summaryrefslogtreecommitdiff
path: root/fs/super.c (plain)
blob: de136ed3105bdb1d7e287f3d6a4fb5f5bf2d4612
1/*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23#include <linux/export.h>
24#include <linux/slab.h>
25#include <linux/blkdev.h>
26#include <linux/mount.h>
27#include <linux/security.h>
28#include <linux/writeback.h> /* for the emergency remount stuff */
29#include <linux/idr.h>
30#include <linux/mutex.h>
31#include <linux/backing-dev.h>
32#include <linux/rculist_bl.h>
33#include <linux/cleancache.h>
34#include <linux/fsnotify.h>
35#include <linux/lockdep.h>
36#include <linux/user_namespace.h>
37#include "internal.h"
38
39
40static LIST_HEAD(super_blocks);
41static DEFINE_SPINLOCK(sb_lock);
42
43static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
47};
48
49/*
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
55 */
56static unsigned long super_cache_scan(struct shrinker *shrink,
57 struct shrink_control *sc)
58{
59 struct super_block *sb;
60 long fs_objects = 0;
61 long total_objects;
62 long freed = 0;
63 long dentries;
64 long inodes;
65
66 sb = container_of(shrink, struct super_block, s_shrink);
67
68 /*
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
71 */
72 if (!(sc->gfp_mask & __GFP_FS))
73 return SHRINK_STOP;
74
75 if (!trylock_super(sb))
76 return SHRINK_STOP;
77
78 if (sb->s_op->nr_cached_objects)
79 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
80
81 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
82 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
83 total_objects = dentries + inodes + fs_objects + 1;
84 if (!total_objects)
85 total_objects = 1;
86
87 /* proportion the scan between the caches */
88 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
89 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
90 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
91
92 /*
93 * prune the dcache first as the icache is pinned by it, then
94 * prune the icache, followed by the filesystem specific caches
95 *
96 * Ensure that we always scan at least one object - memcg kmem
97 * accounting uses this to fully empty the caches.
98 */
99 sc->nr_to_scan = dentries + 1;
100 freed = prune_dcache_sb(sb, sc);
101 sc->nr_to_scan = inodes + 1;
102 freed += prune_icache_sb(sb, sc);
103
104 if (fs_objects) {
105 sc->nr_to_scan = fs_objects + 1;
106 freed += sb->s_op->free_cached_objects(sb, sc);
107 }
108
109 up_read(&sb->s_umount);
110 return freed;
111}
112
113static unsigned long super_cache_count(struct shrinker *shrink,
114 struct shrink_control *sc)
115{
116 struct super_block *sb;
117 long total_objects = 0;
118
119 sb = container_of(shrink, struct super_block, s_shrink);
120
121 /*
122 * We don't call trylock_super() here as it is a scalability bottleneck,
123 * so we're exposed to partial setup state. The shrinker rwsem does not
124 * protect filesystem operations backing list_lru_shrink_count() or
125 * s_op->nr_cached_objects(). Counts can change between
126 * super_cache_count and super_cache_scan, so we really don't need locks
127 * here.
128 *
129 * However, if we are currently mounting the superblock, the underlying
130 * filesystem might be in a state of partial construction and hence it
131 * is dangerous to access it. trylock_super() uses a MS_BORN check to
132 * avoid this situation, so do the same here. The memory barrier is
133 * matched with the one in mount_fs() as we don't hold locks here.
134 */
135 if (!(sb->s_flags & MS_BORN))
136 return 0;
137 smp_rmb();
138
139 if (sb->s_op && sb->s_op->nr_cached_objects)
140 total_objects = sb->s_op->nr_cached_objects(sb, sc);
141
142 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
143 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
144
145 total_objects = vfs_pressure_ratio(total_objects);
146 return total_objects;
147}
148
149static void destroy_super_work(struct work_struct *work)
150{
151 struct super_block *s = container_of(work, struct super_block,
152 destroy_work);
153 int i;
154
155 for (i = 0; i < SB_FREEZE_LEVELS; i++)
156 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
157 kfree(s);
158}
159
160static void destroy_super_rcu(struct rcu_head *head)
161{
162 struct super_block *s = container_of(head, struct super_block, rcu);
163 INIT_WORK(&s->destroy_work, destroy_super_work);
164 schedule_work(&s->destroy_work);
165}
166
167/**
168 * destroy_super - frees a superblock
169 * @s: superblock to free
170 *
171 * Frees a superblock.
172 */
173static void destroy_super(struct super_block *s)
174{
175 list_lru_destroy(&s->s_dentry_lru);
176 list_lru_destroy(&s->s_inode_lru);
177 security_sb_free(s);
178 WARN_ON(!list_empty(&s->s_mounts));
179 put_user_ns(s->s_user_ns);
180 kfree(s->s_subtype);
181 kfree(s->s_options);
182 call_rcu(&s->rcu, destroy_super_rcu);
183}
184
185/**
186 * alloc_super - create new superblock
187 * @type: filesystem type superblock should belong to
188 * @flags: the mount flags
189 * @user_ns: User namespace for the super_block
190 *
191 * Allocates and initializes a new &struct super_block. alloc_super()
192 * returns a pointer new superblock or %NULL if allocation had failed.
193 */
194static struct super_block *alloc_super(struct file_system_type *type, int flags,
195 struct user_namespace *user_ns)
196{
197 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
198 static const struct super_operations default_op;
199 int i;
200
201 if (!s)
202 return NULL;
203
204 INIT_LIST_HEAD(&s->s_mounts);
205 s->s_user_ns = get_user_ns(user_ns);
206
207 if (security_sb_alloc(s))
208 goto fail;
209
210 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
211 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
212 sb_writers_name[i],
213 &type->s_writers_key[i]))
214 goto fail;
215 }
216 init_waitqueue_head(&s->s_writers.wait_unfrozen);
217 s->s_bdi = &noop_backing_dev_info;
218 s->s_flags = flags;
219 if (s->s_user_ns != &init_user_ns)
220 s->s_iflags |= SB_I_NODEV;
221 INIT_HLIST_NODE(&s->s_instances);
222 INIT_HLIST_BL_HEAD(&s->s_anon);
223 mutex_init(&s->s_sync_lock);
224 INIT_LIST_HEAD(&s->s_inodes);
225 spin_lock_init(&s->s_inode_list_lock);
226 INIT_LIST_HEAD(&s->s_inodes_wb);
227 spin_lock_init(&s->s_inode_wblist_lock);
228
229 if (list_lru_init_memcg(&s->s_dentry_lru))
230 goto fail;
231 if (list_lru_init_memcg(&s->s_inode_lru))
232 goto fail;
233
234 init_rwsem(&s->s_umount);
235 lockdep_set_class(&s->s_umount, &type->s_umount_key);
236 /*
237 * sget() can have s_umount recursion.
238 *
239 * When it cannot find a suitable sb, it allocates a new
240 * one (this one), and tries again to find a suitable old
241 * one.
242 *
243 * In case that succeeds, it will acquire the s_umount
244 * lock of the old one. Since these are clearly distrinct
245 * locks, and this object isn't exposed yet, there's no
246 * risk of deadlocks.
247 *
248 * Annotate this by putting this lock in a different
249 * subclass.
250 */
251 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
252 s->s_count = 1;
253 atomic_set(&s->s_active, 1);
254 mutex_init(&s->s_vfs_rename_mutex);
255 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
256 mutex_init(&s->s_dquot.dqio_mutex);
257 mutex_init(&s->s_dquot.dqonoff_mutex);
258 s->s_maxbytes = MAX_NON_LFS;
259 s->s_op = &default_op;
260 s->s_time_gran = 1000000000;
261 s->cleancache_poolid = CLEANCACHE_NO_POOL;
262
263 s->s_shrink.seeks = DEFAULT_SEEKS;
264 s->s_shrink.scan_objects = super_cache_scan;
265 s->s_shrink.count_objects = super_cache_count;
266 s->s_shrink.batch = 1024;
267 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
268 return s;
269
270fail:
271 destroy_super(s);
272 return NULL;
273}
274
275/* Superblock refcounting */
276
277/*
278 * Drop a superblock's refcount. The caller must hold sb_lock.
279 */
280static void __put_super(struct super_block *sb)
281{
282 if (!--sb->s_count) {
283 list_del_init(&sb->s_list);
284 destroy_super(sb);
285 }
286}
287
288/**
289 * put_super - drop a temporary reference to superblock
290 * @sb: superblock in question
291 *
292 * Drops a temporary reference, frees superblock if there's no
293 * references left.
294 */
295static void put_super(struct super_block *sb)
296{
297 spin_lock(&sb_lock);
298 __put_super(sb);
299 spin_unlock(&sb_lock);
300}
301
302
303/**
304 * deactivate_locked_super - drop an active reference to superblock
305 * @s: superblock to deactivate
306 *
307 * Drops an active reference to superblock, converting it into a temporary
308 * one if there is no other active references left. In that case we
309 * tell fs driver to shut it down and drop the temporary reference we
310 * had just acquired.
311 *
312 * Caller holds exclusive lock on superblock; that lock is released.
313 */
314void deactivate_locked_super(struct super_block *s)
315{
316 struct file_system_type *fs = s->s_type;
317 if (atomic_dec_and_test(&s->s_active)) {
318 cleancache_invalidate_fs(s);
319 unregister_shrinker(&s->s_shrink);
320 fs->kill_sb(s);
321
322 /*
323 * Since list_lru_destroy() may sleep, we cannot call it from
324 * put_super(), where we hold the sb_lock. Therefore we destroy
325 * the lru lists right now.
326 */
327 list_lru_destroy(&s->s_dentry_lru);
328 list_lru_destroy(&s->s_inode_lru);
329
330 put_filesystem(fs);
331 put_super(s);
332 } else {
333 up_write(&s->s_umount);
334 }
335}
336
337EXPORT_SYMBOL(deactivate_locked_super);
338
339/**
340 * deactivate_super - drop an active reference to superblock
341 * @s: superblock to deactivate
342 *
343 * Variant of deactivate_locked_super(), except that superblock is *not*
344 * locked by caller. If we are going to drop the final active reference,
345 * lock will be acquired prior to that.
346 */
347void deactivate_super(struct super_block *s)
348{
349 if (!atomic_add_unless(&s->s_active, -1, 1)) {
350 down_write(&s->s_umount);
351 deactivate_locked_super(s);
352 }
353}
354
355EXPORT_SYMBOL(deactivate_super);
356
357/**
358 * grab_super - acquire an active reference
359 * @s: reference we are trying to make active
360 *
361 * Tries to acquire an active reference. grab_super() is used when we
362 * had just found a superblock in super_blocks or fs_type->fs_supers
363 * and want to turn it into a full-blown active reference. grab_super()
364 * is called with sb_lock held and drops it. Returns 1 in case of
365 * success, 0 if we had failed (superblock contents was already dead or
366 * dying when grab_super() had been called). Note that this is only
367 * called for superblocks not in rundown mode (== ones still on ->fs_supers
368 * of their type), so increment of ->s_count is OK here.
369 */
370static int grab_super(struct super_block *s) __releases(sb_lock)
371{
372 s->s_count++;
373 spin_unlock(&sb_lock);
374 down_write(&s->s_umount);
375 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
376 put_super(s);
377 return 1;
378 }
379 up_write(&s->s_umount);
380 put_super(s);
381 return 0;
382}
383
384/*
385 * trylock_super - try to grab ->s_umount shared
386 * @sb: reference we are trying to grab
387 *
388 * Try to prevent fs shutdown. This is used in places where we
389 * cannot take an active reference but we need to ensure that the
390 * filesystem is not shut down while we are working on it. It returns
391 * false if we cannot acquire s_umount or if we lose the race and
392 * filesystem already got into shutdown, and returns true with the s_umount
393 * lock held in read mode in case of success. On successful return,
394 * the caller must drop the s_umount lock when done.
395 *
396 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
397 * The reason why it's safe is that we are OK with doing trylock instead
398 * of down_read(). There's a couple of places that are OK with that, but
399 * it's very much not a general-purpose interface.
400 */
401bool trylock_super(struct super_block *sb)
402{
403 if (down_read_trylock(&sb->s_umount)) {
404 if (!hlist_unhashed(&sb->s_instances) &&
405 sb->s_root && (sb->s_flags & MS_BORN))
406 return true;
407 up_read(&sb->s_umount);
408 }
409
410 return false;
411}
412
413/**
414 * generic_shutdown_super - common helper for ->kill_sb()
415 * @sb: superblock to kill
416 *
417 * generic_shutdown_super() does all fs-independent work on superblock
418 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
419 * that need destruction out of superblock, call generic_shutdown_super()
420 * and release aforementioned objects. Note: dentries and inodes _are_
421 * taken care of and do not need specific handling.
422 *
423 * Upon calling this function, the filesystem may no longer alter or
424 * rearrange the set of dentries belonging to this super_block, nor may it
425 * change the attachments of dentries to inodes.
426 */
427void generic_shutdown_super(struct super_block *sb)
428{
429 const struct super_operations *sop = sb->s_op;
430
431 if (sb->s_root) {
432 shrink_dcache_for_umount(sb);
433 sync_filesystem(sb);
434 sb->s_flags &= ~MS_ACTIVE;
435
436 fsnotify_unmount_inodes(sb);
437 cgroup_writeback_umount();
438
439 evict_inodes(sb);
440
441 if (sb->s_dio_done_wq) {
442 destroy_workqueue(sb->s_dio_done_wq);
443 sb->s_dio_done_wq = NULL;
444 }
445
446 if (sop->put_super)
447 sop->put_super(sb);
448
449 if (!list_empty(&sb->s_inodes)) {
450 printk("VFS: Busy inodes after unmount of %s. "
451 "Self-destruct in 5 seconds. Have a nice day...\n",
452 sb->s_id);
453 }
454 }
455 spin_lock(&sb_lock);
456 /* should be initialized for __put_super_and_need_restart() */
457 hlist_del_init(&sb->s_instances);
458 spin_unlock(&sb_lock);
459 up_write(&sb->s_umount);
460}
461
462EXPORT_SYMBOL(generic_shutdown_super);
463
464/**
465 * sget_userns - find or create a superblock
466 * @type: filesystem type superblock should belong to
467 * @test: comparison callback
468 * @set: setup callback
469 * @flags: mount flags
470 * @user_ns: User namespace for the super_block
471 * @data: argument to each of them
472 */
473struct super_block *sget_userns(struct file_system_type *type,
474 int (*test)(struct super_block *,void *),
475 int (*set)(struct super_block *,void *),
476 int flags, struct user_namespace *user_ns,
477 void *data)
478{
479 struct super_block *s = NULL;
480 struct super_block *old;
481 int err;
482
483 if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) &&
484 !(type->fs_flags & FS_USERNS_MOUNT) &&
485 !capable(CAP_SYS_ADMIN))
486 return ERR_PTR(-EPERM);
487retry:
488 spin_lock(&sb_lock);
489 if (test) {
490 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
491 if (!test(old, data))
492 continue;
493 if (user_ns != old->s_user_ns) {
494 spin_unlock(&sb_lock);
495 if (s) {
496 up_write(&s->s_umount);
497 destroy_super(s);
498 }
499 return ERR_PTR(-EBUSY);
500 }
501 if (!grab_super(old))
502 goto retry;
503 if (s) {
504 up_write(&s->s_umount);
505 destroy_super(s);
506 s = NULL;
507 }
508 return old;
509 }
510 }
511 if (!s) {
512 spin_unlock(&sb_lock);
513 s = alloc_super(type, (flags & ~MS_SUBMOUNT), user_ns);
514 if (!s)
515 return ERR_PTR(-ENOMEM);
516 goto retry;
517 }
518
519 err = set(s, data);
520 if (err) {
521 spin_unlock(&sb_lock);
522 up_write(&s->s_umount);
523 destroy_super(s);
524 return ERR_PTR(err);
525 }
526 s->s_type = type;
527 strlcpy(s->s_id, type->name, sizeof(s->s_id));
528 list_add_tail(&s->s_list, &super_blocks);
529 hlist_add_head(&s->s_instances, &type->fs_supers);
530 spin_unlock(&sb_lock);
531 get_filesystem(type);
532 err = register_shrinker(&s->s_shrink);
533 if (err) {
534 deactivate_locked_super(s);
535 s = ERR_PTR(err);
536 }
537 return s;
538}
539
540EXPORT_SYMBOL(sget_userns);
541
542/**
543 * sget - find or create a superblock
544 * @type: filesystem type superblock should belong to
545 * @test: comparison callback
546 * @set: setup callback
547 * @flags: mount flags
548 * @data: argument to each of them
549 */
550struct super_block *sget(struct file_system_type *type,
551 int (*test)(struct super_block *,void *),
552 int (*set)(struct super_block *,void *),
553 int flags,
554 void *data)
555{
556 struct user_namespace *user_ns = current_user_ns();
557
558 /* We don't yet pass the user namespace of the parent
559 * mount through to here so always use &init_user_ns
560 * until that changes.
561 */
562 if (flags & MS_SUBMOUNT)
563 user_ns = &init_user_ns;
564
565 /* Ensure the requestor has permissions over the target filesystem */
566 if (!(flags & (MS_KERNMOUNT|MS_SUBMOUNT)) && !ns_capable(user_ns, CAP_SYS_ADMIN))
567 return ERR_PTR(-EPERM);
568
569 return sget_userns(type, test, set, flags, user_ns, data);
570}
571
572EXPORT_SYMBOL(sget);
573
574void drop_super(struct super_block *sb)
575{
576 up_read(&sb->s_umount);
577 put_super(sb);
578}
579
580EXPORT_SYMBOL(drop_super);
581
582/**
583 * iterate_supers - call function for all active superblocks
584 * @f: function to call
585 * @arg: argument to pass to it
586 *
587 * Scans the superblock list and calls given function, passing it
588 * locked superblock and given argument.
589 */
590void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
591{
592 struct super_block *sb, *p = NULL;
593
594 spin_lock(&sb_lock);
595 list_for_each_entry(sb, &super_blocks, s_list) {
596 if (hlist_unhashed(&sb->s_instances))
597 continue;
598 sb->s_count++;
599 spin_unlock(&sb_lock);
600
601 down_read(&sb->s_umount);
602 if (sb->s_root && (sb->s_flags & MS_BORN))
603 f(sb, arg);
604 up_read(&sb->s_umount);
605
606 spin_lock(&sb_lock);
607 if (p)
608 __put_super(p);
609 p = sb;
610 }
611 if (p)
612 __put_super(p);
613 spin_unlock(&sb_lock);
614}
615
616/**
617 * iterate_supers_type - call function for superblocks of given type
618 * @type: fs type
619 * @f: function to call
620 * @arg: argument to pass to it
621 *
622 * Scans the superblock list and calls given function, passing it
623 * locked superblock and given argument.
624 */
625void iterate_supers_type(struct file_system_type *type,
626 void (*f)(struct super_block *, void *), void *arg)
627{
628 struct super_block *sb, *p = NULL;
629
630 spin_lock(&sb_lock);
631 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
632 sb->s_count++;
633 spin_unlock(&sb_lock);
634
635 down_read(&sb->s_umount);
636 if (sb->s_root && (sb->s_flags & MS_BORN))
637 f(sb, arg);
638 up_read(&sb->s_umount);
639
640 spin_lock(&sb_lock);
641 if (p)
642 __put_super(p);
643 p = sb;
644 }
645 if (p)
646 __put_super(p);
647 spin_unlock(&sb_lock);
648}
649
650EXPORT_SYMBOL(iterate_supers_type);
651
652/**
653 * get_super - get the superblock of a device
654 * @bdev: device to get the superblock for
655 *
656 * Scans the superblock list and finds the superblock of the file system
657 * mounted on the device given. %NULL is returned if no match is found.
658 */
659
660struct super_block *get_super(struct block_device *bdev)
661{
662 struct super_block *sb;
663
664 if (!bdev)
665 return NULL;
666
667 spin_lock(&sb_lock);
668rescan:
669 list_for_each_entry(sb, &super_blocks, s_list) {
670 if (hlist_unhashed(&sb->s_instances))
671 continue;
672 if (sb->s_bdev == bdev) {
673 sb->s_count++;
674 spin_unlock(&sb_lock);
675 down_read(&sb->s_umount);
676 /* still alive? */
677 if (sb->s_root && (sb->s_flags & MS_BORN))
678 return sb;
679 up_read(&sb->s_umount);
680 /* nope, got unmounted */
681 spin_lock(&sb_lock);
682 __put_super(sb);
683 goto rescan;
684 }
685 }
686 spin_unlock(&sb_lock);
687 return NULL;
688}
689
690EXPORT_SYMBOL(get_super);
691
692/**
693 * get_super_thawed - get thawed superblock of a device
694 * @bdev: device to get the superblock for
695 *
696 * Scans the superblock list and finds the superblock of the file system
697 * mounted on the device. The superblock is returned once it is thawed
698 * (or immediately if it was not frozen). %NULL is returned if no match
699 * is found.
700 */
701struct super_block *get_super_thawed(struct block_device *bdev)
702{
703 while (1) {
704 struct super_block *s = get_super(bdev);
705 if (!s || s->s_writers.frozen == SB_UNFROZEN)
706 return s;
707 up_read(&s->s_umount);
708 wait_event(s->s_writers.wait_unfrozen,
709 s->s_writers.frozen == SB_UNFROZEN);
710 put_super(s);
711 }
712}
713EXPORT_SYMBOL(get_super_thawed);
714
715/**
716 * get_active_super - get an active reference to the superblock of a device
717 * @bdev: device to get the superblock for
718 *
719 * Scans the superblock list and finds the superblock of the file system
720 * mounted on the device given. Returns the superblock with an active
721 * reference or %NULL if none was found.
722 */
723struct super_block *get_active_super(struct block_device *bdev)
724{
725 struct super_block *sb;
726
727 if (!bdev)
728 return NULL;
729
730restart:
731 spin_lock(&sb_lock);
732 list_for_each_entry(sb, &super_blocks, s_list) {
733 if (hlist_unhashed(&sb->s_instances))
734 continue;
735 if (sb->s_bdev == bdev) {
736 if (!grab_super(sb))
737 goto restart;
738 up_write(&sb->s_umount);
739 return sb;
740 }
741 }
742 spin_unlock(&sb_lock);
743 return NULL;
744}
745
746struct super_block *user_get_super(dev_t dev)
747{
748 struct super_block *sb;
749
750 spin_lock(&sb_lock);
751rescan:
752 list_for_each_entry(sb, &super_blocks, s_list) {
753 if (hlist_unhashed(&sb->s_instances))
754 continue;
755 if (sb->s_dev == dev) {
756 sb->s_count++;
757 spin_unlock(&sb_lock);
758 down_read(&sb->s_umount);
759 /* still alive? */
760 if (sb->s_root && (sb->s_flags & MS_BORN))
761 return sb;
762 up_read(&sb->s_umount);
763 /* nope, got unmounted */
764 spin_lock(&sb_lock);
765 __put_super(sb);
766 goto rescan;
767 }
768 }
769 spin_unlock(&sb_lock);
770 return NULL;
771}
772
773/**
774 * do_remount_sb2 - asks filesystem to change mount options.
775 * @mnt: mount we are looking at
776 * @sb: superblock in question
777 * @flags: numeric part of options
778 * @data: the rest of options
779 * @force: whether or not to force the change
780 *
781 * Alters the mount options of a mounted file system.
782 */
783int do_remount_sb2(struct vfsmount *mnt, struct super_block *sb, int flags, void *data, int force)
784{
785 int retval;
786 int remount_ro;
787
788 if (sb->s_writers.frozen != SB_UNFROZEN)
789 return -EBUSY;
790
791#ifdef CONFIG_BLOCK
792 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
793 return -EACCES;
794#endif
795
796 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
797
798 if (remount_ro) {
799 if (!hlist_empty(&sb->s_pins)) {
800 up_write(&sb->s_umount);
801 group_pin_kill(&sb->s_pins);
802 down_write(&sb->s_umount);
803 if (!sb->s_root)
804 return 0;
805 if (sb->s_writers.frozen != SB_UNFROZEN)
806 return -EBUSY;
807 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
808 }
809 }
810 shrink_dcache_sb(sb);
811
812 /* If we are remounting RDONLY and current sb is read/write,
813 make sure there are no rw files opened */
814 if (remount_ro) {
815 if (force) {
816 sb->s_readonly_remount = 1;
817 smp_wmb();
818 } else {
819 retval = sb_prepare_remount_readonly(sb);
820 if (retval)
821 return retval;
822 }
823 }
824
825 if (mnt && sb->s_op->remount_fs2) {
826 retval = sb->s_op->remount_fs2(mnt, sb, &flags, data);
827 if (retval) {
828 if (!force)
829 goto cancel_readonly;
830 /* If forced remount, go ahead despite any errors */
831 WARN(1, "forced remount of a %s fs returned %i\n",
832 sb->s_type->name, retval);
833 }
834 } else if (sb->s_op->remount_fs) {
835 retval = sb->s_op->remount_fs(sb, &flags, data);
836 if (retval) {
837 if (!force)
838 goto cancel_readonly;
839 /* If forced remount, go ahead despite any errors */
840 WARN(1, "forced remount of a %s fs returned %i\n",
841 sb->s_type->name, retval);
842 }
843 }
844 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
845 /* Needs to be ordered wrt mnt_is_readonly() */
846 smp_wmb();
847 sb->s_readonly_remount = 0;
848
849 /*
850 * Some filesystems modify their metadata via some other path than the
851 * bdev buffer cache (eg. use a private mapping, or directories in
852 * pagecache, etc). Also file data modifications go via their own
853 * mappings. So If we try to mount readonly then copy the filesystem
854 * from bdev, we could get stale data, so invalidate it to give a best
855 * effort at coherency.
856 */
857 if (remount_ro && sb->s_bdev)
858 invalidate_bdev(sb->s_bdev);
859 return 0;
860
861cancel_readonly:
862 sb->s_readonly_remount = 0;
863 return retval;
864}
865
866int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
867{
868 return do_remount_sb2(NULL, sb, flags, data, force);
869}
870
871static void do_emergency_remount(struct work_struct *work)
872{
873 struct super_block *sb, *p = NULL;
874
875 spin_lock(&sb_lock);
876 list_for_each_entry_reverse(sb, &super_blocks, s_list) {
877 if (hlist_unhashed(&sb->s_instances))
878 continue;
879 sb->s_count++;
880 spin_unlock(&sb_lock);
881 down_write(&sb->s_umount);
882 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
883 !(sb->s_flags & MS_RDONLY)) {
884 /*
885 * What lock protects sb->s_flags??
886 */
887 do_remount_sb(sb, MS_RDONLY, NULL, 1);
888 }
889 up_write(&sb->s_umount);
890 spin_lock(&sb_lock);
891 if (p)
892 __put_super(p);
893 p = sb;
894 }
895 if (p)
896 __put_super(p);
897 spin_unlock(&sb_lock);
898 kfree(work);
899 printk("Emergency Remount complete\n");
900}
901
902void emergency_remount(void)
903{
904 struct work_struct *work;
905
906 work = kmalloc(sizeof(*work), GFP_ATOMIC);
907 if (work) {
908 INIT_WORK(work, do_emergency_remount);
909 schedule_work(work);
910 }
911}
912
913/*
914 * Unnamed block devices are dummy devices used by virtual
915 * filesystems which don't use real block-devices. -- jrs
916 */
917
918static DEFINE_IDA(unnamed_dev_ida);
919static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
920/* Many userspace utilities consider an FSID of 0 invalid.
921 * Always return at least 1 from get_anon_bdev.
922 */
923static int unnamed_dev_start = 1;
924
925int get_anon_bdev(dev_t *p)
926{
927 int dev;
928 int error;
929
930 retry:
931 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
932 return -ENOMEM;
933 spin_lock(&unnamed_dev_lock);
934 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
935 if (!error)
936 unnamed_dev_start = dev + 1;
937 spin_unlock(&unnamed_dev_lock);
938 if (error == -EAGAIN)
939 /* We raced and lost with another CPU. */
940 goto retry;
941 else if (error)
942 return -EAGAIN;
943
944 if (dev >= (1 << MINORBITS)) {
945 spin_lock(&unnamed_dev_lock);
946 ida_remove(&unnamed_dev_ida, dev);
947 if (unnamed_dev_start > dev)
948 unnamed_dev_start = dev;
949 spin_unlock(&unnamed_dev_lock);
950 return -EMFILE;
951 }
952 *p = MKDEV(0, dev & MINORMASK);
953 return 0;
954}
955EXPORT_SYMBOL(get_anon_bdev);
956
957void free_anon_bdev(dev_t dev)
958{
959 int slot = MINOR(dev);
960 spin_lock(&unnamed_dev_lock);
961 ida_remove(&unnamed_dev_ida, slot);
962 if (slot < unnamed_dev_start)
963 unnamed_dev_start = slot;
964 spin_unlock(&unnamed_dev_lock);
965}
966EXPORT_SYMBOL(free_anon_bdev);
967
968int set_anon_super(struct super_block *s, void *data)
969{
970 return get_anon_bdev(&s->s_dev);
971}
972
973EXPORT_SYMBOL(set_anon_super);
974
975void kill_anon_super(struct super_block *sb)
976{
977 dev_t dev = sb->s_dev;
978 generic_shutdown_super(sb);
979 free_anon_bdev(dev);
980}
981
982EXPORT_SYMBOL(kill_anon_super);
983
984void kill_litter_super(struct super_block *sb)
985{
986 if (sb->s_root)
987 d_genocide(sb->s_root);
988 kill_anon_super(sb);
989}
990
991EXPORT_SYMBOL(kill_litter_super);
992
993static int ns_test_super(struct super_block *sb, void *data)
994{
995 return sb->s_fs_info == data;
996}
997
998static int ns_set_super(struct super_block *sb, void *data)
999{
1000 sb->s_fs_info = data;
1001 return set_anon_super(sb, NULL);
1002}
1003
1004struct dentry *mount_ns(struct file_system_type *fs_type,
1005 int flags, void *data, void *ns, struct user_namespace *user_ns,
1006 int (*fill_super)(struct super_block *, void *, int))
1007{
1008 struct super_block *sb;
1009
1010 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1011 * over the namespace.
1012 */
1013 if (!(flags & MS_KERNMOUNT) && !ns_capable(user_ns, CAP_SYS_ADMIN))
1014 return ERR_PTR(-EPERM);
1015
1016 sb = sget_userns(fs_type, ns_test_super, ns_set_super, flags,
1017 user_ns, ns);
1018 if (IS_ERR(sb))
1019 return ERR_CAST(sb);
1020
1021 if (!sb->s_root) {
1022 int err;
1023 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
1024 if (err) {
1025 deactivate_locked_super(sb);
1026 return ERR_PTR(err);
1027 }
1028
1029 sb->s_flags |= MS_ACTIVE;
1030 }
1031
1032 return dget(sb->s_root);
1033}
1034
1035EXPORT_SYMBOL(mount_ns);
1036
1037#ifdef CONFIG_BLOCK
1038static int set_bdev_super(struct super_block *s, void *data)
1039{
1040 s->s_bdev = data;
1041 s->s_dev = s->s_bdev->bd_dev;
1042
1043 /*
1044 * We set the bdi here to the queue backing, file systems can
1045 * overwrite this in ->fill_super()
1046 */
1047 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
1048 return 0;
1049}
1050
1051static int test_bdev_super(struct super_block *s, void *data)
1052{
1053 return (void *)s->s_bdev == data;
1054}
1055
1056struct dentry *mount_bdev(struct file_system_type *fs_type,
1057 int flags, const char *dev_name, void *data,
1058 int (*fill_super)(struct super_block *, void *, int))
1059{
1060 struct block_device *bdev;
1061 struct super_block *s;
1062 fmode_t mode = FMODE_READ | FMODE_EXCL;
1063 int error = 0;
1064
1065 if (!(flags & MS_RDONLY))
1066 mode |= FMODE_WRITE;
1067
1068 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1069 if (IS_ERR(bdev))
1070 return ERR_CAST(bdev);
1071
1072 /*
1073 * once the super is inserted into the list by sget, s_umount
1074 * will protect the lockfs code from trying to start a snapshot
1075 * while we are mounting
1076 */
1077 mutex_lock(&bdev->bd_fsfreeze_mutex);
1078 if (bdev->bd_fsfreeze_count > 0) {
1079 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1080 error = -EBUSY;
1081 goto error_bdev;
1082 }
1083 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
1084 bdev);
1085 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1086 if (IS_ERR(s))
1087 goto error_s;
1088
1089 if (s->s_root) {
1090 if ((flags ^ s->s_flags) & MS_RDONLY) {
1091 deactivate_locked_super(s);
1092 error = -EBUSY;
1093 goto error_bdev;
1094 }
1095
1096 /*
1097 * s_umount nests inside bd_mutex during
1098 * __invalidate_device(). blkdev_put() acquires
1099 * bd_mutex and can't be called under s_umount. Drop
1100 * s_umount temporarily. This is safe as we're
1101 * holding an active reference.
1102 */
1103 up_write(&s->s_umount);
1104 blkdev_put(bdev, mode);
1105 down_write(&s->s_umount);
1106 } else {
1107 s->s_mode = mode;
1108 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1109 sb_set_blocksize(s, block_size(bdev));
1110 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1111 if (error) {
1112 deactivate_locked_super(s);
1113 goto error;
1114 }
1115
1116 s->s_flags |= MS_ACTIVE;
1117 bdev->bd_super = s;
1118 }
1119
1120 return dget(s->s_root);
1121
1122error_s:
1123 error = PTR_ERR(s);
1124error_bdev:
1125 blkdev_put(bdev, mode);
1126error:
1127 return ERR_PTR(error);
1128}
1129EXPORT_SYMBOL(mount_bdev);
1130
1131void kill_block_super(struct super_block *sb)
1132{
1133 struct block_device *bdev = sb->s_bdev;
1134 fmode_t mode = sb->s_mode;
1135
1136 bdev->bd_super = NULL;
1137 generic_shutdown_super(sb);
1138 sync_blockdev(bdev);
1139 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1140 blkdev_put(bdev, mode | FMODE_EXCL);
1141}
1142
1143EXPORT_SYMBOL(kill_block_super);
1144#endif
1145
1146struct dentry *mount_nodev(struct file_system_type *fs_type,
1147 int flags, void *data,
1148 int (*fill_super)(struct super_block *, void *, int))
1149{
1150 int error;
1151 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1152
1153 if (IS_ERR(s))
1154 return ERR_CAST(s);
1155
1156 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1157 if (error) {
1158 deactivate_locked_super(s);
1159 return ERR_PTR(error);
1160 }
1161 s->s_flags |= MS_ACTIVE;
1162 return dget(s->s_root);
1163}
1164EXPORT_SYMBOL(mount_nodev);
1165
1166static int compare_single(struct super_block *s, void *p)
1167{
1168 return 1;
1169}
1170
1171struct dentry *mount_single(struct file_system_type *fs_type,
1172 int flags, void *data,
1173 int (*fill_super)(struct super_block *, void *, int))
1174{
1175 struct super_block *s;
1176 int error;
1177
1178 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1179 if (IS_ERR(s))
1180 return ERR_CAST(s);
1181 if (!s->s_root) {
1182 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1183 if (error) {
1184 deactivate_locked_super(s);
1185 return ERR_PTR(error);
1186 }
1187 s->s_flags |= MS_ACTIVE;
1188 } else {
1189 do_remount_sb(s, flags, data, 0);
1190 }
1191 return dget(s->s_root);
1192}
1193EXPORT_SYMBOL(mount_single);
1194
1195struct dentry *
1196mount_fs(struct file_system_type *type, int flags, const char *name, struct vfsmount *mnt, void *data)
1197{
1198 struct dentry *root;
1199 struct super_block *sb;
1200 char *secdata = NULL;
1201 int error = -ENOMEM;
1202
1203 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1204 secdata = alloc_secdata();
1205 if (!secdata)
1206 goto out;
1207
1208 error = security_sb_copy_data(data, secdata);
1209 if (error)
1210 goto out_free_secdata;
1211 }
1212
1213 if (type->mount2)
1214 root = type->mount2(mnt, type, flags, name, data);
1215 else
1216 root = type->mount(type, flags, name, data);
1217 if (IS_ERR(root)) {
1218 error = PTR_ERR(root);
1219 goto out_free_secdata;
1220 }
1221 sb = root->d_sb;
1222 BUG_ON(!sb);
1223 WARN_ON(!sb->s_bdi);
1224
1225 /*
1226 * Write barrier is for super_cache_count(). We place it before setting
1227 * MS_BORN as the data dependency between the two functions is the
1228 * superblock structure contents that we just set up, not the MS_BORN
1229 * flag.
1230 */
1231 smp_wmb();
1232 sb->s_flags |= MS_BORN;
1233
1234 error = security_sb_kern_mount(sb, flags, secdata);
1235 if (error)
1236 goto out_sb;
1237
1238 /*
1239 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1240 * but s_maxbytes was an unsigned long long for many releases. Throw
1241 * this warning for a little while to try and catch filesystems that
1242 * violate this rule.
1243 */
1244 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1245 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1246
1247 up_write(&sb->s_umount);
1248 free_secdata(secdata);
1249 return root;
1250out_sb:
1251 dput(root);
1252 deactivate_locked_super(sb);
1253out_free_secdata:
1254 free_secdata(secdata);
1255out:
1256 return ERR_PTR(error);
1257}
1258
1259/*
1260 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1261 * instead.
1262 */
1263void __sb_end_write(struct super_block *sb, int level)
1264{
1265 percpu_up_read(sb->s_writers.rw_sem + level-1);
1266}
1267EXPORT_SYMBOL(__sb_end_write);
1268
1269/*
1270 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1271 * instead.
1272 */
1273int __sb_start_write(struct super_block *sb, int level, bool wait)
1274{
1275 bool force_trylock = false;
1276 int ret = 1;
1277
1278#ifdef CONFIG_LOCKDEP
1279 /*
1280 * We want lockdep to tell us about possible deadlocks with freezing
1281 * but it's it bit tricky to properly instrument it. Getting a freeze
1282 * protection works as getting a read lock but there are subtle
1283 * problems. XFS for example gets freeze protection on internal level
1284 * twice in some cases, which is OK only because we already hold a
1285 * freeze protection also on higher level. Due to these cases we have
1286 * to use wait == F (trylock mode) which must not fail.
1287 */
1288 if (wait) {
1289 int i;
1290
1291 for (i = 0; i < level - 1; i++)
1292 if (percpu_rwsem_is_held(sb->s_writers.rw_sem + i)) {
1293 force_trylock = true;
1294 break;
1295 }
1296 }
1297#endif
1298 if (wait && !force_trylock)
1299 percpu_down_read(sb->s_writers.rw_sem + level-1);
1300 else
1301 ret = percpu_down_read_trylock(sb->s_writers.rw_sem + level-1);
1302
1303 WARN_ON(force_trylock && !ret);
1304 return ret;
1305}
1306EXPORT_SYMBOL(__sb_start_write);
1307
1308/**
1309 * sb_wait_write - wait until all writers to given file system finish
1310 * @sb: the super for which we wait
1311 * @level: type of writers we wait for (normal vs page fault)
1312 *
1313 * This function waits until there are no writers of given type to given file
1314 * system.
1315 */
1316static void sb_wait_write(struct super_block *sb, int level)
1317{
1318 percpu_down_write(sb->s_writers.rw_sem + level-1);
1319}
1320
1321/*
1322 * We are going to return to userspace and forget about these locks, the
1323 * ownership goes to the caller of thaw_super() which does unlock().
1324 */
1325static void lockdep_sb_freeze_release(struct super_block *sb)
1326{
1327 int level;
1328
1329 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1330 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1331}
1332
1333/*
1334 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1335 */
1336static void lockdep_sb_freeze_acquire(struct super_block *sb)
1337{
1338 int level;
1339
1340 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1341 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1342}
1343
1344static void sb_freeze_unlock(struct super_block *sb)
1345{
1346 int level;
1347
1348 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1349 percpu_up_write(sb->s_writers.rw_sem + level);
1350}
1351
1352/**
1353 * freeze_super - lock the filesystem and force it into a consistent state
1354 * @sb: the super to lock
1355 *
1356 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1357 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1358 * -EBUSY.
1359 *
1360 * During this function, sb->s_writers.frozen goes through these values:
1361 *
1362 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1363 *
1364 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1365 * writes should be blocked, though page faults are still allowed. We wait for
1366 * all writes to complete and then proceed to the next stage.
1367 *
1368 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1369 * but internal fs threads can still modify the filesystem (although they
1370 * should not dirty new pages or inodes), writeback can run etc. After waiting
1371 * for all running page faults we sync the filesystem which will clean all
1372 * dirty pages and inodes (no new dirty pages or inodes can be created when
1373 * sync is running).
1374 *
1375 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1376 * modification are blocked (e.g. XFS preallocation truncation on inode
1377 * reclaim). This is usually implemented by blocking new transactions for
1378 * filesystems that have them and need this additional guard. After all
1379 * internal writers are finished we call ->freeze_fs() to finish filesystem
1380 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1381 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1382 *
1383 * sb->s_writers.frozen is protected by sb->s_umount.
1384 */
1385int freeze_super(struct super_block *sb)
1386{
1387 int ret;
1388
1389 atomic_inc(&sb->s_active);
1390 down_write(&sb->s_umount);
1391 if (sb->s_writers.frozen != SB_UNFROZEN) {
1392 deactivate_locked_super(sb);
1393 return -EBUSY;
1394 }
1395
1396 if (!(sb->s_flags & MS_BORN)) {
1397 up_write(&sb->s_umount);
1398 return 0; /* sic - it's "nothing to do" */
1399 }
1400
1401 if (sb->s_flags & MS_RDONLY) {
1402 /* Nothing to do really... */
1403 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1404 up_write(&sb->s_umount);
1405 return 0;
1406 }
1407
1408 sb->s_writers.frozen = SB_FREEZE_WRITE;
1409 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1410 up_write(&sb->s_umount);
1411 sb_wait_write(sb, SB_FREEZE_WRITE);
1412 down_write(&sb->s_umount);
1413
1414 /* Now we go and block page faults... */
1415 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1416 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1417
1418 /* All writers are done so after syncing there won't be dirty data */
1419 sync_filesystem(sb);
1420
1421 /* Now wait for internal filesystem counter */
1422 sb->s_writers.frozen = SB_FREEZE_FS;
1423 sb_wait_write(sb, SB_FREEZE_FS);
1424
1425 if (sb->s_op->freeze_fs) {
1426 ret = sb->s_op->freeze_fs(sb);
1427 if (ret) {
1428 printk(KERN_ERR
1429 "VFS:Filesystem freeze failed\n");
1430 sb->s_writers.frozen = SB_UNFROZEN;
1431 sb_freeze_unlock(sb);
1432 wake_up(&sb->s_writers.wait_unfrozen);
1433 deactivate_locked_super(sb);
1434 return ret;
1435 }
1436 }
1437 /*
1438 * For debugging purposes so that fs can warn if it sees write activity
1439 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1440 */
1441 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1442 lockdep_sb_freeze_release(sb);
1443 up_write(&sb->s_umount);
1444 return 0;
1445}
1446EXPORT_SYMBOL(freeze_super);
1447
1448/**
1449 * thaw_super -- unlock filesystem
1450 * @sb: the super to thaw
1451 *
1452 * Unlocks the filesystem and marks it writeable again after freeze_super().
1453 */
1454int thaw_super(struct super_block *sb)
1455{
1456 int error;
1457
1458 down_write(&sb->s_umount);
1459 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1460 up_write(&sb->s_umount);
1461 return -EINVAL;
1462 }
1463
1464 if (sb->s_flags & MS_RDONLY) {
1465 sb->s_writers.frozen = SB_UNFROZEN;
1466 goto out;
1467 }
1468
1469 lockdep_sb_freeze_acquire(sb);
1470
1471 if (sb->s_op->unfreeze_fs) {
1472 error = sb->s_op->unfreeze_fs(sb);
1473 if (error) {
1474 printk(KERN_ERR
1475 "VFS:Filesystem thaw failed\n");
1476 lockdep_sb_freeze_release(sb);
1477 up_write(&sb->s_umount);
1478 return error;
1479 }
1480 }
1481
1482 sb->s_writers.frozen = SB_UNFROZEN;
1483 sb_freeze_unlock(sb);
1484out:
1485 wake_up(&sb->s_writers.wait_unfrozen);
1486 deactivate_locked_super(sb);
1487 return 0;
1488}
1489EXPORT_SYMBOL(thaw_super);
1490