summaryrefslogtreecommitdiff
path: root/fs/namespace.c (plain)
blob: 6224ff52544b0444505f20fc3ca3d4c4eb590adb
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/export.h>
13#include <linux/capability.h>
14#include <linux/mnt_namespace.h>
15#include <linux/user_namespace.h>
16#include <linux/namei.h>
17#include <linux/security.h>
18#include <linux/idr.h>
19#include <linux/init.h> /* init_rootfs */
20#include <linux/fs_struct.h> /* get_fs_root et.al. */
21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
23#include <linux/proc_ns.h>
24#include <linux/magic.h>
25#include <linux/bootmem.h>
26#include <linux/task_work.h>
27#include "pnode.h"
28#include "internal.h"
29
30/* Maximum number of mounts in a mount namespace */
31unsigned int sysctl_mount_max __read_mostly = 100000;
32
33static unsigned int m_hash_mask __read_mostly;
34static unsigned int m_hash_shift __read_mostly;
35static unsigned int mp_hash_mask __read_mostly;
36static unsigned int mp_hash_shift __read_mostly;
37
38static __initdata unsigned long mhash_entries;
39static int __init set_mhash_entries(char *str)
40{
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45}
46__setup("mhash_entries=", set_mhash_entries);
47
48static __initdata unsigned long mphash_entries;
49static int __init set_mphash_entries(char *str)
50{
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55}
56__setup("mphash_entries=", set_mphash_entries);
57
58static u64 event;
59static DEFINE_IDA(mnt_id_ida);
60static DEFINE_IDA(mnt_group_ida);
61static DEFINE_SPINLOCK(mnt_id_lock);
62static int mnt_id_start = 0;
63static int mnt_group_start = 1;
64
65static struct hlist_head *mount_hashtable __read_mostly;
66static struct hlist_head *mountpoint_hashtable __read_mostly;
67static struct kmem_cache *mnt_cache __read_mostly;
68static DECLARE_RWSEM(namespace_sem);
69
70/* /sys/fs */
71struct kobject *fs_kobj;
72EXPORT_SYMBOL_GPL(fs_kobj);
73
74/*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
82__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83
84static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85{
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90}
91
92static inline struct hlist_head *mp_hash(struct dentry *dentry)
93{
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
97}
98
99/*
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
102 */
103static int mnt_alloc_id(struct mount *mnt)
104{
105 int res;
106
107retry:
108 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 spin_lock(&mnt_id_lock);
110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 if (!res)
112 mnt_id_start = mnt->mnt_id + 1;
113 spin_unlock(&mnt_id_lock);
114 if (res == -EAGAIN)
115 goto retry;
116
117 return res;
118}
119
120static void mnt_free_id(struct mount *mnt)
121{
122 int id = mnt->mnt_id;
123 spin_lock(&mnt_id_lock);
124 ida_remove(&mnt_id_ida, id);
125 if (mnt_id_start > id)
126 mnt_id_start = id;
127 spin_unlock(&mnt_id_lock);
128}
129
130/*
131 * Allocate a new peer group ID
132 *
133 * mnt_group_ida is protected by namespace_sem
134 */
135static int mnt_alloc_group_id(struct mount *mnt)
136{
137 int res;
138
139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 return -ENOMEM;
141
142 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start,
144 &mnt->mnt_group_id);
145 if (!res)
146 mnt_group_start = mnt->mnt_group_id + 1;
147
148 return res;
149}
150
151/*
152 * Release a peer group ID
153 */
154void mnt_release_group_id(struct mount *mnt)
155{
156 int id = mnt->mnt_group_id;
157 ida_remove(&mnt_group_ida, id);
158 if (mnt_group_start > id)
159 mnt_group_start = id;
160 mnt->mnt_group_id = 0;
161}
162
163/*
164 * vfsmount lock must be held for read
165 */
166static inline void mnt_add_count(struct mount *mnt, int n)
167{
168#ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170#else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174#endif
175}
176
177/*
178 * vfsmount lock must be held for write
179 */
180unsigned int mnt_get_count(struct mount *mnt)
181{
182#ifdef CONFIG_SMP
183 unsigned int count = 0;
184 int cpu;
185
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
188 }
189
190 return count;
191#else
192 return mnt->mnt_count;
193#endif
194}
195
196static void drop_mountpoint(struct fs_pin *p)
197{
198 struct mount *m = container_of(p, struct mount, mnt_umount);
199 dput(m->mnt_ex_mountpoint);
200 pin_remove(p);
201 mntput(&m->mnt);
202}
203
204static struct mount *alloc_vfsmnt(const char *name)
205{
206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 if (mnt) {
208 int err;
209
210 err = mnt_alloc_id(mnt);
211 if (err)
212 goto out_free_cache;
213
214 if (name) {
215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 if (!mnt->mnt_devname)
217 goto out_free_id;
218 }
219
220#ifdef CONFIG_SMP
221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 if (!mnt->mnt_pcp)
223 goto out_free_devname;
224
225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226#else
227 mnt->mnt_count = 1;
228 mnt->mnt_writers = 0;
229#endif
230 mnt->mnt.data = NULL;
231
232 INIT_HLIST_NODE(&mnt->mnt_hash);
233 INIT_LIST_HEAD(&mnt->mnt_child);
234 INIT_LIST_HEAD(&mnt->mnt_mounts);
235 INIT_LIST_HEAD(&mnt->mnt_list);
236 INIT_LIST_HEAD(&mnt->mnt_expire);
237 INIT_LIST_HEAD(&mnt->mnt_share);
238 INIT_LIST_HEAD(&mnt->mnt_slave_list);
239 INIT_LIST_HEAD(&mnt->mnt_slave);
240 INIT_HLIST_NODE(&mnt->mnt_mp_list);
241 INIT_LIST_HEAD(&mnt->mnt_umounting);
242#ifdef CONFIG_FSNOTIFY
243 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
244#endif
245 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
246 }
247 return mnt;
248
249#ifdef CONFIG_SMP
250out_free_devname:
251 kfree_const(mnt->mnt_devname);
252#endif
253out_free_id:
254 mnt_free_id(mnt);
255out_free_cache:
256 kmem_cache_free(mnt_cache, mnt);
257 return NULL;
258}
259
260/*
261 * Most r/o checks on a fs are for operations that take
262 * discrete amounts of time, like a write() or unlink().
263 * We must keep track of when those operations start
264 * (for permission checks) and when they end, so that
265 * we can determine when writes are able to occur to
266 * a filesystem.
267 */
268/*
269 * __mnt_is_readonly: check whether a mount is read-only
270 * @mnt: the mount to check for its write status
271 *
272 * This shouldn't be used directly ouside of the VFS.
273 * It does not guarantee that the filesystem will stay
274 * r/w, just that it is right *now*. This can not and
275 * should not be used in place of IS_RDONLY(inode).
276 * mnt_want/drop_write() will _keep_ the filesystem
277 * r/w.
278 */
279int __mnt_is_readonly(struct vfsmount *mnt)
280{
281 if (mnt->mnt_flags & MNT_READONLY)
282 return 1;
283 if (mnt->mnt_sb->s_flags & MS_RDONLY)
284 return 1;
285 return 0;
286}
287EXPORT_SYMBOL_GPL(__mnt_is_readonly);
288
289static inline void mnt_inc_writers(struct mount *mnt)
290{
291#ifdef CONFIG_SMP
292 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
293#else
294 mnt->mnt_writers++;
295#endif
296}
297
298static inline void mnt_dec_writers(struct mount *mnt)
299{
300#ifdef CONFIG_SMP
301 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
302#else
303 mnt->mnt_writers--;
304#endif
305}
306
307static unsigned int mnt_get_writers(struct mount *mnt)
308{
309#ifdef CONFIG_SMP
310 unsigned int count = 0;
311 int cpu;
312
313 for_each_possible_cpu(cpu) {
314 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
315 }
316
317 return count;
318#else
319 return mnt->mnt_writers;
320#endif
321}
322
323static int mnt_is_readonly(struct vfsmount *mnt)
324{
325 if (mnt->mnt_sb->s_readonly_remount)
326 return 1;
327 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
328 smp_rmb();
329 return __mnt_is_readonly(mnt);
330}
331
332/*
333 * Most r/o & frozen checks on a fs are for operations that take discrete
334 * amounts of time, like a write() or unlink(). We must keep track of when
335 * those operations start (for permission checks) and when they end, so that we
336 * can determine when writes are able to occur to a filesystem.
337 */
338/**
339 * __mnt_want_write - get write access to a mount without freeze protection
340 * @m: the mount on which to take a write
341 *
342 * This tells the low-level filesystem that a write is about to be performed to
343 * it, and makes sure that writes are allowed (mnt it read-write) before
344 * returning success. This operation does not protect against filesystem being
345 * frozen. When the write operation is finished, __mnt_drop_write() must be
346 * called. This is effectively a refcount.
347 */
348int __mnt_want_write(struct vfsmount *m)
349{
350 struct mount *mnt = real_mount(m);
351 int ret = 0;
352
353 preempt_disable();
354 mnt_inc_writers(mnt);
355 /*
356 * The store to mnt_inc_writers must be visible before we pass
357 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
358 * incremented count after it has set MNT_WRITE_HOLD.
359 */
360 smp_mb();
361 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
362 cpu_relax();
363 /*
364 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
365 * be set to match its requirements. So we must not load that until
366 * MNT_WRITE_HOLD is cleared.
367 */
368 smp_rmb();
369 if (mnt_is_readonly(m)) {
370 mnt_dec_writers(mnt);
371 ret = -EROFS;
372 }
373 preempt_enable();
374
375 return ret;
376}
377
378/**
379 * mnt_want_write - get write access to a mount
380 * @m: the mount on which to take a write
381 *
382 * This tells the low-level filesystem that a write is about to be performed to
383 * it, and makes sure that writes are allowed (mount is read-write, filesystem
384 * is not frozen) before returning success. When the write operation is
385 * finished, mnt_drop_write() must be called. This is effectively a refcount.
386 */
387int mnt_want_write(struct vfsmount *m)
388{
389 int ret;
390
391 sb_start_write(m->mnt_sb);
392 ret = __mnt_want_write(m);
393 if (ret)
394 sb_end_write(m->mnt_sb);
395 return ret;
396}
397EXPORT_SYMBOL_GPL(mnt_want_write);
398
399/**
400 * mnt_clone_write - get write access to a mount
401 * @mnt: the mount on which to take a write
402 *
403 * This is effectively like mnt_want_write, except
404 * it must only be used to take an extra write reference
405 * on a mountpoint that we already know has a write reference
406 * on it. This allows some optimisation.
407 *
408 * After finished, mnt_drop_write must be called as usual to
409 * drop the reference.
410 */
411int mnt_clone_write(struct vfsmount *mnt)
412{
413 /* superblock may be r/o */
414 if (__mnt_is_readonly(mnt))
415 return -EROFS;
416 preempt_disable();
417 mnt_inc_writers(real_mount(mnt));
418 preempt_enable();
419 return 0;
420}
421EXPORT_SYMBOL_GPL(mnt_clone_write);
422
423/**
424 * __mnt_want_write_file - get write access to a file's mount
425 * @file: the file who's mount on which to take a write
426 *
427 * This is like __mnt_want_write, but it takes a file and can
428 * do some optimisations if the file is open for write already
429 */
430int __mnt_want_write_file(struct file *file)
431{
432 if (!(file->f_mode & FMODE_WRITER))
433 return __mnt_want_write(file->f_path.mnt);
434 else
435 return mnt_clone_write(file->f_path.mnt);
436}
437
438/**
439 * mnt_want_write_file - get write access to a file's mount
440 * @file: the file who's mount on which to take a write
441 *
442 * This is like mnt_want_write, but it takes a file and can
443 * do some optimisations if the file is open for write already
444 */
445int mnt_want_write_file(struct file *file)
446{
447 int ret;
448
449 sb_start_write(file->f_path.mnt->mnt_sb);
450 ret = __mnt_want_write_file(file);
451 if (ret)
452 sb_end_write(file->f_path.mnt->mnt_sb);
453 return ret;
454}
455EXPORT_SYMBOL_GPL(mnt_want_write_file);
456
457/**
458 * __mnt_drop_write - give up write access to a mount
459 * @mnt: the mount on which to give up write access
460 *
461 * Tells the low-level filesystem that we are done
462 * performing writes to it. Must be matched with
463 * __mnt_want_write() call above.
464 */
465void __mnt_drop_write(struct vfsmount *mnt)
466{
467 preempt_disable();
468 mnt_dec_writers(real_mount(mnt));
469 preempt_enable();
470}
471
472/**
473 * mnt_drop_write - give up write access to a mount
474 * @mnt: the mount on which to give up write access
475 *
476 * Tells the low-level filesystem that we are done performing writes to it and
477 * also allows filesystem to be frozen again. Must be matched with
478 * mnt_want_write() call above.
479 */
480void mnt_drop_write(struct vfsmount *mnt)
481{
482 __mnt_drop_write(mnt);
483 sb_end_write(mnt->mnt_sb);
484}
485EXPORT_SYMBOL_GPL(mnt_drop_write);
486
487void __mnt_drop_write_file(struct file *file)
488{
489 __mnt_drop_write(file->f_path.mnt);
490}
491
492void mnt_drop_write_file(struct file *file)
493{
494 mnt_drop_write(file->f_path.mnt);
495}
496EXPORT_SYMBOL(mnt_drop_write_file);
497
498static int mnt_make_readonly(struct mount *mnt)
499{
500 int ret = 0;
501
502 lock_mount_hash();
503 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
504 /*
505 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
506 * should be visible before we do.
507 */
508 smp_mb();
509
510 /*
511 * With writers on hold, if this value is zero, then there are
512 * definitely no active writers (although held writers may subsequently
513 * increment the count, they'll have to wait, and decrement it after
514 * seeing MNT_READONLY).
515 *
516 * It is OK to have counter incremented on one CPU and decremented on
517 * another: the sum will add up correctly. The danger would be when we
518 * sum up each counter, if we read a counter before it is incremented,
519 * but then read another CPU's count which it has been subsequently
520 * decremented from -- we would see more decrements than we should.
521 * MNT_WRITE_HOLD protects against this scenario, because
522 * mnt_want_write first increments count, then smp_mb, then spins on
523 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
524 * we're counting up here.
525 */
526 if (mnt_get_writers(mnt) > 0)
527 ret = -EBUSY;
528 else
529 mnt->mnt.mnt_flags |= MNT_READONLY;
530 /*
531 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
532 * that become unheld will see MNT_READONLY.
533 */
534 smp_wmb();
535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 unlock_mount_hash();
537 return ret;
538}
539
540static void __mnt_unmake_readonly(struct mount *mnt)
541{
542 lock_mount_hash();
543 mnt->mnt.mnt_flags &= ~MNT_READONLY;
544 unlock_mount_hash();
545}
546
547int sb_prepare_remount_readonly(struct super_block *sb)
548{
549 struct mount *mnt;
550 int err = 0;
551
552 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
553 if (atomic_long_read(&sb->s_remove_count))
554 return -EBUSY;
555
556 lock_mount_hash();
557 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
558 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
559 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
560 smp_mb();
561 if (mnt_get_writers(mnt) > 0) {
562 err = -EBUSY;
563 break;
564 }
565 }
566 }
567 if (!err && atomic_long_read(&sb->s_remove_count))
568 err = -EBUSY;
569
570 if (!err) {
571 sb->s_readonly_remount = 1;
572 smp_wmb();
573 }
574 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
575 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
576 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
577 }
578 unlock_mount_hash();
579
580 return err;
581}
582
583static void free_vfsmnt(struct mount *mnt)
584{
585 kfree(mnt->mnt.data);
586 kfree_const(mnt->mnt_devname);
587#ifdef CONFIG_SMP
588 free_percpu(mnt->mnt_pcp);
589#endif
590 kmem_cache_free(mnt_cache, mnt);
591}
592
593static void delayed_free_vfsmnt(struct rcu_head *head)
594{
595 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
596}
597
598/* call under rcu_read_lock */
599int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
600{
601 struct mount *mnt;
602 if (read_seqretry(&mount_lock, seq))
603 return 1;
604 if (bastard == NULL)
605 return 0;
606 mnt = real_mount(bastard);
607 mnt_add_count(mnt, 1);
608 smp_mb(); // see mntput_no_expire()
609 if (likely(!read_seqretry(&mount_lock, seq)))
610 return 0;
611 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
612 mnt_add_count(mnt, -1);
613 return 1;
614 }
615 lock_mount_hash();
616 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
617 mnt_add_count(mnt, -1);
618 unlock_mount_hash();
619 return 1;
620 }
621 unlock_mount_hash();
622 /* caller will mntput() */
623 return -1;
624}
625
626/* call under rcu_read_lock */
627bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
628{
629 int res = __legitimize_mnt(bastard, seq);
630 if (likely(!res))
631 return true;
632 if (unlikely(res < 0)) {
633 rcu_read_unlock();
634 mntput(bastard);
635 rcu_read_lock();
636 }
637 return false;
638}
639
640/*
641 * find the first mount at @dentry on vfsmount @mnt.
642 * call under rcu_read_lock()
643 */
644struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
645{
646 struct hlist_head *head = m_hash(mnt, dentry);
647 struct mount *p;
648
649 hlist_for_each_entry_rcu(p, head, mnt_hash)
650 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
651 return p;
652 return NULL;
653}
654
655/*
656 * lookup_mnt - Return the first child mount mounted at path
657 *
658 * "First" means first mounted chronologically. If you create the
659 * following mounts:
660 *
661 * mount /dev/sda1 /mnt
662 * mount /dev/sda2 /mnt
663 * mount /dev/sda3 /mnt
664 *
665 * Then lookup_mnt() on the base /mnt dentry in the root mount will
666 * return successively the root dentry and vfsmount of /dev/sda1, then
667 * /dev/sda2, then /dev/sda3, then NULL.
668 *
669 * lookup_mnt takes a reference to the found vfsmount.
670 */
671struct vfsmount *lookup_mnt(struct path *path)
672{
673 struct mount *child_mnt;
674 struct vfsmount *m;
675 unsigned seq;
676
677 rcu_read_lock();
678 do {
679 seq = read_seqbegin(&mount_lock);
680 child_mnt = __lookup_mnt(path->mnt, path->dentry);
681 m = child_mnt ? &child_mnt->mnt : NULL;
682 } while (!legitimize_mnt(m, seq));
683 rcu_read_unlock();
684 return m;
685}
686
687/*
688 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
689 * current mount namespace.
690 *
691 * The common case is dentries are not mountpoints at all and that
692 * test is handled inline. For the slow case when we are actually
693 * dealing with a mountpoint of some kind, walk through all of the
694 * mounts in the current mount namespace and test to see if the dentry
695 * is a mountpoint.
696 *
697 * The mount_hashtable is not usable in the context because we
698 * need to identify all mounts that may be in the current mount
699 * namespace not just a mount that happens to have some specified
700 * parent mount.
701 */
702bool __is_local_mountpoint(struct dentry *dentry)
703{
704 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
705 struct mount *mnt;
706 bool is_covered = false;
707
708 if (!d_mountpoint(dentry))
709 goto out;
710
711 down_read(&namespace_sem);
712 list_for_each_entry(mnt, &ns->list, mnt_list) {
713 is_covered = (mnt->mnt_mountpoint == dentry);
714 if (is_covered)
715 break;
716 }
717 up_read(&namespace_sem);
718out:
719 return is_covered;
720}
721
722static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
723{
724 struct hlist_head *chain = mp_hash(dentry);
725 struct mountpoint *mp;
726
727 hlist_for_each_entry(mp, chain, m_hash) {
728 if (mp->m_dentry == dentry) {
729 /* might be worth a WARN_ON() */
730 if (d_unlinked(dentry))
731 return ERR_PTR(-ENOENT);
732 mp->m_count++;
733 return mp;
734 }
735 }
736 return NULL;
737}
738
739static struct mountpoint *get_mountpoint(struct dentry *dentry)
740{
741 struct mountpoint *mp, *new = NULL;
742 int ret;
743
744 if (d_mountpoint(dentry)) {
745mountpoint:
746 read_seqlock_excl(&mount_lock);
747 mp = lookup_mountpoint(dentry);
748 read_sequnlock_excl(&mount_lock);
749 if (mp)
750 goto done;
751 }
752
753 if (!new)
754 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
755 if (!new)
756 return ERR_PTR(-ENOMEM);
757
758
759 /* Exactly one processes may set d_mounted */
760 ret = d_set_mounted(dentry);
761
762 /* Someone else set d_mounted? */
763 if (ret == -EBUSY)
764 goto mountpoint;
765
766 /* The dentry is not available as a mountpoint? */
767 mp = ERR_PTR(ret);
768 if (ret)
769 goto done;
770
771 /* Add the new mountpoint to the hash table */
772 read_seqlock_excl(&mount_lock);
773 new->m_dentry = dentry;
774 new->m_count = 1;
775 hlist_add_head(&new->m_hash, mp_hash(dentry));
776 INIT_HLIST_HEAD(&new->m_list);
777 read_sequnlock_excl(&mount_lock);
778
779 mp = new;
780 new = NULL;
781done:
782 kfree(new);
783 return mp;
784}
785
786static void put_mountpoint(struct mountpoint *mp)
787{
788 if (!--mp->m_count) {
789 struct dentry *dentry = mp->m_dentry;
790 BUG_ON(!hlist_empty(&mp->m_list));
791 spin_lock(&dentry->d_lock);
792 dentry->d_flags &= ~DCACHE_MOUNTED;
793 spin_unlock(&dentry->d_lock);
794 hlist_del(&mp->m_hash);
795 kfree(mp);
796 }
797}
798
799static inline int check_mnt(struct mount *mnt)
800{
801 return mnt->mnt_ns == current->nsproxy->mnt_ns;
802}
803
804/*
805 * vfsmount lock must be held for write
806 */
807static void touch_mnt_namespace(struct mnt_namespace *ns)
808{
809 if (ns) {
810 ns->event = ++event;
811 wake_up_interruptible(&ns->poll);
812 }
813}
814
815/*
816 * vfsmount lock must be held for write
817 */
818static void __touch_mnt_namespace(struct mnt_namespace *ns)
819{
820 if (ns && ns->event != event) {
821 ns->event = event;
822 wake_up_interruptible(&ns->poll);
823 }
824}
825
826/*
827 * vfsmount lock must be held for write
828 */
829static void unhash_mnt(struct mount *mnt)
830{
831 mnt->mnt_parent = mnt;
832 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
833 list_del_init(&mnt->mnt_child);
834 hlist_del_init_rcu(&mnt->mnt_hash);
835 hlist_del_init(&mnt->mnt_mp_list);
836 put_mountpoint(mnt->mnt_mp);
837 mnt->mnt_mp = NULL;
838}
839
840/*
841 * vfsmount lock must be held for write
842 */
843static void detach_mnt(struct mount *mnt, struct path *old_path)
844{
845 old_path->dentry = mnt->mnt_mountpoint;
846 old_path->mnt = &mnt->mnt_parent->mnt;
847 unhash_mnt(mnt);
848}
849
850/*
851 * vfsmount lock must be held for write
852 */
853static void umount_mnt(struct mount *mnt)
854{
855 /* old mountpoint will be dropped when we can do that */
856 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
857 unhash_mnt(mnt);
858}
859
860/*
861 * vfsmount lock must be held for write
862 */
863void mnt_set_mountpoint(struct mount *mnt,
864 struct mountpoint *mp,
865 struct mount *child_mnt)
866{
867 mp->m_count++;
868 mnt_add_count(mnt, 1); /* essentially, that's mntget */
869 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
870 child_mnt->mnt_parent = mnt;
871 child_mnt->mnt_mp = mp;
872 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
873}
874
875static void __attach_mnt(struct mount *mnt, struct mount *parent)
876{
877 hlist_add_head_rcu(&mnt->mnt_hash,
878 m_hash(&parent->mnt, mnt->mnt_mountpoint));
879 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
880}
881
882/*
883 * vfsmount lock must be held for write
884 */
885static void attach_mnt(struct mount *mnt,
886 struct mount *parent,
887 struct mountpoint *mp)
888{
889 mnt_set_mountpoint(parent, mp, mnt);
890 __attach_mnt(mnt, parent);
891}
892
893void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
894{
895 struct mountpoint *old_mp = mnt->mnt_mp;
896 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
897 struct mount *old_parent = mnt->mnt_parent;
898
899 list_del_init(&mnt->mnt_child);
900 hlist_del_init(&mnt->mnt_mp_list);
901 hlist_del_init_rcu(&mnt->mnt_hash);
902
903 attach_mnt(mnt, parent, mp);
904
905 put_mountpoint(old_mp);
906
907 /*
908 * Safely avoid even the suggestion this code might sleep or
909 * lock the mount hash by taking advantage of the knowledge that
910 * mnt_change_mountpoint will not release the final reference
911 * to a mountpoint.
912 *
913 * During mounting, the mount passed in as the parent mount will
914 * continue to use the old mountpoint and during unmounting, the
915 * old mountpoint will continue to exist until namespace_unlock,
916 * which happens well after mnt_change_mountpoint.
917 */
918 spin_lock(&old_mountpoint->d_lock);
919 old_mountpoint->d_lockref.count--;
920 spin_unlock(&old_mountpoint->d_lock);
921
922 mnt_add_count(old_parent, -1);
923}
924
925/*
926 * vfsmount lock must be held for write
927 */
928static void commit_tree(struct mount *mnt)
929{
930 struct mount *parent = mnt->mnt_parent;
931 struct mount *m;
932 LIST_HEAD(head);
933 struct mnt_namespace *n = parent->mnt_ns;
934
935 BUG_ON(parent == mnt);
936
937 list_add_tail(&head, &mnt->mnt_list);
938 list_for_each_entry(m, &head, mnt_list)
939 m->mnt_ns = n;
940
941 list_splice(&head, n->list.prev);
942
943 n->mounts += n->pending_mounts;
944 n->pending_mounts = 0;
945
946 __attach_mnt(mnt, parent);
947 touch_mnt_namespace(n);
948}
949
950static struct mount *next_mnt(struct mount *p, struct mount *root)
951{
952 struct list_head *next = p->mnt_mounts.next;
953 if (next == &p->mnt_mounts) {
954 while (1) {
955 if (p == root)
956 return NULL;
957 next = p->mnt_child.next;
958 if (next != &p->mnt_parent->mnt_mounts)
959 break;
960 p = p->mnt_parent;
961 }
962 }
963 return list_entry(next, struct mount, mnt_child);
964}
965
966static struct mount *skip_mnt_tree(struct mount *p)
967{
968 struct list_head *prev = p->mnt_mounts.prev;
969 while (prev != &p->mnt_mounts) {
970 p = list_entry(prev, struct mount, mnt_child);
971 prev = p->mnt_mounts.prev;
972 }
973 return p;
974}
975
976struct vfsmount *
977vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
978{
979 struct mount *mnt;
980 struct dentry *root;
981
982 if (!type)
983 return ERR_PTR(-ENODEV);
984
985 mnt = alloc_vfsmnt(name);
986 if (!mnt)
987 return ERR_PTR(-ENOMEM);
988
989 if (type->alloc_mnt_data) {
990 mnt->mnt.data = type->alloc_mnt_data();
991 if (!mnt->mnt.data) {
992 mnt_free_id(mnt);
993 free_vfsmnt(mnt);
994 return ERR_PTR(-ENOMEM);
995 }
996 }
997 if (flags & MS_KERNMOUNT)
998 mnt->mnt.mnt_flags = MNT_INTERNAL;
999
1000 root = mount_fs(type, flags, name, &mnt->mnt, data);
1001 if (IS_ERR(root)) {
1002 mnt_free_id(mnt);
1003 free_vfsmnt(mnt);
1004 return ERR_CAST(root);
1005 }
1006
1007 mnt->mnt.mnt_root = root;
1008 mnt->mnt.mnt_sb = root->d_sb;
1009 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1010 mnt->mnt_parent = mnt;
1011 lock_mount_hash();
1012 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1013 unlock_mount_hash();
1014 return &mnt->mnt;
1015}
1016EXPORT_SYMBOL_GPL(vfs_kern_mount);
1017
1018struct vfsmount *
1019vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1020 const char *name, void *data)
1021{
1022 /* Until it is worked out how to pass the user namespace
1023 * through from the parent mount to the submount don't support
1024 * unprivileged mounts with submounts.
1025 */
1026 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1027 return ERR_PTR(-EPERM);
1028
1029 return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1030}
1031EXPORT_SYMBOL_GPL(vfs_submount);
1032
1033static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1034 int flag)
1035{
1036 struct super_block *sb = old->mnt.mnt_sb;
1037 struct mount *mnt;
1038 int err;
1039
1040 mnt = alloc_vfsmnt(old->mnt_devname);
1041 if (!mnt)
1042 return ERR_PTR(-ENOMEM);
1043
1044 if (sb->s_op->clone_mnt_data) {
1045 mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
1046 if (!mnt->mnt.data) {
1047 err = -ENOMEM;
1048 goto out_free;
1049 }
1050 }
1051
1052 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1053 mnt->mnt_group_id = 0; /* not a peer of original */
1054 else
1055 mnt->mnt_group_id = old->mnt_group_id;
1056
1057 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1058 err = mnt_alloc_group_id(mnt);
1059 if (err)
1060 goto out_free;
1061 }
1062
1063 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1064 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1065 /* Don't allow unprivileged users to change mount flags */
1066 if (flag & CL_UNPRIVILEGED) {
1067 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1068
1069 if (mnt->mnt.mnt_flags & MNT_READONLY)
1070 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1071
1072 if (mnt->mnt.mnt_flags & MNT_NODEV)
1073 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1074
1075 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1076 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1077
1078 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1079 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1080 }
1081
1082 /* Don't allow unprivileged users to reveal what is under a mount */
1083 if ((flag & CL_UNPRIVILEGED) &&
1084 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1085 mnt->mnt.mnt_flags |= MNT_LOCKED;
1086
1087 atomic_inc(&sb->s_active);
1088 mnt->mnt.mnt_sb = sb;
1089 mnt->mnt.mnt_root = dget(root);
1090 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1091 mnt->mnt_parent = mnt;
1092 lock_mount_hash();
1093 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1094 unlock_mount_hash();
1095
1096 if ((flag & CL_SLAVE) ||
1097 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1098 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1099 mnt->mnt_master = old;
1100 CLEAR_MNT_SHARED(mnt);
1101 } else if (!(flag & CL_PRIVATE)) {
1102 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1103 list_add(&mnt->mnt_share, &old->mnt_share);
1104 if (IS_MNT_SLAVE(old))
1105 list_add(&mnt->mnt_slave, &old->mnt_slave);
1106 mnt->mnt_master = old->mnt_master;
1107 }
1108 if (flag & CL_MAKE_SHARED)
1109 set_mnt_shared(mnt);
1110
1111 /* stick the duplicate mount on the same expiry list
1112 * as the original if that was on one */
1113 if (flag & CL_EXPIRE) {
1114 if (!list_empty(&old->mnt_expire))
1115 list_add(&mnt->mnt_expire, &old->mnt_expire);
1116 }
1117
1118 return mnt;
1119
1120 out_free:
1121 mnt_free_id(mnt);
1122 free_vfsmnt(mnt);
1123 return ERR_PTR(err);
1124}
1125
1126static void cleanup_mnt(struct mount *mnt)
1127{
1128 /*
1129 * This probably indicates that somebody messed
1130 * up a mnt_want/drop_write() pair. If this
1131 * happens, the filesystem was probably unable
1132 * to make r/w->r/o transitions.
1133 */
1134 /*
1135 * The locking used to deal with mnt_count decrement provides barriers,
1136 * so mnt_get_writers() below is safe.
1137 */
1138 WARN_ON(mnt_get_writers(mnt));
1139 if (unlikely(mnt->mnt_pins.first))
1140 mnt_pin_kill(mnt);
1141 fsnotify_vfsmount_delete(&mnt->mnt);
1142 dput(mnt->mnt.mnt_root);
1143 deactivate_super(mnt->mnt.mnt_sb);
1144 mnt_free_id(mnt);
1145 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1146}
1147
1148static void __cleanup_mnt(struct rcu_head *head)
1149{
1150 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1151}
1152
1153static LLIST_HEAD(delayed_mntput_list);
1154static void delayed_mntput(struct work_struct *unused)
1155{
1156 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1157 struct llist_node *next;
1158
1159 for (; node; node = next) {
1160 next = llist_next(node);
1161 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1162 }
1163}
1164static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1165
1166static void mntput_no_expire(struct mount *mnt)
1167{
1168 rcu_read_lock();
1169 if (likely(READ_ONCE(mnt->mnt_ns))) {
1170 /*
1171 * Since we don't do lock_mount_hash() here,
1172 * ->mnt_ns can change under us. However, if it's
1173 * non-NULL, then there's a reference that won't
1174 * be dropped until after an RCU delay done after
1175 * turning ->mnt_ns NULL. So if we observe it
1176 * non-NULL under rcu_read_lock(), the reference
1177 * we are dropping is not the final one.
1178 */
1179 mnt_add_count(mnt, -1);
1180 rcu_read_unlock();
1181 return;
1182 }
1183 lock_mount_hash();
1184 /*
1185 * make sure that if __legitimize_mnt() has not seen us grab
1186 * mount_lock, we'll see their refcount increment here.
1187 */
1188 smp_mb();
1189 mnt_add_count(mnt, -1);
1190 if (mnt_get_count(mnt)) {
1191 rcu_read_unlock();
1192 unlock_mount_hash();
1193 return;
1194 }
1195 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1196 rcu_read_unlock();
1197 unlock_mount_hash();
1198 return;
1199 }
1200 mnt->mnt.mnt_flags |= MNT_DOOMED;
1201 rcu_read_unlock();
1202
1203 list_del(&mnt->mnt_instance);
1204
1205 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1206 struct mount *p, *tmp;
1207 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1208 umount_mnt(p);
1209 }
1210 }
1211 unlock_mount_hash();
1212
1213 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1214 struct task_struct *task = current;
1215 if (likely(!(task->flags & PF_KTHREAD))) {
1216 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1217 if (!task_work_add(task, &mnt->mnt_rcu, true))
1218 return;
1219 }
1220 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1221 schedule_delayed_work(&delayed_mntput_work, 1);
1222 return;
1223 }
1224 cleanup_mnt(mnt);
1225}
1226
1227void mntput(struct vfsmount *mnt)
1228{
1229 if (mnt) {
1230 struct mount *m = real_mount(mnt);
1231 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1232 if (unlikely(m->mnt_expiry_mark))
1233 m->mnt_expiry_mark = 0;
1234 mntput_no_expire(m);
1235 }
1236}
1237EXPORT_SYMBOL(mntput);
1238
1239struct vfsmount *mntget(struct vfsmount *mnt)
1240{
1241 if (mnt)
1242 mnt_add_count(real_mount(mnt), 1);
1243 return mnt;
1244}
1245EXPORT_SYMBOL(mntget);
1246
1247struct vfsmount *mnt_clone_internal(struct path *path)
1248{
1249 struct mount *p;
1250 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1251 if (IS_ERR(p))
1252 return ERR_CAST(p);
1253 p->mnt.mnt_flags |= MNT_INTERNAL;
1254 return &p->mnt;
1255}
1256
1257static inline void mangle(struct seq_file *m, const char *s)
1258{
1259 seq_escape(m, s, " \t\n\\");
1260}
1261
1262/*
1263 * Simple .show_options callback for filesystems which don't want to
1264 * implement more complex mount option showing.
1265 *
1266 * See also save_mount_options().
1267 */
1268int generic_show_options(struct seq_file *m, struct dentry *root)
1269{
1270 const char *options;
1271
1272 rcu_read_lock();
1273 options = rcu_dereference(root->d_sb->s_options);
1274
1275 if (options != NULL && options[0]) {
1276 seq_putc(m, ',');
1277 mangle(m, options);
1278 }
1279 rcu_read_unlock();
1280
1281 return 0;
1282}
1283EXPORT_SYMBOL(generic_show_options);
1284
1285/*
1286 * If filesystem uses generic_show_options(), this function should be
1287 * called from the fill_super() callback.
1288 *
1289 * The .remount_fs callback usually needs to be handled in a special
1290 * way, to make sure, that previous options are not overwritten if the
1291 * remount fails.
1292 *
1293 * Also note, that if the filesystem's .remount_fs function doesn't
1294 * reset all options to their default value, but changes only newly
1295 * given options, then the displayed options will not reflect reality
1296 * any more.
1297 */
1298void save_mount_options(struct super_block *sb, char *options)
1299{
1300 BUG_ON(sb->s_options);
1301 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1302}
1303EXPORT_SYMBOL(save_mount_options);
1304
1305void replace_mount_options(struct super_block *sb, char *options)
1306{
1307 char *old = sb->s_options;
1308 rcu_assign_pointer(sb->s_options, options);
1309 if (old) {
1310 synchronize_rcu();
1311 kfree(old);
1312 }
1313}
1314EXPORT_SYMBOL(replace_mount_options);
1315
1316#ifdef CONFIG_PROC_FS
1317/* iterator; we want it to have access to namespace_sem, thus here... */
1318static void *m_start(struct seq_file *m, loff_t *pos)
1319{
1320 struct proc_mounts *p = m->private;
1321
1322 down_read(&namespace_sem);
1323 if (p->cached_event == p->ns->event) {
1324 void *v = p->cached_mount;
1325 if (*pos == p->cached_index)
1326 return v;
1327 if (*pos == p->cached_index + 1) {
1328 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1329 return p->cached_mount = v;
1330 }
1331 }
1332
1333 p->cached_event = p->ns->event;
1334 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1335 p->cached_index = *pos;
1336 return p->cached_mount;
1337}
1338
1339static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1340{
1341 struct proc_mounts *p = m->private;
1342
1343 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1344 p->cached_index = *pos;
1345 return p->cached_mount;
1346}
1347
1348static void m_stop(struct seq_file *m, void *v)
1349{
1350 up_read(&namespace_sem);
1351}
1352
1353static int m_show(struct seq_file *m, void *v)
1354{
1355 struct proc_mounts *p = m->private;
1356 struct mount *r = list_entry(v, struct mount, mnt_list);
1357 return p->show(m, &r->mnt);
1358}
1359
1360const struct seq_operations mounts_op = {
1361 .start = m_start,
1362 .next = m_next,
1363 .stop = m_stop,
1364 .show = m_show,
1365};
1366#endif /* CONFIG_PROC_FS */
1367
1368/**
1369 * may_umount_tree - check if a mount tree is busy
1370 * @mnt: root of mount tree
1371 *
1372 * This is called to check if a tree of mounts has any
1373 * open files, pwds, chroots or sub mounts that are
1374 * busy.
1375 */
1376int may_umount_tree(struct vfsmount *m)
1377{
1378 struct mount *mnt = real_mount(m);
1379 int actual_refs = 0;
1380 int minimum_refs = 0;
1381 struct mount *p;
1382 BUG_ON(!m);
1383
1384 /* write lock needed for mnt_get_count */
1385 lock_mount_hash();
1386 for (p = mnt; p; p = next_mnt(p, mnt)) {
1387 actual_refs += mnt_get_count(p);
1388 minimum_refs += 2;
1389 }
1390 unlock_mount_hash();
1391
1392 if (actual_refs > minimum_refs)
1393 return 0;
1394
1395 return 1;
1396}
1397
1398EXPORT_SYMBOL(may_umount_tree);
1399
1400/**
1401 * may_umount - check if a mount point is busy
1402 * @mnt: root of mount
1403 *
1404 * This is called to check if a mount point has any
1405 * open files, pwds, chroots or sub mounts. If the
1406 * mount has sub mounts this will return busy
1407 * regardless of whether the sub mounts are busy.
1408 *
1409 * Doesn't take quota and stuff into account. IOW, in some cases it will
1410 * give false negatives. The main reason why it's here is that we need
1411 * a non-destructive way to look for easily umountable filesystems.
1412 */
1413int may_umount(struct vfsmount *mnt)
1414{
1415 int ret = 1;
1416 down_read(&namespace_sem);
1417 lock_mount_hash();
1418 if (propagate_mount_busy(real_mount(mnt), 2))
1419 ret = 0;
1420 unlock_mount_hash();
1421 up_read(&namespace_sem);
1422 return ret;
1423}
1424
1425EXPORT_SYMBOL(may_umount);
1426
1427static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1428
1429static void namespace_unlock(void)
1430{
1431 struct hlist_head head;
1432
1433 hlist_move_list(&unmounted, &head);
1434
1435 up_write(&namespace_sem);
1436
1437 if (likely(hlist_empty(&head)))
1438 return;
1439
1440 synchronize_rcu();
1441
1442 group_pin_kill(&head);
1443}
1444
1445static inline void namespace_lock(void)
1446{
1447 down_write(&namespace_sem);
1448}
1449
1450enum umount_tree_flags {
1451 UMOUNT_SYNC = 1,
1452 UMOUNT_PROPAGATE = 2,
1453 UMOUNT_CONNECTED = 4,
1454};
1455
1456static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1457{
1458 /* Leaving mounts connected is only valid for lazy umounts */
1459 if (how & UMOUNT_SYNC)
1460 return true;
1461
1462 /* A mount without a parent has nothing to be connected to */
1463 if (!mnt_has_parent(mnt))
1464 return true;
1465
1466 /* Because the reference counting rules change when mounts are
1467 * unmounted and connected, umounted mounts may not be
1468 * connected to mounted mounts.
1469 */
1470 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1471 return true;
1472
1473 /* Has it been requested that the mount remain connected? */
1474 if (how & UMOUNT_CONNECTED)
1475 return false;
1476
1477 /* Is the mount locked such that it needs to remain connected? */
1478 if (IS_MNT_LOCKED(mnt))
1479 return false;
1480
1481 /* By default disconnect the mount */
1482 return true;
1483}
1484
1485/*
1486 * mount_lock must be held
1487 * namespace_sem must be held for write
1488 */
1489static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1490{
1491 LIST_HEAD(tmp_list);
1492 struct mount *p;
1493
1494 if (how & UMOUNT_PROPAGATE)
1495 propagate_mount_unlock(mnt);
1496
1497 /* Gather the mounts to umount */
1498 for (p = mnt; p; p = next_mnt(p, mnt)) {
1499 p->mnt.mnt_flags |= MNT_UMOUNT;
1500 list_move(&p->mnt_list, &tmp_list);
1501 }
1502
1503 /* Hide the mounts from mnt_mounts */
1504 list_for_each_entry(p, &tmp_list, mnt_list) {
1505 list_del_init(&p->mnt_child);
1506 }
1507
1508 /* Add propogated mounts to the tmp_list */
1509 if (how & UMOUNT_PROPAGATE)
1510 propagate_umount(&tmp_list);
1511
1512 while (!list_empty(&tmp_list)) {
1513 struct mnt_namespace *ns;
1514 bool disconnect;
1515 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1516 list_del_init(&p->mnt_expire);
1517 list_del_init(&p->mnt_list);
1518 ns = p->mnt_ns;
1519 if (ns) {
1520 ns->mounts--;
1521 __touch_mnt_namespace(ns);
1522 }
1523 p->mnt_ns = NULL;
1524 if (how & UMOUNT_SYNC)
1525 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1526
1527 disconnect = disconnect_mount(p, how);
1528
1529 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1530 disconnect ? &unmounted : NULL);
1531 if (mnt_has_parent(p)) {
1532 mnt_add_count(p->mnt_parent, -1);
1533 if (!disconnect) {
1534 /* Don't forget about p */
1535 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1536 } else {
1537 umount_mnt(p);
1538 }
1539 }
1540 change_mnt_propagation(p, MS_PRIVATE);
1541 }
1542}
1543
1544static void shrink_submounts(struct mount *mnt);
1545
1546static int do_umount(struct mount *mnt, int flags)
1547{
1548 struct super_block *sb = mnt->mnt.mnt_sb;
1549 int retval;
1550
1551 retval = security_sb_umount(&mnt->mnt, flags);
1552 if (retval)
1553 return retval;
1554
1555 /*
1556 * Allow userspace to request a mountpoint be expired rather than
1557 * unmounting unconditionally. Unmount only happens if:
1558 * (1) the mark is already set (the mark is cleared by mntput())
1559 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1560 */
1561 if (flags & MNT_EXPIRE) {
1562 if (&mnt->mnt == current->fs->root.mnt ||
1563 flags & (MNT_FORCE | MNT_DETACH))
1564 return -EINVAL;
1565
1566 /*
1567 * probably don't strictly need the lock here if we examined
1568 * all race cases, but it's a slowpath.
1569 */
1570 lock_mount_hash();
1571 if (mnt_get_count(mnt) != 2) {
1572 unlock_mount_hash();
1573 return -EBUSY;
1574 }
1575 unlock_mount_hash();
1576
1577 if (!xchg(&mnt->mnt_expiry_mark, 1))
1578 return -EAGAIN;
1579 }
1580
1581 /*
1582 * If we may have to abort operations to get out of this
1583 * mount, and they will themselves hold resources we must
1584 * allow the fs to do things. In the Unix tradition of
1585 * 'Gee thats tricky lets do it in userspace' the umount_begin
1586 * might fail to complete on the first run through as other tasks
1587 * must return, and the like. Thats for the mount program to worry
1588 * about for the moment.
1589 */
1590
1591 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1592 sb->s_op->umount_begin(sb);
1593 }
1594
1595 /*
1596 * No sense to grab the lock for this test, but test itself looks
1597 * somewhat bogus. Suggestions for better replacement?
1598 * Ho-hum... In principle, we might treat that as umount + switch
1599 * to rootfs. GC would eventually take care of the old vfsmount.
1600 * Actually it makes sense, especially if rootfs would contain a
1601 * /reboot - static binary that would close all descriptors and
1602 * call reboot(9). Then init(8) could umount root and exec /reboot.
1603 */
1604 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1605 /*
1606 * Special case for "unmounting" root ...
1607 * we just try to remount it readonly.
1608 */
1609 if (!capable(CAP_SYS_ADMIN))
1610 return -EPERM;
1611 down_write(&sb->s_umount);
1612 if (!(sb->s_flags & MS_RDONLY))
1613 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1614 up_write(&sb->s_umount);
1615 return retval;
1616 }
1617
1618 namespace_lock();
1619 lock_mount_hash();
1620
1621 /* Recheck MNT_LOCKED with the locks held */
1622 retval = -EINVAL;
1623 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1624 goto out;
1625
1626 event++;
1627 if (flags & MNT_DETACH) {
1628 if (!list_empty(&mnt->mnt_list))
1629 umount_tree(mnt, UMOUNT_PROPAGATE);
1630 retval = 0;
1631 } else {
1632 shrink_submounts(mnt);
1633 retval = -EBUSY;
1634 if (!propagate_mount_busy(mnt, 2)) {
1635 if (!list_empty(&mnt->mnt_list))
1636 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1637 retval = 0;
1638 }
1639 }
1640out:
1641 unlock_mount_hash();
1642 namespace_unlock();
1643 return retval;
1644}
1645
1646/*
1647 * __detach_mounts - lazily unmount all mounts on the specified dentry
1648 *
1649 * During unlink, rmdir, and d_drop it is possible to loose the path
1650 * to an existing mountpoint, and wind up leaking the mount.
1651 * detach_mounts allows lazily unmounting those mounts instead of
1652 * leaking them.
1653 *
1654 * The caller may hold dentry->d_inode->i_mutex.
1655 */
1656void __detach_mounts(struct dentry *dentry)
1657{
1658 struct mountpoint *mp;
1659 struct mount *mnt;
1660
1661 namespace_lock();
1662 lock_mount_hash();
1663 mp = lookup_mountpoint(dentry);
1664 if (IS_ERR_OR_NULL(mp))
1665 goto out_unlock;
1666
1667 event++;
1668 while (!hlist_empty(&mp->m_list)) {
1669 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1670 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1671 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1672 umount_mnt(mnt);
1673 }
1674 else umount_tree(mnt, UMOUNT_CONNECTED);
1675 }
1676 put_mountpoint(mp);
1677out_unlock:
1678 unlock_mount_hash();
1679 namespace_unlock();
1680}
1681
1682/*
1683 * Is the caller allowed to modify his namespace?
1684 */
1685static inline bool may_mount(void)
1686{
1687 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1688}
1689
1690static inline bool may_mandlock(void)
1691{
1692#ifndef CONFIG_MANDATORY_FILE_LOCKING
1693 return false;
1694#endif
1695 return capable(CAP_SYS_ADMIN);
1696}
1697
1698/*
1699 * Now umount can handle mount points as well as block devices.
1700 * This is important for filesystems which use unnamed block devices.
1701 *
1702 * We now support a flag for forced unmount like the other 'big iron'
1703 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1704 */
1705
1706SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1707{
1708 struct path path;
1709 struct mount *mnt;
1710 int retval;
1711 int lookup_flags = 0;
1712
1713 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1714 return -EINVAL;
1715
1716 if (!may_mount())
1717 return -EPERM;
1718
1719 if (!(flags & UMOUNT_NOFOLLOW))
1720 lookup_flags |= LOOKUP_FOLLOW;
1721
1722 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1723 if (retval)
1724 goto out;
1725 mnt = real_mount(path.mnt);
1726 retval = -EINVAL;
1727 if (path.dentry != path.mnt->mnt_root)
1728 goto dput_and_out;
1729 if (!check_mnt(mnt))
1730 goto dput_and_out;
1731 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1732 goto dput_and_out;
1733 retval = -EPERM;
1734 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1735 goto dput_and_out;
1736
1737 retval = do_umount(mnt, flags);
1738dput_and_out:
1739 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1740 dput(path.dentry);
1741 mntput_no_expire(mnt);
1742out:
1743 return retval;
1744}
1745
1746#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1747
1748/*
1749 * The 2.0 compatible umount. No flags.
1750 */
1751SYSCALL_DEFINE1(oldumount, char __user *, name)
1752{
1753 return sys_umount(name, 0);
1754}
1755
1756#endif
1757
1758static bool is_mnt_ns_file(struct dentry *dentry)
1759{
1760 /* Is this a proxy for a mount namespace? */
1761 return dentry->d_op == &ns_dentry_operations &&
1762 dentry->d_fsdata == &mntns_operations;
1763}
1764
1765struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1766{
1767 return container_of(ns, struct mnt_namespace, ns);
1768}
1769
1770static bool mnt_ns_loop(struct dentry *dentry)
1771{
1772 /* Could bind mounting the mount namespace inode cause a
1773 * mount namespace loop?
1774 */
1775 struct mnt_namespace *mnt_ns;
1776 if (!is_mnt_ns_file(dentry))
1777 return false;
1778
1779 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1780 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1781}
1782
1783struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1784 int flag)
1785{
1786 struct mount *res, *p, *q, *r, *parent;
1787
1788 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1789 return ERR_PTR(-EINVAL);
1790
1791 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1792 return ERR_PTR(-EINVAL);
1793
1794 res = q = clone_mnt(mnt, dentry, flag);
1795 if (IS_ERR(q))
1796 return q;
1797
1798 q->mnt_mountpoint = mnt->mnt_mountpoint;
1799
1800 p = mnt;
1801 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1802 struct mount *s;
1803 if (!is_subdir(r->mnt_mountpoint, dentry))
1804 continue;
1805
1806 for (s = r; s; s = next_mnt(s, r)) {
1807 if (!(flag & CL_COPY_UNBINDABLE) &&
1808 IS_MNT_UNBINDABLE(s)) {
1809 if (s->mnt.mnt_flags & MNT_LOCKED) {
1810 /* Both unbindable and locked. */
1811 q = ERR_PTR(-EPERM);
1812 goto out;
1813 } else {
1814 s = skip_mnt_tree(s);
1815 continue;
1816 }
1817 }
1818 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1819 is_mnt_ns_file(s->mnt.mnt_root)) {
1820 s = skip_mnt_tree(s);
1821 continue;
1822 }
1823 while (p != s->mnt_parent) {
1824 p = p->mnt_parent;
1825 q = q->mnt_parent;
1826 }
1827 p = s;
1828 parent = q;
1829 q = clone_mnt(p, p->mnt.mnt_root, flag);
1830 if (IS_ERR(q))
1831 goto out;
1832 lock_mount_hash();
1833 list_add_tail(&q->mnt_list, &res->mnt_list);
1834 attach_mnt(q, parent, p->mnt_mp);
1835 unlock_mount_hash();
1836 }
1837 }
1838 return res;
1839out:
1840 if (res) {
1841 lock_mount_hash();
1842 umount_tree(res, UMOUNT_SYNC);
1843 unlock_mount_hash();
1844 }
1845 return q;
1846}
1847
1848/* Caller should check returned pointer for errors */
1849
1850struct vfsmount *collect_mounts(struct path *path)
1851{
1852 struct mount *tree;
1853 namespace_lock();
1854 if (!check_mnt(real_mount(path->mnt)))
1855 tree = ERR_PTR(-EINVAL);
1856 else
1857 tree = copy_tree(real_mount(path->mnt), path->dentry,
1858 CL_COPY_ALL | CL_PRIVATE);
1859 namespace_unlock();
1860 if (IS_ERR(tree))
1861 return ERR_CAST(tree);
1862 return &tree->mnt;
1863}
1864
1865void drop_collected_mounts(struct vfsmount *mnt)
1866{
1867 namespace_lock();
1868 lock_mount_hash();
1869 umount_tree(real_mount(mnt), 0);
1870 unlock_mount_hash();
1871 namespace_unlock();
1872}
1873
1874/**
1875 * clone_private_mount - create a private clone of a path
1876 *
1877 * This creates a new vfsmount, which will be the clone of @path. The new will
1878 * not be attached anywhere in the namespace and will be private (i.e. changes
1879 * to the originating mount won't be propagated into this).
1880 *
1881 * Release with mntput().
1882 */
1883struct vfsmount *clone_private_mount(struct path *path)
1884{
1885 struct mount *old_mnt = real_mount(path->mnt);
1886 struct mount *new_mnt;
1887
1888 if (IS_MNT_UNBINDABLE(old_mnt))
1889 return ERR_PTR(-EINVAL);
1890
1891 down_read(&namespace_sem);
1892 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1893 up_read(&namespace_sem);
1894 if (IS_ERR(new_mnt))
1895 return ERR_CAST(new_mnt);
1896
1897 return &new_mnt->mnt;
1898}
1899EXPORT_SYMBOL_GPL(clone_private_mount);
1900
1901int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1902 struct vfsmount *root)
1903{
1904 struct mount *mnt;
1905 int res = f(root, arg);
1906 if (res)
1907 return res;
1908 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1909 res = f(&mnt->mnt, arg);
1910 if (res)
1911 return res;
1912 }
1913 return 0;
1914}
1915
1916static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1917{
1918 struct mount *p;
1919
1920 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1921 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1922 mnt_release_group_id(p);
1923 }
1924}
1925
1926static int invent_group_ids(struct mount *mnt, bool recurse)
1927{
1928 struct mount *p;
1929
1930 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1931 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1932 int err = mnt_alloc_group_id(p);
1933 if (err) {
1934 cleanup_group_ids(mnt, p);
1935 return err;
1936 }
1937 }
1938 }
1939
1940 return 0;
1941}
1942
1943int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1944{
1945 unsigned int max = READ_ONCE(sysctl_mount_max);
1946 unsigned int mounts = 0, old, pending, sum;
1947 struct mount *p;
1948
1949 for (p = mnt; p; p = next_mnt(p, mnt))
1950 mounts++;
1951
1952 old = ns->mounts;
1953 pending = ns->pending_mounts;
1954 sum = old + pending;
1955 if ((old > sum) ||
1956 (pending > sum) ||
1957 (max < sum) ||
1958 (mounts > (max - sum)))
1959 return -ENOSPC;
1960
1961 ns->pending_mounts = pending + mounts;
1962 return 0;
1963}
1964
1965/*
1966 * @source_mnt : mount tree to be attached
1967 * @nd : place the mount tree @source_mnt is attached
1968 * @parent_nd : if non-null, detach the source_mnt from its parent and
1969 * store the parent mount and mountpoint dentry.
1970 * (done when source_mnt is moved)
1971 *
1972 * NOTE: in the table below explains the semantics when a source mount
1973 * of a given type is attached to a destination mount of a given type.
1974 * ---------------------------------------------------------------------------
1975 * | BIND MOUNT OPERATION |
1976 * |**************************************************************************
1977 * | source-->| shared | private | slave | unbindable |
1978 * | dest | | | | |
1979 * | | | | | | |
1980 * | v | | | | |
1981 * |**************************************************************************
1982 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1983 * | | | | | |
1984 * |non-shared| shared (+) | private | slave (*) | invalid |
1985 * ***************************************************************************
1986 * A bind operation clones the source mount and mounts the clone on the
1987 * destination mount.
1988 *
1989 * (++) the cloned mount is propagated to all the mounts in the propagation
1990 * tree of the destination mount and the cloned mount is added to
1991 * the peer group of the source mount.
1992 * (+) the cloned mount is created under the destination mount and is marked
1993 * as shared. The cloned mount is added to the peer group of the source
1994 * mount.
1995 * (+++) the mount is propagated to all the mounts in the propagation tree
1996 * of the destination mount and the cloned mount is made slave
1997 * of the same master as that of the source mount. The cloned mount
1998 * is marked as 'shared and slave'.
1999 * (*) the cloned mount is made a slave of the same master as that of the
2000 * source mount.
2001 *
2002 * ---------------------------------------------------------------------------
2003 * | MOVE MOUNT OPERATION |
2004 * |**************************************************************************
2005 * | source-->| shared | private | slave | unbindable |
2006 * | dest | | | | |
2007 * | | | | | | |
2008 * | v | | | | |
2009 * |**************************************************************************
2010 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2011 * | | | | | |
2012 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2013 * ***************************************************************************
2014 *
2015 * (+) the mount is moved to the destination. And is then propagated to
2016 * all the mounts in the propagation tree of the destination mount.
2017 * (+*) the mount is moved to the destination.
2018 * (+++) the mount is moved to the destination and is then propagated to
2019 * all the mounts belonging to the destination mount's propagation tree.
2020 * the mount is marked as 'shared and slave'.
2021 * (*) the mount continues to be a slave at the new location.
2022 *
2023 * if the source mount is a tree, the operations explained above is
2024 * applied to each mount in the tree.
2025 * Must be called without spinlocks held, since this function can sleep
2026 * in allocations.
2027 */
2028static int attach_recursive_mnt(struct mount *source_mnt,
2029 struct mount *dest_mnt,
2030 struct mountpoint *dest_mp,
2031 struct path *parent_path)
2032{
2033 HLIST_HEAD(tree_list);
2034 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2035 struct mountpoint *smp;
2036 struct mount *child, *p;
2037 struct hlist_node *n;
2038 int err;
2039
2040 /* Preallocate a mountpoint in case the new mounts need
2041 * to be tucked under other mounts.
2042 */
2043 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2044 if (IS_ERR(smp))
2045 return PTR_ERR(smp);
2046
2047 /* Is there space to add these mounts to the mount namespace? */
2048 if (!parent_path) {
2049 err = count_mounts(ns, source_mnt);
2050 if (err)
2051 goto out;
2052 }
2053
2054 if (IS_MNT_SHARED(dest_mnt)) {
2055 err = invent_group_ids(source_mnt, true);
2056 if (err)
2057 goto out;
2058 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2059 lock_mount_hash();
2060 if (err)
2061 goto out_cleanup_ids;
2062 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2063 set_mnt_shared(p);
2064 } else {
2065 lock_mount_hash();
2066 }
2067 if (parent_path) {
2068 detach_mnt(source_mnt, parent_path);
2069 attach_mnt(source_mnt, dest_mnt, dest_mp);
2070 touch_mnt_namespace(source_mnt->mnt_ns);
2071 } else {
2072 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2073 commit_tree(source_mnt);
2074 }
2075
2076 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2077 struct mount *q;
2078 hlist_del_init(&child->mnt_hash);
2079 q = __lookup_mnt(&child->mnt_parent->mnt,
2080 child->mnt_mountpoint);
2081 if (q)
2082 mnt_change_mountpoint(child, smp, q);
2083 commit_tree(child);
2084 }
2085 put_mountpoint(smp);
2086 unlock_mount_hash();
2087
2088 return 0;
2089
2090 out_cleanup_ids:
2091 while (!hlist_empty(&tree_list)) {
2092 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2093 child->mnt_parent->mnt_ns->pending_mounts = 0;
2094 umount_tree(child, UMOUNT_SYNC);
2095 }
2096 unlock_mount_hash();
2097 cleanup_group_ids(source_mnt, NULL);
2098 out:
2099 ns->pending_mounts = 0;
2100
2101 read_seqlock_excl(&mount_lock);
2102 put_mountpoint(smp);
2103 read_sequnlock_excl(&mount_lock);
2104
2105 return err;
2106}
2107
2108static struct mountpoint *lock_mount(struct path *path)
2109{
2110 struct vfsmount *mnt;
2111 struct dentry *dentry = path->dentry;
2112retry:
2113 inode_lock(dentry->d_inode);
2114 if (unlikely(cant_mount(dentry))) {
2115 inode_unlock(dentry->d_inode);
2116 return ERR_PTR(-ENOENT);
2117 }
2118 namespace_lock();
2119 mnt = lookup_mnt(path);
2120 if (likely(!mnt)) {
2121 struct mountpoint *mp = get_mountpoint(dentry);
2122 if (IS_ERR(mp)) {
2123 namespace_unlock();
2124 inode_unlock(dentry->d_inode);
2125 return mp;
2126 }
2127 return mp;
2128 }
2129 namespace_unlock();
2130 inode_unlock(path->dentry->d_inode);
2131 path_put(path);
2132 path->mnt = mnt;
2133 dentry = path->dentry = dget(mnt->mnt_root);
2134 goto retry;
2135}
2136
2137static void unlock_mount(struct mountpoint *where)
2138{
2139 struct dentry *dentry = where->m_dentry;
2140
2141 read_seqlock_excl(&mount_lock);
2142 put_mountpoint(where);
2143 read_sequnlock_excl(&mount_lock);
2144
2145 namespace_unlock();
2146 inode_unlock(dentry->d_inode);
2147}
2148
2149static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2150{
2151 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2152 return -EINVAL;
2153
2154 if (d_is_dir(mp->m_dentry) !=
2155 d_is_dir(mnt->mnt.mnt_root))
2156 return -ENOTDIR;
2157
2158 return attach_recursive_mnt(mnt, p, mp, NULL);
2159}
2160
2161/*
2162 * Sanity check the flags to change_mnt_propagation.
2163 */
2164
2165static int flags_to_propagation_type(int flags)
2166{
2167 int type = flags & ~(MS_REC | MS_SILENT);
2168
2169 /* Fail if any non-propagation flags are set */
2170 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2171 return 0;
2172 /* Only one propagation flag should be set */
2173 if (!is_power_of_2(type))
2174 return 0;
2175 return type;
2176}
2177
2178/*
2179 * recursively change the type of the mountpoint.
2180 */
2181static int do_change_type(struct path *path, int flag)
2182{
2183 struct mount *m;
2184 struct mount *mnt = real_mount(path->mnt);
2185 int recurse = flag & MS_REC;
2186 int type;
2187 int err = 0;
2188
2189 if (path->dentry != path->mnt->mnt_root)
2190 return -EINVAL;
2191
2192 type = flags_to_propagation_type(flag);
2193 if (!type)
2194 return -EINVAL;
2195
2196 namespace_lock();
2197 if (type == MS_SHARED) {
2198 err = invent_group_ids(mnt, recurse);
2199 if (err)
2200 goto out_unlock;
2201 }
2202
2203 lock_mount_hash();
2204 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2205 change_mnt_propagation(m, type);
2206 unlock_mount_hash();
2207
2208 out_unlock:
2209 namespace_unlock();
2210 return err;
2211}
2212
2213static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2214{
2215 struct mount *child;
2216 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2217 if (!is_subdir(child->mnt_mountpoint, dentry))
2218 continue;
2219
2220 if (child->mnt.mnt_flags & MNT_LOCKED)
2221 return true;
2222 }
2223 return false;
2224}
2225
2226/*
2227 * do loopback mount.
2228 */
2229static int do_loopback(struct path *path, const char *old_name,
2230 int recurse)
2231{
2232 struct path old_path;
2233 struct mount *mnt = NULL, *old, *parent;
2234 struct mountpoint *mp;
2235 int err;
2236 if (!old_name || !*old_name)
2237 return -EINVAL;
2238 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2239 if (err)
2240 return err;
2241
2242 err = -EINVAL;
2243 if (mnt_ns_loop(old_path.dentry))
2244 goto out;
2245
2246 mp = lock_mount(path);
2247 err = PTR_ERR(mp);
2248 if (IS_ERR(mp))
2249 goto out;
2250
2251 old = real_mount(old_path.mnt);
2252 parent = real_mount(path->mnt);
2253
2254 err = -EINVAL;
2255 if (IS_MNT_UNBINDABLE(old))
2256 goto out2;
2257
2258 if (!check_mnt(parent))
2259 goto out2;
2260
2261 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2262 goto out2;
2263
2264 if (!recurse && has_locked_children(old, old_path.dentry))
2265 goto out2;
2266
2267 if (recurse)
2268 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2269 else
2270 mnt = clone_mnt(old, old_path.dentry, 0);
2271
2272 if (IS_ERR(mnt)) {
2273 err = PTR_ERR(mnt);
2274 goto out2;
2275 }
2276
2277 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2278
2279 err = graft_tree(mnt, parent, mp);
2280 if (err) {
2281 lock_mount_hash();
2282 umount_tree(mnt, UMOUNT_SYNC);
2283 unlock_mount_hash();
2284 }
2285out2:
2286 unlock_mount(mp);
2287out:
2288 path_put(&old_path);
2289 return err;
2290}
2291
2292static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2293{
2294 int error = 0;
2295 int readonly_request = 0;
2296
2297 if (ms_flags & MS_RDONLY)
2298 readonly_request = 1;
2299 if (readonly_request == __mnt_is_readonly(mnt))
2300 return 0;
2301
2302 if (readonly_request)
2303 error = mnt_make_readonly(real_mount(mnt));
2304 else
2305 __mnt_unmake_readonly(real_mount(mnt));
2306 return error;
2307}
2308
2309/*
2310 * change filesystem flags. dir should be a physical root of filesystem.
2311 * If you've mounted a non-root directory somewhere and want to do remount
2312 * on it - tough luck.
2313 */
2314static int do_remount(struct path *path, int flags, int mnt_flags,
2315 void *data)
2316{
2317 int err;
2318 struct super_block *sb = path->mnt->mnt_sb;
2319 struct mount *mnt = real_mount(path->mnt);
2320
2321 if (!check_mnt(mnt))
2322 return -EINVAL;
2323
2324 if (path->dentry != path->mnt->mnt_root)
2325 return -EINVAL;
2326
2327 /* Don't allow changing of locked mnt flags.
2328 *
2329 * No locks need to be held here while testing the various
2330 * MNT_LOCK flags because those flags can never be cleared
2331 * once they are set.
2332 */
2333 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2334 !(mnt_flags & MNT_READONLY)) {
2335 return -EPERM;
2336 }
2337 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2338 !(mnt_flags & MNT_NODEV)) {
2339 return -EPERM;
2340 }
2341 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2342 !(mnt_flags & MNT_NOSUID)) {
2343 return -EPERM;
2344 }
2345 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2346 !(mnt_flags & MNT_NOEXEC)) {
2347 return -EPERM;
2348 }
2349 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2350 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2351 return -EPERM;
2352 }
2353
2354 err = security_sb_remount(sb, data);
2355 if (err)
2356 return err;
2357
2358 down_write(&sb->s_umount);
2359 if (flags & MS_BIND)
2360 err = change_mount_flags(path->mnt, flags);
2361 else if (!capable(CAP_SYS_ADMIN))
2362 err = -EPERM;
2363 else {
2364 err = do_remount_sb2(path->mnt, sb, flags, data, 0);
2365 namespace_lock();
2366 lock_mount_hash();
2367 propagate_remount(mnt);
2368 unlock_mount_hash();
2369 namespace_unlock();
2370 }
2371 if (!err) {
2372 lock_mount_hash();
2373 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2374 mnt->mnt.mnt_flags = mnt_flags;
2375 touch_mnt_namespace(mnt->mnt_ns);
2376 unlock_mount_hash();
2377 }
2378 up_write(&sb->s_umount);
2379 return err;
2380}
2381
2382static inline int tree_contains_unbindable(struct mount *mnt)
2383{
2384 struct mount *p;
2385 for (p = mnt; p; p = next_mnt(p, mnt)) {
2386 if (IS_MNT_UNBINDABLE(p))
2387 return 1;
2388 }
2389 return 0;
2390}
2391
2392static int do_move_mount(struct path *path, const char *old_name)
2393{
2394 struct path old_path, parent_path;
2395 struct mount *p;
2396 struct mount *old;
2397 struct mountpoint *mp;
2398 int err;
2399 if (!old_name || !*old_name)
2400 return -EINVAL;
2401 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2402 if (err)
2403 return err;
2404
2405 mp = lock_mount(path);
2406 err = PTR_ERR(mp);
2407 if (IS_ERR(mp))
2408 goto out;
2409
2410 old = real_mount(old_path.mnt);
2411 p = real_mount(path->mnt);
2412
2413 err = -EINVAL;
2414 if (!check_mnt(p) || !check_mnt(old))
2415 goto out1;
2416
2417 if (old->mnt.mnt_flags & MNT_LOCKED)
2418 goto out1;
2419
2420 err = -EINVAL;
2421 if (old_path.dentry != old_path.mnt->mnt_root)
2422 goto out1;
2423
2424 if (!mnt_has_parent(old))
2425 goto out1;
2426
2427 if (d_is_dir(path->dentry) !=
2428 d_is_dir(old_path.dentry))
2429 goto out1;
2430 /*
2431 * Don't move a mount residing in a shared parent.
2432 */
2433 if (IS_MNT_SHARED(old->mnt_parent))
2434 goto out1;
2435 /*
2436 * Don't move a mount tree containing unbindable mounts to a destination
2437 * mount which is shared.
2438 */
2439 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2440 goto out1;
2441 err = -ELOOP;
2442 for (; mnt_has_parent(p); p = p->mnt_parent)
2443 if (p == old)
2444 goto out1;
2445
2446 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2447 if (err)
2448 goto out1;
2449
2450 /* if the mount is moved, it should no longer be expire
2451 * automatically */
2452 list_del_init(&old->mnt_expire);
2453out1:
2454 unlock_mount(mp);
2455out:
2456 if (!err)
2457 path_put(&parent_path);
2458 path_put(&old_path);
2459 return err;
2460}
2461
2462static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2463{
2464 int err;
2465 const char *subtype = strchr(fstype, '.');
2466 if (subtype) {
2467 subtype++;
2468 err = -EINVAL;
2469 if (!subtype[0])
2470 goto err;
2471 } else
2472 subtype = "";
2473
2474 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2475 err = -ENOMEM;
2476 if (!mnt->mnt_sb->s_subtype)
2477 goto err;
2478 return mnt;
2479
2480 err:
2481 mntput(mnt);
2482 return ERR_PTR(err);
2483}
2484
2485/*
2486 * add a mount into a namespace's mount tree
2487 */
2488static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2489{
2490 struct mountpoint *mp;
2491 struct mount *parent;
2492 int err;
2493
2494 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2495
2496 mp = lock_mount(path);
2497 if (IS_ERR(mp))
2498 return PTR_ERR(mp);
2499
2500 parent = real_mount(path->mnt);
2501 err = -EINVAL;
2502 if (unlikely(!check_mnt(parent))) {
2503 /* that's acceptable only for automounts done in private ns */
2504 if (!(mnt_flags & MNT_SHRINKABLE))
2505 goto unlock;
2506 /* ... and for those we'd better have mountpoint still alive */
2507 if (!parent->mnt_ns)
2508 goto unlock;
2509 }
2510
2511 /* Refuse the same filesystem on the same mount point */
2512 err = -EBUSY;
2513 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2514 path->mnt->mnt_root == path->dentry)
2515 goto unlock;
2516
2517 err = -EINVAL;
2518 if (d_is_symlink(newmnt->mnt.mnt_root))
2519 goto unlock;
2520
2521 newmnt->mnt.mnt_flags = mnt_flags;
2522 err = graft_tree(newmnt, parent, mp);
2523
2524unlock:
2525 unlock_mount(mp);
2526 return err;
2527}
2528
2529static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2530
2531/*
2532 * create a new mount for userspace and request it to be added into the
2533 * namespace's tree
2534 */
2535static int do_new_mount(struct path *path, const char *fstype, int flags,
2536 int mnt_flags, const char *name, void *data)
2537{
2538 struct file_system_type *type;
2539 struct vfsmount *mnt;
2540 int err;
2541
2542 if (!fstype)
2543 return -EINVAL;
2544
2545 type = get_fs_type(fstype);
2546 if (!type)
2547 return -ENODEV;
2548
2549 mnt = vfs_kern_mount(type, flags, name, data);
2550 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2551 !mnt->mnt_sb->s_subtype)
2552 mnt = fs_set_subtype(mnt, fstype);
2553
2554 put_filesystem(type);
2555 if (IS_ERR(mnt))
2556 return PTR_ERR(mnt);
2557
2558 if (mount_too_revealing(mnt, &mnt_flags)) {
2559 mntput(mnt);
2560 return -EPERM;
2561 }
2562
2563 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2564 if (err)
2565 mntput(mnt);
2566 return err;
2567}
2568
2569int finish_automount(struct vfsmount *m, struct path *path)
2570{
2571 struct mount *mnt = real_mount(m);
2572 int err;
2573 /* The new mount record should have at least 2 refs to prevent it being
2574 * expired before we get a chance to add it
2575 */
2576 BUG_ON(mnt_get_count(mnt) < 2);
2577
2578 if (m->mnt_sb == path->mnt->mnt_sb &&
2579 m->mnt_root == path->dentry) {
2580 err = -ELOOP;
2581 goto fail;
2582 }
2583
2584 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2585 if (!err)
2586 return 0;
2587fail:
2588 /* remove m from any expiration list it may be on */
2589 if (!list_empty(&mnt->mnt_expire)) {
2590 namespace_lock();
2591 list_del_init(&mnt->mnt_expire);
2592 namespace_unlock();
2593 }
2594 mntput(m);
2595 mntput(m);
2596 return err;
2597}
2598
2599/**
2600 * mnt_set_expiry - Put a mount on an expiration list
2601 * @mnt: The mount to list.
2602 * @expiry_list: The list to add the mount to.
2603 */
2604void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2605{
2606 namespace_lock();
2607
2608 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2609
2610 namespace_unlock();
2611}
2612EXPORT_SYMBOL(mnt_set_expiry);
2613
2614/*
2615 * process a list of expirable mountpoints with the intent of discarding any
2616 * mountpoints that aren't in use and haven't been touched since last we came
2617 * here
2618 */
2619void mark_mounts_for_expiry(struct list_head *mounts)
2620{
2621 struct mount *mnt, *next;
2622 LIST_HEAD(graveyard);
2623
2624 if (list_empty(mounts))
2625 return;
2626
2627 namespace_lock();
2628 lock_mount_hash();
2629
2630 /* extract from the expiration list every vfsmount that matches the
2631 * following criteria:
2632 * - only referenced by its parent vfsmount
2633 * - still marked for expiry (marked on the last call here; marks are
2634 * cleared by mntput())
2635 */
2636 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2637 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2638 propagate_mount_busy(mnt, 1))
2639 continue;
2640 list_move(&mnt->mnt_expire, &graveyard);
2641 }
2642 while (!list_empty(&graveyard)) {
2643 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2644 touch_mnt_namespace(mnt->mnt_ns);
2645 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2646 }
2647 unlock_mount_hash();
2648 namespace_unlock();
2649}
2650
2651EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2652
2653/*
2654 * Ripoff of 'select_parent()'
2655 *
2656 * search the list of submounts for a given mountpoint, and move any
2657 * shrinkable submounts to the 'graveyard' list.
2658 */
2659static int select_submounts(struct mount *parent, struct list_head *graveyard)
2660{
2661 struct mount *this_parent = parent;
2662 struct list_head *next;
2663 int found = 0;
2664
2665repeat:
2666 next = this_parent->mnt_mounts.next;
2667resume:
2668 while (next != &this_parent->mnt_mounts) {
2669 struct list_head *tmp = next;
2670 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2671
2672 next = tmp->next;
2673 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2674 continue;
2675 /*
2676 * Descend a level if the d_mounts list is non-empty.
2677 */
2678 if (!list_empty(&mnt->mnt_mounts)) {
2679 this_parent = mnt;
2680 goto repeat;
2681 }
2682
2683 if (!propagate_mount_busy(mnt, 1)) {
2684 list_move_tail(&mnt->mnt_expire, graveyard);
2685 found++;
2686 }
2687 }
2688 /*
2689 * All done at this level ... ascend and resume the search
2690 */
2691 if (this_parent != parent) {
2692 next = this_parent->mnt_child.next;
2693 this_parent = this_parent->mnt_parent;
2694 goto resume;
2695 }
2696 return found;
2697}
2698
2699/*
2700 * process a list of expirable mountpoints with the intent of discarding any
2701 * submounts of a specific parent mountpoint
2702 *
2703 * mount_lock must be held for write
2704 */
2705static void shrink_submounts(struct mount *mnt)
2706{
2707 LIST_HEAD(graveyard);
2708 struct mount *m;
2709
2710 /* extract submounts of 'mountpoint' from the expiration list */
2711 while (select_submounts(mnt, &graveyard)) {
2712 while (!list_empty(&graveyard)) {
2713 m = list_first_entry(&graveyard, struct mount,
2714 mnt_expire);
2715 touch_mnt_namespace(m->mnt_ns);
2716 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2717 }
2718 }
2719}
2720
2721/*
2722 * Some copy_from_user() implementations do not return the exact number of
2723 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2724 * Note that this function differs from copy_from_user() in that it will oops
2725 * on bad values of `to', rather than returning a short copy.
2726 */
2727static long exact_copy_from_user(void *to, const void __user * from,
2728 unsigned long n)
2729{
2730 char *t = to;
2731 const char __user *f = from;
2732 char c;
2733
2734 if (!access_ok(VERIFY_READ, from, n))
2735 return n;
2736
2737#ifdef CONFIG_AMLOGIC_VMAP
2738 /* addr from kernel space and in vmalloc range, avoid overflow */
2739 if (is_vmalloc_or_module_addr((void *)from)) {
2740 unsigned long old = n;
2741
2742 n = strlen(from) + 1;
2743 pr_info("addr:%p is in kernel, size fix %ld->%ld, data:%s\n",
2744 from, old, n, (char *)from);
2745 }
2746#endif
2747
2748 while (n) {
2749 if (__get_user(c, f)) {
2750 memset(t, 0, n);
2751 break;
2752 }
2753 *t++ = c;
2754 f++;
2755 n--;
2756 }
2757 return n;
2758}
2759
2760void *copy_mount_options(const void __user * data)
2761{
2762 int i;
2763 unsigned long size;
2764 char *copy;
2765
2766 if (!data)
2767 return NULL;
2768
2769 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2770 if (!copy)
2771 return ERR_PTR(-ENOMEM);
2772
2773 /* We only care that *some* data at the address the user
2774 * gave us is valid. Just in case, we'll zero
2775 * the remainder of the page.
2776 */
2777 /* copy_from_user cannot cross TASK_SIZE ! */
2778 size = TASK_SIZE - (unsigned long)data;
2779 if (size > PAGE_SIZE)
2780 size = PAGE_SIZE;
2781
2782 i = size - exact_copy_from_user(copy, data, size);
2783 if (!i) {
2784 kfree(copy);
2785 return ERR_PTR(-EFAULT);
2786 }
2787 if (i != PAGE_SIZE)
2788 memset(copy + i, 0, PAGE_SIZE - i);
2789 return copy;
2790}
2791
2792char *copy_mount_string(const void __user *data)
2793{
2794 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2795}
2796
2797/*
2798 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2799 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2800 *
2801 * data is a (void *) that can point to any structure up to
2802 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2803 * information (or be NULL).
2804 *
2805 * Pre-0.97 versions of mount() didn't have a flags word.
2806 * When the flags word was introduced its top half was required
2807 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2808 * Therefore, if this magic number is present, it carries no information
2809 * and must be discarded.
2810 */
2811long do_mount(const char *dev_name, const char __user *dir_name,
2812 const char *type_page, unsigned long flags, void *data_page)
2813{
2814 struct path path;
2815 int retval = 0;
2816 int mnt_flags = 0;
2817
2818 /* Discard magic */
2819 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2820 flags &= ~MS_MGC_MSK;
2821
2822 /* Basic sanity checks */
2823 if (data_page)
2824 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2825
2826 /* ... and get the mountpoint */
2827 retval = user_path(dir_name, &path);
2828 if (retval)
2829 return retval;
2830
2831 retval = security_sb_mount(dev_name, &path,
2832 type_page, flags, data_page);
2833 if (!retval && !may_mount())
2834 retval = -EPERM;
2835 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2836 retval = -EPERM;
2837 if (retval)
2838 goto dput_out;
2839
2840 /* Default to relatime unless overriden */
2841 if (!(flags & MS_NOATIME))
2842 mnt_flags |= MNT_RELATIME;
2843
2844 /* Separate the per-mountpoint flags */
2845 if (flags & MS_NOSUID)
2846 mnt_flags |= MNT_NOSUID;
2847 if (flags & MS_NODEV)
2848 mnt_flags |= MNT_NODEV;
2849 if (flags & MS_NOEXEC)
2850 mnt_flags |= MNT_NOEXEC;
2851 if (flags & MS_NOATIME)
2852 mnt_flags |= MNT_NOATIME;
2853 if (flags & MS_NODIRATIME)
2854 mnt_flags |= MNT_NODIRATIME;
2855 if (flags & MS_STRICTATIME)
2856 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2857 if (flags & MS_RDONLY)
2858 mnt_flags |= MNT_READONLY;
2859
2860 /* The default atime for remount is preservation */
2861 if ((flags & MS_REMOUNT) &&
2862 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2863 MS_STRICTATIME)) == 0)) {
2864 mnt_flags &= ~MNT_ATIME_MASK;
2865 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2866 }
2867
2868 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2869 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2870 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
2871
2872 if (flags & MS_REMOUNT)
2873 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2874 data_page);
2875 else if (flags & MS_BIND)
2876 retval = do_loopback(&path, dev_name, flags & MS_REC);
2877 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2878 retval = do_change_type(&path, flags);
2879 else if (flags & MS_MOVE)
2880 retval = do_move_mount(&path, dev_name);
2881 else
2882 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2883 dev_name, data_page);
2884dput_out:
2885 path_put(&path);
2886 return retval;
2887}
2888
2889static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2890{
2891 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2892}
2893
2894static void dec_mnt_namespaces(struct ucounts *ucounts)
2895{
2896 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2897}
2898
2899static void free_mnt_ns(struct mnt_namespace *ns)
2900{
2901 ns_free_inum(&ns->ns);
2902 dec_mnt_namespaces(ns->ucounts);
2903 put_user_ns(ns->user_ns);
2904 kfree(ns);
2905}
2906
2907/*
2908 * Assign a sequence number so we can detect when we attempt to bind
2909 * mount a reference to an older mount namespace into the current
2910 * mount namespace, preventing reference counting loops. A 64bit
2911 * number incrementing at 10Ghz will take 12,427 years to wrap which
2912 * is effectively never, so we can ignore the possibility.
2913 */
2914static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2915
2916static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2917{
2918 struct mnt_namespace *new_ns;
2919 struct ucounts *ucounts;
2920 int ret;
2921
2922 ucounts = inc_mnt_namespaces(user_ns);
2923 if (!ucounts)
2924 return ERR_PTR(-ENOSPC);
2925
2926 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2927 if (!new_ns) {
2928 dec_mnt_namespaces(ucounts);
2929 return ERR_PTR(-ENOMEM);
2930 }
2931 ret = ns_alloc_inum(&new_ns->ns);
2932 if (ret) {
2933 kfree(new_ns);
2934 dec_mnt_namespaces(ucounts);
2935 return ERR_PTR(ret);
2936 }
2937 new_ns->ns.ops = &mntns_operations;
2938 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2939 atomic_set(&new_ns->count, 1);
2940 new_ns->root = NULL;
2941 INIT_LIST_HEAD(&new_ns->list);
2942 init_waitqueue_head(&new_ns->poll);
2943 new_ns->event = 0;
2944 new_ns->user_ns = get_user_ns(user_ns);
2945 new_ns->ucounts = ucounts;
2946 new_ns->mounts = 0;
2947 new_ns->pending_mounts = 0;
2948 return new_ns;
2949}
2950
2951__latent_entropy
2952struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2953 struct user_namespace *user_ns, struct fs_struct *new_fs)
2954{
2955 struct mnt_namespace *new_ns;
2956 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2957 struct mount *p, *q;
2958 struct mount *old;
2959 struct mount *new;
2960 int copy_flags;
2961
2962 BUG_ON(!ns);
2963
2964 if (likely(!(flags & CLONE_NEWNS))) {
2965 get_mnt_ns(ns);
2966 return ns;
2967 }
2968
2969 old = ns->root;
2970
2971 new_ns = alloc_mnt_ns(user_ns);
2972 if (IS_ERR(new_ns))
2973 return new_ns;
2974
2975 namespace_lock();
2976 /* First pass: copy the tree topology */
2977 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2978 if (user_ns != ns->user_ns)
2979 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2980 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2981 if (IS_ERR(new)) {
2982 namespace_unlock();
2983 free_mnt_ns(new_ns);
2984 return ERR_CAST(new);
2985 }
2986 new_ns->root = new;
2987 list_add_tail(&new_ns->list, &new->mnt_list);
2988
2989 /*
2990 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2991 * as belonging to new namespace. We have already acquired a private
2992 * fs_struct, so tsk->fs->lock is not needed.
2993 */
2994 p = old;
2995 q = new;
2996 while (p) {
2997 q->mnt_ns = new_ns;
2998 new_ns->mounts++;
2999 if (new_fs) {
3000 if (&p->mnt == new_fs->root.mnt) {
3001 new_fs->root.mnt = mntget(&q->mnt);
3002 rootmnt = &p->mnt;
3003 }
3004 if (&p->mnt == new_fs->pwd.mnt) {
3005 new_fs->pwd.mnt = mntget(&q->mnt);
3006 pwdmnt = &p->mnt;
3007 }
3008 }
3009 p = next_mnt(p, old);
3010 q = next_mnt(q, new);
3011 if (!q)
3012 break;
3013 while (p->mnt.mnt_root != q->mnt.mnt_root)
3014 p = next_mnt(p, old);
3015 }
3016 namespace_unlock();
3017
3018 if (rootmnt)
3019 mntput(rootmnt);
3020 if (pwdmnt)
3021 mntput(pwdmnt);
3022
3023 return new_ns;
3024}
3025
3026/**
3027 * create_mnt_ns - creates a private namespace and adds a root filesystem
3028 * @mnt: pointer to the new root filesystem mountpoint
3029 */
3030static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
3031{
3032 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
3033 if (!IS_ERR(new_ns)) {
3034 struct mount *mnt = real_mount(m);
3035 mnt->mnt_ns = new_ns;
3036 new_ns->root = mnt;
3037 new_ns->mounts++;
3038 list_add(&mnt->mnt_list, &new_ns->list);
3039 } else {
3040 mntput(m);
3041 }
3042 return new_ns;
3043}
3044
3045struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3046{
3047 struct mnt_namespace *ns;
3048 struct super_block *s;
3049 struct path path;
3050 int err;
3051
3052 ns = create_mnt_ns(mnt);
3053 if (IS_ERR(ns))
3054 return ERR_CAST(ns);
3055
3056 err = vfs_path_lookup(mnt->mnt_root, mnt,
3057 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3058
3059 put_mnt_ns(ns);
3060
3061 if (err)
3062 return ERR_PTR(err);
3063
3064 /* trade a vfsmount reference for active sb one */
3065 s = path.mnt->mnt_sb;
3066 atomic_inc(&s->s_active);
3067 mntput(path.mnt);
3068 /* lock the sucker */
3069 down_write(&s->s_umount);
3070 /* ... and return the root of (sub)tree on it */
3071 return path.dentry;
3072}
3073EXPORT_SYMBOL(mount_subtree);
3074
3075SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3076 char __user *, type, unsigned long, flags, void __user *, data)
3077{
3078 int ret;
3079 char *kernel_type;
3080 char *kernel_dev;
3081 void *options;
3082
3083 kernel_type = copy_mount_string(type);
3084 ret = PTR_ERR(kernel_type);
3085 if (IS_ERR(kernel_type))
3086 goto out_type;
3087
3088 kernel_dev = copy_mount_string(dev_name);
3089 ret = PTR_ERR(kernel_dev);
3090 if (IS_ERR(kernel_dev))
3091 goto out_dev;
3092
3093 options = copy_mount_options(data);
3094 ret = PTR_ERR(options);
3095 if (IS_ERR(options))
3096 goto out_data;
3097
3098 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3099
3100 kfree(options);
3101out_data:
3102 kfree(kernel_dev);
3103out_dev:
3104 kfree(kernel_type);
3105out_type:
3106 return ret;
3107}
3108
3109/*
3110 * Return true if path is reachable from root
3111 *
3112 * namespace_sem or mount_lock is held
3113 */
3114bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3115 const struct path *root)
3116{
3117 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3118 dentry = mnt->mnt_mountpoint;
3119 mnt = mnt->mnt_parent;
3120 }
3121 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3122}
3123
3124bool path_is_under(struct path *path1, struct path *path2)
3125{
3126 bool res;
3127 read_seqlock_excl(&mount_lock);
3128 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3129 read_sequnlock_excl(&mount_lock);
3130 return res;
3131}
3132EXPORT_SYMBOL(path_is_under);
3133
3134/*
3135 * pivot_root Semantics:
3136 * Moves the root file system of the current process to the directory put_old,
3137 * makes new_root as the new root file system of the current process, and sets
3138 * root/cwd of all processes which had them on the current root to new_root.
3139 *
3140 * Restrictions:
3141 * The new_root and put_old must be directories, and must not be on the
3142 * same file system as the current process root. The put_old must be
3143 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3144 * pointed to by put_old must yield the same directory as new_root. No other
3145 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3146 *
3147 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3148 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3149 * in this situation.
3150 *
3151 * Notes:
3152 * - we don't move root/cwd if they are not at the root (reason: if something
3153 * cared enough to change them, it's probably wrong to force them elsewhere)
3154 * - it's okay to pick a root that isn't the root of a file system, e.g.
3155 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3156 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3157 * first.
3158 */
3159SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3160 const char __user *, put_old)
3161{
3162 struct path new, old, parent_path, root_parent, root;
3163 struct mount *new_mnt, *root_mnt, *old_mnt;
3164 struct mountpoint *old_mp, *root_mp;
3165 int error;
3166
3167 if (!may_mount())
3168 return -EPERM;
3169
3170 error = user_path_dir(new_root, &new);
3171 if (error)
3172 goto out0;
3173
3174 error = user_path_dir(put_old, &old);
3175 if (error)
3176 goto out1;
3177
3178 error = security_sb_pivotroot(&old, &new);
3179 if (error)
3180 goto out2;
3181
3182 get_fs_root(current->fs, &root);
3183 old_mp = lock_mount(&old);
3184 error = PTR_ERR(old_mp);
3185 if (IS_ERR(old_mp))
3186 goto out3;
3187
3188 error = -EINVAL;
3189 new_mnt = real_mount(new.mnt);
3190 root_mnt = real_mount(root.mnt);
3191 old_mnt = real_mount(old.mnt);
3192 if (IS_MNT_SHARED(old_mnt) ||
3193 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3194 IS_MNT_SHARED(root_mnt->mnt_parent))
3195 goto out4;
3196 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3197 goto out4;
3198 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3199 goto out4;
3200 error = -ENOENT;
3201 if (d_unlinked(new.dentry))
3202 goto out4;
3203 error = -EBUSY;
3204 if (new_mnt == root_mnt || old_mnt == root_mnt)
3205 goto out4; /* loop, on the same file system */
3206 error = -EINVAL;
3207 if (root.mnt->mnt_root != root.dentry)
3208 goto out4; /* not a mountpoint */
3209 if (!mnt_has_parent(root_mnt))
3210 goto out4; /* not attached */
3211 root_mp = root_mnt->mnt_mp;
3212 if (new.mnt->mnt_root != new.dentry)
3213 goto out4; /* not a mountpoint */
3214 if (!mnt_has_parent(new_mnt))
3215 goto out4; /* not attached */
3216 /* make sure we can reach put_old from new_root */
3217 if (!is_path_reachable(old_mnt, old.dentry, &new))
3218 goto out4;
3219 /* make certain new is below the root */
3220 if (!is_path_reachable(new_mnt, new.dentry, &root))
3221 goto out4;
3222 root_mp->m_count++; /* pin it so it won't go away */
3223 lock_mount_hash();
3224 detach_mnt(new_mnt, &parent_path);
3225 detach_mnt(root_mnt, &root_parent);
3226 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3227 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3228 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3229 }
3230 /* mount old root on put_old */
3231 attach_mnt(root_mnt, old_mnt, old_mp);
3232 /* mount new_root on / */
3233 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3234 touch_mnt_namespace(current->nsproxy->mnt_ns);
3235 /* A moved mount should not expire automatically */
3236 list_del_init(&new_mnt->mnt_expire);
3237 put_mountpoint(root_mp);
3238 unlock_mount_hash();
3239 chroot_fs_refs(&root, &new);
3240 error = 0;
3241out4:
3242 unlock_mount(old_mp);
3243 if (!error) {
3244 path_put(&root_parent);
3245 path_put(&parent_path);
3246 }
3247out3:
3248 path_put(&root);
3249out2:
3250 path_put(&old);
3251out1:
3252 path_put(&new);
3253out0:
3254 return error;
3255}
3256
3257static void __init init_mount_tree(void)
3258{
3259 struct vfsmount *mnt;
3260 struct mnt_namespace *ns;
3261 struct path root;
3262 struct file_system_type *type;
3263
3264 type = get_fs_type("rootfs");
3265 if (!type)
3266 panic("Can't find rootfs type");
3267 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3268 put_filesystem(type);
3269 if (IS_ERR(mnt))
3270 panic("Can't create rootfs");
3271
3272 ns = create_mnt_ns(mnt);
3273 if (IS_ERR(ns))
3274 panic("Can't allocate initial namespace");
3275
3276 init_task.nsproxy->mnt_ns = ns;
3277 get_mnt_ns(ns);
3278
3279 root.mnt = mnt;
3280 root.dentry = mnt->mnt_root;
3281 mnt->mnt_flags |= MNT_LOCKED;
3282
3283 set_fs_pwd(current->fs, &root);
3284 set_fs_root(current->fs, &root);
3285}
3286
3287void __init mnt_init(void)
3288{
3289 unsigned u;
3290 int err;
3291
3292 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3293 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3294
3295 mount_hashtable = alloc_large_system_hash("Mount-cache",
3296 sizeof(struct hlist_head),
3297 mhash_entries, 19,
3298 0,
3299 &m_hash_shift, &m_hash_mask, 0, 0);
3300 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3301 sizeof(struct hlist_head),
3302 mphash_entries, 19,
3303 0,
3304 &mp_hash_shift, &mp_hash_mask, 0, 0);
3305
3306 if (!mount_hashtable || !mountpoint_hashtable)
3307 panic("Failed to allocate mount hash table\n");
3308
3309 for (u = 0; u <= m_hash_mask; u++)
3310 INIT_HLIST_HEAD(&mount_hashtable[u]);
3311 for (u = 0; u <= mp_hash_mask; u++)
3312 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3313
3314 kernfs_init();
3315
3316 err = sysfs_init();
3317 if (err)
3318 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3319 __func__, err);
3320 fs_kobj = kobject_create_and_add("fs", NULL);
3321 if (!fs_kobj)
3322 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3323 init_rootfs();
3324 init_mount_tree();
3325}
3326
3327void put_mnt_ns(struct mnt_namespace *ns)
3328{
3329 if (!atomic_dec_and_test(&ns->count))
3330 return;
3331 drop_collected_mounts(&ns->root->mnt);
3332 free_mnt_ns(ns);
3333}
3334
3335struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3336{
3337 struct vfsmount *mnt;
3338 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3339 if (!IS_ERR(mnt)) {
3340 /*
3341 * it is a longterm mount, don't release mnt until
3342 * we unmount before file sys is unregistered
3343 */
3344 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3345 }
3346 return mnt;
3347}
3348EXPORT_SYMBOL_GPL(kern_mount_data);
3349
3350void kern_unmount(struct vfsmount *mnt)
3351{
3352 /* release long term mount so mount point can be released */
3353 if (!IS_ERR_OR_NULL(mnt)) {
3354 real_mount(mnt)->mnt_ns = NULL;
3355 synchronize_rcu(); /* yecchhh... */
3356 mntput(mnt);
3357 }
3358}
3359EXPORT_SYMBOL(kern_unmount);
3360
3361bool our_mnt(struct vfsmount *mnt)
3362{
3363 return check_mnt(real_mount(mnt));
3364}
3365
3366bool current_chrooted(void)
3367{
3368 /* Does the current process have a non-standard root */
3369 struct path ns_root;
3370 struct path fs_root;
3371 bool chrooted;
3372
3373 /* Find the namespace root */
3374 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3375 ns_root.dentry = ns_root.mnt->mnt_root;
3376 path_get(&ns_root);
3377 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3378 ;
3379
3380 get_fs_root(current->fs, &fs_root);
3381
3382 chrooted = !path_equal(&fs_root, &ns_root);
3383
3384 path_put(&fs_root);
3385 path_put(&ns_root);
3386
3387 return chrooted;
3388}
3389
3390static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3391 int *new_mnt_flags)
3392{
3393 int new_flags = *new_mnt_flags;
3394 struct mount *mnt;
3395 bool visible = false;
3396
3397 down_read(&namespace_sem);
3398 list_for_each_entry(mnt, &ns->list, mnt_list) {
3399 struct mount *child;
3400 int mnt_flags;
3401
3402 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3403 continue;
3404
3405 /* This mount is not fully visible if it's root directory
3406 * is not the root directory of the filesystem.
3407 */
3408 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3409 continue;
3410
3411 /* A local view of the mount flags */
3412 mnt_flags = mnt->mnt.mnt_flags;
3413
3414 /* Don't miss readonly hidden in the superblock flags */
3415 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3416 mnt_flags |= MNT_LOCK_READONLY;
3417
3418 /* Verify the mount flags are equal to or more permissive
3419 * than the proposed new mount.
3420 */
3421 if ((mnt_flags & MNT_LOCK_READONLY) &&
3422 !(new_flags & MNT_READONLY))
3423 continue;
3424 if ((mnt_flags & MNT_LOCK_ATIME) &&
3425 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3426 continue;
3427
3428 /* This mount is not fully visible if there are any
3429 * locked child mounts that cover anything except for
3430 * empty directories.
3431 */
3432 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3433 struct inode *inode = child->mnt_mountpoint->d_inode;
3434 /* Only worry about locked mounts */
3435 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3436 continue;
3437 /* Is the directory permanetly empty? */
3438 if (!is_empty_dir_inode(inode))
3439 goto next;
3440 }
3441 /* Preserve the locked attributes */
3442 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3443 MNT_LOCK_ATIME);
3444 visible = true;
3445 goto found;
3446 next: ;
3447 }
3448found:
3449 up_read(&namespace_sem);
3450 return visible;
3451}
3452
3453static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3454{
3455 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3456 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3457 unsigned long s_iflags;
3458
3459 if (ns->user_ns == &init_user_ns)
3460 return false;
3461
3462 /* Can this filesystem be too revealing? */
3463 s_iflags = mnt->mnt_sb->s_iflags;
3464 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3465 return false;
3466
3467 if ((s_iflags & required_iflags) != required_iflags) {
3468 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3469 required_iflags);
3470 return true;
3471 }
3472
3473 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3474}
3475
3476bool mnt_may_suid(struct vfsmount *mnt)
3477{
3478 /*
3479 * Foreign mounts (accessed via fchdir or through /proc
3480 * symlinks) are always treated as if they are nosuid. This
3481 * prevents namespaces from trusting potentially unsafe
3482 * suid/sgid bits, file caps, or security labels that originate
3483 * in other namespaces.
3484 */
3485 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3486 current_in_userns(mnt->mnt_sb->s_user_ns);
3487}
3488
3489static struct ns_common *mntns_get(struct task_struct *task)
3490{
3491 struct ns_common *ns = NULL;
3492 struct nsproxy *nsproxy;
3493
3494 task_lock(task);
3495 nsproxy = task->nsproxy;
3496 if (nsproxy) {
3497 ns = &nsproxy->mnt_ns->ns;
3498 get_mnt_ns(to_mnt_ns(ns));
3499 }
3500 task_unlock(task);
3501
3502 return ns;
3503}
3504
3505static void mntns_put(struct ns_common *ns)
3506{
3507 put_mnt_ns(to_mnt_ns(ns));
3508}
3509
3510static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3511{
3512 struct fs_struct *fs = current->fs;
3513 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3514 struct path root;
3515
3516 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3517 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3518 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3519 return -EPERM;
3520
3521 if (fs->users != 1)
3522 return -EINVAL;
3523
3524 get_mnt_ns(mnt_ns);
3525 put_mnt_ns(nsproxy->mnt_ns);
3526 nsproxy->mnt_ns = mnt_ns;
3527
3528 /* Find the root */
3529 root.mnt = &mnt_ns->root->mnt;
3530 root.dentry = mnt_ns->root->mnt.mnt_root;
3531 path_get(&root);
3532 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3533 ;
3534
3535 /* Update the pwd and root */
3536 set_fs_pwd(fs, &root);
3537 set_fs_root(fs, &root);
3538
3539 path_put(&root);
3540 return 0;
3541}
3542
3543static struct user_namespace *mntns_owner(struct ns_common *ns)
3544{
3545 return to_mnt_ns(ns)->user_ns;
3546}
3547
3548const struct proc_ns_operations mntns_operations = {
3549 .name = "mnt",
3550 .type = CLONE_NEWNS,
3551 .get = mntns_get,
3552 .put = mntns_put,
3553 .install = mntns_install,
3554 .owner = mntns_owner,
3555};
3556