summaryrefslogtreecommitdiff
path: root/fs/libfs.c (plain)
blob: 9588780ad43e175c795580275f6ddc62be4f670a
1/*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/export.h>
8#include <linux/pagemap.h>
9#include <linux/slab.h>
10#include <linux/mount.h>
11#include <linux/vfs.h>
12#include <linux/quotaops.h>
13#include <linux/mutex.h>
14#include <linux/namei.h>
15#include <linux/exportfs.h>
16#include <linux/writeback.h>
17#include <linux/buffer_head.h> /* sync_mapping_buffers */
18
19#include <asm/uaccess.h>
20
21#include "internal.h"
22
23int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
24 struct kstat *stat)
25{
26 struct inode *inode = d_inode(dentry);
27 generic_fillattr(inode, stat);
28 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
29 return 0;
30}
31EXPORT_SYMBOL(simple_getattr);
32
33int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
34{
35 buf->f_type = dentry->d_sb->s_magic;
36 buf->f_bsize = PAGE_SIZE;
37 buf->f_namelen = NAME_MAX;
38 return 0;
39}
40EXPORT_SYMBOL(simple_statfs);
41
42/*
43 * Retaining negative dentries for an in-memory filesystem just wastes
44 * memory and lookup time: arrange for them to be deleted immediately.
45 */
46int always_delete_dentry(const struct dentry *dentry)
47{
48 return 1;
49}
50EXPORT_SYMBOL(always_delete_dentry);
51
52const struct dentry_operations simple_dentry_operations = {
53 .d_delete = always_delete_dentry,
54};
55EXPORT_SYMBOL(simple_dentry_operations);
56
57/*
58 * Lookup the data. This is trivial - if the dentry didn't already
59 * exist, we know it is negative. Set d_op to delete negative dentries.
60 */
61struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
62{
63 if (dentry->d_name.len > NAME_MAX)
64 return ERR_PTR(-ENAMETOOLONG);
65 if (!dentry->d_sb->s_d_op)
66 d_set_d_op(dentry, &simple_dentry_operations);
67 d_add(dentry, NULL);
68 return NULL;
69}
70EXPORT_SYMBOL(simple_lookup);
71
72int dcache_dir_open(struct inode *inode, struct file *file)
73{
74 file->private_data = d_alloc_cursor(file->f_path.dentry);
75
76 return file->private_data ? 0 : -ENOMEM;
77}
78EXPORT_SYMBOL(dcache_dir_open);
79
80int dcache_dir_close(struct inode *inode, struct file *file)
81{
82 dput(file->private_data);
83 return 0;
84}
85EXPORT_SYMBOL(dcache_dir_close);
86
87/* parent is locked at least shared */
88static struct dentry *next_positive(struct dentry *parent,
89 struct list_head *from,
90 int count)
91{
92 unsigned *seq = &parent->d_inode->i_dir_seq, n;
93 struct dentry *res;
94 struct list_head *p;
95 bool skipped;
96 int i;
97
98retry:
99 i = count;
100 skipped = false;
101 n = smp_load_acquire(seq) & ~1;
102 res = NULL;
103 rcu_read_lock();
104 for (p = from->next; p != &parent->d_subdirs; p = p->next) {
105 struct dentry *d = list_entry(p, struct dentry, d_child);
106 if (!simple_positive(d)) {
107 skipped = true;
108 } else if (!--i) {
109 res = d;
110 break;
111 }
112 }
113 rcu_read_unlock();
114 if (skipped) {
115 smp_rmb();
116 if (unlikely(*seq != n))
117 goto retry;
118 }
119 return res;
120}
121
122static void move_cursor(struct dentry *cursor, struct list_head *after)
123{
124 struct dentry *parent = cursor->d_parent;
125 unsigned n, *seq = &parent->d_inode->i_dir_seq;
126 spin_lock(&parent->d_lock);
127 for (;;) {
128 n = *seq;
129 if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
130 break;
131 cpu_relax();
132 }
133 __list_del(cursor->d_child.prev, cursor->d_child.next);
134 if (after)
135 list_add(&cursor->d_child, after);
136 else
137 list_add_tail(&cursor->d_child, &parent->d_subdirs);
138 smp_store_release(seq, n + 2);
139 spin_unlock(&parent->d_lock);
140}
141
142loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
143{
144 struct dentry *dentry = file->f_path.dentry;
145 switch (whence) {
146 case 1:
147 offset += file->f_pos;
148 case 0:
149 if (offset >= 0)
150 break;
151 default:
152 return -EINVAL;
153 }
154 if (offset != file->f_pos) {
155 file->f_pos = offset;
156 if (file->f_pos >= 2) {
157 struct dentry *cursor = file->private_data;
158 struct dentry *to;
159 loff_t n = file->f_pos - 2;
160
161 inode_lock_shared(dentry->d_inode);
162 to = next_positive(dentry, &dentry->d_subdirs, n);
163 move_cursor(cursor, to ? &to->d_child : NULL);
164 inode_unlock_shared(dentry->d_inode);
165 }
166 }
167 return offset;
168}
169EXPORT_SYMBOL(dcache_dir_lseek);
170
171/* Relationship between i_mode and the DT_xxx types */
172static inline unsigned char dt_type(struct inode *inode)
173{
174 return (inode->i_mode >> 12) & 15;
175}
176
177/*
178 * Directory is locked and all positive dentries in it are safe, since
179 * for ramfs-type trees they can't go away without unlink() or rmdir(),
180 * both impossible due to the lock on directory.
181 */
182
183int dcache_readdir(struct file *file, struct dir_context *ctx)
184{
185 struct dentry *dentry = file->f_path.dentry;
186 struct dentry *cursor = file->private_data;
187 struct list_head *p = &cursor->d_child;
188 struct dentry *next;
189 bool moved = false;
190
191 if (!dir_emit_dots(file, ctx))
192 return 0;
193
194 if (ctx->pos == 2)
195 p = &dentry->d_subdirs;
196 while ((next = next_positive(dentry, p, 1)) != NULL) {
197 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
198 d_inode(next)->i_ino, dt_type(d_inode(next))))
199 break;
200 moved = true;
201 p = &next->d_child;
202 ctx->pos++;
203 }
204 if (moved)
205 move_cursor(cursor, p);
206 return 0;
207}
208EXPORT_SYMBOL(dcache_readdir);
209
210ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
211{
212 return -EISDIR;
213}
214EXPORT_SYMBOL(generic_read_dir);
215
216const struct file_operations simple_dir_operations = {
217 .open = dcache_dir_open,
218 .release = dcache_dir_close,
219 .llseek = dcache_dir_lseek,
220 .read = generic_read_dir,
221 .iterate_shared = dcache_readdir,
222 .fsync = noop_fsync,
223};
224EXPORT_SYMBOL(simple_dir_operations);
225
226const struct inode_operations simple_dir_inode_operations = {
227 .lookup = simple_lookup,
228};
229EXPORT_SYMBOL(simple_dir_inode_operations);
230
231static const struct super_operations simple_super_operations = {
232 .statfs = simple_statfs,
233};
234
235/*
236 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
237 * will never be mountable)
238 */
239struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
240 const struct super_operations *ops, const struct xattr_handler **xattr,
241 const struct dentry_operations *dops, unsigned long magic)
242{
243 struct super_block *s;
244 struct dentry *dentry;
245 struct inode *root;
246 struct qstr d_name = QSTR_INIT(name, strlen(name));
247
248 s = sget_userns(fs_type, NULL, set_anon_super, MS_KERNMOUNT|MS_NOUSER,
249 &init_user_ns, NULL);
250 if (IS_ERR(s))
251 return ERR_CAST(s);
252
253 s->s_maxbytes = MAX_LFS_FILESIZE;
254 s->s_blocksize = PAGE_SIZE;
255 s->s_blocksize_bits = PAGE_SHIFT;
256 s->s_magic = magic;
257 s->s_op = ops ? ops : &simple_super_operations;
258 s->s_xattr = xattr;
259 s->s_time_gran = 1;
260 root = new_inode(s);
261 if (!root)
262 goto Enomem;
263 /*
264 * since this is the first inode, make it number 1. New inodes created
265 * after this must take care not to collide with it (by passing
266 * max_reserved of 1 to iunique).
267 */
268 root->i_ino = 1;
269 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
270 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
271 dentry = __d_alloc(s, &d_name);
272 if (!dentry) {
273 iput(root);
274 goto Enomem;
275 }
276 d_instantiate(dentry, root);
277 s->s_root = dentry;
278 s->s_d_op = dops;
279 s->s_flags |= MS_ACTIVE;
280 return dget(s->s_root);
281
282Enomem:
283 deactivate_locked_super(s);
284 return ERR_PTR(-ENOMEM);
285}
286EXPORT_SYMBOL(mount_pseudo_xattr);
287
288int simple_open(struct inode *inode, struct file *file)
289{
290 if (inode->i_private)
291 file->private_data = inode->i_private;
292 return 0;
293}
294EXPORT_SYMBOL(simple_open);
295
296int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
297{
298 struct inode *inode = d_inode(old_dentry);
299
300 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
301 inc_nlink(inode);
302 ihold(inode);
303 dget(dentry);
304 d_instantiate(dentry, inode);
305 return 0;
306}
307EXPORT_SYMBOL(simple_link);
308
309int simple_empty(struct dentry *dentry)
310{
311 struct dentry *child;
312 int ret = 0;
313
314 spin_lock(&dentry->d_lock);
315 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
316 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
317 if (simple_positive(child)) {
318 spin_unlock(&child->d_lock);
319 goto out;
320 }
321 spin_unlock(&child->d_lock);
322 }
323 ret = 1;
324out:
325 spin_unlock(&dentry->d_lock);
326 return ret;
327}
328EXPORT_SYMBOL(simple_empty);
329
330int simple_unlink(struct inode *dir, struct dentry *dentry)
331{
332 struct inode *inode = d_inode(dentry);
333
334 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
335 drop_nlink(inode);
336 dput(dentry);
337 return 0;
338}
339EXPORT_SYMBOL(simple_unlink);
340
341int simple_rmdir(struct inode *dir, struct dentry *dentry)
342{
343 if (!simple_empty(dentry))
344 return -ENOTEMPTY;
345
346 drop_nlink(d_inode(dentry));
347 simple_unlink(dir, dentry);
348 drop_nlink(dir);
349 return 0;
350}
351EXPORT_SYMBOL(simple_rmdir);
352
353int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
354 struct inode *new_dir, struct dentry *new_dentry,
355 unsigned int flags)
356{
357 struct inode *inode = d_inode(old_dentry);
358 int they_are_dirs = d_is_dir(old_dentry);
359
360 if (flags & ~RENAME_NOREPLACE)
361 return -EINVAL;
362
363 if (!simple_empty(new_dentry))
364 return -ENOTEMPTY;
365
366 if (d_really_is_positive(new_dentry)) {
367 simple_unlink(new_dir, new_dentry);
368 if (they_are_dirs) {
369 drop_nlink(d_inode(new_dentry));
370 drop_nlink(old_dir);
371 }
372 } else if (they_are_dirs) {
373 drop_nlink(old_dir);
374 inc_nlink(new_dir);
375 }
376
377 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
378 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
379
380 return 0;
381}
382EXPORT_SYMBOL(simple_rename);
383
384/**
385 * simple_setattr - setattr for simple filesystem
386 * @dentry: dentry
387 * @iattr: iattr structure
388 *
389 * Returns 0 on success, -error on failure.
390 *
391 * simple_setattr is a simple ->setattr implementation without a proper
392 * implementation of size changes.
393 *
394 * It can either be used for in-memory filesystems or special files
395 * on simple regular filesystems. Anything that needs to change on-disk
396 * or wire state on size changes needs its own setattr method.
397 */
398int simple_setattr(struct dentry *dentry, struct iattr *iattr)
399{
400 struct inode *inode = d_inode(dentry);
401 int error;
402
403 error = setattr_prepare(dentry, iattr);
404 if (error)
405 return error;
406
407 if (iattr->ia_valid & ATTR_SIZE)
408 truncate_setsize(inode, iattr->ia_size);
409 setattr_copy(inode, iattr);
410 mark_inode_dirty(inode);
411 return 0;
412}
413EXPORT_SYMBOL(simple_setattr);
414
415int simple_readpage(struct file *file, struct page *page)
416{
417 clear_highpage(page);
418 flush_dcache_page(page);
419 SetPageUptodate(page);
420 unlock_page(page);
421 return 0;
422}
423EXPORT_SYMBOL(simple_readpage);
424
425int simple_write_begin(struct file *file, struct address_space *mapping,
426 loff_t pos, unsigned len, unsigned flags,
427 struct page **pagep, void **fsdata)
428{
429 struct page *page;
430 pgoff_t index;
431
432 index = pos >> PAGE_SHIFT;
433
434 page = grab_cache_page_write_begin(mapping, index, flags);
435 if (!page)
436 return -ENOMEM;
437
438 *pagep = page;
439
440 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
441 unsigned from = pos & (PAGE_SIZE - 1);
442
443 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
444 }
445 return 0;
446}
447EXPORT_SYMBOL(simple_write_begin);
448
449/**
450 * simple_write_end - .write_end helper for non-block-device FSes
451 * @available: See .write_end of address_space_operations
452 * @file: "
453 * @mapping: "
454 * @pos: "
455 * @len: "
456 * @copied: "
457 * @page: "
458 * @fsdata: "
459 *
460 * simple_write_end does the minimum needed for updating a page after writing is
461 * done. It has the same API signature as the .write_end of
462 * address_space_operations vector. So it can just be set onto .write_end for
463 * FSes that don't need any other processing. i_mutex is assumed to be held.
464 * Block based filesystems should use generic_write_end().
465 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
466 * is not called, so a filesystem that actually does store data in .write_inode
467 * should extend on what's done here with a call to mark_inode_dirty() in the
468 * case that i_size has changed.
469 */
470int simple_write_end(struct file *file, struct address_space *mapping,
471 loff_t pos, unsigned len, unsigned copied,
472 struct page *page, void *fsdata)
473{
474 struct inode *inode = page->mapping->host;
475 loff_t last_pos = pos + copied;
476
477 /* zero the stale part of the page if we did a short copy */
478 if (copied < len) {
479 unsigned from = pos & (PAGE_SIZE - 1);
480
481 zero_user(page, from + copied, len - copied);
482 }
483
484 if (!PageUptodate(page))
485 SetPageUptodate(page);
486 /*
487 * No need to use i_size_read() here, the i_size
488 * cannot change under us because we hold the i_mutex.
489 */
490 if (last_pos > inode->i_size)
491 i_size_write(inode, last_pos);
492
493 set_page_dirty(page);
494 unlock_page(page);
495 put_page(page);
496
497 return copied;
498}
499EXPORT_SYMBOL(simple_write_end);
500
501/*
502 * the inodes created here are not hashed. If you use iunique to generate
503 * unique inode values later for this filesystem, then you must take care
504 * to pass it an appropriate max_reserved value to avoid collisions.
505 */
506int simple_fill_super(struct super_block *s, unsigned long magic,
507 struct tree_descr *files)
508{
509 struct inode *inode;
510 struct dentry *root;
511 struct dentry *dentry;
512 int i;
513
514 s->s_blocksize = PAGE_SIZE;
515 s->s_blocksize_bits = PAGE_SHIFT;
516 s->s_magic = magic;
517 s->s_op = &simple_super_operations;
518 s->s_time_gran = 1;
519
520 inode = new_inode(s);
521 if (!inode)
522 return -ENOMEM;
523 /*
524 * because the root inode is 1, the files array must not contain an
525 * entry at index 1
526 */
527 inode->i_ino = 1;
528 inode->i_mode = S_IFDIR | 0755;
529 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
530 inode->i_op = &simple_dir_inode_operations;
531 inode->i_fop = &simple_dir_operations;
532 set_nlink(inode, 2);
533 root = d_make_root(inode);
534 if (!root)
535 return -ENOMEM;
536 for (i = 0; !files->name || files->name[0]; i++, files++) {
537 if (!files->name)
538 continue;
539
540 /* warn if it tries to conflict with the root inode */
541 if (unlikely(i == 1))
542 printk(KERN_WARNING "%s: %s passed in a files array"
543 "with an index of 1!\n", __func__,
544 s->s_type->name);
545
546 dentry = d_alloc_name(root, files->name);
547 if (!dentry)
548 goto out;
549 inode = new_inode(s);
550 if (!inode) {
551 dput(dentry);
552 goto out;
553 }
554 inode->i_mode = S_IFREG | files->mode;
555 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
556 inode->i_fop = files->ops;
557 inode->i_ino = i;
558 d_add(dentry, inode);
559 }
560 s->s_root = root;
561 return 0;
562out:
563 d_genocide(root);
564 shrink_dcache_parent(root);
565 dput(root);
566 return -ENOMEM;
567}
568EXPORT_SYMBOL(simple_fill_super);
569
570static DEFINE_SPINLOCK(pin_fs_lock);
571
572int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
573{
574 struct vfsmount *mnt = NULL;
575 spin_lock(&pin_fs_lock);
576 if (unlikely(!*mount)) {
577 spin_unlock(&pin_fs_lock);
578 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
579 if (IS_ERR(mnt))
580 return PTR_ERR(mnt);
581 spin_lock(&pin_fs_lock);
582 if (!*mount)
583 *mount = mnt;
584 }
585 mntget(*mount);
586 ++*count;
587 spin_unlock(&pin_fs_lock);
588 mntput(mnt);
589 return 0;
590}
591EXPORT_SYMBOL(simple_pin_fs);
592
593void simple_release_fs(struct vfsmount **mount, int *count)
594{
595 struct vfsmount *mnt;
596 spin_lock(&pin_fs_lock);
597 mnt = *mount;
598 if (!--*count)
599 *mount = NULL;
600 spin_unlock(&pin_fs_lock);
601 mntput(mnt);
602}
603EXPORT_SYMBOL(simple_release_fs);
604
605/**
606 * simple_read_from_buffer - copy data from the buffer to user space
607 * @to: the user space buffer to read to
608 * @count: the maximum number of bytes to read
609 * @ppos: the current position in the buffer
610 * @from: the buffer to read from
611 * @available: the size of the buffer
612 *
613 * The simple_read_from_buffer() function reads up to @count bytes from the
614 * buffer @from at offset @ppos into the user space address starting at @to.
615 *
616 * On success, the number of bytes read is returned and the offset @ppos is
617 * advanced by this number, or negative value is returned on error.
618 **/
619ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
620 const void *from, size_t available)
621{
622 loff_t pos = *ppos;
623 size_t ret;
624
625 if (pos < 0)
626 return -EINVAL;
627 if (pos >= available || !count)
628 return 0;
629 if (count > available - pos)
630 count = available - pos;
631 ret = copy_to_user(to, from + pos, count);
632 if (ret == count)
633 return -EFAULT;
634 count -= ret;
635 *ppos = pos + count;
636 return count;
637}
638EXPORT_SYMBOL(simple_read_from_buffer);
639
640/**
641 * simple_write_to_buffer - copy data from user space to the buffer
642 * @to: the buffer to write to
643 * @available: the size of the buffer
644 * @ppos: the current position in the buffer
645 * @from: the user space buffer to read from
646 * @count: the maximum number of bytes to read
647 *
648 * The simple_write_to_buffer() function reads up to @count bytes from the user
649 * space address starting at @from into the buffer @to at offset @ppos.
650 *
651 * On success, the number of bytes written is returned and the offset @ppos is
652 * advanced by this number, or negative value is returned on error.
653 **/
654ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
655 const void __user *from, size_t count)
656{
657 loff_t pos = *ppos;
658 size_t res;
659
660 if (pos < 0)
661 return -EINVAL;
662 if (pos >= available || !count)
663 return 0;
664 if (count > available - pos)
665 count = available - pos;
666 res = copy_from_user(to + pos, from, count);
667 if (res == count)
668 return -EFAULT;
669 count -= res;
670 *ppos = pos + count;
671 return count;
672}
673EXPORT_SYMBOL(simple_write_to_buffer);
674
675/**
676 * memory_read_from_buffer - copy data from the buffer
677 * @to: the kernel space buffer to read to
678 * @count: the maximum number of bytes to read
679 * @ppos: the current position in the buffer
680 * @from: the buffer to read from
681 * @available: the size of the buffer
682 *
683 * The memory_read_from_buffer() function reads up to @count bytes from the
684 * buffer @from at offset @ppos into the kernel space address starting at @to.
685 *
686 * On success, the number of bytes read is returned and the offset @ppos is
687 * advanced by this number, or negative value is returned on error.
688 **/
689ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
690 const void *from, size_t available)
691{
692 loff_t pos = *ppos;
693
694 if (pos < 0)
695 return -EINVAL;
696 if (pos >= available)
697 return 0;
698 if (count > available - pos)
699 count = available - pos;
700 memcpy(to, from + pos, count);
701 *ppos = pos + count;
702
703 return count;
704}
705EXPORT_SYMBOL(memory_read_from_buffer);
706
707/*
708 * Transaction based IO.
709 * The file expects a single write which triggers the transaction, and then
710 * possibly a read which collects the result - which is stored in a
711 * file-local buffer.
712 */
713
714void simple_transaction_set(struct file *file, size_t n)
715{
716 struct simple_transaction_argresp *ar = file->private_data;
717
718 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
719
720 /*
721 * The barrier ensures that ar->size will really remain zero until
722 * ar->data is ready for reading.
723 */
724 smp_mb();
725 ar->size = n;
726}
727EXPORT_SYMBOL(simple_transaction_set);
728
729char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
730{
731 struct simple_transaction_argresp *ar;
732 static DEFINE_SPINLOCK(simple_transaction_lock);
733
734 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
735 return ERR_PTR(-EFBIG);
736
737 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
738 if (!ar)
739 return ERR_PTR(-ENOMEM);
740
741 spin_lock(&simple_transaction_lock);
742
743 /* only one write allowed per open */
744 if (file->private_data) {
745 spin_unlock(&simple_transaction_lock);
746 free_page((unsigned long)ar);
747 return ERR_PTR(-EBUSY);
748 }
749
750 file->private_data = ar;
751
752 spin_unlock(&simple_transaction_lock);
753
754 if (copy_from_user(ar->data, buf, size))
755 return ERR_PTR(-EFAULT);
756
757 return ar->data;
758}
759EXPORT_SYMBOL(simple_transaction_get);
760
761ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
762{
763 struct simple_transaction_argresp *ar = file->private_data;
764
765 if (!ar)
766 return 0;
767 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
768}
769EXPORT_SYMBOL(simple_transaction_read);
770
771int simple_transaction_release(struct inode *inode, struct file *file)
772{
773 free_page((unsigned long)file->private_data);
774 return 0;
775}
776EXPORT_SYMBOL(simple_transaction_release);
777
778/* Simple attribute files */
779
780struct simple_attr {
781 int (*get)(void *, u64 *);
782 int (*set)(void *, u64);
783 char get_buf[24]; /* enough to store a u64 and "\n\0" */
784 char set_buf[24];
785 void *data;
786 const char *fmt; /* format for read operation */
787 struct mutex mutex; /* protects access to these buffers */
788};
789
790/* simple_attr_open is called by an actual attribute open file operation
791 * to set the attribute specific access operations. */
792int simple_attr_open(struct inode *inode, struct file *file,
793 int (*get)(void *, u64 *), int (*set)(void *, u64),
794 const char *fmt)
795{
796 struct simple_attr *attr;
797
798 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
799 if (!attr)
800 return -ENOMEM;
801
802 attr->get = get;
803 attr->set = set;
804 attr->data = inode->i_private;
805 attr->fmt = fmt;
806 mutex_init(&attr->mutex);
807
808 file->private_data = attr;
809
810 return nonseekable_open(inode, file);
811}
812EXPORT_SYMBOL_GPL(simple_attr_open);
813
814int simple_attr_release(struct inode *inode, struct file *file)
815{
816 kfree(file->private_data);
817 return 0;
818}
819EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
820
821/* read from the buffer that is filled with the get function */
822ssize_t simple_attr_read(struct file *file, char __user *buf,
823 size_t len, loff_t *ppos)
824{
825 struct simple_attr *attr;
826 size_t size;
827 ssize_t ret;
828
829 attr = file->private_data;
830
831 if (!attr->get)
832 return -EACCES;
833
834 ret = mutex_lock_interruptible(&attr->mutex);
835 if (ret)
836 return ret;
837
838 if (*ppos) { /* continued read */
839 size = strlen(attr->get_buf);
840 } else { /* first read */
841 u64 val;
842 ret = attr->get(attr->data, &val);
843 if (ret)
844 goto out;
845
846 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
847 attr->fmt, (unsigned long long)val);
848 }
849
850 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
851out:
852 mutex_unlock(&attr->mutex);
853 return ret;
854}
855EXPORT_SYMBOL_GPL(simple_attr_read);
856
857/* interpret the buffer as a number to call the set function with */
858ssize_t simple_attr_write(struct file *file, const char __user *buf,
859 size_t len, loff_t *ppos)
860{
861 struct simple_attr *attr;
862 u64 val;
863 size_t size;
864 ssize_t ret;
865
866 attr = file->private_data;
867 if (!attr->set)
868 return -EACCES;
869
870 ret = mutex_lock_interruptible(&attr->mutex);
871 if (ret)
872 return ret;
873
874 ret = -EFAULT;
875 size = min(sizeof(attr->set_buf) - 1, len);
876 if (copy_from_user(attr->set_buf, buf, size))
877 goto out;
878
879 attr->set_buf[size] = '\0';
880 val = simple_strtoll(attr->set_buf, NULL, 0);
881 ret = attr->set(attr->data, val);
882 if (ret == 0)
883 ret = len; /* on success, claim we got the whole input */
884out:
885 mutex_unlock(&attr->mutex);
886 return ret;
887}
888EXPORT_SYMBOL_GPL(simple_attr_write);
889
890/**
891 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
892 * @sb: filesystem to do the file handle conversion on
893 * @fid: file handle to convert
894 * @fh_len: length of the file handle in bytes
895 * @fh_type: type of file handle
896 * @get_inode: filesystem callback to retrieve inode
897 *
898 * This function decodes @fid as long as it has one of the well-known
899 * Linux filehandle types and calls @get_inode on it to retrieve the
900 * inode for the object specified in the file handle.
901 */
902struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
903 int fh_len, int fh_type, struct inode *(*get_inode)
904 (struct super_block *sb, u64 ino, u32 gen))
905{
906 struct inode *inode = NULL;
907
908 if (fh_len < 2)
909 return NULL;
910
911 switch (fh_type) {
912 case FILEID_INO32_GEN:
913 case FILEID_INO32_GEN_PARENT:
914 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
915 break;
916 }
917
918 return d_obtain_alias(inode);
919}
920EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
921
922/**
923 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
924 * @sb: filesystem to do the file handle conversion on
925 * @fid: file handle to convert
926 * @fh_len: length of the file handle in bytes
927 * @fh_type: type of file handle
928 * @get_inode: filesystem callback to retrieve inode
929 *
930 * This function decodes @fid as long as it has one of the well-known
931 * Linux filehandle types and calls @get_inode on it to retrieve the
932 * inode for the _parent_ object specified in the file handle if it
933 * is specified in the file handle, or NULL otherwise.
934 */
935struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
936 int fh_len, int fh_type, struct inode *(*get_inode)
937 (struct super_block *sb, u64 ino, u32 gen))
938{
939 struct inode *inode = NULL;
940
941 if (fh_len <= 2)
942 return NULL;
943
944 switch (fh_type) {
945 case FILEID_INO32_GEN_PARENT:
946 inode = get_inode(sb, fid->i32.parent_ino,
947 (fh_len > 3 ? fid->i32.parent_gen : 0));
948 break;
949 }
950
951 return d_obtain_alias(inode);
952}
953EXPORT_SYMBOL_GPL(generic_fh_to_parent);
954
955/**
956 * __generic_file_fsync - generic fsync implementation for simple filesystems
957 *
958 * @file: file to synchronize
959 * @start: start offset in bytes
960 * @end: end offset in bytes (inclusive)
961 * @datasync: only synchronize essential metadata if true
962 *
963 * This is a generic implementation of the fsync method for simple
964 * filesystems which track all non-inode metadata in the buffers list
965 * hanging off the address_space structure.
966 */
967int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
968 int datasync)
969{
970 struct inode *inode = file->f_mapping->host;
971 int err;
972 int ret;
973
974 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
975 if (err)
976 return err;
977
978 inode_lock(inode);
979 ret = sync_mapping_buffers(inode->i_mapping);
980 if (!(inode->i_state & I_DIRTY_ALL))
981 goto out;
982 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
983 goto out;
984
985 err = sync_inode_metadata(inode, 1);
986 if (ret == 0)
987 ret = err;
988
989out:
990 inode_unlock(inode);
991 return ret;
992}
993EXPORT_SYMBOL(__generic_file_fsync);
994
995/**
996 * generic_file_fsync - generic fsync implementation for simple filesystems
997 * with flush
998 * @file: file to synchronize
999 * @start: start offset in bytes
1000 * @end: end offset in bytes (inclusive)
1001 * @datasync: only synchronize essential metadata if true
1002 *
1003 */
1004
1005int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1006 int datasync)
1007{
1008 struct inode *inode = file->f_mapping->host;
1009 int err;
1010
1011 err = __generic_file_fsync(file, start, end, datasync);
1012 if (err)
1013 return err;
1014 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1015}
1016EXPORT_SYMBOL(generic_file_fsync);
1017
1018/**
1019 * generic_check_addressable - Check addressability of file system
1020 * @blocksize_bits: log of file system block size
1021 * @num_blocks: number of blocks in file system
1022 *
1023 * Determine whether a file system with @num_blocks blocks (and a
1024 * block size of 2**@blocksize_bits) is addressable by the sector_t
1025 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1026 */
1027int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1028{
1029 u64 last_fs_block = num_blocks - 1;
1030 u64 last_fs_page =
1031 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1032
1033 if (unlikely(num_blocks == 0))
1034 return 0;
1035
1036 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1037 return -EINVAL;
1038
1039 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1040 (last_fs_page > (pgoff_t)(~0ULL))) {
1041 return -EFBIG;
1042 }
1043 return 0;
1044}
1045EXPORT_SYMBOL(generic_check_addressable);
1046
1047/*
1048 * No-op implementation of ->fsync for in-memory filesystems.
1049 */
1050int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1051{
1052 return 0;
1053}
1054EXPORT_SYMBOL(noop_fsync);
1055
1056/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1057void kfree_link(void *p)
1058{
1059 kfree(p);
1060}
1061EXPORT_SYMBOL(kfree_link);
1062
1063/*
1064 * nop .set_page_dirty method so that people can use .page_mkwrite on
1065 * anon inodes.
1066 */
1067static int anon_set_page_dirty(struct page *page)
1068{
1069 return 0;
1070};
1071
1072/*
1073 * A single inode exists for all anon_inode files. Contrary to pipes,
1074 * anon_inode inodes have no associated per-instance data, so we need
1075 * only allocate one of them.
1076 */
1077struct inode *alloc_anon_inode(struct super_block *s)
1078{
1079 static const struct address_space_operations anon_aops = {
1080 .set_page_dirty = anon_set_page_dirty,
1081 };
1082 struct inode *inode = new_inode_pseudo(s);
1083
1084 if (!inode)
1085 return ERR_PTR(-ENOMEM);
1086
1087 inode->i_ino = get_next_ino();
1088 inode->i_mapping->a_ops = &anon_aops;
1089
1090 /*
1091 * Mark the inode dirty from the very beginning,
1092 * that way it will never be moved to the dirty
1093 * list because mark_inode_dirty() will think
1094 * that it already _is_ on the dirty list.
1095 */
1096 inode->i_state = I_DIRTY;
1097 inode->i_mode = S_IRUSR | S_IWUSR;
1098 inode->i_uid = current_fsuid();
1099 inode->i_gid = current_fsgid();
1100 inode->i_flags |= S_PRIVATE;
1101 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1102 return inode;
1103}
1104EXPORT_SYMBOL(alloc_anon_inode);
1105
1106/**
1107 * simple_nosetlease - generic helper for prohibiting leases
1108 * @filp: file pointer
1109 * @arg: type of lease to obtain
1110 * @flp: new lease supplied for insertion
1111 * @priv: private data for lm_setup operation
1112 *
1113 * Generic helper for filesystems that do not wish to allow leases to be set.
1114 * All arguments are ignored and it just returns -EINVAL.
1115 */
1116int
1117simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1118 void **priv)
1119{
1120 return -EINVAL;
1121}
1122EXPORT_SYMBOL(simple_nosetlease);
1123
1124const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1125 struct delayed_call *done)
1126{
1127 return inode->i_link;
1128}
1129EXPORT_SYMBOL(simple_get_link);
1130
1131const struct inode_operations simple_symlink_inode_operations = {
1132 .get_link = simple_get_link,
1133 .readlink = generic_readlink
1134};
1135EXPORT_SYMBOL(simple_symlink_inode_operations);
1136
1137/*
1138 * Operations for a permanently empty directory.
1139 */
1140static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1141{
1142 return ERR_PTR(-ENOENT);
1143}
1144
1145static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1146 struct kstat *stat)
1147{
1148 struct inode *inode = d_inode(dentry);
1149 generic_fillattr(inode, stat);
1150 return 0;
1151}
1152
1153static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1154{
1155 return -EPERM;
1156}
1157
1158static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1159{
1160 return -EOPNOTSUPP;
1161}
1162
1163static const struct inode_operations empty_dir_inode_operations = {
1164 .lookup = empty_dir_lookup,
1165 .permission = generic_permission,
1166 .setattr = empty_dir_setattr,
1167 .getattr = empty_dir_getattr,
1168 .listxattr = empty_dir_listxattr,
1169};
1170
1171static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1172{
1173 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1174 return generic_file_llseek_size(file, offset, whence, 2, 2);
1175}
1176
1177static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1178{
1179 dir_emit_dots(file, ctx);
1180 return 0;
1181}
1182
1183static const struct file_operations empty_dir_operations = {
1184 .llseek = empty_dir_llseek,
1185 .read = generic_read_dir,
1186 .iterate_shared = empty_dir_readdir,
1187 .fsync = noop_fsync,
1188};
1189
1190
1191void make_empty_dir_inode(struct inode *inode)
1192{
1193 set_nlink(inode, 2);
1194 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1195 inode->i_uid = GLOBAL_ROOT_UID;
1196 inode->i_gid = GLOBAL_ROOT_GID;
1197 inode->i_rdev = 0;
1198 inode->i_size = 0;
1199 inode->i_blkbits = PAGE_SHIFT;
1200 inode->i_blocks = 0;
1201
1202 inode->i_op = &empty_dir_inode_operations;
1203 inode->i_opflags &= ~IOP_XATTR;
1204 inode->i_fop = &empty_dir_operations;
1205}
1206
1207bool is_empty_dir_inode(struct inode *inode)
1208{
1209 return (inode->i_fop == &empty_dir_operations) &&
1210 (inode->i_op == &empty_dir_inode_operations);
1211}
1212