summaryrefslogtreecommitdiff
path: root/fs/fs-writeback.c (plain)
blob: 6faf93b52c7cd6b4c46b1d0d312f5ad19fca1682
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
17#include <linux/export.h>
18#include <linux/spinlock.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
23#include <linux/pagemap.h>
24#include <linux/kthread.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/tracepoint.h>
29#include <linux/device.h>
30#include <linux/memcontrol.h>
31#include "internal.h"
32
33/*
34 * 4MB minimal write chunk size
35 */
36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
37
38struct wb_completion {
39 atomic_t cnt;
40};
41
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60};
61
62/*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75/*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87static inline struct inode *wb_inode(struct list_head *head)
88{
89 return list_entry(head, struct inode, i_io_list);
90}
91
92/*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97#define CREATE_TRACE_POINTS
98#include <trace/events/writeback.h>
99
100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102static bool wb_io_lists_populated(struct bdi_writeback *wb)
103{
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113}
114
115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116{
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123}
124
125/**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138{
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149}
150
151/**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161{
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166}
167
168static void wb_wakeup(struct bdi_writeback *wb)
169{
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174}
175
176static void finish_writeback_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178{
179 struct wb_completion *done = work->done;
180
181 if (work->auto_free)
182 kfree(work);
183 if (done && atomic_dec_and_test(&done->cnt))
184 wake_up_all(&wb->bdi->wb_waitq);
185}
186
187static void wb_queue_work(struct bdi_writeback *wb,
188 struct wb_writeback_work *work)
189{
190 trace_writeback_queue(wb, work);
191
192 if (work->done)
193 atomic_inc(&work->done->cnt);
194
195 spin_lock_bh(&wb->work_lock);
196
197 if (test_bit(WB_registered, &wb->state)) {
198 list_add_tail(&work->list, &wb->work_list);
199 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 } else
201 finish_writeback_work(wb, work);
202
203 spin_unlock_bh(&wb->work_lock);
204}
205
206/**
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @bdi: bdi work items were issued to
209 * @done: target wb_completion
210 *
211 * Wait for one or more work items issued to @bdi with their ->done field
212 * set to @done, which should have been defined with
213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
214 * work items are completed. Work items which are waited upon aren't freed
215 * automatically on completion.
216 */
217static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 struct wb_completion *done)
219{
220 atomic_dec(&done->cnt); /* put down the initial count */
221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222}
223
224#ifdef CONFIG_CGROUP_WRITEBACK
225
226/* parameters for foreign inode detection, see wb_detach_inode() */
227#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
230#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
231
232#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
239
240static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241static struct workqueue_struct *isw_wq;
242
243void __inode_attach_wb(struct inode *inode, struct page *page)
244{
245 struct backing_dev_info *bdi = inode_to_bdi(inode);
246 struct bdi_writeback *wb = NULL;
247
248 if (inode_cgwb_enabled(inode)) {
249 struct cgroup_subsys_state *memcg_css;
250
251 if (page) {
252 memcg_css = mem_cgroup_css_from_page(page);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 } else {
255 /* must pin memcg_css, see wb_get_create() */
256 memcg_css = task_get_css(current, memory_cgrp_id);
257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 css_put(memcg_css);
259 }
260 }
261
262 if (!wb)
263 wb = &bdi->wb;
264
265 /*
266 * There may be multiple instances of this function racing to
267 * update the same inode. Use cmpxchg() to tell the winner.
268 */
269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 wb_put(wb);
271}
272
273/**
274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275 * @inode: inode of interest with i_lock held
276 *
277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
278 * held on entry and is released on return. The returned wb is guaranteed
279 * to stay @inode's associated wb until its list_lock is released.
280 */
281static struct bdi_writeback *
282locked_inode_to_wb_and_lock_list(struct inode *inode)
283 __releases(&inode->i_lock)
284 __acquires(&wb->list_lock)
285{
286 while (true) {
287 struct bdi_writeback *wb = inode_to_wb(inode);
288
289 /*
290 * inode_to_wb() association is protected by both
291 * @inode->i_lock and @wb->list_lock but list_lock nests
292 * outside i_lock. Drop i_lock and verify that the
293 * association hasn't changed after acquiring list_lock.
294 */
295 wb_get(wb);
296 spin_unlock(&inode->i_lock);
297 spin_lock(&wb->list_lock);
298
299 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300 if (likely(wb == inode->i_wb)) {
301 wb_put(wb); /* @inode already has ref */
302 return wb;
303 }
304
305 spin_unlock(&wb->list_lock);
306 wb_put(wb);
307 cpu_relax();
308 spin_lock(&inode->i_lock);
309 }
310}
311
312/**
313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314 * @inode: inode of interest
315 *
316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317 * on entry.
318 */
319static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 __acquires(&wb->list_lock)
321{
322 spin_lock(&inode->i_lock);
323 return locked_inode_to_wb_and_lock_list(inode);
324}
325
326struct inode_switch_wbs_context {
327 struct inode *inode;
328 struct bdi_writeback *new_wb;
329
330 struct rcu_head rcu_head;
331 struct work_struct work;
332};
333
334static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335{
336 down_write(&bdi->wb_switch_rwsem);
337}
338
339static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340{
341 up_write(&bdi->wb_switch_rwsem);
342}
343
344static void inode_switch_wbs_work_fn(struct work_struct *work)
345{
346 struct inode_switch_wbs_context *isw =
347 container_of(work, struct inode_switch_wbs_context, work);
348 struct inode *inode = isw->inode;
349 struct backing_dev_info *bdi = inode_to_bdi(inode);
350 struct address_space *mapping = inode->i_mapping;
351 struct bdi_writeback *old_wb = inode->i_wb;
352 struct bdi_writeback *new_wb = isw->new_wb;
353 struct radix_tree_iter iter;
354 bool switched = false;
355 void **slot;
356
357 /*
358 * If @inode switches cgwb membership while sync_inodes_sb() is
359 * being issued, sync_inodes_sb() might miss it. Synchronize.
360 */
361 down_read(&bdi->wb_switch_rwsem);
362
363 /*
364 * By the time control reaches here, RCU grace period has passed
365 * since I_WB_SWITCH assertion and all wb stat update transactions
366 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367 * synchronizing against mapping->tree_lock.
368 *
369 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
370 * gives us exclusion against all wb related operations on @inode
371 * including IO list manipulations and stat updates.
372 */
373 if (old_wb < new_wb) {
374 spin_lock(&old_wb->list_lock);
375 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376 } else {
377 spin_lock(&new_wb->list_lock);
378 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379 }
380 spin_lock(&inode->i_lock);
381 spin_lock_irq(&mapping->tree_lock);
382
383 /*
384 * Once I_FREEING is visible under i_lock, the eviction path owns
385 * the inode and we shouldn't modify ->i_io_list.
386 */
387 if (unlikely(inode->i_state & I_FREEING))
388 goto skip_switch;
389
390 /*
391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 * pages actually under underwriteback.
394 */
395 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
396 PAGECACHE_TAG_DIRTY) {
397 struct page *page = radix_tree_deref_slot_protected(slot,
398 &mapping->tree_lock);
399 if (likely(page) && PageDirty(page)) {
400 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
401 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
402 }
403 }
404
405 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
406 PAGECACHE_TAG_WRITEBACK) {
407 struct page *page = radix_tree_deref_slot_protected(slot,
408 &mapping->tree_lock);
409 if (likely(page)) {
410 WARN_ON_ONCE(!PageWriteback(page));
411 __dec_wb_stat(old_wb, WB_WRITEBACK);
412 __inc_wb_stat(new_wb, WB_WRITEBACK);
413 }
414 }
415
416 wb_get(new_wb);
417
418 /*
419 * Transfer to @new_wb's IO list if necessary. The specific list
420 * @inode was on is ignored and the inode is put on ->b_dirty which
421 * is always correct including from ->b_dirty_time. The transfer
422 * preserves @inode->dirtied_when ordering.
423 */
424 if (!list_empty(&inode->i_io_list)) {
425 struct inode *pos;
426
427 inode_io_list_del_locked(inode, old_wb);
428 inode->i_wb = new_wb;
429 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
430 if (time_after_eq(inode->dirtied_when,
431 pos->dirtied_when))
432 break;
433 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
434 } else {
435 inode->i_wb = new_wb;
436 }
437
438 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439 inode->i_wb_frn_winner = 0;
440 inode->i_wb_frn_avg_time = 0;
441 inode->i_wb_frn_history = 0;
442 switched = true;
443skip_switch:
444 /*
445 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446 * ensures that the new wb is visible if they see !I_WB_SWITCH.
447 */
448 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450 spin_unlock_irq(&mapping->tree_lock);
451 spin_unlock(&inode->i_lock);
452 spin_unlock(&new_wb->list_lock);
453 spin_unlock(&old_wb->list_lock);
454
455 up_read(&bdi->wb_switch_rwsem);
456
457 if (switched) {
458 wb_wakeup(new_wb);
459 wb_put(old_wb);
460 }
461 wb_put(new_wb);
462
463 iput(inode);
464 kfree(isw);
465
466 atomic_dec(&isw_nr_in_flight);
467}
468
469static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
470{
471 struct inode_switch_wbs_context *isw = container_of(rcu_head,
472 struct inode_switch_wbs_context, rcu_head);
473
474 /* needs to grab bh-unsafe locks, bounce to work item */
475 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
476 queue_work(isw_wq, &isw->work);
477}
478
479/**
480 * inode_switch_wbs - change the wb association of an inode
481 * @inode: target inode
482 * @new_wb_id: ID of the new wb
483 *
484 * Switch @inode's wb association to the wb identified by @new_wb_id. The
485 * switching is performed asynchronously and may fail silently.
486 */
487static void inode_switch_wbs(struct inode *inode, int new_wb_id)
488{
489 struct backing_dev_info *bdi = inode_to_bdi(inode);
490 struct cgroup_subsys_state *memcg_css;
491 struct inode_switch_wbs_context *isw;
492
493 /* noop if seems to be already in progress */
494 if (inode->i_state & I_WB_SWITCH)
495 return;
496
497 /*
498 * Avoid starting new switches while sync_inodes_sb() is in
499 * progress. Otherwise, if the down_write protected issue path
500 * blocks heavily, we might end up starting a large number of
501 * switches which will block on the rwsem.
502 */
503 if (!down_read_trylock(&bdi->wb_switch_rwsem))
504 return;
505
506 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
507 if (!isw)
508 goto out_unlock;
509
510 /* find and pin the new wb */
511 rcu_read_lock();
512 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513 if (memcg_css)
514 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
515 rcu_read_unlock();
516 if (!isw->new_wb)
517 goto out_free;
518
519 /* while holding I_WB_SWITCH, no one else can update the association */
520 spin_lock(&inode->i_lock);
521 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
522 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
523 inode_to_wb(inode) == isw->new_wb) {
524 spin_unlock(&inode->i_lock);
525 goto out_free;
526 }
527 inode->i_state |= I_WB_SWITCH;
528 __iget(inode);
529 spin_unlock(&inode->i_lock);
530
531 isw->inode = inode;
532
533 /*
534 * In addition to synchronizing among switchers, I_WB_SWITCH tells
535 * the RCU protected stat update paths to grab the mapping's
536 * tree_lock so that stat transfer can synchronize against them.
537 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
538 */
539 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
540
541 atomic_inc(&isw_nr_in_flight);
542
543 goto out_unlock;
544
545out_free:
546 if (isw->new_wb)
547 wb_put(isw->new_wb);
548 kfree(isw);
549out_unlock:
550 up_read(&bdi->wb_switch_rwsem);
551}
552
553/**
554 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
555 * @wbc: writeback_control of interest
556 * @inode: target inode
557 *
558 * @inode is locked and about to be written back under the control of @wbc.
559 * Record @inode's writeback context into @wbc and unlock the i_lock. On
560 * writeback completion, wbc_detach_inode() should be called. This is used
561 * to track the cgroup writeback context.
562 */
563void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
564 struct inode *inode)
565{
566 if (!inode_cgwb_enabled(inode)) {
567 spin_unlock(&inode->i_lock);
568 return;
569 }
570
571 wbc->wb = inode_to_wb(inode);
572 wbc->inode = inode;
573
574 wbc->wb_id = wbc->wb->memcg_css->id;
575 wbc->wb_lcand_id = inode->i_wb_frn_winner;
576 wbc->wb_tcand_id = 0;
577 wbc->wb_bytes = 0;
578 wbc->wb_lcand_bytes = 0;
579 wbc->wb_tcand_bytes = 0;
580
581 wb_get(wbc->wb);
582 spin_unlock(&inode->i_lock);
583
584 /*
585 * A dying wb indicates that the memcg-blkcg mapping has changed
586 * and a new wb is already serving the memcg. Switch immediately.
587 */
588 if (unlikely(wb_dying(wbc->wb)))
589 inode_switch_wbs(inode, wbc->wb_id);
590}
591
592/**
593 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
594 * @wbc: writeback_control of the just finished writeback
595 *
596 * To be called after a writeback attempt of an inode finishes and undoes
597 * wbc_attach_and_unlock_inode(). Can be called under any context.
598 *
599 * As concurrent write sharing of an inode is expected to be very rare and
600 * memcg only tracks page ownership on first-use basis severely confining
601 * the usefulness of such sharing, cgroup writeback tracks ownership
602 * per-inode. While the support for concurrent write sharing of an inode
603 * is deemed unnecessary, an inode being written to by different cgroups at
604 * different points in time is a lot more common, and, more importantly,
605 * charging only by first-use can too readily lead to grossly incorrect
606 * behaviors (single foreign page can lead to gigabytes of writeback to be
607 * incorrectly attributed).
608 *
609 * To resolve this issue, cgroup writeback detects the majority dirtier of
610 * an inode and transfers the ownership to it. To avoid unnnecessary
611 * oscillation, the detection mechanism keeps track of history and gives
612 * out the switch verdict only if the foreign usage pattern is stable over
613 * a certain amount of time and/or writeback attempts.
614 *
615 * On each writeback attempt, @wbc tries to detect the majority writer
616 * using Boyer-Moore majority vote algorithm. In addition to the byte
617 * count from the majority voting, it also counts the bytes written for the
618 * current wb and the last round's winner wb (max of last round's current
619 * wb, the winner from two rounds ago, and the last round's majority
620 * candidate). Keeping track of the historical winner helps the algorithm
621 * to semi-reliably detect the most active writer even when it's not the
622 * absolute majority.
623 *
624 * Once the winner of the round is determined, whether the winner is
625 * foreign or not and how much IO time the round consumed is recorded in
626 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
627 * over a certain threshold, the switch verdict is given.
628 */
629void wbc_detach_inode(struct writeback_control *wbc)
630{
631 struct bdi_writeback *wb = wbc->wb;
632 struct inode *inode = wbc->inode;
633 unsigned long avg_time, max_bytes, max_time;
634 u16 history;
635 int max_id;
636
637 if (!wb)
638 return;
639
640 history = inode->i_wb_frn_history;
641 avg_time = inode->i_wb_frn_avg_time;
642
643 /* pick the winner of this round */
644 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
645 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
646 max_id = wbc->wb_id;
647 max_bytes = wbc->wb_bytes;
648 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
649 max_id = wbc->wb_lcand_id;
650 max_bytes = wbc->wb_lcand_bytes;
651 } else {
652 max_id = wbc->wb_tcand_id;
653 max_bytes = wbc->wb_tcand_bytes;
654 }
655
656 /*
657 * Calculate the amount of IO time the winner consumed and fold it
658 * into the running average kept per inode. If the consumed IO
659 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
660 * deciding whether to switch or not. This is to prevent one-off
661 * small dirtiers from skewing the verdict.
662 */
663 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
664 wb->avg_write_bandwidth);
665 if (avg_time)
666 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
667 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
668 else
669 avg_time = max_time; /* immediate catch up on first run */
670
671 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
672 int slots;
673
674 /*
675 * The switch verdict is reached if foreign wb's consume
676 * more than a certain proportion of IO time in a
677 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
678 * history mask where each bit represents one sixteenth of
679 * the period. Determine the number of slots to shift into
680 * history from @max_time.
681 */
682 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
683 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
684 history <<= slots;
685 if (wbc->wb_id != max_id)
686 history |= (1U << slots) - 1;
687
688 /*
689 * Switch if the current wb isn't the consistent winner.
690 * If there are multiple closely competing dirtiers, the
691 * inode may switch across them repeatedly over time, which
692 * is okay. The main goal is avoiding keeping an inode on
693 * the wrong wb for an extended period of time.
694 */
695 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
696 inode_switch_wbs(inode, max_id);
697 }
698
699 /*
700 * Multiple instances of this function may race to update the
701 * following fields but we don't mind occassional inaccuracies.
702 */
703 inode->i_wb_frn_winner = max_id;
704 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
705 inode->i_wb_frn_history = history;
706
707 wb_put(wbc->wb);
708 wbc->wb = NULL;
709}
710
711/**
712 * wbc_account_io - account IO issued during writeback
713 * @wbc: writeback_control of the writeback in progress
714 * @page: page being written out
715 * @bytes: number of bytes being written out
716 *
717 * @bytes from @page are about to written out during the writeback
718 * controlled by @wbc. Keep the book for foreign inode detection. See
719 * wbc_detach_inode().
720 */
721void wbc_account_io(struct writeback_control *wbc, struct page *page,
722 size_t bytes)
723{
724 int id;
725
726 /*
727 * pageout() path doesn't attach @wbc to the inode being written
728 * out. This is intentional as we don't want the function to block
729 * behind a slow cgroup. Ultimately, we want pageout() to kick off
730 * regular writeback instead of writing things out itself.
731 */
732 if (!wbc->wb)
733 return;
734
735 id = mem_cgroup_css_from_page(page)->id;
736
737 if (id == wbc->wb_id) {
738 wbc->wb_bytes += bytes;
739 return;
740 }
741
742 if (id == wbc->wb_lcand_id)
743 wbc->wb_lcand_bytes += bytes;
744
745 /* Boyer-Moore majority vote algorithm */
746 if (!wbc->wb_tcand_bytes)
747 wbc->wb_tcand_id = id;
748 if (id == wbc->wb_tcand_id)
749 wbc->wb_tcand_bytes += bytes;
750 else
751 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
752}
753EXPORT_SYMBOL_GPL(wbc_account_io);
754
755/**
756 * inode_congested - test whether an inode is congested
757 * @inode: inode to test for congestion (may be NULL)
758 * @cong_bits: mask of WB_[a]sync_congested bits to test
759 *
760 * Tests whether @inode is congested. @cong_bits is the mask of congestion
761 * bits to test and the return value is the mask of set bits.
762 *
763 * If cgroup writeback is enabled for @inode, the congestion state is
764 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
765 * associated with @inode is congested; otherwise, the root wb's congestion
766 * state is used.
767 *
768 * @inode is allowed to be NULL as this function is often called on
769 * mapping->host which is NULL for the swapper space.
770 */
771int inode_congested(struct inode *inode, int cong_bits)
772{
773 /*
774 * Once set, ->i_wb never becomes NULL while the inode is alive.
775 * Start transaction iff ->i_wb is visible.
776 */
777 if (inode && inode_to_wb_is_valid(inode)) {
778 struct bdi_writeback *wb;
779 struct wb_lock_cookie lock_cookie = {};
780 bool congested;
781
782 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
783 congested = wb_congested(wb, cong_bits);
784 unlocked_inode_to_wb_end(inode, &lock_cookie);
785 return congested;
786 }
787
788 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
789}
790EXPORT_SYMBOL_GPL(inode_congested);
791
792/**
793 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
794 * @wb: target bdi_writeback to split @nr_pages to
795 * @nr_pages: number of pages to write for the whole bdi
796 *
797 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
798 * relation to the total write bandwidth of all wb's w/ dirty inodes on
799 * @wb->bdi.
800 */
801static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
802{
803 unsigned long this_bw = wb->avg_write_bandwidth;
804 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
805
806 if (nr_pages == LONG_MAX)
807 return LONG_MAX;
808
809 /*
810 * This may be called on clean wb's and proportional distribution
811 * may not make sense, just use the original @nr_pages in those
812 * cases. In general, we wanna err on the side of writing more.
813 */
814 if (!tot_bw || this_bw >= tot_bw)
815 return nr_pages;
816 else
817 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
818}
819
820/**
821 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
822 * @bdi: target backing_dev_info
823 * @base_work: wb_writeback_work to issue
824 * @skip_if_busy: skip wb's which already have writeback in progress
825 *
826 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
827 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
828 * distributed to the busy wbs according to each wb's proportion in the
829 * total active write bandwidth of @bdi.
830 */
831static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
832 struct wb_writeback_work *base_work,
833 bool skip_if_busy)
834{
835 struct bdi_writeback *last_wb = NULL;
836 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
837 struct bdi_writeback, bdi_node);
838
839 might_sleep();
840restart:
841 rcu_read_lock();
842 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
843 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
844 struct wb_writeback_work fallback_work;
845 struct wb_writeback_work *work;
846 long nr_pages;
847
848 if (last_wb) {
849 wb_put(last_wb);
850 last_wb = NULL;
851 }
852
853 /* SYNC_ALL writes out I_DIRTY_TIME too */
854 if (!wb_has_dirty_io(wb) &&
855 (base_work->sync_mode == WB_SYNC_NONE ||
856 list_empty(&wb->b_dirty_time)))
857 continue;
858 if (skip_if_busy && writeback_in_progress(wb))
859 continue;
860
861 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
862
863 work = kmalloc(sizeof(*work), GFP_ATOMIC);
864 if (work) {
865 *work = *base_work;
866 work->nr_pages = nr_pages;
867 work->auto_free = 1;
868 wb_queue_work(wb, work);
869 continue;
870 }
871
872 /* alloc failed, execute synchronously using on-stack fallback */
873 work = &fallback_work;
874 *work = *base_work;
875 work->nr_pages = nr_pages;
876 work->auto_free = 0;
877 work->done = &fallback_work_done;
878
879 wb_queue_work(wb, work);
880
881 /*
882 * Pin @wb so that it stays on @bdi->wb_list. This allows
883 * continuing iteration from @wb after dropping and
884 * regrabbing rcu read lock.
885 */
886 wb_get(wb);
887 last_wb = wb;
888
889 rcu_read_unlock();
890 wb_wait_for_completion(bdi, &fallback_work_done);
891 goto restart;
892 }
893 rcu_read_unlock();
894
895 if (last_wb)
896 wb_put(last_wb);
897}
898
899/**
900 * cgroup_writeback_umount - flush inode wb switches for umount
901 *
902 * This function is called when a super_block is about to be destroyed and
903 * flushes in-flight inode wb switches. An inode wb switch goes through
904 * RCU and then workqueue, so the two need to be flushed in order to ensure
905 * that all previously scheduled switches are finished. As wb switches are
906 * rare occurrences and synchronize_rcu() can take a while, perform
907 * flushing iff wb switches are in flight.
908 */
909void cgroup_writeback_umount(void)
910{
911 if (atomic_read(&isw_nr_in_flight)) {
912 /*
913 * Use rcu_barrier() to wait for all pending callbacks to
914 * ensure that all in-flight wb switches are in the workqueue.
915 */
916 rcu_barrier();
917 flush_workqueue(isw_wq);
918 }
919}
920
921static int __init cgroup_writeback_init(void)
922{
923 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
924 if (!isw_wq)
925 return -ENOMEM;
926 return 0;
927}
928fs_initcall(cgroup_writeback_init);
929
930#else /* CONFIG_CGROUP_WRITEBACK */
931
932static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
933static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
934
935static struct bdi_writeback *
936locked_inode_to_wb_and_lock_list(struct inode *inode)
937 __releases(&inode->i_lock)
938 __acquires(&wb->list_lock)
939{
940 struct bdi_writeback *wb = inode_to_wb(inode);
941
942 spin_unlock(&inode->i_lock);
943 spin_lock(&wb->list_lock);
944 return wb;
945}
946
947static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
948 __acquires(&wb->list_lock)
949{
950 struct bdi_writeback *wb = inode_to_wb(inode);
951
952 spin_lock(&wb->list_lock);
953 return wb;
954}
955
956static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
957{
958 return nr_pages;
959}
960
961static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
962 struct wb_writeback_work *base_work,
963 bool skip_if_busy)
964{
965 might_sleep();
966
967 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
968 base_work->auto_free = 0;
969 wb_queue_work(&bdi->wb, base_work);
970 }
971}
972
973#endif /* CONFIG_CGROUP_WRITEBACK */
974
975void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
976 bool range_cyclic, enum wb_reason reason)
977{
978 struct wb_writeback_work *work;
979
980 if (!wb_has_dirty_io(wb))
981 return;
982
983 /*
984 * This is WB_SYNC_NONE writeback, so if allocation fails just
985 * wakeup the thread for old dirty data writeback
986 */
987 work = kzalloc(sizeof(*work),
988 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
989 if (!work) {
990 trace_writeback_nowork(wb);
991 wb_wakeup(wb);
992 return;
993 }
994
995 work->sync_mode = WB_SYNC_NONE;
996 work->nr_pages = nr_pages;
997 work->range_cyclic = range_cyclic;
998 work->reason = reason;
999 work->auto_free = 1;
1000
1001 wb_queue_work(wb, work);
1002}
1003
1004/**
1005 * wb_start_background_writeback - start background writeback
1006 * @wb: bdi_writback to write from
1007 *
1008 * Description:
1009 * This makes sure WB_SYNC_NONE background writeback happens. When
1010 * this function returns, it is only guaranteed that for given wb
1011 * some IO is happening if we are over background dirty threshold.
1012 * Caller need not hold sb s_umount semaphore.
1013 */
1014void wb_start_background_writeback(struct bdi_writeback *wb)
1015{
1016 /*
1017 * We just wake up the flusher thread. It will perform background
1018 * writeback as soon as there is no other work to do.
1019 */
1020 trace_writeback_wake_background(wb);
1021 wb_wakeup(wb);
1022}
1023
1024/*
1025 * Remove the inode from the writeback list it is on.
1026 */
1027void inode_io_list_del(struct inode *inode)
1028{
1029 struct bdi_writeback *wb;
1030
1031 wb = inode_to_wb_and_lock_list(inode);
1032 inode_io_list_del_locked(inode, wb);
1033 spin_unlock(&wb->list_lock);
1034}
1035
1036/*
1037 * mark an inode as under writeback on the sb
1038 */
1039void sb_mark_inode_writeback(struct inode *inode)
1040{
1041 struct super_block *sb = inode->i_sb;
1042 unsigned long flags;
1043
1044 if (list_empty(&inode->i_wb_list)) {
1045 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1046 if (list_empty(&inode->i_wb_list)) {
1047 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1048 trace_sb_mark_inode_writeback(inode);
1049 }
1050 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1051 }
1052}
1053
1054/*
1055 * clear an inode as under writeback on the sb
1056 */
1057void sb_clear_inode_writeback(struct inode *inode)
1058{
1059 struct super_block *sb = inode->i_sb;
1060 unsigned long flags;
1061
1062 if (!list_empty(&inode->i_wb_list)) {
1063 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1064 if (!list_empty(&inode->i_wb_list)) {
1065 list_del_init(&inode->i_wb_list);
1066 trace_sb_clear_inode_writeback(inode);
1067 }
1068 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1069 }
1070}
1071
1072/*
1073 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1074 * furthest end of its superblock's dirty-inode list.
1075 *
1076 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1077 * already the most-recently-dirtied inode on the b_dirty list. If that is
1078 * the case then the inode must have been redirtied while it was being written
1079 * out and we don't reset its dirtied_when.
1080 */
1081static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1082{
1083 if (!list_empty(&wb->b_dirty)) {
1084 struct inode *tail;
1085
1086 tail = wb_inode(wb->b_dirty.next);
1087 if (time_before(inode->dirtied_when, tail->dirtied_when))
1088 inode->dirtied_when = jiffies;
1089 }
1090 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1091}
1092
1093/*
1094 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1095 */
1096static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1097{
1098 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1099}
1100
1101static void inode_sync_complete(struct inode *inode)
1102{
1103 inode->i_state &= ~I_SYNC;
1104 /* If inode is clean an unused, put it into LRU now... */
1105 inode_add_lru(inode);
1106 /* Waiters must see I_SYNC cleared before being woken up */
1107 smp_mb();
1108 wake_up_bit(&inode->i_state, __I_SYNC);
1109}
1110
1111static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1112{
1113 bool ret = time_after(inode->dirtied_when, t);
1114#ifndef CONFIG_64BIT
1115 /*
1116 * For inodes being constantly redirtied, dirtied_when can get stuck.
1117 * It _appears_ to be in the future, but is actually in distant past.
1118 * This test is necessary to prevent such wrapped-around relative times
1119 * from permanently stopping the whole bdi writeback.
1120 */
1121 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1122#endif
1123 return ret;
1124}
1125
1126#define EXPIRE_DIRTY_ATIME 0x0001
1127
1128/*
1129 * Move expired (dirtied before work->older_than_this) dirty inodes from
1130 * @delaying_queue to @dispatch_queue.
1131 */
1132static int move_expired_inodes(struct list_head *delaying_queue,
1133 struct list_head *dispatch_queue,
1134 int flags,
1135 struct wb_writeback_work *work)
1136{
1137 unsigned long *older_than_this = NULL;
1138 unsigned long expire_time;
1139 LIST_HEAD(tmp);
1140 struct list_head *pos, *node;
1141 struct super_block *sb = NULL;
1142 struct inode *inode;
1143 int do_sb_sort = 0;
1144 int moved = 0;
1145
1146 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1147 older_than_this = work->older_than_this;
1148 else if (!work->for_sync) {
1149 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1150 older_than_this = &expire_time;
1151 }
1152 while (!list_empty(delaying_queue)) {
1153 inode = wb_inode(delaying_queue->prev);
1154 if (older_than_this &&
1155 inode_dirtied_after(inode, *older_than_this))
1156 break;
1157 list_move(&inode->i_io_list, &tmp);
1158 moved++;
1159 if (flags & EXPIRE_DIRTY_ATIME)
1160 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1161 if (sb_is_blkdev_sb(inode->i_sb))
1162 continue;
1163 if (sb && sb != inode->i_sb)
1164 do_sb_sort = 1;
1165 sb = inode->i_sb;
1166 }
1167
1168 /* just one sb in list, splice to dispatch_queue and we're done */
1169 if (!do_sb_sort) {
1170 list_splice(&tmp, dispatch_queue);
1171 goto out;
1172 }
1173
1174 /* Move inodes from one superblock together */
1175 while (!list_empty(&tmp)) {
1176 sb = wb_inode(tmp.prev)->i_sb;
1177 list_for_each_prev_safe(pos, node, &tmp) {
1178 inode = wb_inode(pos);
1179 if (inode->i_sb == sb)
1180 list_move(&inode->i_io_list, dispatch_queue);
1181 }
1182 }
1183out:
1184 return moved;
1185}
1186
1187/*
1188 * Queue all expired dirty inodes for io, eldest first.
1189 * Before
1190 * newly dirtied b_dirty b_io b_more_io
1191 * =============> gf edc BA
1192 * After
1193 * newly dirtied b_dirty b_io b_more_io
1194 * =============> g fBAedc
1195 * |
1196 * +--> dequeue for IO
1197 */
1198static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1199{
1200 int moved;
1201
1202 assert_spin_locked(&wb->list_lock);
1203 list_splice_init(&wb->b_more_io, &wb->b_io);
1204 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1205 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1206 EXPIRE_DIRTY_ATIME, work);
1207 if (moved)
1208 wb_io_lists_populated(wb);
1209 trace_writeback_queue_io(wb, work, moved);
1210}
1211
1212static int write_inode(struct inode *inode, struct writeback_control *wbc)
1213{
1214 int ret;
1215
1216 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1217 trace_writeback_write_inode_start(inode, wbc);
1218 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1219 trace_writeback_write_inode(inode, wbc);
1220 return ret;
1221 }
1222 return 0;
1223}
1224
1225/*
1226 * Wait for writeback on an inode to complete. Called with i_lock held.
1227 * Caller must make sure inode cannot go away when we drop i_lock.
1228 */
1229static void __inode_wait_for_writeback(struct inode *inode)
1230 __releases(inode->i_lock)
1231 __acquires(inode->i_lock)
1232{
1233 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1234 wait_queue_head_t *wqh;
1235
1236 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1237 while (inode->i_state & I_SYNC) {
1238 spin_unlock(&inode->i_lock);
1239 __wait_on_bit(wqh, &wq, bit_wait,
1240 TASK_UNINTERRUPTIBLE);
1241 spin_lock(&inode->i_lock);
1242 }
1243}
1244
1245/*
1246 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1247 */
1248void inode_wait_for_writeback(struct inode *inode)
1249{
1250 spin_lock(&inode->i_lock);
1251 __inode_wait_for_writeback(inode);
1252 spin_unlock(&inode->i_lock);
1253}
1254
1255/*
1256 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1257 * held and drops it. It is aimed for callers not holding any inode reference
1258 * so once i_lock is dropped, inode can go away.
1259 */
1260static void inode_sleep_on_writeback(struct inode *inode)
1261 __releases(inode->i_lock)
1262{
1263 DEFINE_WAIT(wait);
1264 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1265 int sleep;
1266
1267 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1268 sleep = inode->i_state & I_SYNC;
1269 spin_unlock(&inode->i_lock);
1270 if (sleep)
1271 schedule();
1272 finish_wait(wqh, &wait);
1273}
1274
1275/*
1276 * Find proper writeback list for the inode depending on its current state and
1277 * possibly also change of its state while we were doing writeback. Here we
1278 * handle things such as livelock prevention or fairness of writeback among
1279 * inodes. This function can be called only by flusher thread - noone else
1280 * processes all inodes in writeback lists and requeueing inodes behind flusher
1281 * thread's back can have unexpected consequences.
1282 */
1283static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1284 struct writeback_control *wbc)
1285{
1286 if (inode->i_state & I_FREEING)
1287 return;
1288
1289 /*
1290 * Sync livelock prevention. Each inode is tagged and synced in one
1291 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1292 * the dirty time to prevent enqueue and sync it again.
1293 */
1294 if ((inode->i_state & I_DIRTY) &&
1295 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1296 inode->dirtied_when = jiffies;
1297
1298 if (wbc->pages_skipped) {
1299 /*
1300 * writeback is not making progress due to locked
1301 * buffers. Skip this inode for now.
1302 */
1303 redirty_tail(inode, wb);
1304 return;
1305 }
1306
1307 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1308 /*
1309 * We didn't write back all the pages. nfs_writepages()
1310 * sometimes bales out without doing anything.
1311 */
1312 if (wbc->nr_to_write <= 0) {
1313 /* Slice used up. Queue for next turn. */
1314 requeue_io(inode, wb);
1315 } else {
1316 /*
1317 * Writeback blocked by something other than
1318 * congestion. Delay the inode for some time to
1319 * avoid spinning on the CPU (100% iowait)
1320 * retrying writeback of the dirty page/inode
1321 * that cannot be performed immediately.
1322 */
1323 redirty_tail(inode, wb);
1324 }
1325 } else if (inode->i_state & I_DIRTY) {
1326 /*
1327 * Filesystems can dirty the inode during writeback operations,
1328 * such as delayed allocation during submission or metadata
1329 * updates after data IO completion.
1330 */
1331 redirty_tail(inode, wb);
1332 } else if (inode->i_state & I_DIRTY_TIME) {
1333 inode->dirtied_when = jiffies;
1334 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1335 } else {
1336 /* The inode is clean. Remove from writeback lists. */
1337 inode_io_list_del_locked(inode, wb);
1338 }
1339}
1340
1341/*
1342 * Write out an inode and its dirty pages. Do not update the writeback list
1343 * linkage. That is left to the caller. The caller is also responsible for
1344 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1345 */
1346static int
1347__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1348{
1349 struct address_space *mapping = inode->i_mapping;
1350 long nr_to_write = wbc->nr_to_write;
1351 unsigned dirty;
1352 int ret;
1353
1354 WARN_ON(!(inode->i_state & I_SYNC));
1355
1356 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1357
1358 ret = do_writepages(mapping, wbc);
1359
1360 /*
1361 * Make sure to wait on the data before writing out the metadata.
1362 * This is important for filesystems that modify metadata on data
1363 * I/O completion. We don't do it for sync(2) writeback because it has a
1364 * separate, external IO completion path and ->sync_fs for guaranteeing
1365 * inode metadata is written back correctly.
1366 */
1367 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1368 int err = filemap_fdatawait(mapping);
1369 if (ret == 0)
1370 ret = err;
1371 }
1372
1373 /*
1374 * Some filesystems may redirty the inode during the writeback
1375 * due to delalloc, clear dirty metadata flags right before
1376 * write_inode()
1377 */
1378 spin_lock(&inode->i_lock);
1379
1380 dirty = inode->i_state & I_DIRTY;
1381 if (inode->i_state & I_DIRTY_TIME) {
1382 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1383 wbc->sync_mode == WB_SYNC_ALL ||
1384 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1385 unlikely(time_after(jiffies,
1386 (inode->dirtied_time_when +
1387 dirtytime_expire_interval * HZ)))) {
1388 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1389 trace_writeback_lazytime(inode);
1390 }
1391 } else
1392 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1393 inode->i_state &= ~dirty;
1394
1395 /*
1396 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1397 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1398 * either they see the I_DIRTY bits cleared or we see the dirtied
1399 * inode.
1400 *
1401 * I_DIRTY_PAGES is always cleared together above even if @mapping
1402 * still has dirty pages. The flag is reinstated after smp_mb() if
1403 * necessary. This guarantees that either __mark_inode_dirty()
1404 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1405 */
1406 smp_mb();
1407
1408 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1409 inode->i_state |= I_DIRTY_PAGES;
1410
1411 spin_unlock(&inode->i_lock);
1412
1413 if (dirty & I_DIRTY_TIME)
1414 mark_inode_dirty_sync(inode);
1415 /* Don't write the inode if only I_DIRTY_PAGES was set */
1416 if (dirty & ~I_DIRTY_PAGES) {
1417 int err = write_inode(inode, wbc);
1418 if (ret == 0)
1419 ret = err;
1420 }
1421 trace_writeback_single_inode(inode, wbc, nr_to_write);
1422 return ret;
1423}
1424
1425/*
1426 * Write out an inode's dirty pages. Either the caller has an active reference
1427 * on the inode or the inode has I_WILL_FREE set.
1428 *
1429 * This function is designed to be called for writing back one inode which
1430 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1431 * and does more profound writeback list handling in writeback_sb_inodes().
1432 */
1433static int writeback_single_inode(struct inode *inode,
1434 struct writeback_control *wbc)
1435{
1436 struct bdi_writeback *wb;
1437 int ret = 0;
1438
1439 spin_lock(&inode->i_lock);
1440 if (!atomic_read(&inode->i_count))
1441 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1442 else
1443 WARN_ON(inode->i_state & I_WILL_FREE);
1444
1445 if (inode->i_state & I_SYNC) {
1446 if (wbc->sync_mode != WB_SYNC_ALL)
1447 goto out;
1448 /*
1449 * It's a data-integrity sync. We must wait. Since callers hold
1450 * inode reference or inode has I_WILL_FREE set, it cannot go
1451 * away under us.
1452 */
1453 __inode_wait_for_writeback(inode);
1454 }
1455 WARN_ON(inode->i_state & I_SYNC);
1456 /*
1457 * Skip inode if it is clean and we have no outstanding writeback in
1458 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1459 * function since flusher thread may be doing for example sync in
1460 * parallel and if we move the inode, it could get skipped. So here we
1461 * make sure inode is on some writeback list and leave it there unless
1462 * we have completely cleaned the inode.
1463 */
1464 if (!(inode->i_state & I_DIRTY_ALL) &&
1465 (wbc->sync_mode != WB_SYNC_ALL ||
1466 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1467 goto out;
1468 inode->i_state |= I_SYNC;
1469 wbc_attach_and_unlock_inode(wbc, inode);
1470
1471 ret = __writeback_single_inode(inode, wbc);
1472
1473 wbc_detach_inode(wbc);
1474
1475 wb = inode_to_wb_and_lock_list(inode);
1476 spin_lock(&inode->i_lock);
1477 /*
1478 * If inode is clean, remove it from writeback lists. Otherwise don't
1479 * touch it. See comment above for explanation.
1480 */
1481 if (!(inode->i_state & I_DIRTY_ALL))
1482 inode_io_list_del_locked(inode, wb);
1483 spin_unlock(&wb->list_lock);
1484 inode_sync_complete(inode);
1485out:
1486 spin_unlock(&inode->i_lock);
1487 return ret;
1488}
1489
1490static long writeback_chunk_size(struct bdi_writeback *wb,
1491 struct wb_writeback_work *work)
1492{
1493 long pages;
1494
1495 /*
1496 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1497 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1498 * here avoids calling into writeback_inodes_wb() more than once.
1499 *
1500 * The intended call sequence for WB_SYNC_ALL writeback is:
1501 *
1502 * wb_writeback()
1503 * writeback_sb_inodes() <== called only once
1504 * write_cache_pages() <== called once for each inode
1505 * (quickly) tag currently dirty pages
1506 * (maybe slowly) sync all tagged pages
1507 */
1508 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1509 pages = LONG_MAX;
1510 else {
1511 pages = min(wb->avg_write_bandwidth / 2,
1512 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1513 pages = min(pages, work->nr_pages);
1514 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1515 MIN_WRITEBACK_PAGES);
1516 }
1517
1518 return pages;
1519}
1520
1521/*
1522 * Write a portion of b_io inodes which belong to @sb.
1523 *
1524 * Return the number of pages and/or inodes written.
1525 *
1526 * NOTE! This is called with wb->list_lock held, and will
1527 * unlock and relock that for each inode it ends up doing
1528 * IO for.
1529 */
1530static long writeback_sb_inodes(struct super_block *sb,
1531 struct bdi_writeback *wb,
1532 struct wb_writeback_work *work)
1533{
1534 struct writeback_control wbc = {
1535 .sync_mode = work->sync_mode,
1536 .tagged_writepages = work->tagged_writepages,
1537 .for_kupdate = work->for_kupdate,
1538 .for_background = work->for_background,
1539 .for_sync = work->for_sync,
1540 .range_cyclic = work->range_cyclic,
1541 .range_start = 0,
1542 .range_end = LLONG_MAX,
1543 };
1544 unsigned long start_time = jiffies;
1545 long write_chunk;
1546 long wrote = 0; /* count both pages and inodes */
1547
1548 while (!list_empty(&wb->b_io)) {
1549 struct inode *inode = wb_inode(wb->b_io.prev);
1550 struct bdi_writeback *tmp_wb;
1551
1552 if (inode->i_sb != sb) {
1553 if (work->sb) {
1554 /*
1555 * We only want to write back data for this
1556 * superblock, move all inodes not belonging
1557 * to it back onto the dirty list.
1558 */
1559 redirty_tail(inode, wb);
1560 continue;
1561 }
1562
1563 /*
1564 * The inode belongs to a different superblock.
1565 * Bounce back to the caller to unpin this and
1566 * pin the next superblock.
1567 */
1568 break;
1569 }
1570
1571 /*
1572 * Don't bother with new inodes or inodes being freed, first
1573 * kind does not need periodic writeout yet, and for the latter
1574 * kind writeout is handled by the freer.
1575 */
1576 spin_lock(&inode->i_lock);
1577 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1578 spin_unlock(&inode->i_lock);
1579 redirty_tail(inode, wb);
1580 continue;
1581 }
1582 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1583 /*
1584 * If this inode is locked for writeback and we are not
1585 * doing writeback-for-data-integrity, move it to
1586 * b_more_io so that writeback can proceed with the
1587 * other inodes on s_io.
1588 *
1589 * We'll have another go at writing back this inode
1590 * when we completed a full scan of b_io.
1591 */
1592 spin_unlock(&inode->i_lock);
1593 requeue_io(inode, wb);
1594 trace_writeback_sb_inodes_requeue(inode);
1595 continue;
1596 }
1597 spin_unlock(&wb->list_lock);
1598
1599 /*
1600 * We already requeued the inode if it had I_SYNC set and we
1601 * are doing WB_SYNC_NONE writeback. So this catches only the
1602 * WB_SYNC_ALL case.
1603 */
1604 if (inode->i_state & I_SYNC) {
1605 /* Wait for I_SYNC. This function drops i_lock... */
1606 inode_sleep_on_writeback(inode);
1607 /* Inode may be gone, start again */
1608 spin_lock(&wb->list_lock);
1609 continue;
1610 }
1611 inode->i_state |= I_SYNC;
1612 wbc_attach_and_unlock_inode(&wbc, inode);
1613
1614 write_chunk = writeback_chunk_size(wb, work);
1615 wbc.nr_to_write = write_chunk;
1616 wbc.pages_skipped = 0;
1617
1618 /*
1619 * We use I_SYNC to pin the inode in memory. While it is set
1620 * evict_inode() will wait so the inode cannot be freed.
1621 */
1622 __writeback_single_inode(inode, &wbc);
1623
1624 wbc_detach_inode(&wbc);
1625 work->nr_pages -= write_chunk - wbc.nr_to_write;
1626 wrote += write_chunk - wbc.nr_to_write;
1627
1628 if (need_resched()) {
1629 /*
1630 * We're trying to balance between building up a nice
1631 * long list of IOs to improve our merge rate, and
1632 * getting those IOs out quickly for anyone throttling
1633 * in balance_dirty_pages(). cond_resched() doesn't
1634 * unplug, so get our IOs out the door before we
1635 * give up the CPU.
1636 */
1637 blk_flush_plug(current);
1638 cond_resched();
1639 }
1640
1641 /*
1642 * Requeue @inode if still dirty. Be careful as @inode may
1643 * have been switched to another wb in the meantime.
1644 */
1645 tmp_wb = inode_to_wb_and_lock_list(inode);
1646 spin_lock(&inode->i_lock);
1647 if (!(inode->i_state & I_DIRTY_ALL))
1648 wrote++;
1649 requeue_inode(inode, tmp_wb, &wbc);
1650 inode_sync_complete(inode);
1651 spin_unlock(&inode->i_lock);
1652
1653 if (unlikely(tmp_wb != wb)) {
1654 spin_unlock(&tmp_wb->list_lock);
1655 spin_lock(&wb->list_lock);
1656 }
1657
1658 /*
1659 * bail out to wb_writeback() often enough to check
1660 * background threshold and other termination conditions.
1661 */
1662 if (wrote) {
1663 if (time_is_before_jiffies(start_time + HZ / 10UL))
1664 break;
1665 if (work->nr_pages <= 0)
1666 break;
1667 }
1668 }
1669 return wrote;
1670}
1671
1672static long __writeback_inodes_wb(struct bdi_writeback *wb,
1673 struct wb_writeback_work *work)
1674{
1675 unsigned long start_time = jiffies;
1676 long wrote = 0;
1677
1678 while (!list_empty(&wb->b_io)) {
1679 struct inode *inode = wb_inode(wb->b_io.prev);
1680 struct super_block *sb = inode->i_sb;
1681
1682 if (!trylock_super(sb)) {
1683 /*
1684 * trylock_super() may fail consistently due to
1685 * s_umount being grabbed by someone else. Don't use
1686 * requeue_io() to avoid busy retrying the inode/sb.
1687 */
1688 redirty_tail(inode, wb);
1689 continue;
1690 }
1691 wrote += writeback_sb_inodes(sb, wb, work);
1692 up_read(&sb->s_umount);
1693
1694 /* refer to the same tests at the end of writeback_sb_inodes */
1695 if (wrote) {
1696 if (time_is_before_jiffies(start_time + HZ / 10UL))
1697 break;
1698 if (work->nr_pages <= 0)
1699 break;
1700 }
1701 }
1702 /* Leave any unwritten inodes on b_io */
1703 return wrote;
1704}
1705
1706static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1707 enum wb_reason reason)
1708{
1709 struct wb_writeback_work work = {
1710 .nr_pages = nr_pages,
1711 .sync_mode = WB_SYNC_NONE,
1712 .range_cyclic = 1,
1713 .reason = reason,
1714 };
1715 struct blk_plug plug;
1716
1717 blk_start_plug(&plug);
1718 spin_lock(&wb->list_lock);
1719 if (list_empty(&wb->b_io))
1720 queue_io(wb, &work);
1721 __writeback_inodes_wb(wb, &work);
1722 spin_unlock(&wb->list_lock);
1723 blk_finish_plug(&plug);
1724
1725 return nr_pages - work.nr_pages;
1726}
1727
1728/*
1729 * Explicit flushing or periodic writeback of "old" data.
1730 *
1731 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1732 * dirtying-time in the inode's address_space. So this periodic writeback code
1733 * just walks the superblock inode list, writing back any inodes which are
1734 * older than a specific point in time.
1735 *
1736 * Try to run once per dirty_writeback_interval. But if a writeback event
1737 * takes longer than a dirty_writeback_interval interval, then leave a
1738 * one-second gap.
1739 *
1740 * older_than_this takes precedence over nr_to_write. So we'll only write back
1741 * all dirty pages if they are all attached to "old" mappings.
1742 */
1743static long wb_writeback(struct bdi_writeback *wb,
1744 struct wb_writeback_work *work)
1745{
1746 unsigned long wb_start = jiffies;
1747 long nr_pages = work->nr_pages;
1748 unsigned long oldest_jif;
1749 struct inode *inode;
1750 long progress;
1751 struct blk_plug plug;
1752
1753 oldest_jif = jiffies;
1754 work->older_than_this = &oldest_jif;
1755
1756 blk_start_plug(&plug);
1757 spin_lock(&wb->list_lock);
1758 for (;;) {
1759 /*
1760 * Stop writeback when nr_pages has been consumed
1761 */
1762 if (work->nr_pages <= 0)
1763 break;
1764
1765 /*
1766 * Background writeout and kupdate-style writeback may
1767 * run forever. Stop them if there is other work to do
1768 * so that e.g. sync can proceed. They'll be restarted
1769 * after the other works are all done.
1770 */
1771 if ((work->for_background || work->for_kupdate) &&
1772 !list_empty(&wb->work_list))
1773 break;
1774
1775 /*
1776 * For background writeout, stop when we are below the
1777 * background dirty threshold
1778 */
1779 if (work->for_background && !wb_over_bg_thresh(wb))
1780 break;
1781
1782 /*
1783 * Kupdate and background works are special and we want to
1784 * include all inodes that need writing. Livelock avoidance is
1785 * handled by these works yielding to any other work so we are
1786 * safe.
1787 */
1788 if (work->for_kupdate) {
1789 oldest_jif = jiffies -
1790 msecs_to_jiffies(dirty_expire_interval * 10);
1791 } else if (work->for_background)
1792 oldest_jif = jiffies;
1793
1794 trace_writeback_start(wb, work);
1795 if (list_empty(&wb->b_io))
1796 queue_io(wb, work);
1797 if (work->sb)
1798 progress = writeback_sb_inodes(work->sb, wb, work);
1799 else
1800 progress = __writeback_inodes_wb(wb, work);
1801 trace_writeback_written(wb, work);
1802
1803 wb_update_bandwidth(wb, wb_start);
1804
1805 /*
1806 * Did we write something? Try for more
1807 *
1808 * Dirty inodes are moved to b_io for writeback in batches.
1809 * The completion of the current batch does not necessarily
1810 * mean the overall work is done. So we keep looping as long
1811 * as made some progress on cleaning pages or inodes.
1812 */
1813 if (progress)
1814 continue;
1815 /*
1816 * No more inodes for IO, bail
1817 */
1818 if (list_empty(&wb->b_more_io))
1819 break;
1820 /*
1821 * Nothing written. Wait for some inode to
1822 * become available for writeback. Otherwise
1823 * we'll just busyloop.
1824 */
1825 if (!list_empty(&wb->b_more_io)) {
1826 trace_writeback_wait(wb, work);
1827 inode = wb_inode(wb->b_more_io.prev);
1828 spin_lock(&inode->i_lock);
1829 spin_unlock(&wb->list_lock);
1830 /* This function drops i_lock... */
1831 inode_sleep_on_writeback(inode);
1832 spin_lock(&wb->list_lock);
1833 }
1834 }
1835 spin_unlock(&wb->list_lock);
1836 blk_finish_plug(&plug);
1837
1838 return nr_pages - work->nr_pages;
1839}
1840
1841/*
1842 * Return the next wb_writeback_work struct that hasn't been processed yet.
1843 */
1844static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1845{
1846 struct wb_writeback_work *work = NULL;
1847
1848 spin_lock_bh(&wb->work_lock);
1849 if (!list_empty(&wb->work_list)) {
1850 work = list_entry(wb->work_list.next,
1851 struct wb_writeback_work, list);
1852 list_del_init(&work->list);
1853 }
1854 spin_unlock_bh(&wb->work_lock);
1855 return work;
1856}
1857
1858/*
1859 * Add in the number of potentially dirty inodes, because each inode
1860 * write can dirty pagecache in the underlying blockdev.
1861 */
1862static unsigned long get_nr_dirty_pages(void)
1863{
1864 return global_node_page_state(NR_FILE_DIRTY) +
1865 global_node_page_state(NR_UNSTABLE_NFS) +
1866 get_nr_dirty_inodes();
1867}
1868
1869static long wb_check_background_flush(struct bdi_writeback *wb)
1870{
1871 if (wb_over_bg_thresh(wb)) {
1872
1873 struct wb_writeback_work work = {
1874 .nr_pages = LONG_MAX,
1875 .sync_mode = WB_SYNC_NONE,
1876 .for_background = 1,
1877 .range_cyclic = 1,
1878 .reason = WB_REASON_BACKGROUND,
1879 };
1880
1881 return wb_writeback(wb, &work);
1882 }
1883
1884 return 0;
1885}
1886
1887static long wb_check_old_data_flush(struct bdi_writeback *wb)
1888{
1889 unsigned long expired;
1890 long nr_pages;
1891
1892 /*
1893 * When set to zero, disable periodic writeback
1894 */
1895 if (!dirty_writeback_interval)
1896 return 0;
1897
1898 expired = wb->last_old_flush +
1899 msecs_to_jiffies(dirty_writeback_interval * 10);
1900 if (time_before(jiffies, expired))
1901 return 0;
1902
1903 wb->last_old_flush = jiffies;
1904 nr_pages = get_nr_dirty_pages();
1905
1906 if (nr_pages) {
1907 struct wb_writeback_work work = {
1908 .nr_pages = nr_pages,
1909 .sync_mode = WB_SYNC_NONE,
1910 .for_kupdate = 1,
1911 .range_cyclic = 1,
1912 .reason = WB_REASON_PERIODIC,
1913 };
1914
1915 return wb_writeback(wb, &work);
1916 }
1917
1918 return 0;
1919}
1920
1921/*
1922 * Retrieve work items and do the writeback they describe
1923 */
1924static long wb_do_writeback(struct bdi_writeback *wb)
1925{
1926 struct wb_writeback_work *work;
1927 long wrote = 0;
1928
1929 set_bit(WB_writeback_running, &wb->state);
1930 while ((work = get_next_work_item(wb)) != NULL) {
1931 trace_writeback_exec(wb, work);
1932 wrote += wb_writeback(wb, work);
1933 finish_writeback_work(wb, work);
1934 }
1935
1936 /*
1937 * Check for periodic writeback, kupdated() style
1938 */
1939 wrote += wb_check_old_data_flush(wb);
1940 wrote += wb_check_background_flush(wb);
1941 clear_bit(WB_writeback_running, &wb->state);
1942
1943 return wrote;
1944}
1945
1946/*
1947 * Handle writeback of dirty data for the device backed by this bdi. Also
1948 * reschedules periodically and does kupdated style flushing.
1949 */
1950void wb_workfn(struct work_struct *work)
1951{
1952 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1953 struct bdi_writeback, dwork);
1954 long pages_written;
1955
1956 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1957 current->flags |= PF_SWAPWRITE;
1958
1959 if (likely(!current_is_workqueue_rescuer() ||
1960 !test_bit(WB_registered, &wb->state))) {
1961 /*
1962 * The normal path. Keep writing back @wb until its
1963 * work_list is empty. Note that this path is also taken
1964 * if @wb is shutting down even when we're running off the
1965 * rescuer as work_list needs to be drained.
1966 */
1967 do {
1968 pages_written = wb_do_writeback(wb);
1969 trace_writeback_pages_written(pages_written);
1970 } while (!list_empty(&wb->work_list));
1971 } else {
1972 /*
1973 * bdi_wq can't get enough workers and we're running off
1974 * the emergency worker. Don't hog it. Hopefully, 1024 is
1975 * enough for efficient IO.
1976 */
1977 pages_written = writeback_inodes_wb(wb, 1024,
1978 WB_REASON_FORKER_THREAD);
1979 trace_writeback_pages_written(pages_written);
1980 }
1981
1982 if (!list_empty(&wb->work_list))
1983 wb_wakeup(wb);
1984 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1985 wb_wakeup_delayed(wb);
1986
1987 current->flags &= ~PF_SWAPWRITE;
1988}
1989
1990/*
1991 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1992 * the whole world.
1993 */
1994void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1995{
1996 struct backing_dev_info *bdi;
1997
1998 /*
1999 * If we are expecting writeback progress we must submit plugged IO.
2000 */
2001 if (blk_needs_flush_plug(current))
2002 blk_schedule_flush_plug(current);
2003
2004 if (!nr_pages)
2005 nr_pages = get_nr_dirty_pages();
2006
2007 rcu_read_lock();
2008 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2009 struct bdi_writeback *wb;
2010
2011 if (!bdi_has_dirty_io(bdi))
2012 continue;
2013
2014 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2015 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
2016 false, reason);
2017 }
2018 rcu_read_unlock();
2019}
2020
2021/*
2022 * Wake up bdi's periodically to make sure dirtytime inodes gets
2023 * written back periodically. We deliberately do *not* check the
2024 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2025 * kernel to be constantly waking up once there are any dirtytime
2026 * inodes on the system. So instead we define a separate delayed work
2027 * function which gets called much more rarely. (By default, only
2028 * once every 12 hours.)
2029 *
2030 * If there is any other write activity going on in the file system,
2031 * this function won't be necessary. But if the only thing that has
2032 * happened on the file system is a dirtytime inode caused by an atime
2033 * update, we need this infrastructure below to make sure that inode
2034 * eventually gets pushed out to disk.
2035 */
2036static void wakeup_dirtytime_writeback(struct work_struct *w);
2037static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2038
2039static void wakeup_dirtytime_writeback(struct work_struct *w)
2040{
2041 struct backing_dev_info *bdi;
2042
2043 rcu_read_lock();
2044 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2045 struct bdi_writeback *wb;
2046
2047 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2048 if (!list_empty(&wb->b_dirty_time))
2049 wb_wakeup(wb);
2050 }
2051 rcu_read_unlock();
2052 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2053}
2054
2055static int __init start_dirtytime_writeback(void)
2056{
2057 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2058 return 0;
2059}
2060__initcall(start_dirtytime_writeback);
2061
2062int dirtytime_interval_handler(struct ctl_table *table, int write,
2063 void __user *buffer, size_t *lenp, loff_t *ppos)
2064{
2065 int ret;
2066
2067 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2068 if (ret == 0 && write)
2069 mod_delayed_work(system_wq, &dirtytime_work, 0);
2070 return ret;
2071}
2072
2073static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2074{
2075 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2076 struct dentry *dentry;
2077 const char *name = "?";
2078
2079 dentry = d_find_alias(inode);
2080 if (dentry) {
2081 spin_lock(&dentry->d_lock);
2082 name = (const char *) dentry->d_name.name;
2083 }
2084 printk(KERN_DEBUG
2085 "%s(%d): dirtied inode %lu (%s) on %s\n",
2086 current->comm, task_pid_nr(current), inode->i_ino,
2087 name, inode->i_sb->s_id);
2088 if (dentry) {
2089 spin_unlock(&dentry->d_lock);
2090 dput(dentry);
2091 }
2092 }
2093}
2094
2095/**
2096 * __mark_inode_dirty - internal function
2097 * @inode: inode to mark
2098 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2099 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2100 * mark_inode_dirty_sync.
2101 *
2102 * Put the inode on the super block's dirty list.
2103 *
2104 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2105 * dirty list only if it is hashed or if it refers to a blockdev.
2106 * If it was not hashed, it will never be added to the dirty list
2107 * even if it is later hashed, as it will have been marked dirty already.
2108 *
2109 * In short, make sure you hash any inodes _before_ you start marking
2110 * them dirty.
2111 *
2112 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2113 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2114 * the kernel-internal blockdev inode represents the dirtying time of the
2115 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2116 * page->mapping->host, so the page-dirtying time is recorded in the internal
2117 * blockdev inode.
2118 */
2119void __mark_inode_dirty(struct inode *inode, int flags)
2120{
2121#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2122 struct super_block *sb = inode->i_sb;
2123 int dirtytime;
2124
2125 trace_writeback_mark_inode_dirty(inode, flags);
2126
2127 /*
2128 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2129 * dirty the inode itself
2130 */
2131 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2132 trace_writeback_dirty_inode_start(inode, flags);
2133
2134 if (sb->s_op->dirty_inode)
2135 sb->s_op->dirty_inode(inode, flags);
2136
2137 trace_writeback_dirty_inode(inode, flags);
2138 }
2139 if (flags & I_DIRTY_INODE)
2140 flags &= ~I_DIRTY_TIME;
2141 dirtytime = flags & I_DIRTY_TIME;
2142
2143 /*
2144 * Paired with smp_mb() in __writeback_single_inode() for the
2145 * following lockless i_state test. See there for details.
2146 */
2147 smp_mb();
2148
2149 if (((inode->i_state & flags) == flags) ||
2150 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2151 return;
2152
2153 if (unlikely(block_dump > 1))
2154 block_dump___mark_inode_dirty(inode);
2155
2156 spin_lock(&inode->i_lock);
2157 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2158 goto out_unlock_inode;
2159 if ((inode->i_state & flags) != flags) {
2160 const int was_dirty = inode->i_state & I_DIRTY;
2161
2162 inode_attach_wb(inode, NULL);
2163
2164 if (flags & I_DIRTY_INODE)
2165 inode->i_state &= ~I_DIRTY_TIME;
2166 inode->i_state |= flags;
2167
2168 /*
2169 * If the inode is being synced, just update its dirty state.
2170 * The unlocker will place the inode on the appropriate
2171 * superblock list, based upon its state.
2172 */
2173 if (inode->i_state & I_SYNC)
2174 goto out_unlock_inode;
2175
2176 /*
2177 * Only add valid (hashed) inodes to the superblock's
2178 * dirty list. Add blockdev inodes as well.
2179 */
2180 if (!S_ISBLK(inode->i_mode)) {
2181 if (inode_unhashed(inode))
2182 goto out_unlock_inode;
2183 }
2184 if (inode->i_state & I_FREEING)
2185 goto out_unlock_inode;
2186
2187 /*
2188 * If the inode was already on b_dirty/b_io/b_more_io, don't
2189 * reposition it (that would break b_dirty time-ordering).
2190 */
2191 if (!was_dirty) {
2192 struct bdi_writeback *wb;
2193 struct list_head *dirty_list;
2194 bool wakeup_bdi = false;
2195
2196 wb = locked_inode_to_wb_and_lock_list(inode);
2197
2198 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2199 !test_bit(WB_registered, &wb->state),
2200 "bdi-%s not registered\n", wb->bdi->name);
2201
2202 inode->dirtied_when = jiffies;
2203 if (dirtytime)
2204 inode->dirtied_time_when = jiffies;
2205
2206 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2207 dirty_list = &wb->b_dirty;
2208 else
2209 dirty_list = &wb->b_dirty_time;
2210
2211 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2212 dirty_list);
2213
2214 spin_unlock(&wb->list_lock);
2215 trace_writeback_dirty_inode_enqueue(inode);
2216
2217 /*
2218 * If this is the first dirty inode for this bdi,
2219 * we have to wake-up the corresponding bdi thread
2220 * to make sure background write-back happens
2221 * later.
2222 */
2223 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2224 wb_wakeup_delayed(wb);
2225 return;
2226 }
2227 }
2228out_unlock_inode:
2229 spin_unlock(&inode->i_lock);
2230
2231#undef I_DIRTY_INODE
2232}
2233EXPORT_SYMBOL(__mark_inode_dirty);
2234
2235/*
2236 * The @s_sync_lock is used to serialise concurrent sync operations
2237 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2238 * Concurrent callers will block on the s_sync_lock rather than doing contending
2239 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2240 * has been issued up to the time this function is enter is guaranteed to be
2241 * completed by the time we have gained the lock and waited for all IO that is
2242 * in progress regardless of the order callers are granted the lock.
2243 */
2244static void wait_sb_inodes(struct super_block *sb)
2245{
2246 LIST_HEAD(sync_list);
2247
2248 /*
2249 * We need to be protected against the filesystem going from
2250 * r/o to r/w or vice versa.
2251 */
2252 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2253
2254 mutex_lock(&sb->s_sync_lock);
2255
2256 /*
2257 * Splice the writeback list onto a temporary list to avoid waiting on
2258 * inodes that have started writeback after this point.
2259 *
2260 * Use rcu_read_lock() to keep the inodes around until we have a
2261 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2262 * the local list because inodes can be dropped from either by writeback
2263 * completion.
2264 */
2265 rcu_read_lock();
2266 spin_lock_irq(&sb->s_inode_wblist_lock);
2267 list_splice_init(&sb->s_inodes_wb, &sync_list);
2268
2269 /*
2270 * Data integrity sync. Must wait for all pages under writeback, because
2271 * there may have been pages dirtied before our sync call, but which had
2272 * writeout started before we write it out. In which case, the inode
2273 * may not be on the dirty list, but we still have to wait for that
2274 * writeout.
2275 */
2276 while (!list_empty(&sync_list)) {
2277 struct inode *inode = list_first_entry(&sync_list, struct inode,
2278 i_wb_list);
2279 struct address_space *mapping = inode->i_mapping;
2280
2281 /*
2282 * Move each inode back to the wb list before we drop the lock
2283 * to preserve consistency between i_wb_list and the mapping
2284 * writeback tag. Writeback completion is responsible to remove
2285 * the inode from either list once the writeback tag is cleared.
2286 */
2287 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2288
2289 /*
2290 * The mapping can appear untagged while still on-list since we
2291 * do not have the mapping lock. Skip it here, wb completion
2292 * will remove it.
2293 */
2294 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2295 continue;
2296
2297 spin_unlock_irq(&sb->s_inode_wblist_lock);
2298
2299 spin_lock(&inode->i_lock);
2300 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2301 spin_unlock(&inode->i_lock);
2302
2303 spin_lock_irq(&sb->s_inode_wblist_lock);
2304 continue;
2305 }
2306 __iget(inode);
2307 spin_unlock(&inode->i_lock);
2308 rcu_read_unlock();
2309
2310 /*
2311 * We keep the error status of individual mapping so that
2312 * applications can catch the writeback error using fsync(2).
2313 * See filemap_fdatawait_keep_errors() for details.
2314 */
2315 filemap_fdatawait_keep_errors(mapping);
2316
2317 cond_resched();
2318
2319 iput(inode);
2320
2321 rcu_read_lock();
2322 spin_lock_irq(&sb->s_inode_wblist_lock);
2323 }
2324 spin_unlock_irq(&sb->s_inode_wblist_lock);
2325 rcu_read_unlock();
2326 mutex_unlock(&sb->s_sync_lock);
2327}
2328
2329static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2330 enum wb_reason reason, bool skip_if_busy)
2331{
2332 DEFINE_WB_COMPLETION_ONSTACK(done);
2333 struct wb_writeback_work work = {
2334 .sb = sb,
2335 .sync_mode = WB_SYNC_NONE,
2336 .tagged_writepages = 1,
2337 .done = &done,
2338 .nr_pages = nr,
2339 .reason = reason,
2340 };
2341 struct backing_dev_info *bdi = sb->s_bdi;
2342
2343 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2344 return;
2345 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2346
2347 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2348 wb_wait_for_completion(bdi, &done);
2349}
2350
2351/**
2352 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2353 * @sb: the superblock
2354 * @nr: the number of pages to write
2355 * @reason: reason why some writeback work initiated
2356 *
2357 * Start writeback on some inodes on this super_block. No guarantees are made
2358 * on how many (if any) will be written, and this function does not wait
2359 * for IO completion of submitted IO.
2360 */
2361void writeback_inodes_sb_nr(struct super_block *sb,
2362 unsigned long nr,
2363 enum wb_reason reason)
2364{
2365 __writeback_inodes_sb_nr(sb, nr, reason, false);
2366}
2367EXPORT_SYMBOL(writeback_inodes_sb_nr);
2368
2369/**
2370 * writeback_inodes_sb - writeback dirty inodes from given super_block
2371 * @sb: the superblock
2372 * @reason: reason why some writeback work was initiated
2373 *
2374 * Start writeback on some inodes on this super_block. No guarantees are made
2375 * on how many (if any) will be written, and this function does not wait
2376 * for IO completion of submitted IO.
2377 */
2378void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2379{
2380 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2381}
2382EXPORT_SYMBOL(writeback_inodes_sb);
2383
2384/**
2385 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2386 * @sb: the superblock
2387 * @nr: the number of pages to write
2388 * @reason: the reason of writeback
2389 *
2390 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2391 * Returns 1 if writeback was started, 0 if not.
2392 */
2393bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2394 enum wb_reason reason)
2395{
2396 if (!down_read_trylock(&sb->s_umount))
2397 return false;
2398
2399 __writeback_inodes_sb_nr(sb, nr, reason, true);
2400 up_read(&sb->s_umount);
2401 return true;
2402}
2403EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2404
2405/**
2406 * try_to_writeback_inodes_sb - try to start writeback if none underway
2407 * @sb: the superblock
2408 * @reason: reason why some writeback work was initiated
2409 *
2410 * Implement by try_to_writeback_inodes_sb_nr()
2411 * Returns 1 if writeback was started, 0 if not.
2412 */
2413bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2414{
2415 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2416}
2417EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2418
2419/**
2420 * sync_inodes_sb - sync sb inode pages
2421 * @sb: the superblock
2422 *
2423 * This function writes and waits on any dirty inode belonging to this
2424 * super_block.
2425 */
2426void sync_inodes_sb(struct super_block *sb)
2427{
2428 DEFINE_WB_COMPLETION_ONSTACK(done);
2429 struct wb_writeback_work work = {
2430 .sb = sb,
2431 .sync_mode = WB_SYNC_ALL,
2432 .nr_pages = LONG_MAX,
2433 .range_cyclic = 0,
2434 .done = &done,
2435 .reason = WB_REASON_SYNC,
2436 .for_sync = 1,
2437 };
2438 struct backing_dev_info *bdi = sb->s_bdi;
2439
2440 /*
2441 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2442 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2443 * bdi_has_dirty() need to be written out too.
2444 */
2445 if (bdi == &noop_backing_dev_info)
2446 return;
2447 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2448
2449 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2450 bdi_down_write_wb_switch_rwsem(bdi);
2451 bdi_split_work_to_wbs(bdi, &work, false);
2452 wb_wait_for_completion(bdi, &done);
2453 bdi_up_write_wb_switch_rwsem(bdi);
2454
2455 wait_sb_inodes(sb);
2456}
2457EXPORT_SYMBOL(sync_inodes_sb);
2458
2459/**
2460 * write_inode_now - write an inode to disk
2461 * @inode: inode to write to disk
2462 * @sync: whether the write should be synchronous or not
2463 *
2464 * This function commits an inode to disk immediately if it is dirty. This is
2465 * primarily needed by knfsd.
2466 *
2467 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2468 */
2469int write_inode_now(struct inode *inode, int sync)
2470{
2471 struct writeback_control wbc = {
2472 .nr_to_write = LONG_MAX,
2473 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2474 .range_start = 0,
2475 .range_end = LLONG_MAX,
2476 };
2477
2478 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2479 wbc.nr_to_write = 0;
2480
2481 might_sleep();
2482 return writeback_single_inode(inode, &wbc);
2483}
2484EXPORT_SYMBOL(write_inode_now);
2485
2486/**
2487 * sync_inode - write an inode and its pages to disk.
2488 * @inode: the inode to sync
2489 * @wbc: controls the writeback mode
2490 *
2491 * sync_inode() will write an inode and its pages to disk. It will also
2492 * correctly update the inode on its superblock's dirty inode lists and will
2493 * update inode->i_state.
2494 *
2495 * The caller must have a ref on the inode.
2496 */
2497int sync_inode(struct inode *inode, struct writeback_control *wbc)
2498{
2499 return writeback_single_inode(inode, wbc);
2500}
2501EXPORT_SYMBOL(sync_inode);
2502
2503/**
2504 * sync_inode_metadata - write an inode to disk
2505 * @inode: the inode to sync
2506 * @wait: wait for I/O to complete.
2507 *
2508 * Write an inode to disk and adjust its dirty state after completion.
2509 *
2510 * Note: only writes the actual inode, no associated data or other metadata.
2511 */
2512int sync_inode_metadata(struct inode *inode, int wait)
2513{
2514 struct writeback_control wbc = {
2515 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2516 .nr_to_write = 0, /* metadata-only */
2517 };
2518
2519 return sync_inode(inode, &wbc);
2520}
2521EXPORT_SYMBOL(sync_inode_metadata);
2522