summaryrefslogtreecommitdiff
path: root/fs/buffer.c (plain)
blob: a89be9741d125ee5b567ed7a282f5f1a1d1b830b
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/iomap.h>
25#include <linux/mm.h>
26#include <linux/percpu.h>
27#include <linux/slab.h>
28#include <linux/capability.h>
29#include <linux/blkdev.h>
30#include <linux/file.h>
31#include <linux/quotaops.h>
32#include <linux/highmem.h>
33#include <linux/export.h>
34#include <linux/backing-dev.h>
35#include <linux/writeback.h>
36#include <linux/hash.h>
37#include <linux/suspend.h>
38#include <linux/buffer_head.h>
39#include <linux/task_io_accounting_ops.h>
40#include <linux/bio.h>
41#include <linux/notifier.h>
42#include <linux/cpu.h>
43#include <linux/bitops.h>
44#include <linux/mpage.h>
45#include <linux/bit_spinlock.h>
46#include <trace/events/block.h>
47
48static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
49static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
50 unsigned long bio_flags,
51 struct writeback_control *wbc);
52
53#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
54
55void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
56{
57 bh->b_end_io = handler;
58 bh->b_private = private;
59}
60EXPORT_SYMBOL(init_buffer);
61
62inline void touch_buffer(struct buffer_head *bh)
63{
64 trace_block_touch_buffer(bh);
65 mark_page_accessed(bh->b_page);
66}
67EXPORT_SYMBOL(touch_buffer);
68
69void __lock_buffer(struct buffer_head *bh)
70{
71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72}
73EXPORT_SYMBOL(__lock_buffer);
74
75void unlock_buffer(struct buffer_head *bh)
76{
77 clear_bit_unlock(BH_Lock, &bh->b_state);
78 smp_mb__after_atomic();
79 wake_up_bit(&bh->b_state, BH_Lock);
80}
81EXPORT_SYMBOL(unlock_buffer);
82
83/*
84 * Returns if the page has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the PageDirty information is stale. If
86 * any of the pages are locked, it is assumed they are locked for IO.
87 */
88void buffer_check_dirty_writeback(struct page *page,
89 bool *dirty, bool *writeback)
90{
91 struct buffer_head *head, *bh;
92 *dirty = false;
93 *writeback = false;
94
95 BUG_ON(!PageLocked(page));
96
97 if (!page_has_buffers(page))
98 return;
99
100 if (PageWriteback(page))
101 *writeback = true;
102
103 head = page_buffers(page);
104 bh = head;
105 do {
106 if (buffer_locked(bh))
107 *writeback = true;
108
109 if (buffer_dirty(bh))
110 *dirty = true;
111
112 bh = bh->b_this_page;
113 } while (bh != head);
114}
115EXPORT_SYMBOL(buffer_check_dirty_writeback);
116
117/*
118 * Block until a buffer comes unlocked. This doesn't stop it
119 * from becoming locked again - you have to lock it yourself
120 * if you want to preserve its state.
121 */
122void __wait_on_buffer(struct buffer_head * bh)
123{
124 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
125}
126EXPORT_SYMBOL(__wait_on_buffer);
127
128static void
129__clear_page_buffers(struct page *page)
130{
131 ClearPagePrivate(page);
132 set_page_private(page, 0);
133 put_page(page);
134}
135
136static void buffer_io_error(struct buffer_head *bh, char *msg)
137{
138 if (!test_bit(BH_Quiet, &bh->b_state))
139 printk_ratelimited(KERN_ERR
140 "Buffer I/O error on dev %pg, logical block %llu%s\n",
141 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
142}
143
144/*
145 * End-of-IO handler helper function which does not touch the bh after
146 * unlocking it.
147 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
148 * a race there is benign: unlock_buffer() only use the bh's address for
149 * hashing after unlocking the buffer, so it doesn't actually touch the bh
150 * itself.
151 */
152static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
153{
154 if (uptodate) {
155 set_buffer_uptodate(bh);
156 } else {
157 /* This happens, due to failed read-ahead attempts. */
158 clear_buffer_uptodate(bh);
159 }
160 unlock_buffer(bh);
161}
162
163/*
164 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
165 * unlock the buffer. This is what ll_rw_block uses too.
166 */
167void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
168{
169 __end_buffer_read_notouch(bh, uptodate);
170 put_bh(bh);
171}
172EXPORT_SYMBOL(end_buffer_read_sync);
173
174void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
175{
176 if (uptodate) {
177 set_buffer_uptodate(bh);
178 } else {
179 buffer_io_error(bh, ", lost sync page write");
180 set_buffer_write_io_error(bh);
181 clear_buffer_uptodate(bh);
182 }
183 unlock_buffer(bh);
184 put_bh(bh);
185}
186EXPORT_SYMBOL(end_buffer_write_sync);
187
188/*
189 * Various filesystems appear to want __find_get_block to be non-blocking.
190 * But it's the page lock which protects the buffers. To get around this,
191 * we get exclusion from try_to_free_buffers with the blockdev mapping's
192 * private_lock.
193 *
194 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
195 * may be quite high. This code could TryLock the page, and if that
196 * succeeds, there is no need to take private_lock. (But if
197 * private_lock is contended then so is mapping->tree_lock).
198 */
199static struct buffer_head *
200__find_get_block_slow(struct block_device *bdev, sector_t block)
201{
202 struct inode *bd_inode = bdev->bd_inode;
203 struct address_space *bd_mapping = bd_inode->i_mapping;
204 struct buffer_head *ret = NULL;
205 pgoff_t index;
206 struct buffer_head *bh;
207 struct buffer_head *head;
208 struct page *page;
209 int all_mapped = 1;
210 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
211
212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
214 if (!page)
215 goto out;
216
217 spin_lock(&bd_mapping->private_lock);
218 if (!page_has_buffers(page))
219 goto out_unlock;
220 head = page_buffers(page);
221 bh = head;
222 do {
223 if (!buffer_mapped(bh))
224 all_mapped = 0;
225 else if (bh->b_blocknr == block) {
226 ret = bh;
227 get_bh(bh);
228 goto out_unlock;
229 }
230 bh = bh->b_this_page;
231 } while (bh != head);
232
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
237 */
238 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
239 if (all_mapped && __ratelimit(&last_warned)) {
240 printk("__find_get_block_slow() failed. block=%llu, "
241 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
242 "device %pg blocksize: %d\n",
243 (unsigned long long)block,
244 (unsigned long long)bh->b_blocknr,
245 bh->b_state, bh->b_size, bdev,
246 1 << bd_inode->i_blkbits);
247 }
248out_unlock:
249 spin_unlock(&bd_mapping->private_lock);
250 put_page(page);
251out:
252 return ret;
253}
254
255/*
256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
257 */
258static void free_more_memory(void)
259{
260 struct zoneref *z;
261 int nid;
262
263 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
264 yield();
265
266 for_each_online_node(nid) {
267
268 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269 gfp_zone(GFP_NOFS), NULL);
270 if (z->zone)
271 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
272 GFP_NOFS, NULL);
273 }
274}
275
276/*
277 * I/O completion handler for block_read_full_page() - pages
278 * which come unlocked at the end of I/O.
279 */
280static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
281{
282 unsigned long flags;
283 struct buffer_head *first;
284 struct buffer_head *tmp;
285 struct page *page;
286 int page_uptodate = 1;
287
288 BUG_ON(!buffer_async_read(bh));
289
290 page = bh->b_page;
291 if (uptodate) {
292 set_buffer_uptodate(bh);
293 } else {
294 clear_buffer_uptodate(bh);
295 buffer_io_error(bh, ", async page read");
296 SetPageError(page);
297 }
298
299 /*
300 * Be _very_ careful from here on. Bad things can happen if
301 * two buffer heads end IO at almost the same time and both
302 * decide that the page is now completely done.
303 */
304 first = page_buffers(page);
305 local_irq_save(flags);
306 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
307 clear_buffer_async_read(bh);
308 unlock_buffer(bh);
309 tmp = bh;
310 do {
311 if (!buffer_uptodate(tmp))
312 page_uptodate = 0;
313 if (buffer_async_read(tmp)) {
314 BUG_ON(!buffer_locked(tmp));
315 goto still_busy;
316 }
317 tmp = tmp->b_this_page;
318 } while (tmp != bh);
319 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320 local_irq_restore(flags);
321
322 /*
323 * If none of the buffers had errors and they are all
324 * uptodate then we can set the page uptodate.
325 */
326 if (page_uptodate && !PageError(page))
327 SetPageUptodate(page);
328 unlock_page(page);
329 return;
330
331still_busy:
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
334 return;
335}
336
337/*
338 * Completion handler for block_write_full_page() - pages which are unlocked
339 * during I/O, and which have PageWriteback cleared upon I/O completion.
340 */
341void end_buffer_async_write(struct buffer_head *bh, int uptodate)
342{
343 unsigned long flags;
344 struct buffer_head *first;
345 struct buffer_head *tmp;
346 struct page *page;
347
348 BUG_ON(!buffer_async_write(bh));
349
350 page = bh->b_page;
351 if (uptodate) {
352 set_buffer_uptodate(bh);
353 } else {
354 buffer_io_error(bh, ", lost async page write");
355 mapping_set_error(page->mapping, -EIO);
356 set_buffer_write_io_error(bh);
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
361 first = page_buffers(page);
362 local_irq_save(flags);
363 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
364
365 clear_buffer_async_write(bh);
366 unlock_buffer(bh);
367 tmp = bh->b_this_page;
368 while (tmp != bh) {
369 if (buffer_async_write(tmp)) {
370 BUG_ON(!buffer_locked(tmp));
371 goto still_busy;
372 }
373 tmp = tmp->b_this_page;
374 }
375 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
376 local_irq_restore(flags);
377 end_page_writeback(page);
378 return;
379
380still_busy:
381 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
382 local_irq_restore(flags);
383 return;
384}
385EXPORT_SYMBOL(end_buffer_async_write);
386
387/*
388 * If a page's buffers are under async readin (end_buffer_async_read
389 * completion) then there is a possibility that another thread of
390 * control could lock one of the buffers after it has completed
391 * but while some of the other buffers have not completed. This
392 * locked buffer would confuse end_buffer_async_read() into not unlocking
393 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
394 * that this buffer is not under async I/O.
395 *
396 * The page comes unlocked when it has no locked buffer_async buffers
397 * left.
398 *
399 * PageLocked prevents anyone starting new async I/O reads any of
400 * the buffers.
401 *
402 * PageWriteback is used to prevent simultaneous writeout of the same
403 * page.
404 *
405 * PageLocked prevents anyone from starting writeback of a page which is
406 * under read I/O (PageWriteback is only ever set against a locked page).
407 */
408static void mark_buffer_async_read(struct buffer_head *bh)
409{
410 bh->b_end_io = end_buffer_async_read;
411 set_buffer_async_read(bh);
412}
413
414static void mark_buffer_async_write_endio(struct buffer_head *bh,
415 bh_end_io_t *handler)
416{
417 bh->b_end_io = handler;
418 set_buffer_async_write(bh);
419}
420
421void mark_buffer_async_write(struct buffer_head *bh)
422{
423 mark_buffer_async_write_endio(bh, end_buffer_async_write);
424}
425EXPORT_SYMBOL(mark_buffer_async_write);
426
427
428/*
429 * fs/buffer.c contains helper functions for buffer-backed address space's
430 * fsync functions. A common requirement for buffer-based filesystems is
431 * that certain data from the backing blockdev needs to be written out for
432 * a successful fsync(). For example, ext2 indirect blocks need to be
433 * written back and waited upon before fsync() returns.
434 *
435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
437 * management of a list of dependent buffers at ->i_mapping->private_list.
438 *
439 * Locking is a little subtle: try_to_free_buffers() will remove buffers
440 * from their controlling inode's queue when they are being freed. But
441 * try_to_free_buffers() will be operating against the *blockdev* mapping
442 * at the time, not against the S_ISREG file which depends on those buffers.
443 * So the locking for private_list is via the private_lock in the address_space
444 * which backs the buffers. Which is different from the address_space
445 * against which the buffers are listed. So for a particular address_space,
446 * mapping->private_lock does *not* protect mapping->private_list! In fact,
447 * mapping->private_list will always be protected by the backing blockdev's
448 * ->private_lock.
449 *
450 * Which introduces a requirement: all buffers on an address_space's
451 * ->private_list must be from the same address_space: the blockdev's.
452 *
453 * address_spaces which do not place buffers at ->private_list via these
454 * utility functions are free to use private_lock and private_list for
455 * whatever they want. The only requirement is that list_empty(private_list)
456 * be true at clear_inode() time.
457 *
458 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
459 * filesystems should do that. invalidate_inode_buffers() should just go
460 * BUG_ON(!list_empty).
461 *
462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
463 * take an address_space, not an inode. And it should be called
464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
465 * queued up.
466 *
467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
468 * list if it is already on a list. Because if the buffer is on a list,
469 * it *must* already be on the right one. If not, the filesystem is being
470 * silly. This will save a ton of locking. But first we have to ensure
471 * that buffers are taken *off* the old inode's list when they are freed
472 * (presumably in truncate). That requires careful auditing of all
473 * filesystems (do it inside bforget()). It could also be done by bringing
474 * b_inode back.
475 */
476
477/*
478 * The buffer's backing address_space's private_lock must be held
479 */
480static void __remove_assoc_queue(struct buffer_head *bh)
481{
482 list_del_init(&bh->b_assoc_buffers);
483 WARN_ON(!bh->b_assoc_map);
484 if (buffer_write_io_error(bh))
485 set_bit(AS_EIO, &bh->b_assoc_map->flags);
486 bh->b_assoc_map = NULL;
487}
488
489int inode_has_buffers(struct inode *inode)
490{
491 return !list_empty(&inode->i_data.private_list);
492}
493
494/*
495 * osync is designed to support O_SYNC io. It waits synchronously for
496 * all already-submitted IO to complete, but does not queue any new
497 * writes to the disk.
498 *
499 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
500 * you dirty the buffers, and then use osync_inode_buffers to wait for
501 * completion. Any other dirty buffers which are not yet queued for
502 * write will not be flushed to disk by the osync.
503 */
504static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
505{
506 struct buffer_head *bh;
507 struct list_head *p;
508 int err = 0;
509
510 spin_lock(lock);
511repeat:
512 list_for_each_prev(p, list) {
513 bh = BH_ENTRY(p);
514 if (buffer_locked(bh)) {
515 get_bh(bh);
516 spin_unlock(lock);
517 wait_on_buffer(bh);
518 if (!buffer_uptodate(bh))
519 err = -EIO;
520 brelse(bh);
521 spin_lock(lock);
522 goto repeat;
523 }
524 }
525 spin_unlock(lock);
526 return err;
527}
528
529static void do_thaw_one(struct super_block *sb, void *unused)
530{
531 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
532 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
533}
534
535static void do_thaw_all(struct work_struct *work)
536{
537 iterate_supers(do_thaw_one, NULL);
538 kfree(work);
539 printk(KERN_WARNING "Emergency Thaw complete\n");
540}
541
542/**
543 * emergency_thaw_all -- forcibly thaw every frozen filesystem
544 *
545 * Used for emergency unfreeze of all filesystems via SysRq
546 */
547void emergency_thaw_all(void)
548{
549 struct work_struct *work;
550
551 work = kmalloc(sizeof(*work), GFP_ATOMIC);
552 if (work) {
553 INIT_WORK(work, do_thaw_all);
554 schedule_work(work);
555 }
556}
557
558/**
559 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
560 * @mapping: the mapping which wants those buffers written
561 *
562 * Starts I/O against the buffers at mapping->private_list, and waits upon
563 * that I/O.
564 *
565 * Basically, this is a convenience function for fsync().
566 * @mapping is a file or directory which needs those buffers to be written for
567 * a successful fsync().
568 */
569int sync_mapping_buffers(struct address_space *mapping)
570{
571 struct address_space *buffer_mapping = mapping->private_data;
572
573 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
574 return 0;
575
576 return fsync_buffers_list(&buffer_mapping->private_lock,
577 &mapping->private_list);
578}
579EXPORT_SYMBOL(sync_mapping_buffers);
580
581/*
582 * Called when we've recently written block `bblock', and it is known that
583 * `bblock' was for a buffer_boundary() buffer. This means that the block at
584 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
585 * dirty, schedule it for IO. So that indirects merge nicely with their data.
586 */
587void write_boundary_block(struct block_device *bdev,
588 sector_t bblock, unsigned blocksize)
589{
590 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
591 if (bh) {
592 if (buffer_dirty(bh))
593 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
594 put_bh(bh);
595 }
596}
597
598void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
599{
600 struct address_space *mapping = inode->i_mapping;
601 struct address_space *buffer_mapping = bh->b_page->mapping;
602
603 mark_buffer_dirty(bh);
604 if (!mapping->private_data) {
605 mapping->private_data = buffer_mapping;
606 } else {
607 BUG_ON(mapping->private_data != buffer_mapping);
608 }
609 if (!bh->b_assoc_map) {
610 spin_lock(&buffer_mapping->private_lock);
611 list_move_tail(&bh->b_assoc_buffers,
612 &mapping->private_list);
613 bh->b_assoc_map = mapping;
614 spin_unlock(&buffer_mapping->private_lock);
615 }
616}
617EXPORT_SYMBOL(mark_buffer_dirty_inode);
618
619/*
620 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
621 * dirty.
622 *
623 * If warn is true, then emit a warning if the page is not uptodate and has
624 * not been truncated.
625 *
626 * The caller must hold lock_page_memcg().
627 */
628static void __set_page_dirty(struct page *page, struct address_space *mapping,
629 int warn)
630{
631 unsigned long flags;
632
633 spin_lock_irqsave(&mapping->tree_lock, flags);
634 if (page->mapping) { /* Race with truncate? */
635 WARN_ON_ONCE(warn && !PageUptodate(page));
636 account_page_dirtied(page, mapping);
637 radix_tree_tag_set(&mapping->page_tree,
638 page_index(page), PAGECACHE_TAG_DIRTY);
639 }
640 spin_unlock_irqrestore(&mapping->tree_lock, flags);
641}
642
643/*
644 * Add a page to the dirty page list.
645 *
646 * It is a sad fact of life that this function is called from several places
647 * deeply under spinlocking. It may not sleep.
648 *
649 * If the page has buffers, the uptodate buffers are set dirty, to preserve
650 * dirty-state coherency between the page and the buffers. It the page does
651 * not have buffers then when they are later attached they will all be set
652 * dirty.
653 *
654 * The buffers are dirtied before the page is dirtied. There's a small race
655 * window in which a writepage caller may see the page cleanness but not the
656 * buffer dirtiness. That's fine. If this code were to set the page dirty
657 * before the buffers, a concurrent writepage caller could clear the page dirty
658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
659 * page on the dirty page list.
660 *
661 * We use private_lock to lock against try_to_free_buffers while using the
662 * page's buffer list. Also use this to protect against clean buffers being
663 * added to the page after it was set dirty.
664 *
665 * FIXME: may need to call ->reservepage here as well. That's rather up to the
666 * address_space though.
667 */
668int __set_page_dirty_buffers(struct page *page)
669{
670 int newly_dirty;
671 struct address_space *mapping = page_mapping(page);
672
673 if (unlikely(!mapping))
674 return !TestSetPageDirty(page);
675
676 spin_lock(&mapping->private_lock);
677 if (page_has_buffers(page)) {
678 struct buffer_head *head = page_buffers(page);
679 struct buffer_head *bh = head;
680
681 do {
682 set_buffer_dirty(bh);
683 bh = bh->b_this_page;
684 } while (bh != head);
685 }
686 /*
687 * Lock out page->mem_cgroup migration to keep PageDirty
688 * synchronized with per-memcg dirty page counters.
689 */
690 lock_page_memcg(page);
691 newly_dirty = !TestSetPageDirty(page);
692 spin_unlock(&mapping->private_lock);
693
694 if (newly_dirty)
695 __set_page_dirty(page, mapping, 1);
696
697 unlock_page_memcg(page);
698
699 if (newly_dirty)
700 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
701
702 return newly_dirty;
703}
704EXPORT_SYMBOL(__set_page_dirty_buffers);
705
706/*
707 * Write out and wait upon a list of buffers.
708 *
709 * We have conflicting pressures: we want to make sure that all
710 * initially dirty buffers get waited on, but that any subsequently
711 * dirtied buffers don't. After all, we don't want fsync to last
712 * forever if somebody is actively writing to the file.
713 *
714 * Do this in two main stages: first we copy dirty buffers to a
715 * temporary inode list, queueing the writes as we go. Then we clean
716 * up, waiting for those writes to complete.
717 *
718 * During this second stage, any subsequent updates to the file may end
719 * up refiling the buffer on the original inode's dirty list again, so
720 * there is a chance we will end up with a buffer queued for write but
721 * not yet completed on that list. So, as a final cleanup we go through
722 * the osync code to catch these locked, dirty buffers without requeuing
723 * any newly dirty buffers for write.
724 */
725static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
726{
727 struct buffer_head *bh;
728 struct list_head tmp;
729 struct address_space *mapping;
730 int err = 0, err2;
731 struct blk_plug plug;
732
733 INIT_LIST_HEAD(&tmp);
734 blk_start_plug(&plug);
735
736 spin_lock(lock);
737 while (!list_empty(list)) {
738 bh = BH_ENTRY(list->next);
739 mapping = bh->b_assoc_map;
740 __remove_assoc_queue(bh);
741 /* Avoid race with mark_buffer_dirty_inode() which does
742 * a lockless check and we rely on seeing the dirty bit */
743 smp_mb();
744 if (buffer_dirty(bh) || buffer_locked(bh)) {
745 list_add(&bh->b_assoc_buffers, &tmp);
746 bh->b_assoc_map = mapping;
747 if (buffer_dirty(bh)) {
748 get_bh(bh);
749 spin_unlock(lock);
750 /*
751 * Ensure any pending I/O completes so that
752 * write_dirty_buffer() actually writes the
753 * current contents - it is a noop if I/O is
754 * still in flight on potentially older
755 * contents.
756 */
757 write_dirty_buffer(bh, WRITE_SYNC);
758
759 /*
760 * Kick off IO for the previous mapping. Note
761 * that we will not run the very last mapping,
762 * wait_on_buffer() will do that for us
763 * through sync_buffer().
764 */
765 brelse(bh);
766 spin_lock(lock);
767 }
768 }
769 }
770
771 spin_unlock(lock);
772 blk_finish_plug(&plug);
773 spin_lock(lock);
774
775 while (!list_empty(&tmp)) {
776 bh = BH_ENTRY(tmp.prev);
777 get_bh(bh);
778 mapping = bh->b_assoc_map;
779 __remove_assoc_queue(bh);
780 /* Avoid race with mark_buffer_dirty_inode() which does
781 * a lockless check and we rely on seeing the dirty bit */
782 smp_mb();
783 if (buffer_dirty(bh)) {
784 list_add(&bh->b_assoc_buffers,
785 &mapping->private_list);
786 bh->b_assoc_map = mapping;
787 }
788 spin_unlock(lock);
789 wait_on_buffer(bh);
790 if (!buffer_uptodate(bh))
791 err = -EIO;
792 brelse(bh);
793 spin_lock(lock);
794 }
795
796 spin_unlock(lock);
797 err2 = osync_buffers_list(lock, list);
798 if (err)
799 return err;
800 else
801 return err2;
802}
803
804/*
805 * Invalidate any and all dirty buffers on a given inode. We are
806 * probably unmounting the fs, but that doesn't mean we have already
807 * done a sync(). Just drop the buffers from the inode list.
808 *
809 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
810 * assumes that all the buffers are against the blockdev. Not true
811 * for reiserfs.
812 */
813void invalidate_inode_buffers(struct inode *inode)
814{
815 if (inode_has_buffers(inode)) {
816 struct address_space *mapping = &inode->i_data;
817 struct list_head *list = &mapping->private_list;
818 struct address_space *buffer_mapping = mapping->private_data;
819
820 spin_lock(&buffer_mapping->private_lock);
821 while (!list_empty(list))
822 __remove_assoc_queue(BH_ENTRY(list->next));
823 spin_unlock(&buffer_mapping->private_lock);
824 }
825}
826EXPORT_SYMBOL(invalidate_inode_buffers);
827
828/*
829 * Remove any clean buffers from the inode's buffer list. This is called
830 * when we're trying to free the inode itself. Those buffers can pin it.
831 *
832 * Returns true if all buffers were removed.
833 */
834int remove_inode_buffers(struct inode *inode)
835{
836 int ret = 1;
837
838 if (inode_has_buffers(inode)) {
839 struct address_space *mapping = &inode->i_data;
840 struct list_head *list = &mapping->private_list;
841 struct address_space *buffer_mapping = mapping->private_data;
842
843 spin_lock(&buffer_mapping->private_lock);
844 while (!list_empty(list)) {
845 struct buffer_head *bh = BH_ENTRY(list->next);
846 if (buffer_dirty(bh)) {
847 ret = 0;
848 break;
849 }
850 __remove_assoc_queue(bh);
851 }
852 spin_unlock(&buffer_mapping->private_lock);
853 }
854 return ret;
855}
856
857/*
858 * Create the appropriate buffers when given a page for data area and
859 * the size of each buffer.. Use the bh->b_this_page linked list to
860 * follow the buffers created. Return NULL if unable to create more
861 * buffers.
862 *
863 * The retry flag is used to differentiate async IO (paging, swapping)
864 * which may not fail from ordinary buffer allocations.
865 */
866struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
867 int retry)
868{
869 struct buffer_head *bh, *head;
870 long offset;
871
872try_again:
873 head = NULL;
874 offset = PAGE_SIZE;
875 while ((offset -= size) >= 0) {
876 bh = alloc_buffer_head(GFP_NOFS);
877 if (!bh)
878 goto no_grow;
879
880 bh->b_this_page = head;
881 bh->b_blocknr = -1;
882 head = bh;
883
884 bh->b_size = size;
885
886 /* Link the buffer to its page */
887 set_bh_page(bh, page, offset);
888 }
889 return head;
890/*
891 * In case anything failed, we just free everything we got.
892 */
893no_grow:
894 if (head) {
895 do {
896 bh = head;
897 head = head->b_this_page;
898 free_buffer_head(bh);
899 } while (head);
900 }
901
902 /*
903 * Return failure for non-async IO requests. Async IO requests
904 * are not allowed to fail, so we have to wait until buffer heads
905 * become available. But we don't want tasks sleeping with
906 * partially complete buffers, so all were released above.
907 */
908 if (!retry)
909 return NULL;
910
911 /* We're _really_ low on memory. Now we just
912 * wait for old buffer heads to become free due to
913 * finishing IO. Since this is an async request and
914 * the reserve list is empty, we're sure there are
915 * async buffer heads in use.
916 */
917 free_more_memory();
918 goto try_again;
919}
920EXPORT_SYMBOL_GPL(alloc_page_buffers);
921
922static inline void
923link_dev_buffers(struct page *page, struct buffer_head *head)
924{
925 struct buffer_head *bh, *tail;
926
927 bh = head;
928 do {
929 tail = bh;
930 bh = bh->b_this_page;
931 } while (bh);
932 tail->b_this_page = head;
933 attach_page_buffers(page, head);
934}
935
936static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
937{
938 sector_t retval = ~((sector_t)0);
939 loff_t sz = i_size_read(bdev->bd_inode);
940
941 if (sz) {
942 unsigned int sizebits = blksize_bits(size);
943 retval = (sz >> sizebits);
944 }
945 return retval;
946}
947
948/*
949 * Initialise the state of a blockdev page's buffers.
950 */
951static sector_t
952init_page_buffers(struct page *page, struct block_device *bdev,
953 sector_t block, int size)
954{
955 struct buffer_head *head = page_buffers(page);
956 struct buffer_head *bh = head;
957 int uptodate = PageUptodate(page);
958 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
959
960 do {
961 if (!buffer_mapped(bh)) {
962 init_buffer(bh, NULL, NULL);
963 bh->b_bdev = bdev;
964 bh->b_blocknr = block;
965 if (uptodate)
966 set_buffer_uptodate(bh);
967 if (block < end_block)
968 set_buffer_mapped(bh);
969 }
970 block++;
971 bh = bh->b_this_page;
972 } while (bh != head);
973
974 /*
975 * Caller needs to validate requested block against end of device.
976 */
977 return end_block;
978}
979
980/*
981 * Create the page-cache page that contains the requested block.
982 *
983 * This is used purely for blockdev mappings.
984 */
985static int
986grow_dev_page(struct block_device *bdev, sector_t block,
987 pgoff_t index, int size, int sizebits, gfp_t gfp)
988{
989 struct inode *inode = bdev->bd_inode;
990 struct page *page;
991 struct buffer_head *bh;
992 sector_t end_block;
993 int ret = 0; /* Will call free_more_memory() */
994 gfp_t gfp_mask;
995
996 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
997
998 /*
999 * XXX: __getblk_slow() can not really deal with failure and
1000 * will endlessly loop on improvised global reclaim. Prefer
1001 * looping in the allocator rather than here, at least that
1002 * code knows what it's doing.
1003 */
1004 gfp_mask |= __GFP_NOFAIL;
1005
1006 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1007 if (!page)
1008 return ret;
1009
1010 BUG_ON(!PageLocked(page));
1011
1012 if (page_has_buffers(page)) {
1013 bh = page_buffers(page);
1014 if (bh->b_size == size) {
1015 end_block = init_page_buffers(page, bdev,
1016 (sector_t)index << sizebits,
1017 size);
1018 goto done;
1019 }
1020 if (!try_to_free_buffers(page))
1021 goto failed;
1022 }
1023
1024 /*
1025 * Allocate some buffers for this page
1026 */
1027 bh = alloc_page_buffers(page, size, 0);
1028 if (!bh)
1029 goto failed;
1030
1031 /*
1032 * Link the page to the buffers and initialise them. Take the
1033 * lock to be atomic wrt __find_get_block(), which does not
1034 * run under the page lock.
1035 */
1036 spin_lock(&inode->i_mapping->private_lock);
1037 link_dev_buffers(page, bh);
1038 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1039 size);
1040 spin_unlock(&inode->i_mapping->private_lock);
1041done:
1042 ret = (block < end_block) ? 1 : -ENXIO;
1043failed:
1044 unlock_page(page);
1045 put_page(page);
1046 return ret;
1047}
1048
1049/*
1050 * Create buffers for the specified block device block's page. If
1051 * that page was dirty, the buffers are set dirty also.
1052 */
1053static int
1054grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1055{
1056 pgoff_t index;
1057 int sizebits;
1058
1059 sizebits = -1;
1060 do {
1061 sizebits++;
1062 } while ((size << sizebits) < PAGE_SIZE);
1063
1064 index = block >> sizebits;
1065
1066 /*
1067 * Check for a block which wants to lie outside our maximum possible
1068 * pagecache index. (this comparison is done using sector_t types).
1069 */
1070 if (unlikely(index != block >> sizebits)) {
1071 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1072 "device %pg\n",
1073 __func__, (unsigned long long)block,
1074 bdev);
1075 return -EIO;
1076 }
1077
1078 /* Create a page with the proper size buffers.. */
1079 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1080}
1081
1082static struct buffer_head *
1083__getblk_slow(struct block_device *bdev, sector_t block,
1084 unsigned size, gfp_t gfp)
1085{
1086 /* Size must be multiple of hard sectorsize */
1087 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088 (size < 512 || size > PAGE_SIZE))) {
1089 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 size);
1091 printk(KERN_ERR "logical block size: %d\n",
1092 bdev_logical_block_size(bdev));
1093
1094 dump_stack();
1095 return NULL;
1096 }
1097
1098 for (;;) {
1099 struct buffer_head *bh;
1100 int ret;
1101
1102 bh = __find_get_block(bdev, block, size);
1103 if (bh)
1104 return bh;
1105
1106 ret = grow_buffers(bdev, block, size, gfp);
1107 if (ret < 0)
1108 return NULL;
1109 if (ret == 0)
1110 free_more_memory();
1111 }
1112}
1113
1114/*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page. If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also. When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate. But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate. A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137/**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
1139 * @bh: the buffer_head to mark dirty
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and mapping->host->i_lock.
1148 */
1149void mark_buffer_dirty(struct buffer_head *bh)
1150{
1151 WARN_ON_ONCE(!buffer_uptodate(bh));
1152
1153 trace_block_dirty_buffer(bh);
1154
1155 /*
1156 * Very *carefully* optimize the it-is-already-dirty case.
1157 *
1158 * Don't let the final "is it dirty" escape to before we
1159 * perhaps modified the buffer.
1160 */
1161 if (buffer_dirty(bh)) {
1162 smp_mb();
1163 if (buffer_dirty(bh))
1164 return;
1165 }
1166
1167 if (!test_set_buffer_dirty(bh)) {
1168 struct page *page = bh->b_page;
1169 struct address_space *mapping = NULL;
1170
1171 lock_page_memcg(page);
1172 if (!TestSetPageDirty(page)) {
1173 mapping = page_mapping(page);
1174 if (mapping)
1175 __set_page_dirty(page, mapping, 0);
1176 }
1177 unlock_page_memcg(page);
1178 if (mapping)
1179 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1180 }
1181}
1182EXPORT_SYMBOL(mark_buffer_dirty);
1183
1184/*
1185 * Decrement a buffer_head's reference count. If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1190 */
1191void __brelse(struct buffer_head * buf)
1192{
1193 if (atomic_read(&buf->b_count)) {
1194 put_bh(buf);
1195 return;
1196 }
1197 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1198}
1199EXPORT_SYMBOL(__brelse);
1200
1201/*
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1204 */
1205void __bforget(struct buffer_head *bh)
1206{
1207 clear_buffer_dirty(bh);
1208 if (bh->b_assoc_map) {
1209 struct address_space *buffer_mapping = bh->b_page->mapping;
1210
1211 spin_lock(&buffer_mapping->private_lock);
1212 list_del_init(&bh->b_assoc_buffers);
1213 bh->b_assoc_map = NULL;
1214 spin_unlock(&buffer_mapping->private_lock);
1215 }
1216 __brelse(bh);
1217}
1218EXPORT_SYMBOL(__bforget);
1219
1220static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221{
1222 lock_buffer(bh);
1223 if (buffer_uptodate(bh)) {
1224 unlock_buffer(bh);
1225 return bh;
1226 } else {
1227 get_bh(bh);
1228 bh->b_end_io = end_buffer_read_sync;
1229 submit_bh(REQ_OP_READ, 0, bh);
1230 wait_on_buffer(bh);
1231 if (buffer_uptodate(bh))
1232 return bh;
1233 }
1234 brelse(bh);
1235 return NULL;
1236}
1237
1238/*
1239 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1241 * refcount elevated by one when they're in an LRU. A buffer can only appear
1242 * once in a particular CPU's LRU. A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1244 *
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1247 *
1248 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1249 * a local interrupt disable for that.
1250 */
1251
1252#define BH_LRU_SIZE 16
1253
1254struct bh_lru {
1255 struct buffer_head *bhs[BH_LRU_SIZE];
1256};
1257
1258static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259
1260#ifdef CONFIG_SMP
1261#define bh_lru_lock() local_irq_disable()
1262#define bh_lru_unlock() local_irq_enable()
1263#else
1264#define bh_lru_lock() preempt_disable()
1265#define bh_lru_unlock() preempt_enable()
1266#endif
1267
1268static inline void check_irqs_on(void)
1269{
1270#ifdef irqs_disabled
1271 BUG_ON(irqs_disabled());
1272#endif
1273}
1274
1275/*
1276 * The LRU management algorithm is dopey-but-simple. Sorry.
1277 */
1278static void bh_lru_install(struct buffer_head *bh)
1279{
1280 struct buffer_head *evictee = NULL;
1281
1282 check_irqs_on();
1283 bh_lru_lock();
1284 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1285 struct buffer_head *bhs[BH_LRU_SIZE];
1286 int in;
1287 int out = 0;
1288
1289 get_bh(bh);
1290 bhs[out++] = bh;
1291 for (in = 0; in < BH_LRU_SIZE; in++) {
1292 struct buffer_head *bh2 =
1293 __this_cpu_read(bh_lrus.bhs[in]);
1294
1295 if (bh2 == bh) {
1296 __brelse(bh2);
1297 } else {
1298 if (out >= BH_LRU_SIZE) {
1299 BUG_ON(evictee != NULL);
1300 evictee = bh2;
1301 } else {
1302 bhs[out++] = bh2;
1303 }
1304 }
1305 }
1306 while (out < BH_LRU_SIZE)
1307 bhs[out++] = NULL;
1308 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1309 }
1310 bh_lru_unlock();
1311
1312 if (evictee)
1313 __brelse(evictee);
1314}
1315
1316/*
1317 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1318 */
1319static struct buffer_head *
1320lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1321{
1322 struct buffer_head *ret = NULL;
1323 unsigned int i;
1324
1325 check_irqs_on();
1326 bh_lru_lock();
1327 for (i = 0; i < BH_LRU_SIZE; i++) {
1328 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1329
1330 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331 bh->b_size == size) {
1332 if (i) {
1333 while (i) {
1334 __this_cpu_write(bh_lrus.bhs[i],
1335 __this_cpu_read(bh_lrus.bhs[i - 1]));
1336 i--;
1337 }
1338 __this_cpu_write(bh_lrus.bhs[0], bh);
1339 }
1340 get_bh(bh);
1341 ret = bh;
1342 break;
1343 }
1344 }
1345 bh_lru_unlock();
1346 return ret;
1347}
1348
1349/*
1350 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1351 * it in the LRU and mark it as accessed. If it is not present then return
1352 * NULL
1353 */
1354struct buffer_head *
1355__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1356{
1357 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358
1359 if (bh == NULL) {
1360 /* __find_get_block_slow will mark the page accessed */
1361 bh = __find_get_block_slow(bdev, block);
1362 if (bh)
1363 bh_lru_install(bh);
1364 } else
1365 touch_buffer(bh);
1366
1367 return bh;
1368}
1369EXPORT_SYMBOL(__find_get_block);
1370
1371/*
1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1375 *
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1378 */
1379struct buffer_head *
1380__getblk_gfp(struct block_device *bdev, sector_t block,
1381 unsigned size, gfp_t gfp)
1382{
1383 struct buffer_head *bh = __find_get_block(bdev, block, size);
1384
1385 might_sleep();
1386 if (bh == NULL)
1387 bh = __getblk_slow(bdev, block, size, gfp);
1388 return bh;
1389}
1390EXPORT_SYMBOL(__getblk_gfp);
1391
1392/*
1393 * Do async read-ahead on a buffer..
1394 */
1395void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1396{
1397 struct buffer_head *bh = __getblk(bdev, block, size);
1398 if (likely(bh)) {
1399 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1400 brelse(bh);
1401 }
1402}
1403EXPORT_SYMBOL(__breadahead);
1404
1405/**
1406 * __bread_gfp() - reads a specified block and returns the bh
1407 * @bdev: the block_device to read from
1408 * @block: number of block
1409 * @size: size (in bytes) to read
1410 * @gfp: page allocation flag
1411 *
1412 * Reads a specified block, and returns buffer head that contains it.
1413 * The page cache can be allocated from non-movable area
1414 * not to prevent page migration if you set gfp to zero.
1415 * It returns NULL if the block was unreadable.
1416 */
1417struct buffer_head *
1418__bread_gfp(struct block_device *bdev, sector_t block,
1419 unsigned size, gfp_t gfp)
1420{
1421 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1422
1423 if (likely(bh) && !buffer_uptodate(bh))
1424 bh = __bread_slow(bh);
1425 return bh;
1426}
1427EXPORT_SYMBOL(__bread_gfp);
1428
1429/*
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1433 */
1434static void invalidate_bh_lru(void *arg)
1435{
1436 struct bh_lru *b = &get_cpu_var(bh_lrus);
1437 int i;
1438
1439 for (i = 0; i < BH_LRU_SIZE; i++) {
1440 brelse(b->bhs[i]);
1441 b->bhs[i] = NULL;
1442 }
1443 put_cpu_var(bh_lrus);
1444}
1445
1446static bool has_bh_in_lru(int cpu, void *dummy)
1447{
1448 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449 int i;
1450
1451 for (i = 0; i < BH_LRU_SIZE; i++) {
1452 if (b->bhs[i])
1453 return 1;
1454 }
1455
1456 return 0;
1457}
1458
1459void invalidate_bh_lrus(void)
1460{
1461 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1462}
1463EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1464
1465void set_bh_page(struct buffer_head *bh,
1466 struct page *page, unsigned long offset)
1467{
1468 bh->b_page = page;
1469 BUG_ON(offset >= PAGE_SIZE);
1470 if (PageHighMem(page))
1471 /*
1472 * This catches illegal uses and preserves the offset:
1473 */
1474 bh->b_data = (char *)(0 + offset);
1475 else
1476 bh->b_data = page_address(page) + offset;
1477}
1478EXPORT_SYMBOL(set_bh_page);
1479
1480/*
1481 * Called when truncating a buffer on a page completely.
1482 */
1483
1484/* Bits that are cleared during an invalidate */
1485#define BUFFER_FLAGS_DISCARD \
1486 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487 1 << BH_Delay | 1 << BH_Unwritten)
1488
1489static void discard_buffer(struct buffer_head * bh)
1490{
1491 unsigned long b_state, b_state_old;
1492
1493 lock_buffer(bh);
1494 clear_buffer_dirty(bh);
1495 bh->b_bdev = NULL;
1496 b_state = bh->b_state;
1497 for (;;) {
1498 b_state_old = cmpxchg(&bh->b_state, b_state,
1499 (b_state & ~BUFFER_FLAGS_DISCARD));
1500 if (b_state_old == b_state)
1501 break;
1502 b_state = b_state_old;
1503 }
1504 unlock_buffer(bh);
1505}
1506
1507/**
1508 * block_invalidatepage - invalidate part or all of a buffer-backed page
1509 *
1510 * @page: the page which is affected
1511 * @offset: start of the range to invalidate
1512 * @length: length of the range to invalidate
1513 *
1514 * block_invalidatepage() is called when all or part of the page has become
1515 * invalidated by a truncate operation.
1516 *
1517 * block_invalidatepage() does not have to release all buffers, but it must
1518 * ensure that no dirty buffer is left outside @offset and that no I/O
1519 * is underway against any of the blocks which are outside the truncation
1520 * point. Because the caller is about to free (and possibly reuse) those
1521 * blocks on-disk.
1522 */
1523void block_invalidatepage(struct page *page, unsigned int offset,
1524 unsigned int length)
1525{
1526 struct buffer_head *head, *bh, *next;
1527 unsigned int curr_off = 0;
1528 unsigned int stop = length + offset;
1529
1530 BUG_ON(!PageLocked(page));
1531 if (!page_has_buffers(page))
1532 goto out;
1533
1534 /*
1535 * Check for overflow
1536 */
1537 BUG_ON(stop > PAGE_SIZE || stop < length);
1538
1539 head = page_buffers(page);
1540 bh = head;
1541 do {
1542 unsigned int next_off = curr_off + bh->b_size;
1543 next = bh->b_this_page;
1544
1545 /*
1546 * Are we still fully in range ?
1547 */
1548 if (next_off > stop)
1549 goto out;
1550
1551 /*
1552 * is this block fully invalidated?
1553 */
1554 if (offset <= curr_off)
1555 discard_buffer(bh);
1556 curr_off = next_off;
1557 bh = next;
1558 } while (bh != head);
1559
1560 /*
1561 * We release buffers only if the entire page is being invalidated.
1562 * The get_block cached value has been unconditionally invalidated,
1563 * so real IO is not possible anymore.
1564 */
1565 if (offset == 0)
1566 try_to_release_page(page, 0);
1567out:
1568 return;
1569}
1570EXPORT_SYMBOL(block_invalidatepage);
1571
1572
1573/*
1574 * We attach and possibly dirty the buffers atomically wrt
1575 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1576 * is already excluded via the page lock.
1577 */
1578void create_empty_buffers(struct page *page,
1579 unsigned long blocksize, unsigned long b_state)
1580{
1581 struct buffer_head *bh, *head, *tail;
1582
1583 head = alloc_page_buffers(page, blocksize, 1);
1584 bh = head;
1585 do {
1586 bh->b_state |= b_state;
1587 tail = bh;
1588 bh = bh->b_this_page;
1589 } while (bh);
1590 tail->b_this_page = head;
1591
1592 spin_lock(&page->mapping->private_lock);
1593 if (PageUptodate(page) || PageDirty(page)) {
1594 bh = head;
1595 do {
1596 if (PageDirty(page))
1597 set_buffer_dirty(bh);
1598 if (PageUptodate(page))
1599 set_buffer_uptodate(bh);
1600 bh = bh->b_this_page;
1601 } while (bh != head);
1602 }
1603 attach_page_buffers(page, head);
1604 spin_unlock(&page->mapping->private_lock);
1605}
1606EXPORT_SYMBOL(create_empty_buffers);
1607
1608/*
1609 * We are taking a block for data and we don't want any output from any
1610 * buffer-cache aliases starting from return from that function and
1611 * until the moment when something will explicitly mark the buffer
1612 * dirty (hopefully that will not happen until we will free that block ;-)
1613 * We don't even need to mark it not-uptodate - nobody can expect
1614 * anything from a newly allocated buffer anyway. We used to used
1615 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1616 * don't want to mark the alias unmapped, for example - it would confuse
1617 * anyone who might pick it with bread() afterwards...
1618 *
1619 * Also.. Note that bforget() doesn't lock the buffer. So there can
1620 * be writeout I/O going on against recently-freed buffers. We don't
1621 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1622 * only if we really need to. That happens here.
1623 */
1624void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1625{
1626 struct buffer_head *old_bh;
1627
1628 might_sleep();
1629
1630 old_bh = __find_get_block_slow(bdev, block);
1631 if (old_bh) {
1632 clear_buffer_dirty(old_bh);
1633 wait_on_buffer(old_bh);
1634 clear_buffer_req(old_bh);
1635 __brelse(old_bh);
1636 }
1637}
1638EXPORT_SYMBOL(unmap_underlying_metadata);
1639
1640/*
1641 * Size is a power-of-two in the range 512..PAGE_SIZE,
1642 * and the case we care about most is PAGE_SIZE.
1643 *
1644 * So this *could* possibly be written with those
1645 * constraints in mind (relevant mostly if some
1646 * architecture has a slow bit-scan instruction)
1647 */
1648static inline int block_size_bits(unsigned int blocksize)
1649{
1650 return ilog2(blocksize);
1651}
1652
1653static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1654{
1655 BUG_ON(!PageLocked(page));
1656
1657 if (!page_has_buffers(page))
1658 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1659 return page_buffers(page);
1660}
1661
1662/*
1663 * NOTE! All mapped/uptodate combinations are valid:
1664 *
1665 * Mapped Uptodate Meaning
1666 *
1667 * No No "unknown" - must do get_block()
1668 * No Yes "hole" - zero-filled
1669 * Yes No "allocated" - allocated on disk, not read in
1670 * Yes Yes "valid" - allocated and up-to-date in memory.
1671 *
1672 * "Dirty" is valid only with the last case (mapped+uptodate).
1673 */
1674
1675/*
1676 * While block_write_full_page is writing back the dirty buffers under
1677 * the page lock, whoever dirtied the buffers may decide to clean them
1678 * again at any time. We handle that by only looking at the buffer
1679 * state inside lock_buffer().
1680 *
1681 * If block_write_full_page() is called for regular writeback
1682 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1683 * locked buffer. This only can happen if someone has written the buffer
1684 * directly, with submit_bh(). At the address_space level PageWriteback
1685 * prevents this contention from occurring.
1686 *
1687 * If block_write_full_page() is called with wbc->sync_mode ==
1688 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1689 * causes the writes to be flagged as synchronous writes.
1690 */
1691int __block_write_full_page(struct inode *inode, struct page *page,
1692 get_block_t *get_block, struct writeback_control *wbc,
1693 bh_end_io_t *handler)
1694{
1695 int err;
1696 sector_t block;
1697 sector_t last_block;
1698 struct buffer_head *bh, *head;
1699 unsigned int blocksize, bbits;
1700 int nr_underway = 0;
1701 int write_flags = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : 0);
1702
1703 head = create_page_buffers(page, inode,
1704 (1 << BH_Dirty)|(1 << BH_Uptodate));
1705
1706 /*
1707 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1708 * here, and the (potentially unmapped) buffers may become dirty at
1709 * any time. If a buffer becomes dirty here after we've inspected it
1710 * then we just miss that fact, and the page stays dirty.
1711 *
1712 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1713 * handle that here by just cleaning them.
1714 */
1715
1716 bh = head;
1717 blocksize = bh->b_size;
1718 bbits = block_size_bits(blocksize);
1719
1720 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1721 last_block = (i_size_read(inode) - 1) >> bbits;
1722
1723 /*
1724 * Get all the dirty buffers mapped to disk addresses and
1725 * handle any aliases from the underlying blockdev's mapping.
1726 */
1727 do {
1728 if (block > last_block) {
1729 /*
1730 * mapped buffers outside i_size will occur, because
1731 * this page can be outside i_size when there is a
1732 * truncate in progress.
1733 */
1734 /*
1735 * The buffer was zeroed by block_write_full_page()
1736 */
1737 clear_buffer_dirty(bh);
1738 set_buffer_uptodate(bh);
1739 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1740 buffer_dirty(bh)) {
1741 WARN_ON(bh->b_size != blocksize);
1742 err = get_block(inode, block, bh, 1);
1743 if (err)
1744 goto recover;
1745 clear_buffer_delay(bh);
1746 if (buffer_new(bh)) {
1747 /* blockdev mappings never come here */
1748 clear_buffer_new(bh);
1749 unmap_underlying_metadata(bh->b_bdev,
1750 bh->b_blocknr);
1751 }
1752 }
1753 bh = bh->b_this_page;
1754 block++;
1755 } while (bh != head);
1756
1757 do {
1758 if (!buffer_mapped(bh))
1759 continue;
1760 /*
1761 * If it's a fully non-blocking write attempt and we cannot
1762 * lock the buffer then redirty the page. Note that this can
1763 * potentially cause a busy-wait loop from writeback threads
1764 * and kswapd activity, but those code paths have their own
1765 * higher-level throttling.
1766 */
1767 if (wbc->sync_mode != WB_SYNC_NONE) {
1768 lock_buffer(bh);
1769 } else if (!trylock_buffer(bh)) {
1770 redirty_page_for_writepage(wbc, page);
1771 continue;
1772 }
1773 if (test_clear_buffer_dirty(bh)) {
1774 mark_buffer_async_write_endio(bh, handler);
1775 } else {
1776 unlock_buffer(bh);
1777 }
1778 } while ((bh = bh->b_this_page) != head);
1779
1780 /*
1781 * The page and its buffers are protected by PageWriteback(), so we can
1782 * drop the bh refcounts early.
1783 */
1784 BUG_ON(PageWriteback(page));
1785 set_page_writeback(page);
1786
1787 do {
1788 struct buffer_head *next = bh->b_this_page;
1789 if (buffer_async_write(bh)) {
1790 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1791 nr_underway++;
1792 }
1793 bh = next;
1794 } while (bh != head);
1795 unlock_page(page);
1796
1797 err = 0;
1798done:
1799 if (nr_underway == 0) {
1800 /*
1801 * The page was marked dirty, but the buffers were
1802 * clean. Someone wrote them back by hand with
1803 * ll_rw_block/submit_bh. A rare case.
1804 */
1805 end_page_writeback(page);
1806
1807 /*
1808 * The page and buffer_heads can be released at any time from
1809 * here on.
1810 */
1811 }
1812 return err;
1813
1814recover:
1815 /*
1816 * ENOSPC, or some other error. We may already have added some
1817 * blocks to the file, so we need to write these out to avoid
1818 * exposing stale data.
1819 * The page is currently locked and not marked for writeback
1820 */
1821 bh = head;
1822 /* Recovery: lock and submit the mapped buffers */
1823 do {
1824 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1825 !buffer_delay(bh)) {
1826 lock_buffer(bh);
1827 mark_buffer_async_write_endio(bh, handler);
1828 } else {
1829 /*
1830 * The buffer may have been set dirty during
1831 * attachment to a dirty page.
1832 */
1833 clear_buffer_dirty(bh);
1834 }
1835 } while ((bh = bh->b_this_page) != head);
1836 SetPageError(page);
1837 BUG_ON(PageWriteback(page));
1838 mapping_set_error(page->mapping, err);
1839 set_page_writeback(page);
1840 do {
1841 struct buffer_head *next = bh->b_this_page;
1842 if (buffer_async_write(bh)) {
1843 clear_buffer_dirty(bh);
1844 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1845 nr_underway++;
1846 }
1847 bh = next;
1848 } while (bh != head);
1849 unlock_page(page);
1850 goto done;
1851}
1852EXPORT_SYMBOL(__block_write_full_page);
1853
1854/*
1855 * If a page has any new buffers, zero them out here, and mark them uptodate
1856 * and dirty so they'll be written out (in order to prevent uninitialised
1857 * block data from leaking). And clear the new bit.
1858 */
1859void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1860{
1861 unsigned int block_start, block_end;
1862 struct buffer_head *head, *bh;
1863
1864 BUG_ON(!PageLocked(page));
1865 if (!page_has_buffers(page))
1866 return;
1867
1868 bh = head = page_buffers(page);
1869 block_start = 0;
1870 do {
1871 block_end = block_start + bh->b_size;
1872
1873 if (buffer_new(bh)) {
1874 if (block_end > from && block_start < to) {
1875 if (!PageUptodate(page)) {
1876 unsigned start, size;
1877
1878 start = max(from, block_start);
1879 size = min(to, block_end) - start;
1880
1881 zero_user(page, start, size);
1882 set_buffer_uptodate(bh);
1883 }
1884
1885 clear_buffer_new(bh);
1886 mark_buffer_dirty(bh);
1887 }
1888 }
1889
1890 block_start = block_end;
1891 bh = bh->b_this_page;
1892 } while (bh != head);
1893}
1894EXPORT_SYMBOL(page_zero_new_buffers);
1895
1896static void
1897iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1898 struct iomap *iomap)
1899{
1900 loff_t offset = block << inode->i_blkbits;
1901
1902 bh->b_bdev = iomap->bdev;
1903
1904 /*
1905 * Block points to offset in file we need to map, iomap contains
1906 * the offset at which the map starts. If the map ends before the
1907 * current block, then do not map the buffer and let the caller
1908 * handle it.
1909 */
1910 BUG_ON(offset >= iomap->offset + iomap->length);
1911
1912 switch (iomap->type) {
1913 case IOMAP_HOLE:
1914 /*
1915 * If the buffer is not up to date or beyond the current EOF,
1916 * we need to mark it as new to ensure sub-block zeroing is
1917 * executed if necessary.
1918 */
1919 if (!buffer_uptodate(bh) ||
1920 (offset >= i_size_read(inode)))
1921 set_buffer_new(bh);
1922 break;
1923 case IOMAP_DELALLOC:
1924 if (!buffer_uptodate(bh) ||
1925 (offset >= i_size_read(inode)))
1926 set_buffer_new(bh);
1927 set_buffer_uptodate(bh);
1928 set_buffer_mapped(bh);
1929 set_buffer_delay(bh);
1930 break;
1931 case IOMAP_UNWRITTEN:
1932 /*
1933 * For unwritten regions, we always need to ensure that
1934 * sub-block writes cause the regions in the block we are not
1935 * writing to are zeroed. Set the buffer as new to ensure this.
1936 */
1937 set_buffer_new(bh);
1938 set_buffer_unwritten(bh);
1939 /* FALLTHRU */
1940 case IOMAP_MAPPED:
1941 if (offset >= i_size_read(inode))
1942 set_buffer_new(bh);
1943 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1944 ((offset - iomap->offset) >> inode->i_blkbits);
1945 set_buffer_mapped(bh);
1946 break;
1947 }
1948}
1949
1950int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1951 get_block_t *get_block, struct iomap *iomap)
1952{
1953 unsigned from = pos & (PAGE_SIZE - 1);
1954 unsigned to = from + len;
1955 struct inode *inode = page->mapping->host;
1956 unsigned block_start, block_end;
1957 sector_t block;
1958 int err = 0;
1959 unsigned blocksize, bbits;
1960 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1961
1962 BUG_ON(!PageLocked(page));
1963 BUG_ON(from > PAGE_SIZE);
1964 BUG_ON(to > PAGE_SIZE);
1965 BUG_ON(from > to);
1966
1967 head = create_page_buffers(page, inode, 0);
1968 blocksize = head->b_size;
1969 bbits = block_size_bits(blocksize);
1970
1971 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1972
1973 for(bh = head, block_start = 0; bh != head || !block_start;
1974 block++, block_start=block_end, bh = bh->b_this_page) {
1975 block_end = block_start + blocksize;
1976 if (block_end <= from || block_start >= to) {
1977 if (PageUptodate(page)) {
1978 if (!buffer_uptodate(bh))
1979 set_buffer_uptodate(bh);
1980 }
1981 continue;
1982 }
1983 if (buffer_new(bh))
1984 clear_buffer_new(bh);
1985 if (!buffer_mapped(bh)) {
1986 WARN_ON(bh->b_size != blocksize);
1987 if (get_block) {
1988 err = get_block(inode, block, bh, 1);
1989 if (err)
1990 break;
1991 } else {
1992 iomap_to_bh(inode, block, bh, iomap);
1993 }
1994
1995 if (buffer_new(bh)) {
1996 unmap_underlying_metadata(bh->b_bdev,
1997 bh->b_blocknr);
1998 if (PageUptodate(page)) {
1999 clear_buffer_new(bh);
2000 set_buffer_uptodate(bh);
2001 mark_buffer_dirty(bh);
2002 continue;
2003 }
2004 if (block_end > to || block_start < from)
2005 zero_user_segments(page,
2006 to, block_end,
2007 block_start, from);
2008 continue;
2009 }
2010 }
2011 if (PageUptodate(page)) {
2012 if (!buffer_uptodate(bh))
2013 set_buffer_uptodate(bh);
2014 continue;
2015 }
2016 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2017 !buffer_unwritten(bh) &&
2018 (block_start < from || block_end > to)) {
2019 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2020 *wait_bh++=bh;
2021 }
2022 }
2023 /*
2024 * If we issued read requests - let them complete.
2025 */
2026 while(wait_bh > wait) {
2027 wait_on_buffer(*--wait_bh);
2028 if (!buffer_uptodate(*wait_bh))
2029 err = -EIO;
2030 }
2031 if (unlikely(err))
2032 page_zero_new_buffers(page, from, to);
2033 return err;
2034}
2035
2036int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2037 get_block_t *get_block)
2038{
2039 return __block_write_begin_int(page, pos, len, get_block, NULL);
2040}
2041EXPORT_SYMBOL(__block_write_begin);
2042
2043static int __block_commit_write(struct inode *inode, struct page *page,
2044 unsigned from, unsigned to)
2045{
2046 unsigned block_start, block_end;
2047 int partial = 0;
2048 unsigned blocksize;
2049 struct buffer_head *bh, *head;
2050
2051 bh = head = page_buffers(page);
2052 blocksize = bh->b_size;
2053
2054 block_start = 0;
2055 do {
2056 block_end = block_start + blocksize;
2057 if (block_end <= from || block_start >= to) {
2058 if (!buffer_uptodate(bh))
2059 partial = 1;
2060 } else {
2061 set_buffer_uptodate(bh);
2062 mark_buffer_dirty(bh);
2063 }
2064 clear_buffer_new(bh);
2065
2066 block_start = block_end;
2067 bh = bh->b_this_page;
2068 } while (bh != head);
2069
2070 /*
2071 * If this is a partial write which happened to make all buffers
2072 * uptodate then we can optimize away a bogus readpage() for
2073 * the next read(). Here we 'discover' whether the page went
2074 * uptodate as a result of this (potentially partial) write.
2075 */
2076 if (!partial)
2077 SetPageUptodate(page);
2078 return 0;
2079}
2080
2081/*
2082 * block_write_begin takes care of the basic task of block allocation and
2083 * bringing partial write blocks uptodate first.
2084 *
2085 * The filesystem needs to handle block truncation upon failure.
2086 */
2087int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2088 unsigned flags, struct page **pagep, get_block_t *get_block)
2089{
2090 pgoff_t index = pos >> PAGE_SHIFT;
2091 struct page *page;
2092 int status;
2093
2094 page = grab_cache_page_write_begin(mapping, index, flags);
2095 if (!page)
2096 return -ENOMEM;
2097
2098 status = __block_write_begin(page, pos, len, get_block);
2099 if (unlikely(status)) {
2100 unlock_page(page);
2101 put_page(page);
2102 page = NULL;
2103 }
2104
2105 *pagep = page;
2106 return status;
2107}
2108EXPORT_SYMBOL(block_write_begin);
2109
2110int block_write_end(struct file *file, struct address_space *mapping,
2111 loff_t pos, unsigned len, unsigned copied,
2112 struct page *page, void *fsdata)
2113{
2114 struct inode *inode = mapping->host;
2115 unsigned start;
2116
2117 start = pos & (PAGE_SIZE - 1);
2118
2119 if (unlikely(copied < len)) {
2120 /*
2121 * The buffers that were written will now be uptodate, so we
2122 * don't have to worry about a readpage reading them and
2123 * overwriting a partial write. However if we have encountered
2124 * a short write and only partially written into a buffer, it
2125 * will not be marked uptodate, so a readpage might come in and
2126 * destroy our partial write.
2127 *
2128 * Do the simplest thing, and just treat any short write to a
2129 * non uptodate page as a zero-length write, and force the
2130 * caller to redo the whole thing.
2131 */
2132 if (!PageUptodate(page))
2133 copied = 0;
2134
2135 page_zero_new_buffers(page, start+copied, start+len);
2136 }
2137 flush_dcache_page(page);
2138
2139 /* This could be a short (even 0-length) commit */
2140 __block_commit_write(inode, page, start, start+copied);
2141
2142 return copied;
2143}
2144EXPORT_SYMBOL(block_write_end);
2145
2146int generic_write_end(struct file *file, struct address_space *mapping,
2147 loff_t pos, unsigned len, unsigned copied,
2148 struct page *page, void *fsdata)
2149{
2150 struct inode *inode = mapping->host;
2151 loff_t old_size = inode->i_size;
2152 int i_size_changed = 0;
2153
2154 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2155
2156 /*
2157 * No need to use i_size_read() here, the i_size
2158 * cannot change under us because we hold i_mutex.
2159 *
2160 * But it's important to update i_size while still holding page lock:
2161 * page writeout could otherwise come in and zero beyond i_size.
2162 */
2163 if (pos+copied > inode->i_size) {
2164 i_size_write(inode, pos+copied);
2165 i_size_changed = 1;
2166 }
2167
2168 unlock_page(page);
2169 put_page(page);
2170
2171 if (old_size < pos)
2172 pagecache_isize_extended(inode, old_size, pos);
2173 /*
2174 * Don't mark the inode dirty under page lock. First, it unnecessarily
2175 * makes the holding time of page lock longer. Second, it forces lock
2176 * ordering of page lock and transaction start for journaling
2177 * filesystems.
2178 */
2179 if (i_size_changed)
2180 mark_inode_dirty(inode);
2181
2182 return copied;
2183}
2184EXPORT_SYMBOL(generic_write_end);
2185
2186/*
2187 * block_is_partially_uptodate checks whether buffers within a page are
2188 * uptodate or not.
2189 *
2190 * Returns true if all buffers which correspond to a file portion
2191 * we want to read are uptodate.
2192 */
2193int block_is_partially_uptodate(struct page *page, unsigned long from,
2194 unsigned long count)
2195{
2196 unsigned block_start, block_end, blocksize;
2197 unsigned to;
2198 struct buffer_head *bh, *head;
2199 int ret = 1;
2200
2201 if (!page_has_buffers(page))
2202 return 0;
2203
2204 head = page_buffers(page);
2205 blocksize = head->b_size;
2206 to = min_t(unsigned, PAGE_SIZE - from, count);
2207 to = from + to;
2208 if (from < blocksize && to > PAGE_SIZE - blocksize)
2209 return 0;
2210
2211 bh = head;
2212 block_start = 0;
2213 do {
2214 block_end = block_start + blocksize;
2215 if (block_end > from && block_start < to) {
2216 if (!buffer_uptodate(bh)) {
2217 ret = 0;
2218 break;
2219 }
2220 if (block_end >= to)
2221 break;
2222 }
2223 block_start = block_end;
2224 bh = bh->b_this_page;
2225 } while (bh != head);
2226
2227 return ret;
2228}
2229EXPORT_SYMBOL(block_is_partially_uptodate);
2230
2231/*
2232 * Generic "read page" function for block devices that have the normal
2233 * get_block functionality. This is most of the block device filesystems.
2234 * Reads the page asynchronously --- the unlock_buffer() and
2235 * set/clear_buffer_uptodate() functions propagate buffer state into the
2236 * page struct once IO has completed.
2237 */
2238int block_read_full_page(struct page *page, get_block_t *get_block)
2239{
2240 struct inode *inode = page->mapping->host;
2241 sector_t iblock, lblock;
2242 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2243 unsigned int blocksize, bbits;
2244 int nr, i;
2245 int fully_mapped = 1;
2246
2247 head = create_page_buffers(page, inode, 0);
2248 blocksize = head->b_size;
2249 bbits = block_size_bits(blocksize);
2250
2251 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2252 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2253 bh = head;
2254 nr = 0;
2255 i = 0;
2256
2257 do {
2258 if (buffer_uptodate(bh))
2259 continue;
2260
2261 if (!buffer_mapped(bh)) {
2262 int err = 0;
2263
2264 fully_mapped = 0;
2265 if (iblock < lblock) {
2266 WARN_ON(bh->b_size != blocksize);
2267 err = get_block(inode, iblock, bh, 0);
2268 if (err)
2269 SetPageError(page);
2270 }
2271 if (!buffer_mapped(bh)) {
2272 zero_user(page, i * blocksize, blocksize);
2273 if (!err)
2274 set_buffer_uptodate(bh);
2275 continue;
2276 }
2277 /*
2278 * get_block() might have updated the buffer
2279 * synchronously
2280 */
2281 if (buffer_uptodate(bh))
2282 continue;
2283 }
2284 arr[nr++] = bh;
2285 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2286
2287 if (fully_mapped)
2288 SetPageMappedToDisk(page);
2289
2290 if (!nr) {
2291 /*
2292 * All buffers are uptodate - we can set the page uptodate
2293 * as well. But not if get_block() returned an error.
2294 */
2295 if (!PageError(page))
2296 SetPageUptodate(page);
2297 unlock_page(page);
2298 return 0;
2299 }
2300
2301 /* Stage two: lock the buffers */
2302 for (i = 0; i < nr; i++) {
2303 bh = arr[i];
2304 lock_buffer(bh);
2305 mark_buffer_async_read(bh);
2306 }
2307
2308 /*
2309 * Stage 3: start the IO. Check for uptodateness
2310 * inside the buffer lock in case another process reading
2311 * the underlying blockdev brought it uptodate (the sct fix).
2312 */
2313 for (i = 0; i < nr; i++) {
2314 bh = arr[i];
2315 if (buffer_uptodate(bh))
2316 end_buffer_async_read(bh, 1);
2317 else
2318 submit_bh(REQ_OP_READ, 0, bh);
2319 }
2320 return 0;
2321}
2322EXPORT_SYMBOL(block_read_full_page);
2323
2324/* utility function for filesystems that need to do work on expanding
2325 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2326 * deal with the hole.
2327 */
2328int generic_cont_expand_simple(struct inode *inode, loff_t size)
2329{
2330 struct address_space *mapping = inode->i_mapping;
2331 struct page *page;
2332 void *fsdata;
2333 int err;
2334
2335 err = inode_newsize_ok(inode, size);
2336 if (err)
2337 goto out;
2338
2339 err = pagecache_write_begin(NULL, mapping, size, 0,
2340 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2341 &page, &fsdata);
2342 if (err)
2343 goto out;
2344
2345 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2346 BUG_ON(err > 0);
2347
2348out:
2349 return err;
2350}
2351EXPORT_SYMBOL(generic_cont_expand_simple);
2352
2353static int cont_expand_zero(struct file *file, struct address_space *mapping,
2354 loff_t pos, loff_t *bytes)
2355{
2356 struct inode *inode = mapping->host;
2357 unsigned int blocksize = i_blocksize(inode);
2358 struct page *page;
2359 void *fsdata;
2360 pgoff_t index, curidx;
2361 loff_t curpos;
2362 unsigned zerofrom, offset, len;
2363 int err = 0;
2364
2365 index = pos >> PAGE_SHIFT;
2366 offset = pos & ~PAGE_MASK;
2367
2368 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2369 zerofrom = curpos & ~PAGE_MASK;
2370 if (zerofrom & (blocksize-1)) {
2371 *bytes |= (blocksize-1);
2372 (*bytes)++;
2373 }
2374 len = PAGE_SIZE - zerofrom;
2375
2376 err = pagecache_write_begin(file, mapping, curpos, len,
2377 AOP_FLAG_UNINTERRUPTIBLE,
2378 &page, &fsdata);
2379 if (err)
2380 goto out;
2381 zero_user(page, zerofrom, len);
2382 err = pagecache_write_end(file, mapping, curpos, len, len,
2383 page, fsdata);
2384 if (err < 0)
2385 goto out;
2386 BUG_ON(err != len);
2387 err = 0;
2388
2389 balance_dirty_pages_ratelimited(mapping);
2390
2391 if (unlikely(fatal_signal_pending(current))) {
2392 err = -EINTR;
2393 goto out;
2394 }
2395 }
2396
2397 /* page covers the boundary, find the boundary offset */
2398 if (index == curidx) {
2399 zerofrom = curpos & ~PAGE_MASK;
2400 /* if we will expand the thing last block will be filled */
2401 if (offset <= zerofrom) {
2402 goto out;
2403 }
2404 if (zerofrom & (blocksize-1)) {
2405 *bytes |= (blocksize-1);
2406 (*bytes)++;
2407 }
2408 len = offset - zerofrom;
2409
2410 err = pagecache_write_begin(file, mapping, curpos, len,
2411 AOP_FLAG_UNINTERRUPTIBLE,
2412 &page, &fsdata);
2413 if (err)
2414 goto out;
2415 zero_user(page, zerofrom, len);
2416 err = pagecache_write_end(file, mapping, curpos, len, len,
2417 page, fsdata);
2418 if (err < 0)
2419 goto out;
2420 BUG_ON(err != len);
2421 err = 0;
2422 }
2423out:
2424 return err;
2425}
2426
2427/*
2428 * For moronic filesystems that do not allow holes in file.
2429 * We may have to extend the file.
2430 */
2431int cont_write_begin(struct file *file, struct address_space *mapping,
2432 loff_t pos, unsigned len, unsigned flags,
2433 struct page **pagep, void **fsdata,
2434 get_block_t *get_block, loff_t *bytes)
2435{
2436 struct inode *inode = mapping->host;
2437 unsigned int blocksize = i_blocksize(inode);
2438 unsigned int zerofrom;
2439 int err;
2440
2441 err = cont_expand_zero(file, mapping, pos, bytes);
2442 if (err)
2443 return err;
2444
2445 zerofrom = *bytes & ~PAGE_MASK;
2446 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2447 *bytes |= (blocksize-1);
2448 (*bytes)++;
2449 }
2450
2451 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2452}
2453EXPORT_SYMBOL(cont_write_begin);
2454
2455int block_commit_write(struct page *page, unsigned from, unsigned to)
2456{
2457 struct inode *inode = page->mapping->host;
2458 __block_commit_write(inode,page,from,to);
2459 return 0;
2460}
2461EXPORT_SYMBOL(block_commit_write);
2462
2463/*
2464 * block_page_mkwrite() is not allowed to change the file size as it gets
2465 * called from a page fault handler when a page is first dirtied. Hence we must
2466 * be careful to check for EOF conditions here. We set the page up correctly
2467 * for a written page which means we get ENOSPC checking when writing into
2468 * holes and correct delalloc and unwritten extent mapping on filesystems that
2469 * support these features.
2470 *
2471 * We are not allowed to take the i_mutex here so we have to play games to
2472 * protect against truncate races as the page could now be beyond EOF. Because
2473 * truncate writes the inode size before removing pages, once we have the
2474 * page lock we can determine safely if the page is beyond EOF. If it is not
2475 * beyond EOF, then the page is guaranteed safe against truncation until we
2476 * unlock the page.
2477 *
2478 * Direct callers of this function should protect against filesystem freezing
2479 * using sb_start_pagefault() - sb_end_pagefault() functions.
2480 */
2481int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2482 get_block_t get_block)
2483{
2484 struct page *page = vmf->page;
2485 struct inode *inode = file_inode(vma->vm_file);
2486 unsigned long end;
2487 loff_t size;
2488 int ret;
2489
2490 lock_page(page);
2491 size = i_size_read(inode);
2492 if ((page->mapping != inode->i_mapping) ||
2493 (page_offset(page) > size)) {
2494 /* We overload EFAULT to mean page got truncated */
2495 ret = -EFAULT;
2496 goto out_unlock;
2497 }
2498
2499 /* page is wholly or partially inside EOF */
2500 if (((page->index + 1) << PAGE_SHIFT) > size)
2501 end = size & ~PAGE_MASK;
2502 else
2503 end = PAGE_SIZE;
2504
2505 ret = __block_write_begin(page, 0, end, get_block);
2506 if (!ret)
2507 ret = block_commit_write(page, 0, end);
2508
2509 if (unlikely(ret < 0))
2510 goto out_unlock;
2511 set_page_dirty(page);
2512 wait_for_stable_page(page);
2513 return 0;
2514out_unlock:
2515 unlock_page(page);
2516 return ret;
2517}
2518EXPORT_SYMBOL(block_page_mkwrite);
2519
2520/*
2521 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2522 * immediately, while under the page lock. So it needs a special end_io
2523 * handler which does not touch the bh after unlocking it.
2524 */
2525static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2526{
2527 __end_buffer_read_notouch(bh, uptodate);
2528}
2529
2530/*
2531 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2532 * the page (converting it to circular linked list and taking care of page
2533 * dirty races).
2534 */
2535static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2536{
2537 struct buffer_head *bh;
2538
2539 BUG_ON(!PageLocked(page));
2540
2541 spin_lock(&page->mapping->private_lock);
2542 bh = head;
2543 do {
2544 if (PageDirty(page))
2545 set_buffer_dirty(bh);
2546 if (!bh->b_this_page)
2547 bh->b_this_page = head;
2548 bh = bh->b_this_page;
2549 } while (bh != head);
2550 attach_page_buffers(page, head);
2551 spin_unlock(&page->mapping->private_lock);
2552}
2553
2554/*
2555 * On entry, the page is fully not uptodate.
2556 * On exit the page is fully uptodate in the areas outside (from,to)
2557 * The filesystem needs to handle block truncation upon failure.
2558 */
2559int nobh_write_begin(struct address_space *mapping,
2560 loff_t pos, unsigned len, unsigned flags,
2561 struct page **pagep, void **fsdata,
2562 get_block_t *get_block)
2563{
2564 struct inode *inode = mapping->host;
2565 const unsigned blkbits = inode->i_blkbits;
2566 const unsigned blocksize = 1 << blkbits;
2567 struct buffer_head *head, *bh;
2568 struct page *page;
2569 pgoff_t index;
2570 unsigned from, to;
2571 unsigned block_in_page;
2572 unsigned block_start, block_end;
2573 sector_t block_in_file;
2574 int nr_reads = 0;
2575 int ret = 0;
2576 int is_mapped_to_disk = 1;
2577
2578 index = pos >> PAGE_SHIFT;
2579 from = pos & (PAGE_SIZE - 1);
2580 to = from + len;
2581
2582 page = grab_cache_page_write_begin(mapping, index, flags);
2583 if (!page)
2584 return -ENOMEM;
2585 *pagep = page;
2586 *fsdata = NULL;
2587
2588 if (page_has_buffers(page)) {
2589 ret = __block_write_begin(page, pos, len, get_block);
2590 if (unlikely(ret))
2591 goto out_release;
2592 return ret;
2593 }
2594
2595 if (PageMappedToDisk(page))
2596 return 0;
2597
2598 /*
2599 * Allocate buffers so that we can keep track of state, and potentially
2600 * attach them to the page if an error occurs. In the common case of
2601 * no error, they will just be freed again without ever being attached
2602 * to the page (which is all OK, because we're under the page lock).
2603 *
2604 * Be careful: the buffer linked list is a NULL terminated one, rather
2605 * than the circular one we're used to.
2606 */
2607 head = alloc_page_buffers(page, blocksize, 0);
2608 if (!head) {
2609 ret = -ENOMEM;
2610 goto out_release;
2611 }
2612
2613 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2614
2615 /*
2616 * We loop across all blocks in the page, whether or not they are
2617 * part of the affected region. This is so we can discover if the
2618 * page is fully mapped-to-disk.
2619 */
2620 for (block_start = 0, block_in_page = 0, bh = head;
2621 block_start < PAGE_SIZE;
2622 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2623 int create;
2624
2625 block_end = block_start + blocksize;
2626 bh->b_state = 0;
2627 create = 1;
2628 if (block_start >= to)
2629 create = 0;
2630 ret = get_block(inode, block_in_file + block_in_page,
2631 bh, create);
2632 if (ret)
2633 goto failed;
2634 if (!buffer_mapped(bh))
2635 is_mapped_to_disk = 0;
2636 if (buffer_new(bh))
2637 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2638 if (PageUptodate(page)) {
2639 set_buffer_uptodate(bh);
2640 continue;
2641 }
2642 if (buffer_new(bh) || !buffer_mapped(bh)) {
2643 zero_user_segments(page, block_start, from,
2644 to, block_end);
2645 continue;
2646 }
2647 if (buffer_uptodate(bh))
2648 continue; /* reiserfs does this */
2649 if (block_start < from || block_end > to) {
2650 lock_buffer(bh);
2651 bh->b_end_io = end_buffer_read_nobh;
2652 submit_bh(REQ_OP_READ, 0, bh);
2653 nr_reads++;
2654 }
2655 }
2656
2657 if (nr_reads) {
2658 /*
2659 * The page is locked, so these buffers are protected from
2660 * any VM or truncate activity. Hence we don't need to care
2661 * for the buffer_head refcounts.
2662 */
2663 for (bh = head; bh; bh = bh->b_this_page) {
2664 wait_on_buffer(bh);
2665 if (!buffer_uptodate(bh))
2666 ret = -EIO;
2667 }
2668 if (ret)
2669 goto failed;
2670 }
2671
2672 if (is_mapped_to_disk)
2673 SetPageMappedToDisk(page);
2674
2675 *fsdata = head; /* to be released by nobh_write_end */
2676
2677 return 0;
2678
2679failed:
2680 BUG_ON(!ret);
2681 /*
2682 * Error recovery is a bit difficult. We need to zero out blocks that
2683 * were newly allocated, and dirty them to ensure they get written out.
2684 * Buffers need to be attached to the page at this point, otherwise
2685 * the handling of potential IO errors during writeout would be hard
2686 * (could try doing synchronous writeout, but what if that fails too?)
2687 */
2688 attach_nobh_buffers(page, head);
2689 page_zero_new_buffers(page, from, to);
2690
2691out_release:
2692 unlock_page(page);
2693 put_page(page);
2694 *pagep = NULL;
2695
2696 return ret;
2697}
2698EXPORT_SYMBOL(nobh_write_begin);
2699
2700int nobh_write_end(struct file *file, struct address_space *mapping,
2701 loff_t pos, unsigned len, unsigned copied,
2702 struct page *page, void *fsdata)
2703{
2704 struct inode *inode = page->mapping->host;
2705 struct buffer_head *head = fsdata;
2706 struct buffer_head *bh;
2707 BUG_ON(fsdata != NULL && page_has_buffers(page));
2708
2709 if (unlikely(copied < len) && head)
2710 attach_nobh_buffers(page, head);
2711 if (page_has_buffers(page))
2712 return generic_write_end(file, mapping, pos, len,
2713 copied, page, fsdata);
2714
2715 SetPageUptodate(page);
2716 set_page_dirty(page);
2717 if (pos+copied > inode->i_size) {
2718 i_size_write(inode, pos+copied);
2719 mark_inode_dirty(inode);
2720 }
2721
2722 unlock_page(page);
2723 put_page(page);
2724
2725 while (head) {
2726 bh = head;
2727 head = head->b_this_page;
2728 free_buffer_head(bh);
2729 }
2730
2731 return copied;
2732}
2733EXPORT_SYMBOL(nobh_write_end);
2734
2735/*
2736 * nobh_writepage() - based on block_full_write_page() except
2737 * that it tries to operate without attaching bufferheads to
2738 * the page.
2739 */
2740int nobh_writepage(struct page *page, get_block_t *get_block,
2741 struct writeback_control *wbc)
2742{
2743 struct inode * const inode = page->mapping->host;
2744 loff_t i_size = i_size_read(inode);
2745 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2746 unsigned offset;
2747 int ret;
2748
2749 /* Is the page fully inside i_size? */
2750 if (page->index < end_index)
2751 goto out;
2752
2753 /* Is the page fully outside i_size? (truncate in progress) */
2754 offset = i_size & (PAGE_SIZE-1);
2755 if (page->index >= end_index+1 || !offset) {
2756 /*
2757 * The page may have dirty, unmapped buffers. For example,
2758 * they may have been added in ext3_writepage(). Make them
2759 * freeable here, so the page does not leak.
2760 */
2761#if 0
2762 /* Not really sure about this - do we need this ? */
2763 if (page->mapping->a_ops->invalidatepage)
2764 page->mapping->a_ops->invalidatepage(page, offset);
2765#endif
2766 unlock_page(page);
2767 return 0; /* don't care */
2768 }
2769
2770 /*
2771 * The page straddles i_size. It must be zeroed out on each and every
2772 * writepage invocation because it may be mmapped. "A file is mapped
2773 * in multiples of the page size. For a file that is not a multiple of
2774 * the page size, the remaining memory is zeroed when mapped, and
2775 * writes to that region are not written out to the file."
2776 */
2777 zero_user_segment(page, offset, PAGE_SIZE);
2778out:
2779 ret = mpage_writepage(page, get_block, wbc);
2780 if (ret == -EAGAIN)
2781 ret = __block_write_full_page(inode, page, get_block, wbc,
2782 end_buffer_async_write);
2783 return ret;
2784}
2785EXPORT_SYMBOL(nobh_writepage);
2786
2787int nobh_truncate_page(struct address_space *mapping,
2788 loff_t from, get_block_t *get_block)
2789{
2790 pgoff_t index = from >> PAGE_SHIFT;
2791 unsigned offset = from & (PAGE_SIZE-1);
2792 unsigned blocksize;
2793 sector_t iblock;
2794 unsigned length, pos;
2795 struct inode *inode = mapping->host;
2796 struct page *page;
2797 struct buffer_head map_bh;
2798 int err;
2799
2800 blocksize = i_blocksize(inode);
2801 length = offset & (blocksize - 1);
2802
2803 /* Block boundary? Nothing to do */
2804 if (!length)
2805 return 0;
2806
2807 length = blocksize - length;
2808 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2809
2810 page = grab_cache_page(mapping, index);
2811 err = -ENOMEM;
2812 if (!page)
2813 goto out;
2814
2815 if (page_has_buffers(page)) {
2816has_buffers:
2817 unlock_page(page);
2818 put_page(page);
2819 return block_truncate_page(mapping, from, get_block);
2820 }
2821
2822 /* Find the buffer that contains "offset" */
2823 pos = blocksize;
2824 while (offset >= pos) {
2825 iblock++;
2826 pos += blocksize;
2827 }
2828
2829 map_bh.b_size = blocksize;
2830 map_bh.b_state = 0;
2831 err = get_block(inode, iblock, &map_bh, 0);
2832 if (err)
2833 goto unlock;
2834 /* unmapped? It's a hole - nothing to do */
2835 if (!buffer_mapped(&map_bh))
2836 goto unlock;
2837
2838 /* Ok, it's mapped. Make sure it's up-to-date */
2839 if (!PageUptodate(page)) {
2840 err = mapping->a_ops->readpage(NULL, page);
2841 if (err) {
2842 put_page(page);
2843 goto out;
2844 }
2845 lock_page(page);
2846 if (!PageUptodate(page)) {
2847 err = -EIO;
2848 goto unlock;
2849 }
2850 if (page_has_buffers(page))
2851 goto has_buffers;
2852 }
2853 zero_user(page, offset, length);
2854 set_page_dirty(page);
2855 err = 0;
2856
2857unlock:
2858 unlock_page(page);
2859 put_page(page);
2860out:
2861 return err;
2862}
2863EXPORT_SYMBOL(nobh_truncate_page);
2864
2865int block_truncate_page(struct address_space *mapping,
2866 loff_t from, get_block_t *get_block)
2867{
2868 pgoff_t index = from >> PAGE_SHIFT;
2869 unsigned offset = from & (PAGE_SIZE-1);
2870 unsigned blocksize;
2871 sector_t iblock;
2872 unsigned length, pos;
2873 struct inode *inode = mapping->host;
2874 struct page *page;
2875 struct buffer_head *bh;
2876 int err;
2877
2878 blocksize = i_blocksize(inode);
2879 length = offset & (blocksize - 1);
2880
2881 /* Block boundary? Nothing to do */
2882 if (!length)
2883 return 0;
2884
2885 length = blocksize - length;
2886 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2887
2888 page = grab_cache_page(mapping, index);
2889 err = -ENOMEM;
2890 if (!page)
2891 goto out;
2892
2893 if (!page_has_buffers(page))
2894 create_empty_buffers(page, blocksize, 0);
2895
2896 /* Find the buffer that contains "offset" */
2897 bh = page_buffers(page);
2898 pos = blocksize;
2899 while (offset >= pos) {
2900 bh = bh->b_this_page;
2901 iblock++;
2902 pos += blocksize;
2903 }
2904
2905 err = 0;
2906 if (!buffer_mapped(bh)) {
2907 WARN_ON(bh->b_size != blocksize);
2908 err = get_block(inode, iblock, bh, 0);
2909 if (err)
2910 goto unlock;
2911 /* unmapped? It's a hole - nothing to do */
2912 if (!buffer_mapped(bh))
2913 goto unlock;
2914 }
2915
2916 /* Ok, it's mapped. Make sure it's up-to-date */
2917 if (PageUptodate(page))
2918 set_buffer_uptodate(bh);
2919
2920 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2921 err = -EIO;
2922 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2923 wait_on_buffer(bh);
2924 /* Uhhuh. Read error. Complain and punt. */
2925 if (!buffer_uptodate(bh))
2926 goto unlock;
2927 }
2928
2929 zero_user(page, offset, length);
2930 mark_buffer_dirty(bh);
2931 err = 0;
2932
2933unlock:
2934 unlock_page(page);
2935 put_page(page);
2936out:
2937 return err;
2938}
2939EXPORT_SYMBOL(block_truncate_page);
2940
2941/*
2942 * The generic ->writepage function for buffer-backed address_spaces
2943 */
2944int block_write_full_page(struct page *page, get_block_t *get_block,
2945 struct writeback_control *wbc)
2946{
2947 struct inode * const inode = page->mapping->host;
2948 loff_t i_size = i_size_read(inode);
2949 const pgoff_t end_index = i_size >> PAGE_SHIFT;
2950 unsigned offset;
2951
2952 /* Is the page fully inside i_size? */
2953 if (page->index < end_index)
2954 return __block_write_full_page(inode, page, get_block, wbc,
2955 end_buffer_async_write);
2956
2957 /* Is the page fully outside i_size? (truncate in progress) */
2958 offset = i_size & (PAGE_SIZE-1);
2959 if (page->index >= end_index+1 || !offset) {
2960 /*
2961 * The page may have dirty, unmapped buffers. For example,
2962 * they may have been added in ext3_writepage(). Make them
2963 * freeable here, so the page does not leak.
2964 */
2965 do_invalidatepage(page, 0, PAGE_SIZE);
2966 unlock_page(page);
2967 return 0; /* don't care */
2968 }
2969
2970 /*
2971 * The page straddles i_size. It must be zeroed out on each and every
2972 * writepage invocation because it may be mmapped. "A file is mapped
2973 * in multiples of the page size. For a file that is not a multiple of
2974 * the page size, the remaining memory is zeroed when mapped, and
2975 * writes to that region are not written out to the file."
2976 */
2977 zero_user_segment(page, offset, PAGE_SIZE);
2978 return __block_write_full_page(inode, page, get_block, wbc,
2979 end_buffer_async_write);
2980}
2981EXPORT_SYMBOL(block_write_full_page);
2982
2983sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2984 get_block_t *get_block)
2985{
2986 struct buffer_head tmp;
2987 struct inode *inode = mapping->host;
2988 tmp.b_state = 0;
2989 tmp.b_blocknr = 0;
2990 tmp.b_size = i_blocksize(inode);
2991 get_block(inode, block, &tmp, 0);
2992 return tmp.b_blocknr;
2993}
2994EXPORT_SYMBOL(generic_block_bmap);
2995
2996static void end_bio_bh_io_sync(struct bio *bio)
2997{
2998 struct buffer_head *bh = bio->bi_private;
2999
3000 if (unlikely(bio_flagged(bio, BIO_QUIET)))
3001 set_bit(BH_Quiet, &bh->b_state);
3002
3003 bh->b_end_io(bh, !bio->bi_error);
3004 bio_put(bio);
3005}
3006
3007/*
3008 * This allows us to do IO even on the odd last sectors
3009 * of a device, even if the block size is some multiple
3010 * of the physical sector size.
3011 *
3012 * We'll just truncate the bio to the size of the device,
3013 * and clear the end of the buffer head manually.
3014 *
3015 * Truly out-of-range accesses will turn into actual IO
3016 * errors, this only handles the "we need to be able to
3017 * do IO at the final sector" case.
3018 */
3019void guard_bio_eod(int op, struct bio *bio)
3020{
3021 sector_t maxsector;
3022 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3023 unsigned truncated_bytes;
3024
3025 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3026 if (!maxsector)
3027 return;
3028
3029 /*
3030 * If the *whole* IO is past the end of the device,
3031 * let it through, and the IO layer will turn it into
3032 * an EIO.
3033 */
3034 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3035 return;
3036
3037 maxsector -= bio->bi_iter.bi_sector;
3038 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3039 return;
3040
3041 /* Uhhuh. We've got a bio that straddles the device size! */
3042 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3043
3044 /*
3045 * The bio contains more than one segment which spans EOD, just return
3046 * and let IO layer turn it into an EIO
3047 */
3048 if (truncated_bytes > bvec->bv_len)
3049 return;
3050
3051 /* Truncate the bio.. */
3052 bio->bi_iter.bi_size -= truncated_bytes;
3053 bvec->bv_len -= truncated_bytes;
3054
3055 /* ..and clear the end of the buffer for reads */
3056 if (op == REQ_OP_READ) {
3057 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3058 truncated_bytes);
3059 }
3060}
3061
3062static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3063 unsigned long bio_flags, struct writeback_control *wbc)
3064{
3065 struct bio *bio;
3066
3067 BUG_ON(!buffer_locked(bh));
3068 BUG_ON(!buffer_mapped(bh));
3069 BUG_ON(!bh->b_end_io);
3070 BUG_ON(buffer_delay(bh));
3071 BUG_ON(buffer_unwritten(bh));
3072
3073 /*
3074 * Only clear out a write error when rewriting
3075 */
3076 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3077 clear_buffer_write_io_error(bh);
3078
3079 /*
3080 * from here on down, it's all bio -- do the initial mapping,
3081 * submit_bio -> generic_make_request may further map this bio around
3082 */
3083 bio = bio_alloc(GFP_NOIO, 1);
3084
3085 if (wbc) {
3086 wbc_init_bio(wbc, bio);
3087 wbc_account_io(wbc, bh->b_page, bh->b_size);
3088 }
3089
3090 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3091 bio->bi_bdev = bh->b_bdev;
3092
3093 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3094 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3095
3096 bio->bi_end_io = end_bio_bh_io_sync;
3097 bio->bi_private = bh;
3098 bio->bi_flags |= bio_flags;
3099
3100 /* Take care of bh's that straddle the end of the device */
3101 guard_bio_eod(op, bio);
3102
3103 if (buffer_meta(bh))
3104 op_flags |= REQ_META;
3105 if (buffer_prio(bh))
3106 op_flags |= REQ_PRIO;
3107 bio_set_op_attrs(bio, op, op_flags);
3108
3109 submit_bio(bio);
3110 return 0;
3111}
3112
3113int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3114 unsigned long bio_flags)
3115{
3116 return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
3117}
3118EXPORT_SYMBOL_GPL(_submit_bh);
3119
3120int submit_bh(int op, int op_flags, struct buffer_head *bh)
3121{
3122 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3123}
3124EXPORT_SYMBOL(submit_bh);
3125
3126/**
3127 * ll_rw_block: low-level access to block devices (DEPRECATED)
3128 * @op: whether to %READ or %WRITE
3129 * @op_flags: rq_flag_bits
3130 * @nr: number of &struct buffer_heads in the array
3131 * @bhs: array of pointers to &struct buffer_head
3132 *
3133 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3134 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3135 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3136 * %REQ_RAHEAD.
3137 *
3138 * This function drops any buffer that it cannot get a lock on (with the
3139 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3140 * request, and any buffer that appears to be up-to-date when doing read
3141 * request. Further it marks as clean buffers that are processed for
3142 * writing (the buffer cache won't assume that they are actually clean
3143 * until the buffer gets unlocked).
3144 *
3145 * ll_rw_block sets b_end_io to simple completion handler that marks
3146 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3147 * any waiters.
3148 *
3149 * All of the buffers must be for the same device, and must also be a
3150 * multiple of the current approved size for the device.
3151 */
3152void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
3153{
3154 int i;
3155
3156 for (i = 0; i < nr; i++) {
3157 struct buffer_head *bh = bhs[i];
3158
3159 if (!trylock_buffer(bh))
3160 continue;
3161 if (op == WRITE) {
3162 if (test_clear_buffer_dirty(bh)) {
3163 bh->b_end_io = end_buffer_write_sync;
3164 get_bh(bh);
3165 submit_bh(op, op_flags, bh);
3166 continue;
3167 }
3168 } else {
3169 if (!buffer_uptodate(bh)) {
3170 bh->b_end_io = end_buffer_read_sync;
3171 get_bh(bh);
3172 submit_bh(op, op_flags, bh);
3173 continue;
3174 }
3175 }
3176 unlock_buffer(bh);
3177 }
3178}
3179EXPORT_SYMBOL(ll_rw_block);
3180
3181void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3182{
3183 lock_buffer(bh);
3184 if (!test_clear_buffer_dirty(bh)) {
3185 unlock_buffer(bh);
3186 return;
3187 }
3188 bh->b_end_io = end_buffer_write_sync;
3189 get_bh(bh);
3190 submit_bh(REQ_OP_WRITE, op_flags, bh);
3191}
3192EXPORT_SYMBOL(write_dirty_buffer);
3193
3194/*
3195 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3196 * and then start new I/O and then wait upon it. The caller must have a ref on
3197 * the buffer_head.
3198 */
3199int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3200{
3201 int ret = 0;
3202
3203 WARN_ON(atomic_read(&bh->b_count) < 1);
3204 lock_buffer(bh);
3205 if (test_clear_buffer_dirty(bh)) {
3206 get_bh(bh);
3207 bh->b_end_io = end_buffer_write_sync;
3208 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3209 wait_on_buffer(bh);
3210 if (!ret && !buffer_uptodate(bh))
3211 ret = -EIO;
3212 } else {
3213 unlock_buffer(bh);
3214 }
3215 return ret;
3216}
3217EXPORT_SYMBOL(__sync_dirty_buffer);
3218
3219int sync_dirty_buffer(struct buffer_head *bh)
3220{
3221 return __sync_dirty_buffer(bh, WRITE_SYNC);
3222}
3223EXPORT_SYMBOL(sync_dirty_buffer);
3224
3225/*
3226 * try_to_free_buffers() checks if all the buffers on this particular page
3227 * are unused, and releases them if so.
3228 *
3229 * Exclusion against try_to_free_buffers may be obtained by either
3230 * locking the page or by holding its mapping's private_lock.
3231 *
3232 * If the page is dirty but all the buffers are clean then we need to
3233 * be sure to mark the page clean as well. This is because the page
3234 * may be against a block device, and a later reattachment of buffers
3235 * to a dirty page will set *all* buffers dirty. Which would corrupt
3236 * filesystem data on the same device.
3237 *
3238 * The same applies to regular filesystem pages: if all the buffers are
3239 * clean then we set the page clean and proceed. To do that, we require
3240 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3241 * private_lock.
3242 *
3243 * try_to_free_buffers() is non-blocking.
3244 */
3245static inline int buffer_busy(struct buffer_head *bh)
3246{
3247 return atomic_read(&bh->b_count) |
3248 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3249}
3250
3251static int
3252drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3253{
3254 struct buffer_head *head = page_buffers(page);
3255 struct buffer_head *bh;
3256
3257 bh = head;
3258 do {
3259 if (buffer_write_io_error(bh) && page->mapping)
3260 mapping_set_error(page->mapping, -EIO);
3261 if (buffer_busy(bh))
3262 goto failed;
3263 bh = bh->b_this_page;
3264 } while (bh != head);
3265
3266 do {
3267 struct buffer_head *next = bh->b_this_page;
3268
3269 if (bh->b_assoc_map)
3270 __remove_assoc_queue(bh);
3271 bh = next;
3272 } while (bh != head);
3273 *buffers_to_free = head;
3274 __clear_page_buffers(page);
3275 return 1;
3276failed:
3277 return 0;
3278}
3279
3280int try_to_free_buffers(struct page *page)
3281{
3282 struct address_space * const mapping = page->mapping;
3283 struct buffer_head *buffers_to_free = NULL;
3284 int ret = 0;
3285
3286 BUG_ON(!PageLocked(page));
3287 if (PageWriteback(page))
3288 return 0;
3289
3290 if (mapping == NULL) { /* can this still happen? */
3291 ret = drop_buffers(page, &buffers_to_free);
3292 goto out;
3293 }
3294
3295 spin_lock(&mapping->private_lock);
3296 ret = drop_buffers(page, &buffers_to_free);
3297
3298 /*
3299 * If the filesystem writes its buffers by hand (eg ext3)
3300 * then we can have clean buffers against a dirty page. We
3301 * clean the page here; otherwise the VM will never notice
3302 * that the filesystem did any IO at all.
3303 *
3304 * Also, during truncate, discard_buffer will have marked all
3305 * the page's buffers clean. We discover that here and clean
3306 * the page also.
3307 *
3308 * private_lock must be held over this entire operation in order
3309 * to synchronise against __set_page_dirty_buffers and prevent the
3310 * dirty bit from being lost.
3311 */
3312 if (ret)
3313 cancel_dirty_page(page);
3314 spin_unlock(&mapping->private_lock);
3315out:
3316 if (buffers_to_free) {
3317 struct buffer_head *bh = buffers_to_free;
3318
3319 do {
3320 struct buffer_head *next = bh->b_this_page;
3321 free_buffer_head(bh);
3322 bh = next;
3323 } while (bh != buffers_to_free);
3324 }
3325 return ret;
3326}
3327EXPORT_SYMBOL(try_to_free_buffers);
3328
3329/*
3330 * There are no bdflush tunables left. But distributions are
3331 * still running obsolete flush daemons, so we terminate them here.
3332 *
3333 * Use of bdflush() is deprecated and will be removed in a future kernel.
3334 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3335 */
3336SYSCALL_DEFINE2(bdflush, int, func, long, data)
3337{
3338 static int msg_count;
3339
3340 if (!capable(CAP_SYS_ADMIN))
3341 return -EPERM;
3342
3343 if (msg_count < 5) {
3344 msg_count++;
3345 printk(KERN_INFO
3346 "warning: process `%s' used the obsolete bdflush"
3347 " system call\n", current->comm);
3348 printk(KERN_INFO "Fix your initscripts?\n");
3349 }
3350
3351 if (func == 1)
3352 do_exit(0);
3353 return 0;
3354}
3355
3356/*
3357 * Buffer-head allocation
3358 */
3359static struct kmem_cache *bh_cachep __read_mostly;
3360
3361/*
3362 * Once the number of bh's in the machine exceeds this level, we start
3363 * stripping them in writeback.
3364 */
3365static unsigned long max_buffer_heads;
3366
3367int buffer_heads_over_limit;
3368
3369struct bh_accounting {
3370 int nr; /* Number of live bh's */
3371 int ratelimit; /* Limit cacheline bouncing */
3372};
3373
3374static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3375
3376static void recalc_bh_state(void)
3377{
3378 int i;
3379 int tot = 0;
3380
3381 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3382 return;
3383 __this_cpu_write(bh_accounting.ratelimit, 0);
3384 for_each_online_cpu(i)
3385 tot += per_cpu(bh_accounting, i).nr;
3386 buffer_heads_over_limit = (tot > max_buffer_heads);
3387}
3388
3389struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3390{
3391 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3392 if (ret) {
3393 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3394 preempt_disable();
3395 __this_cpu_inc(bh_accounting.nr);
3396 recalc_bh_state();
3397 preempt_enable();
3398 }
3399 return ret;
3400}
3401EXPORT_SYMBOL(alloc_buffer_head);
3402
3403void free_buffer_head(struct buffer_head *bh)
3404{
3405 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3406 kmem_cache_free(bh_cachep, bh);
3407 preempt_disable();
3408 __this_cpu_dec(bh_accounting.nr);
3409 recalc_bh_state();
3410 preempt_enable();
3411}
3412EXPORT_SYMBOL(free_buffer_head);
3413
3414static void buffer_exit_cpu(int cpu)
3415{
3416 int i;
3417 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3418
3419 for (i = 0; i < BH_LRU_SIZE; i++) {
3420 brelse(b->bhs[i]);
3421 b->bhs[i] = NULL;
3422 }
3423 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3424 per_cpu(bh_accounting, cpu).nr = 0;
3425}
3426
3427static int buffer_cpu_notify(struct notifier_block *self,
3428 unsigned long action, void *hcpu)
3429{
3430 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3431 buffer_exit_cpu((unsigned long)hcpu);
3432 return NOTIFY_OK;
3433}
3434
3435/**
3436 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3437 * @bh: struct buffer_head
3438 *
3439 * Return true if the buffer is up-to-date and false,
3440 * with the buffer locked, if not.
3441 */
3442int bh_uptodate_or_lock(struct buffer_head *bh)
3443{
3444 if (!buffer_uptodate(bh)) {
3445 lock_buffer(bh);
3446 if (!buffer_uptodate(bh))
3447 return 0;
3448 unlock_buffer(bh);
3449 }
3450 return 1;
3451}
3452EXPORT_SYMBOL(bh_uptodate_or_lock);
3453
3454/**
3455 * bh_submit_read - Submit a locked buffer for reading
3456 * @bh: struct buffer_head
3457 *
3458 * Returns zero on success and -EIO on error.
3459 */
3460int bh_submit_read(struct buffer_head *bh)
3461{
3462 BUG_ON(!buffer_locked(bh));
3463
3464 if (buffer_uptodate(bh)) {
3465 unlock_buffer(bh);
3466 return 0;
3467 }
3468
3469 get_bh(bh);
3470 bh->b_end_io = end_buffer_read_sync;
3471 submit_bh(REQ_OP_READ, 0, bh);
3472 wait_on_buffer(bh);
3473 if (buffer_uptodate(bh))
3474 return 0;
3475 return -EIO;
3476}
3477EXPORT_SYMBOL(bh_submit_read);
3478
3479void __init buffer_init(void)
3480{
3481 unsigned long nrpages;
3482
3483 bh_cachep = kmem_cache_create("buffer_head",
3484 sizeof(struct buffer_head), 0,
3485 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3486 SLAB_MEM_SPREAD),
3487 NULL);
3488
3489 /*
3490 * Limit the bh occupancy to 10% of ZONE_NORMAL
3491 */
3492 nrpages = (nr_free_buffer_pages() * 10) / 100;
3493 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3494 hotcpu_notifier(buffer_cpu_notify, 0);
3495}
3496