = current->mm;
1062 struct kioctx *ctx, *ret = NULL;
1063 struct kioctx_table *table;
1064 unsigned id;
1065
1066 if (get_user(id, &ring->id))
1067 return NULL;
1068
1069 rcu_read_lock();
1070 table = rcu_dereference(mm->ioctx_table);
1071
1072 if (!table || id >= table->nr)
1073 goto out;
1074
1075 id = array_index_nospec(id, table->nr);
1076 ctx = rcu_dereference(table->table[id]);
1077 if (ctx && ctx->user_id == ctx_id) {
1078 if (percpu_ref_tryget_live(&ctx->users))
1079 ret = ctx;
1080 }
1081out:
1082 rcu_read_unlock();
1083 return ret;
1084}
1085
1086/* aio_complete
1087 * Called when the io request on the given iocb is complete.
1088 */
1089static void aio_complete(struct kiocb *kiocb, long res, long res2)
1090{
1091 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1092 struct kioctx *ctx = iocb->ki_ctx;
1093 struct aio_ring *ring;
1094 struct io_event *ev_page, *event;
1095 unsigned tail, pos, head;
1096 unsigned long flags;
1097
1098 if (kiocb->ki_flags & IOCB_WRITE) {
1099 struct file *file = kiocb->ki_filp;
1100
1101 /*
1102 * Tell lockdep we inherited freeze protection from submission
1103 * thread.
1104 */
1105 if (S_ISREG(file_inode(file)->i_mode))
1106 __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1107 file_end_write(file);
1108 }
1109
1110 /*
1111 * Special case handling for sync iocbs:
1112 * - events go directly into the iocb for fast handling
1113 * - the sync task with the iocb in its stack holds the single iocb
1114 * ref, no other paths have a way to get another ref
1115 * - the sync task helpfully left a reference to itself in the iocb
1116 */
1117 BUG_ON(is_sync_kiocb(kiocb));
1118
1119 if (iocb->ki_list.next) {
1120 unsigned long flags;
1121
1122 spin_lock_irqsave(&ctx->ctx_lock, flags);
1123 list_del(&iocb->ki_list);
1124 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1125 }
1126
1127 /*
1128 * Add a completion event to the ring buffer. Must be done holding
1129 * ctx->completion_lock to prevent other code from messing with the tail
1130 * pointer since we might be called from irq context.
1131 */
1132 spin_lock_irqsave(&ctx->completion_lock, flags);
1133
1134 tail = ctx->tail;
1135 pos = tail + AIO_EVENTS_OFFSET;
1136
1137 if (++tail >= ctx->nr_events)
1138 tail = 0;
1139
1140 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1141 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1142
1143 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1144 event->data = iocb->ki_user_data;
1145 event->res = res;
1146 event->res2 = res2;
1147
1148 kunmap_atomic(ev_page);
1149 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1150
1151 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1152 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1153 res, res2);
1154
1155 /* after flagging the request as done, we
1156 * must never even look at it again
1157 */
1158 smp_wmb(); /* make event visible before updating tail */
1159
1160 ctx->tail = tail;
1161
1162 ring = kmap_atomic(ctx->ring_pages[0]);
1163 head = ring->head;
1164 ring->tail = tail;
1165 kunmap_atomic(ring);
1166 flush_dcache_page(ctx->ring_pages[0]);
1167
1168 ctx->completed_events++;
1169 if (ctx->completed_events > 1)
1170 refill_reqs_available(ctx, head, tail);
1171 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1172
1173 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1174
1175 /*
1176 * Check if the user asked us to deliver the result through an
1177 * eventfd. The eventfd_signal() function is safe to be called
1178 * from IRQ context.
1179 */
1180 if (iocb->ki_eventfd != NULL)
1181 eventfd_signal(iocb->ki_eventfd, 1);
1182
1183 /* everything turned out well, dispose of the aiocb. */
1184 kiocb_free(iocb);
1185
1186 /*
1187 * We have to order our ring_info tail store above and test
1188 * of the wait list below outside the wait lock. This is
1189 * like in wake_up_bit() where clearing a bit has to be
1190 * ordered with the unlocked test.
1191 */
1192 smp_mb();
1193
1194 if (waitqueue_active(&ctx->wait))
1195 wake_up(&ctx->wait);
1196
1197 percpu_ref_put(&ctx->reqs);
1198}
1199
1200/* aio_read_events_ring
1201 * Pull an event off of the ioctx's event ring. Returns the number of
1202 * events fetched
1203 */
1204static long aio_read_events_ring(struct kioctx *ctx,
1205 struct io_event __user *event, long nr)
1206{
1207 struct aio_ring *ring;
1208 unsigned head, tail, pos;
1209 long ret = 0;
1210 int copy_ret;
1211
1212 /*
1213 * The mutex can block and wake us up and that will cause
1214 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1215 * and repeat. This should be rare enough that it doesn't cause
1216 * peformance issues. See the comment in read_events() for more detail.
1217 */
1218 sched_annotate_sleep();
1219 mutex_lock(&ctx->ring_lock);
1220
1221 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1222 ring = kmap_atomic(ctx->ring_pages[0]);
1223 head = ring->head;
1224 tail = ring->tail;
1225 kunmap_atomic(ring);
1226
1227 /*
1228 * Ensure that once we've read the current tail pointer, that
1229 * we also see the events that were stored up to the tail.
1230 */
1231 smp_rmb();
1232
1233 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1234
1235 if (head == tail)
1236 goto out;
1237
1238 head %= ctx->nr_events;
1239 tail %= ctx->nr_events;
1240
1241 while (ret < nr) {
1242 long avail;
1243 struct io_event *ev;
1244 struct page *page;
1245
1246 avail = (head <= tail ? tail : ctx->nr_events) - head;
1247 if (head == tail)
1248 break;
1249
1250 avail = min(avail, nr - ret);
1251 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1252 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1253
1254 pos = head + AIO_EVENTS_OFFSET;
1255 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1256 pos %= AIO_EVENTS_PER_PAGE;
1257
1258 ev = kmap(page);
1259 copy_ret = copy_to_user(event + ret, ev + pos,
1260 sizeof(*ev) * avail);
1261 kunmap(page);
1262
1263 if (unlikely(copy_ret)) {
1264 ret = -EFAULT;
1265 goto out;
1266 }
1267
1268 ret += avail;
1269 head += avail;
1270 head %= ctx->nr_events;
1271 }
1272
1273 ring = kmap_atomic(ctx->ring_pages[0]);
1274 ring->head = head;
1275 kunmap_atomic(ring);
1276 flush_dcache_page(ctx->ring_pages[0]);
1277
1278 pr_debug("%li h%u t%u\n", ret, head, tail);
1279out:
1280 mutex_unlock(&ctx->ring_lock);
1281
1282 return ret;
1283}
1284
1285static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1286 struct io_event __user *event, long *i)
1287{
1288 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1289
1290 if (ret > 0)
1291 *i += ret;
1292
1293 if (unlikely(atomic_read(&ctx->dead)))
1294 ret = -EINVAL;
1295
1296 if (!*i)
1297 *i = ret;
1298
1299 return ret < 0 || *i >= min_nr;
1300}
1301
1302static long read_events(struct kioctx *ctx, long min_nr, long nr,
1303 struct io_event __user *event,
1304 struct timespec __user *timeout)
1305{
1306 ktime_t until = { .tv64 = KTIME_MAX };
1307 long ret = 0;
1308
1309 if (timeout) {
1310 struct timespec ts;
1311
1312 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1313 return -EFAULT;
1314
1315 until = timespec_to_ktime(ts);
1316 }
1317
1318 /*
1319 * Note that aio_read_events() is being called as the conditional - i.e.
1320 * we're calling it after prepare_to_wait() has set task state to
1321 * TASK_INTERRUPTIBLE.
1322 *
1323 * But aio_read_events() can block, and if it blocks it's going to flip
1324 * the task state back to TASK_RUNNING.
1325 *
1326 * This should be ok, provided it doesn't flip the state back to
1327 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1328 * will only happen if the mutex_lock() call blocks, and we then find
1329 * the ringbuffer empty. So in practice we should be ok, but it's
1330 * something to be aware of when touching this code.
1331 */
1332 if (until.tv64 == 0)
1333 aio_read_events(ctx, min_nr, nr, event, &ret);
1334 else
1335 wait_event_interruptible_hrtimeout(ctx->wait,
1336 aio_read_events(ctx, min_nr, nr, event, &ret),
1337 until);
1338
1339 if (!ret && signal_pending(current))
1340 ret = -EINTR;
1341
1342 return ret;
1343}
1344
1345/* sys_io_setup:
1346 * Create an aio_context capable of receiving at least nr_events.
1347 * ctxp must not point to an aio_context that already exists, and
1348 * must be initialized to 0 prior to the call. On successful
1349 * creation of the aio_context, *ctxp is filled in with the resulting
1350 * handle. May fail with -EINVAL if *ctxp is not initialized,
1351 * if the specified nr_events exceeds internal limits. May fail
1352 * with -EAGAIN if the specified nr_events exceeds the user's limit
1353 * of available events. May fail with -ENOMEM if insufficient kernel
1354 * resources are available. May fail with -EFAULT if an invalid
1355 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1356 * implemented.
1357 */
1358SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1359{
1360 struct kioctx *ioctx = NULL;
1361 unsigned long ctx;
1362 long ret;
1363
1364 ret = get_user(ctx, ctxp);
1365 if (unlikely(ret))
1366 goto out;
1367
1368 ret = -EINVAL;
1369 if (unlikely(ctx || nr_events == 0)) {
1370 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1371 ctx, nr_events);
1372 goto out;
1373 }
1374
1375 ioctx = ioctx_alloc(nr_events);
1376 ret = PTR_ERR(ioctx);
1377 if (!IS_ERR(ioctx)) {
1378 ret = put_user(ioctx->user_id, ctxp);
1379 if (ret)
1380 kill_ioctx(current->mm, ioctx, NULL);
1381 percpu_ref_put(&ioctx->users);
1382 }
1383
1384out:
1385 return ret;
1386}
1387
1388/* sys_io_destroy:
1389 * Destroy the aio_context specified. May cancel any outstanding
1390 * AIOs and block on completion. Will fail with -ENOSYS if not
1391 * implemented. May fail with -EINVAL if the context pointed to
1392 * is invalid.
1393 */
1394SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1395{
1396 struct kioctx *ioctx = lookup_ioctx(ctx);
1397 if (likely(NULL != ioctx)) {
1398 struct ctx_rq_wait wait;
1399 int ret;
1400
1401 init_completion(&wait.comp);
1402 atomic_set(&wait.count, 1);
1403
1404 /* Pass requests_done to kill_ioctx() where it can be set
1405 * in a thread-safe way. If we try to set it here then we have
1406 * a race condition if two io_destroy() called simultaneously.
1407 */
1408 ret = kill_ioctx(current->mm, ioctx, &wait);
1409 percpu_ref_put(&ioctx->users);
1410
1411 /* Wait until all IO for the context are done. Otherwise kernel
1412 * keep using user-space buffers even if user thinks the context
1413 * is destroyed.
1414 */
1415 if (!ret)
1416 wait_for_completion(&wait.comp);
1417
1418 return ret;
1419 }
1420 pr_debug("EINVAL: invalid context id\n");
1421 return -EINVAL;
1422}
1423
1424static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1425 bool vectored, bool compat, struct iov_iter *iter)
1426{
1427 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1428 size_t len = iocb->aio_nbytes;
1429
1430 if (!vectored) {
1431 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1432 *iovec = NULL;
1433 return ret;
1434 }
1435#ifdef CONFIG_COMPAT
1436 if (compat)
1437 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1438 iter);
1439#endif
1440 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1441}
1442
1443static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1444{
1445 switch (ret) {
1446 case -EIOCBQUEUED:
1447 return ret;
1448 case -ERESTARTSYS:
1449 case -ERESTARTNOINTR:
1450 case -ERESTARTNOHAND:
1451 case -ERESTART_RESTARTBLOCK:
1452 /*
1453 * There's no easy way to restart the syscall since other AIO's
1454 * may be already running. Just fail this IO with EINTR.
1455 */
1456 ret = -EINTR;
1457 /*FALLTHRU*/
1458 default:
1459 aio_complete(req, ret, 0);
1460 return 0;
1461 }
1462}
1463
1464static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1465 bool compat)
1466{
1467 struct file *file = req->ki_filp;
1468 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1469 struct iov_iter iter;
1470 ssize_t ret;
1471
1472 if (unlikely(!(file->f_mode & FMODE_READ)))
1473 return -EBADF;
1474 if (unlikely(!file->f_op->read_iter))
1475 return -EINVAL;
1476
1477 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1478 if (ret)
1479 return ret;
1480 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1481 if (!ret)
1482 ret = aio_ret(req, file->f_op->read_iter(req, &iter));
1483 kfree(iovec);
1484 return ret;
1485}
1486
1487static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1488 bool compat)
1489{
1490 struct file *file = req->ki_filp;
1491 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1492 struct iov_iter iter;
1493 ssize_t ret;
1494
1495 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1496 return -EBADF;
1497 if (unlikely(!file->f_op->write_iter))
1498 return -EINVAL;
1499
1500 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1501 if (ret)
1502 return ret;
1503 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1504 if (!ret) {
1505 req->ki_flags |= IOCB_WRITE;
1506 file_start_write(file);
1507 ret = aio_ret(req, file->f_op->write_iter(req, &iter));
1508 /*
1509 * We release freeze protection in aio_complete(). Fool lockdep
1510 * by telling it the lock got released so that it doesn't
1511 * complain about held lock when we return to userspace.
1512 */
1513 if (S_ISREG(file_inode(file)->i_mode))
1514 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1515 }
1516 kfree(iovec);
1517 return ret;
1518}
1519
1520static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1521 struct iocb *iocb, bool compat)
1522{
1523 struct aio_kiocb *req;
1524 struct file *file;
1525 ssize_t ret;
1526
1527 /* enforce forwards compatibility on users */
1528 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1529 pr_debug("EINVAL: reserve field set\n");
1530 return -EINVAL;
1531 }
1532
1533 /* prevent overflows */
1534 if (unlikely(
1535 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1536 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1537 ((ssize_t)iocb->aio_nbytes < 0)
1538 )) {
1539 pr_debug("EINVAL: overflow check\n");
1540 return -EINVAL;
1541 }
1542
1543 req = aio_get_req(ctx);
1544 if (unlikely(!req))
1545 return -EAGAIN;
1546
1547 req->common.ki_filp = file = fget(iocb->aio_fildes);
1548 if (unlikely(!req->common.ki_filp)) {
1549 ret = -EBADF;
1550 goto out_put_req;
1551 }
1552 req->common.ki_pos = iocb->aio_offset;
1553 req->common.ki_complete = aio_complete;
1554 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1555
1556 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1557 /*
1558 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1559 * instance of the file* now. The file descriptor must be
1560 * an eventfd() fd, and will be signaled for each completed
1561 * event using the eventfd_signal() function.
1562 */
1563 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1564 if (IS_ERR(req->ki_eventfd)) {
1565 ret = PTR_ERR(req->ki_eventfd);
1566 req->ki_eventfd = NULL;
1567 goto out_put_req;
1568 }
1569
1570 req->common.ki_flags |= IOCB_EVENTFD;
1571 }
1572
1573 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1574 if (unlikely(ret)) {
1575 pr_debug("EFAULT: aio_key\n");
1576 goto out_put_req;
1577 }
1578
1579 req->ki_user_iocb = user_iocb;
1580 req->ki_user_data = iocb->aio_data;
1581
1582 get_file(file);
1583 switch (iocb->aio_lio_opcode) {
1584 case IOCB_CMD_PREAD:
1585 ret = aio_read(&req->common, iocb, false, compat);
1586 break;
1587 case IOCB_CMD_PWRITE:
1588 ret = aio_write(&req->common, iocb, false, compat);
1589 break;
1590 case IOCB_CMD_PREADV:
1591 ret = aio_read(&req->common, iocb, true, compat);
1592 break;
1593 case IOCB_CMD_PWRITEV:
1594 ret = aio_write(&req->common, iocb, true, compat);
1595 break;
1596 default:
1597 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1598 ret = -EINVAL;
1599 break;
1600 }
1601 fput(file);
1602
1603 if (ret && ret != -EIOCBQUEUED)
1604 goto out_put_req;
1605 return 0;
1606out_put_req:
1607 put_reqs_available(ctx, 1);
1608 percpu_ref_put(&ctx->reqs);
1609 kiocb_free(req);
1610 return ret;
1611}
1612
1613long do_io_submit(aio_context_t ctx_id, long nr,
1614 struct iocb __user *__user *iocbpp, bool compat)
1615{
1616 struct kioctx *ctx;
1617 long ret = 0;
1618 int i = 0;
1619 struct blk_plug plug;
1620
1621 if (unlikely(nr < 0))
1622 return -EINVAL;
1623
1624 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1625 nr = LONG_MAX/sizeof(*iocbpp);
1626
1627 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1628 return -EFAULT;
1629
1630 ctx = lookup_ioctx(ctx_id);
1631 if (unlikely(!ctx)) {
1632 pr_debug("EINVAL: invalid context id\n");
1633 return -EINVAL;
1634 }
1635
1636 blk_start_plug(&plug);
1637
1638 /*
1639 * AKPM: should this return a partial result if some of the IOs were
1640 * successfully submitted?
1641 */
1642 for (i=0; i<nr; i++) {
1643 struct iocb __user *user_iocb;
1644 struct iocb tmp;
1645
1646 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1647 ret = -EFAULT;
1648 break;
1649 }
1650
1651 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1652 ret = -EFAULT;
1653 break;
1654 }
1655
1656 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1657 if (ret)
1658 break;
1659 }
1660 blk_finish_plug(&plug);
1661
1662 percpu_ref_put(&ctx->users);
1663 return i ? i : ret;
1664}
1665
1666/* sys_io_submit:
1667 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1668 * the number of iocbs queued. May return -EINVAL if the aio_context
1669 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1670 * *iocbpp[0] is not properly initialized, if the operation specified
1671 * is invalid for the file descriptor in the iocb. May fail with
1672 * -EFAULT if any of the data structures point to invalid data. May
1673 * fail with -EBADF if the file descriptor specified in the first
1674 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1675 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1676 * fail with -ENOSYS if not implemented.
1677 */
1678SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1679 struct iocb __user * __user *, iocbpp)
1680{
1681 return do_io_submit(ctx_id, nr, iocbpp, 0);
1682}
1683
1684/* lookup_kiocb
1685 * Finds a given iocb for cancellation.
1686 */
1687static struct aio_kiocb *
1688lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1689{
1690 struct aio_kiocb *kiocb;
1691
1692 assert_spin_locked(&ctx->ctx_lock);
1693
1694 if (key != KIOCB_KEY)
1695 return NULL;
1696
1697 /* TODO: use a hash or array, this sucks. */
1698 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1699 if (kiocb->ki_user_iocb == iocb)
1700 return kiocb;
1701 }
1702 return NULL;
1703}
1704
1705/* sys_io_cancel:
1706 * Attempts to cancel an iocb previously passed to io_submit. If
1707 * the operation is successfully cancelled, the resulting event is
1708 * copied into the memory pointed to by result without being placed
1709 * into the completion queue and 0 is returned. May fail with
1710 * -EFAULT if any of the data structures pointed to are invalid.
1711 * May fail with -EINVAL if aio_context specified by ctx_id is
1712 * invalid. May fail with -EAGAIN if the iocb specified was not
1713 * cancelled. Will fail with -ENOSYS if not implemented.
1714 */
1715SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1716 struct io_event __user *, result)
1717{
1718 struct kioctx *ctx;
1719 struct aio_kiocb *kiocb;
1720 u32 key;
1721 int ret;
1722
1723 ret = get_user(key, &iocb->aio_key);
1724 if (unlikely(ret))
1725 return -EFAULT;
1726
1727 ctx = lookup_ioctx(ctx_id);
1728 if (unlikely(!ctx))
1729 return -EINVAL;
1730
1731 spin_lock_irq(&ctx->ctx_lock);
1732
1733 kiocb = lookup_kiocb(ctx, iocb, key);
1734 if (kiocb)
1735 ret = kiocb_cancel(kiocb);
1736 else
1737 ret = -EINVAL;
1738
1739 spin_unlock_irq(&ctx->ctx_lock);
1740
1741 if (!ret) {
1742 /*
1743 * The result argument is no longer used - the io_event is
1744 * always delivered via the ring buffer. -EINPROGRESS indicates
1745 * cancellation is progress:
1746 */
1747 ret = -EINPROGRESS;
1748 }
1749
1750 percpu_ref_put(&ctx->users);
1751
1752 return ret;
1753}
1754
1755/* io_getevents:
1756 * Attempts to read at least min_nr events and up to nr events from
1757 * the completion queue for the aio_context specified by ctx_id. If
1758 * it succeeds, the number of read events is returned. May fail with
1759 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1760 * out of range, if timeout is out of range. May fail with -EFAULT
1761 * if any of the memory specified is invalid. May return 0 or
1762 * < min_nr if the timeout specified by timeout has elapsed
1763 * before sufficient events are available, where timeout == NULL
1764 * specifies an infinite timeout. Note that the timeout pointed to by
1765 * timeout is relative. Will fail with -ENOSYS if not implemented.
1766 */
1767SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1768 long, min_nr,
1769 long, nr,
1770 struct io_event __user *, events,
1771 struct timespec __user *, timeout)
1772{
1773 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1774 long ret = -EINVAL;
1775
1776 if (likely(ioctx)) {
1777 if (likely(min_nr <= nr && min_nr >= 0))
1778 ret = read_events(ioctx, min_nr, nr, events, timeout);
1779 percpu_ref_put(&ioctx->users);
1780 }
1781 return ret;
1782}
1783