summaryrefslogtreecommitdiff
path: root/ipc/sem.c (plain)
blob: 10b94bc59d4a5ffaa85a89152ac02a1f806db054
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semcnt()
51 * - the task that performs a successful semop() scans the list of all
52 * sleeping tasks and completes any pending operations that can be fulfilled.
53 * Semaphores are actively given to waiting tasks (necessary for FIFO).
54 * (see update_queue())
55 * - To improve the scalability, the actual wake-up calls are performed after
56 * dropping all locks. (see wake_up_sem_queue_prepare(),
57 * wake_up_sem_queue_do())
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
62 * - The synchronizations between wake-ups due to a timeout/signal and a
63 * wake-up due to a completed semaphore operation is achieved by using an
64 * intermediate state (IN_WAKEUP).
65 * - UNDO values are stored in an array (one per process and per
66 * semaphore array, lazily allocated). For backwards compatibility, multiple
67 * modes for the UNDO variables are supported (per process, per thread)
68 * (see copy_semundo, CLONE_SYSVSEM)
69 * - There are two lists of the pending operations: a per-array list
70 * and per-semaphore list (stored in the array). This allows to achieve FIFO
71 * ordering without always scanning all pending operations.
72 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 */
74
75#include <linux/slab.h>
76#include <linux/spinlock.h>
77#include <linux/init.h>
78#include <linux/proc_fs.h>
79#include <linux/time.h>
80#include <linux/security.h>
81#include <linux/syscalls.h>
82#include <linux/audit.h>
83#include <linux/capability.h>
84#include <linux/seq_file.h>
85#include <linux/rwsem.h>
86#include <linux/nsproxy.h>
87#include <linux/ipc_namespace.h>
88
89#include <linux/uaccess.h>
90#include "util.h"
91
92/* One semaphore structure for each semaphore in the system. */
93struct sem {
94 int semval; /* current value */
95 /*
96 * PID of the process that last modified the semaphore. For
97 * Linux, specifically these are:
98 * - semop
99 * - semctl, via SETVAL and SETALL.
100 * - at task exit when performing undo adjustments (see exit_sem).
101 */
102 int sempid;
103 spinlock_t lock; /* spinlock for fine-grained semtimedop */
104 struct list_head pending_alter; /* pending single-sop operations */
105 /* that alter the semaphore */
106 struct list_head pending_const; /* pending single-sop operations */
107 /* that do not alter the semaphore*/
108 time_t sem_otime; /* candidate for sem_otime */
109} ____cacheline_aligned_in_smp;
110
111/* One queue for each sleeping process in the system. */
112struct sem_queue {
113 struct list_head list; /* queue of pending operations */
114 struct task_struct *sleeper; /* this process */
115 struct sem_undo *undo; /* undo structure */
116 int pid; /* process id of requesting process */
117 int status; /* completion status of operation */
118 struct sembuf *sops; /* array of pending operations */
119 struct sembuf *blocking; /* the operation that blocked */
120 int nsops; /* number of operations */
121 int alter; /* does *sops alter the array? */
122};
123
124/* Each task has a list of undo requests. They are executed automatically
125 * when the process exits.
126 */
127struct sem_undo {
128 struct list_head list_proc; /* per-process list: *
129 * all undos from one process
130 * rcu protected */
131 struct rcu_head rcu; /* rcu struct for sem_undo */
132 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
133 struct list_head list_id; /* per semaphore array list:
134 * all undos for one array */
135 int semid; /* semaphore set identifier */
136 short *semadj; /* array of adjustments */
137 /* one per semaphore */
138};
139
140/* sem_undo_list controls shared access to the list of sem_undo structures
141 * that may be shared among all a CLONE_SYSVSEM task group.
142 */
143struct sem_undo_list {
144 atomic_t refcnt;
145 spinlock_t lock;
146 struct list_head list_proc;
147};
148
149
150#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
151
152#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
153
154static int newary(struct ipc_namespace *, struct ipc_params *);
155static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
156#ifdef CONFIG_PROC_FS
157static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
158#endif
159
160#define SEMMSL_FAST 256 /* 512 bytes on stack */
161#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
162
163/*
164 * Locking:
165 * a) global sem_lock() for read/write
166 * sem_undo.id_next,
167 * sem_array.complex_count,
168 * sem_array.complex_mode
169 * sem_array.pending{_alter,_const},
170 * sem_array.sem_undo
171 *
172 * b) global or semaphore sem_lock() for read/write:
173 * sem_array.sem_base[i].pending_{const,alter}:
174 * sem_array.complex_mode (for read)
175 *
176 * c) special:
177 * sem_undo_list.list_proc:
178 * * undo_list->lock for write
179 * * rcu for read
180 */
181
182#define sc_semmsl sem_ctls[0]
183#define sc_semmns sem_ctls[1]
184#define sc_semopm sem_ctls[2]
185#define sc_semmni sem_ctls[3]
186
187void sem_init_ns(struct ipc_namespace *ns)
188{
189 ns->sc_semmsl = SEMMSL;
190 ns->sc_semmns = SEMMNS;
191 ns->sc_semopm = SEMOPM;
192 ns->sc_semmni = SEMMNI;
193 ns->used_sems = 0;
194 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
195}
196
197#ifdef CONFIG_IPC_NS
198void sem_exit_ns(struct ipc_namespace *ns)
199{
200 free_ipcs(ns, &sem_ids(ns), freeary);
201 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
202}
203#endif
204
205void __init sem_init(void)
206{
207 sem_init_ns(&init_ipc_ns);
208 ipc_init_proc_interface("sysvipc/sem",
209 " key semid perms nsems uid gid cuid cgid otime ctime\n",
210 IPC_SEM_IDS, sysvipc_sem_proc_show);
211}
212
213/**
214 * unmerge_queues - unmerge queues, if possible.
215 * @sma: semaphore array
216 *
217 * The function unmerges the wait queues if complex_count is 0.
218 * It must be called prior to dropping the global semaphore array lock.
219 */
220static void unmerge_queues(struct sem_array *sma)
221{
222 struct sem_queue *q, *tq;
223
224 /* complex operations still around? */
225 if (sma->complex_count)
226 return;
227 /*
228 * We will switch back to simple mode.
229 * Move all pending operation back into the per-semaphore
230 * queues.
231 */
232 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
233 struct sem *curr;
234 curr = &sma->sem_base[q->sops[0].sem_num];
235
236 list_add_tail(&q->list, &curr->pending_alter);
237 }
238 INIT_LIST_HEAD(&sma->pending_alter);
239}
240
241/**
242 * merge_queues - merge single semop queues into global queue
243 * @sma: semaphore array
244 *
245 * This function merges all per-semaphore queues into the global queue.
246 * It is necessary to achieve FIFO ordering for the pending single-sop
247 * operations when a multi-semop operation must sleep.
248 * Only the alter operations must be moved, the const operations can stay.
249 */
250static void merge_queues(struct sem_array *sma)
251{
252 int i;
253 for (i = 0; i < sma->sem_nsems; i++) {
254 struct sem *sem = sma->sem_base + i;
255
256 list_splice_init(&sem->pending_alter, &sma->pending_alter);
257 }
258}
259
260static void sem_rcu_free(struct rcu_head *head)
261{
262 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
263 struct sem_array *sma = ipc_rcu_to_struct(p);
264
265 security_sem_free(sma);
266 ipc_rcu_free(head);
267}
268
269/*
270 * Enter the mode suitable for non-simple operations:
271 * Caller must own sem_perm.lock.
272 */
273static void complexmode_enter(struct sem_array *sma)
274{
275 int i;
276 struct sem *sem;
277
278 if (sma->complex_mode) {
279 /* We are already in complex_mode. Nothing to do */
280 return;
281 }
282
283 /* We need a full barrier after seting complex_mode:
284 * The write to complex_mode must be visible
285 * before we read the first sem->lock spinlock state.
286 */
287 smp_store_mb(sma->complex_mode, true);
288
289 for (i = 0; i < sma->sem_nsems; i++) {
290 sem = sma->sem_base + i;
291 spin_unlock_wait(&sem->lock);
292 }
293 /*
294 * spin_unlock_wait() is not a memory barriers, it is only a
295 * control barrier. The code must pair with spin_unlock(&sem->lock),
296 * thus just the control barrier is insufficient.
297 *
298 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
299 */
300 smp_rmb();
301}
302
303/*
304 * Try to leave the mode that disallows simple operations:
305 * Caller must own sem_perm.lock.
306 */
307static void complexmode_tryleave(struct sem_array *sma)
308{
309 if (sma->complex_count) {
310 /* Complex ops are sleeping.
311 * We must stay in complex mode
312 */
313 return;
314 }
315 /*
316 * Immediately after setting complex_mode to false,
317 * a simple op can start. Thus: all memory writes
318 * performed by the current operation must be visible
319 * before we set complex_mode to false.
320 */
321 smp_store_release(&sma->complex_mode, false);
322}
323
324#define SEM_GLOBAL_LOCK (-1)
325/*
326 * If the request contains only one semaphore operation, and there are
327 * no complex transactions pending, lock only the semaphore involved.
328 * Otherwise, lock the entire semaphore array, since we either have
329 * multiple semaphores in our own semops, or we need to look at
330 * semaphores from other pending complex operations.
331 */
332static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
333 int nsops)
334{
335 struct sem *sem;
336
337 if (nsops != 1) {
338 /* Complex operation - acquire a full lock */
339 ipc_lock_object(&sma->sem_perm);
340
341 /* Prevent parallel simple ops */
342 complexmode_enter(sma);
343 return SEM_GLOBAL_LOCK;
344 }
345
346 /*
347 * Only one semaphore affected - try to optimize locking.
348 * Optimized locking is possible if no complex operation
349 * is either enqueued or processed right now.
350 *
351 * Both facts are tracked by complex_mode.
352 */
353 sem = sma->sem_base + sops->sem_num;
354
355 /*
356 * Initial check for complex_mode. Just an optimization,
357 * no locking, no memory barrier.
358 */
359 if (!sma->complex_mode) {
360 /*
361 * It appears that no complex operation is around.
362 * Acquire the per-semaphore lock.
363 */
364 spin_lock(&sem->lock);
365
366 /*
367 * See 51d7d5205d33
368 * ("powerpc: Add smp_mb() to arch_spin_is_locked()"):
369 * A full barrier is required: the write of sem->lock
370 * must be visible before the read is executed
371 */
372 smp_mb();
373
374 if (!smp_load_acquire(&sma->complex_mode)) {
375 /* fast path successful! */
376 return sops->sem_num;
377 }
378 spin_unlock(&sem->lock);
379 }
380
381 /* slow path: acquire the full lock */
382 ipc_lock_object(&sma->sem_perm);
383
384 if (sma->complex_count == 0) {
385 /* False alarm:
386 * There is no complex operation, thus we can switch
387 * back to the fast path.
388 */
389 spin_lock(&sem->lock);
390 ipc_unlock_object(&sma->sem_perm);
391 return sops->sem_num;
392 } else {
393 /* Not a false alarm, thus complete the sequence for a
394 * full lock.
395 */
396 complexmode_enter(sma);
397 return SEM_GLOBAL_LOCK;
398 }
399}
400
401static inline void sem_unlock(struct sem_array *sma, int locknum)
402{
403 if (locknum == SEM_GLOBAL_LOCK) {
404 unmerge_queues(sma);
405 complexmode_tryleave(sma);
406 ipc_unlock_object(&sma->sem_perm);
407 } else {
408 struct sem *sem = sma->sem_base + locknum;
409 spin_unlock(&sem->lock);
410 }
411}
412
413/*
414 * sem_lock_(check_) routines are called in the paths where the rwsem
415 * is not held.
416 *
417 * The caller holds the RCU read lock.
418 */
419static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
420 int id, struct sembuf *sops, int nsops, int *locknum)
421{
422 struct kern_ipc_perm *ipcp;
423 struct sem_array *sma;
424
425 ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
426 if (IS_ERR(ipcp))
427 return ERR_CAST(ipcp);
428
429 sma = container_of(ipcp, struct sem_array, sem_perm);
430 *locknum = sem_lock(sma, sops, nsops);
431
432 /* ipc_rmid() may have already freed the ID while sem_lock
433 * was spinning: verify that the structure is still valid
434 */
435 if (ipc_valid_object(ipcp))
436 return container_of(ipcp, struct sem_array, sem_perm);
437
438 sem_unlock(sma, *locknum);
439 return ERR_PTR(-EINVAL);
440}
441
442static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
443{
444 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
445
446 if (IS_ERR(ipcp))
447 return ERR_CAST(ipcp);
448
449 return container_of(ipcp, struct sem_array, sem_perm);
450}
451
452static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
453 int id)
454{
455 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
456
457 if (IS_ERR(ipcp))
458 return ERR_CAST(ipcp);
459
460 return container_of(ipcp, struct sem_array, sem_perm);
461}
462
463static inline void sem_lock_and_putref(struct sem_array *sma)
464{
465 sem_lock(sma, NULL, -1);
466 ipc_rcu_putref(sma, sem_rcu_free);
467}
468
469static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
470{
471 ipc_rmid(&sem_ids(ns), &s->sem_perm);
472}
473
474/*
475 * Lockless wakeup algorithm:
476 * Without the check/retry algorithm a lockless wakeup is possible:
477 * - queue.status is initialized to -EINTR before blocking.
478 * - wakeup is performed by
479 * * unlinking the queue entry from the pending list
480 * * setting queue.status to IN_WAKEUP
481 * This is the notification for the blocked thread that a
482 * result value is imminent.
483 * * call wake_up_process
484 * * set queue.status to the final value.
485 * - the previously blocked thread checks queue.status:
486 * * if it's IN_WAKEUP, then it must wait until the value changes
487 * * if it's not -EINTR, then the operation was completed by
488 * update_queue. semtimedop can return queue.status without
489 * performing any operation on the sem array.
490 * * otherwise it must acquire the spinlock and check what's up.
491 *
492 * The two-stage algorithm is necessary to protect against the following
493 * races:
494 * - if queue.status is set after wake_up_process, then the woken up idle
495 * thread could race forward and try (and fail) to acquire sma->lock
496 * before update_queue had a chance to set queue.status
497 * - if queue.status is written before wake_up_process and if the
498 * blocked process is woken up by a signal between writing
499 * queue.status and the wake_up_process, then the woken up
500 * process could return from semtimedop and die by calling
501 * sys_exit before wake_up_process is called. Then wake_up_process
502 * will oops, because the task structure is already invalid.
503 * (yes, this happened on s390 with sysv msg).
504 *
505 */
506#define IN_WAKEUP 1
507
508/**
509 * newary - Create a new semaphore set
510 * @ns: namespace
511 * @params: ptr to the structure that contains key, semflg and nsems
512 *
513 * Called with sem_ids.rwsem held (as a writer)
514 */
515static int newary(struct ipc_namespace *ns, struct ipc_params *params)
516{
517 int id;
518 int retval;
519 struct sem_array *sma;
520 int size;
521 key_t key = params->key;
522 int nsems = params->u.nsems;
523 int semflg = params->flg;
524 int i;
525
526 if (!nsems)
527 return -EINVAL;
528 if (ns->used_sems + nsems > ns->sc_semmns)
529 return -ENOSPC;
530
531 size = sizeof(*sma) + nsems * sizeof(struct sem);
532 sma = ipc_rcu_alloc(size);
533 if (!sma)
534 return -ENOMEM;
535
536 memset(sma, 0, size);
537
538 sma->sem_perm.mode = (semflg & S_IRWXUGO);
539 sma->sem_perm.key = key;
540
541 sma->sem_perm.security = NULL;
542 retval = security_sem_alloc(sma);
543 if (retval) {
544 ipc_rcu_putref(sma, ipc_rcu_free);
545 return retval;
546 }
547
548 sma->sem_base = (struct sem *) &sma[1];
549
550 for (i = 0; i < nsems; i++) {
551 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
552 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
553 spin_lock_init(&sma->sem_base[i].lock);
554 }
555
556 sma->complex_count = 0;
557 sma->complex_mode = true; /* dropped by sem_unlock below */
558 INIT_LIST_HEAD(&sma->pending_alter);
559 INIT_LIST_HEAD(&sma->pending_const);
560 INIT_LIST_HEAD(&sma->list_id);
561 sma->sem_nsems = nsems;
562 sma->sem_ctime = get_seconds();
563
564 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
565 if (id < 0) {
566 ipc_rcu_putref(sma, sem_rcu_free);
567 return id;
568 }
569 ns->used_sems += nsems;
570
571 sem_unlock(sma, -1);
572 rcu_read_unlock();
573
574 return sma->sem_perm.id;
575}
576
577
578/*
579 * Called with sem_ids.rwsem and ipcp locked.
580 */
581static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
582{
583 struct sem_array *sma;
584
585 sma = container_of(ipcp, struct sem_array, sem_perm);
586 return security_sem_associate(sma, semflg);
587}
588
589/*
590 * Called with sem_ids.rwsem and ipcp locked.
591 */
592static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
593 struct ipc_params *params)
594{
595 struct sem_array *sma;
596
597 sma = container_of(ipcp, struct sem_array, sem_perm);
598 if (params->u.nsems > sma->sem_nsems)
599 return -EINVAL;
600
601 return 0;
602}
603
604SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
605{
606 struct ipc_namespace *ns;
607 static const struct ipc_ops sem_ops = {
608 .getnew = newary,
609 .associate = sem_security,
610 .more_checks = sem_more_checks,
611 };
612 struct ipc_params sem_params;
613
614 ns = current->nsproxy->ipc_ns;
615
616 if (nsems < 0 || nsems > ns->sc_semmsl)
617 return -EINVAL;
618
619 sem_params.key = key;
620 sem_params.flg = semflg;
621 sem_params.u.nsems = nsems;
622
623 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
624}
625
626/**
627 * perform_atomic_semop - Perform (if possible) a semaphore operation
628 * @sma: semaphore array
629 * @q: struct sem_queue that describes the operation
630 *
631 * Returns 0 if the operation was possible.
632 * Returns 1 if the operation is impossible, the caller must sleep.
633 * Negative values are error codes.
634 */
635static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
636{
637 int result, sem_op, nsops, pid;
638 struct sembuf *sop;
639 struct sem *curr;
640 struct sembuf *sops;
641 struct sem_undo *un;
642
643 sops = q->sops;
644 nsops = q->nsops;
645 un = q->undo;
646
647 for (sop = sops; sop < sops + nsops; sop++) {
648 curr = sma->sem_base + sop->sem_num;
649 sem_op = sop->sem_op;
650 result = curr->semval;
651
652 if (!sem_op && result)
653 goto would_block;
654
655 result += sem_op;
656 if (result < 0)
657 goto would_block;
658 if (result > SEMVMX)
659 goto out_of_range;
660
661 if (sop->sem_flg & SEM_UNDO) {
662 int undo = un->semadj[sop->sem_num] - sem_op;
663 /* Exceeding the undo range is an error. */
664 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
665 goto out_of_range;
666 un->semadj[sop->sem_num] = undo;
667 }
668
669 curr->semval = result;
670 }
671
672 sop--;
673 pid = q->pid;
674 while (sop >= sops) {
675 sma->sem_base[sop->sem_num].sempid = pid;
676 sop--;
677 }
678
679 return 0;
680
681out_of_range:
682 result = -ERANGE;
683 goto undo;
684
685would_block:
686 q->blocking = sop;
687
688 if (sop->sem_flg & IPC_NOWAIT)
689 result = -EAGAIN;
690 else
691 result = 1;
692
693undo:
694 sop--;
695 while (sop >= sops) {
696 sem_op = sop->sem_op;
697 sma->sem_base[sop->sem_num].semval -= sem_op;
698 if (sop->sem_flg & SEM_UNDO)
699 un->semadj[sop->sem_num] += sem_op;
700 sop--;
701 }
702
703 return result;
704}
705
706/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
707 * @q: queue entry that must be signaled
708 * @error: Error value for the signal
709 *
710 * Prepare the wake-up of the queue entry q.
711 */
712static void wake_up_sem_queue_prepare(struct list_head *pt,
713 struct sem_queue *q, int error)
714{
715 if (list_empty(pt)) {
716 /*
717 * Hold preempt off so that we don't get preempted and have the
718 * wakee busy-wait until we're scheduled back on.
719 */
720 preempt_disable();
721 }
722 q->status = IN_WAKEUP;
723 q->pid = error;
724
725 list_add_tail(&q->list, pt);
726}
727
728/**
729 * wake_up_sem_queue_do - do the actual wake-up
730 * @pt: list of tasks to be woken up
731 *
732 * Do the actual wake-up.
733 * The function is called without any locks held, thus the semaphore array
734 * could be destroyed already and the tasks can disappear as soon as the
735 * status is set to the actual return code.
736 */
737static void wake_up_sem_queue_do(struct list_head *pt)
738{
739 struct sem_queue *q, *t;
740 int did_something;
741
742 did_something = !list_empty(pt);
743 list_for_each_entry_safe(q, t, pt, list) {
744 wake_up_process(q->sleeper);
745 /* q can disappear immediately after writing q->status. */
746 smp_wmb();
747 q->status = q->pid;
748 }
749 if (did_something)
750 preempt_enable();
751}
752
753static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
754{
755 list_del(&q->list);
756 if (q->nsops > 1)
757 sma->complex_count--;
758}
759
760/** check_restart(sma, q)
761 * @sma: semaphore array
762 * @q: the operation that just completed
763 *
764 * update_queue is O(N^2) when it restarts scanning the whole queue of
765 * waiting operations. Therefore this function checks if the restart is
766 * really necessary. It is called after a previously waiting operation
767 * modified the array.
768 * Note that wait-for-zero operations are handled without restart.
769 */
770static int check_restart(struct sem_array *sma, struct sem_queue *q)
771{
772 /* pending complex alter operations are too difficult to analyse */
773 if (!list_empty(&sma->pending_alter))
774 return 1;
775
776 /* we were a sleeping complex operation. Too difficult */
777 if (q->nsops > 1)
778 return 1;
779
780 /* It is impossible that someone waits for the new value:
781 * - complex operations always restart.
782 * - wait-for-zero are handled seperately.
783 * - q is a previously sleeping simple operation that
784 * altered the array. It must be a decrement, because
785 * simple increments never sleep.
786 * - If there are older (higher priority) decrements
787 * in the queue, then they have observed the original
788 * semval value and couldn't proceed. The operation
789 * decremented to value - thus they won't proceed either.
790 */
791 return 0;
792}
793
794/**
795 * wake_const_ops - wake up non-alter tasks
796 * @sma: semaphore array.
797 * @semnum: semaphore that was modified.
798 * @pt: list head for the tasks that must be woken up.
799 *
800 * wake_const_ops must be called after a semaphore in a semaphore array
801 * was set to 0. If complex const operations are pending, wake_const_ops must
802 * be called with semnum = -1, as well as with the number of each modified
803 * semaphore.
804 * The tasks that must be woken up are added to @pt. The return code
805 * is stored in q->pid.
806 * The function returns 1 if at least one operation was completed successfully.
807 */
808static int wake_const_ops(struct sem_array *sma, int semnum,
809 struct list_head *pt)
810{
811 struct sem_queue *q;
812 struct list_head *walk;
813 struct list_head *pending_list;
814 int semop_completed = 0;
815
816 if (semnum == -1)
817 pending_list = &sma->pending_const;
818 else
819 pending_list = &sma->sem_base[semnum].pending_const;
820
821 walk = pending_list->next;
822 while (walk != pending_list) {
823 int error;
824
825 q = container_of(walk, struct sem_queue, list);
826 walk = walk->next;
827
828 error = perform_atomic_semop(sma, q);
829
830 if (error <= 0) {
831 /* operation completed, remove from queue & wakeup */
832
833 unlink_queue(sma, q);
834
835 wake_up_sem_queue_prepare(pt, q, error);
836 if (error == 0)
837 semop_completed = 1;
838 }
839 }
840 return semop_completed;
841}
842
843/**
844 * do_smart_wakeup_zero - wakeup all wait for zero tasks
845 * @sma: semaphore array
846 * @sops: operations that were performed
847 * @nsops: number of operations
848 * @pt: list head of the tasks that must be woken up.
849 *
850 * Checks all required queue for wait-for-zero operations, based
851 * on the actual changes that were performed on the semaphore array.
852 * The function returns 1 if at least one operation was completed successfully.
853 */
854static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
855 int nsops, struct list_head *pt)
856{
857 int i;
858 int semop_completed = 0;
859 int got_zero = 0;
860
861 /* first: the per-semaphore queues, if known */
862 if (sops) {
863 for (i = 0; i < nsops; i++) {
864 int num = sops[i].sem_num;
865
866 if (sma->sem_base[num].semval == 0) {
867 got_zero = 1;
868 semop_completed |= wake_const_ops(sma, num, pt);
869 }
870 }
871 } else {
872 /*
873 * No sops means modified semaphores not known.
874 * Assume all were changed.
875 */
876 for (i = 0; i < sma->sem_nsems; i++) {
877 if (sma->sem_base[i].semval == 0) {
878 got_zero = 1;
879 semop_completed |= wake_const_ops(sma, i, pt);
880 }
881 }
882 }
883 /*
884 * If one of the modified semaphores got 0,
885 * then check the global queue, too.
886 */
887 if (got_zero)
888 semop_completed |= wake_const_ops(sma, -1, pt);
889
890 return semop_completed;
891}
892
893
894/**
895 * update_queue - look for tasks that can be completed.
896 * @sma: semaphore array.
897 * @semnum: semaphore that was modified.
898 * @pt: list head for the tasks that must be woken up.
899 *
900 * update_queue must be called after a semaphore in a semaphore array
901 * was modified. If multiple semaphores were modified, update_queue must
902 * be called with semnum = -1, as well as with the number of each modified
903 * semaphore.
904 * The tasks that must be woken up are added to @pt. The return code
905 * is stored in q->pid.
906 * The function internally checks if const operations can now succeed.
907 *
908 * The function return 1 if at least one semop was completed successfully.
909 */
910static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
911{
912 struct sem_queue *q;
913 struct list_head *walk;
914 struct list_head *pending_list;
915 int semop_completed = 0;
916
917 if (semnum == -1)
918 pending_list = &sma->pending_alter;
919 else
920 pending_list = &sma->sem_base[semnum].pending_alter;
921
922again:
923 walk = pending_list->next;
924 while (walk != pending_list) {
925 int error, restart;
926
927 q = container_of(walk, struct sem_queue, list);
928 walk = walk->next;
929
930 /* If we are scanning the single sop, per-semaphore list of
931 * one semaphore and that semaphore is 0, then it is not
932 * necessary to scan further: simple increments
933 * that affect only one entry succeed immediately and cannot
934 * be in the per semaphore pending queue, and decrements
935 * cannot be successful if the value is already 0.
936 */
937 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
938 break;
939
940 error = perform_atomic_semop(sma, q);
941
942 /* Does q->sleeper still need to sleep? */
943 if (error > 0)
944 continue;
945
946 unlink_queue(sma, q);
947
948 if (error) {
949 restart = 0;
950 } else {
951 semop_completed = 1;
952 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
953 restart = check_restart(sma, q);
954 }
955
956 wake_up_sem_queue_prepare(pt, q, error);
957 if (restart)
958 goto again;
959 }
960 return semop_completed;
961}
962
963/**
964 * set_semotime - set sem_otime
965 * @sma: semaphore array
966 * @sops: operations that modified the array, may be NULL
967 *
968 * sem_otime is replicated to avoid cache line trashing.
969 * This function sets one instance to the current time.
970 */
971static void set_semotime(struct sem_array *sma, struct sembuf *sops)
972{
973 if (sops == NULL) {
974 sma->sem_base[0].sem_otime = get_seconds();
975 } else {
976 sma->sem_base[sops[0].sem_num].sem_otime =
977 get_seconds();
978 }
979}
980
981/**
982 * do_smart_update - optimized update_queue
983 * @sma: semaphore array
984 * @sops: operations that were performed
985 * @nsops: number of operations
986 * @otime: force setting otime
987 * @pt: list head of the tasks that must be woken up.
988 *
989 * do_smart_update() does the required calls to update_queue and wakeup_zero,
990 * based on the actual changes that were performed on the semaphore array.
991 * Note that the function does not do the actual wake-up: the caller is
992 * responsible for calling wake_up_sem_queue_do(@pt).
993 * It is safe to perform this call after dropping all locks.
994 */
995static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
996 int otime, struct list_head *pt)
997{
998 int i;
999
1000 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
1001
1002 if (!list_empty(&sma->pending_alter)) {
1003 /* semaphore array uses the global queue - just process it. */
1004 otime |= update_queue(sma, -1, pt);
1005 } else {
1006 if (!sops) {
1007 /*
1008 * No sops, thus the modified semaphores are not
1009 * known. Check all.
1010 */
1011 for (i = 0; i < sma->sem_nsems; i++)
1012 otime |= update_queue(sma, i, pt);
1013 } else {
1014 /*
1015 * Check the semaphores that were increased:
1016 * - No complex ops, thus all sleeping ops are
1017 * decrease.
1018 * - if we decreased the value, then any sleeping
1019 * semaphore ops wont be able to run: If the
1020 * previous value was too small, then the new
1021 * value will be too small, too.
1022 */
1023 for (i = 0; i < nsops; i++) {
1024 if (sops[i].sem_op > 0) {
1025 otime |= update_queue(sma,
1026 sops[i].sem_num, pt);
1027 }
1028 }
1029 }
1030 }
1031 if (otime)
1032 set_semotime(sma, sops);
1033}
1034
1035/*
1036 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1037 */
1038static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1039 bool count_zero)
1040{
1041 struct sembuf *sop = q->blocking;
1042
1043 /*
1044 * Linux always (since 0.99.10) reported a task as sleeping on all
1045 * semaphores. This violates SUS, therefore it was changed to the
1046 * standard compliant behavior.
1047 * Give the administrators a chance to notice that an application
1048 * might misbehave because it relies on the Linux behavior.
1049 */
1050 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1051 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1052 current->comm, task_pid_nr(current));
1053
1054 if (sop->sem_num != semnum)
1055 return 0;
1056
1057 if (count_zero && sop->sem_op == 0)
1058 return 1;
1059 if (!count_zero && sop->sem_op < 0)
1060 return 1;
1061
1062 return 0;
1063}
1064
1065/* The following counts are associated to each semaphore:
1066 * semncnt number of tasks waiting on semval being nonzero
1067 * semzcnt number of tasks waiting on semval being zero
1068 *
1069 * Per definition, a task waits only on the semaphore of the first semop
1070 * that cannot proceed, even if additional operation would block, too.
1071 */
1072static int count_semcnt(struct sem_array *sma, ushort semnum,
1073 bool count_zero)
1074{
1075 struct list_head *l;
1076 struct sem_queue *q;
1077 int semcnt;
1078
1079 semcnt = 0;
1080 /* First: check the simple operations. They are easy to evaluate */
1081 if (count_zero)
1082 l = &sma->sem_base[semnum].pending_const;
1083 else
1084 l = &sma->sem_base[semnum].pending_alter;
1085
1086 list_for_each_entry(q, l, list) {
1087 /* all task on a per-semaphore list sleep on exactly
1088 * that semaphore
1089 */
1090 semcnt++;
1091 }
1092
1093 /* Then: check the complex operations. */
1094 list_for_each_entry(q, &sma->pending_alter, list) {
1095 semcnt += check_qop(sma, semnum, q, count_zero);
1096 }
1097 if (count_zero) {
1098 list_for_each_entry(q, &sma->pending_const, list) {
1099 semcnt += check_qop(sma, semnum, q, count_zero);
1100 }
1101 }
1102 return semcnt;
1103}
1104
1105/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1106 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1107 * remains locked on exit.
1108 */
1109static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1110{
1111 struct sem_undo *un, *tu;
1112 struct sem_queue *q, *tq;
1113 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1114 struct list_head tasks;
1115 int i;
1116
1117 /* Free the existing undo structures for this semaphore set. */
1118 ipc_assert_locked_object(&sma->sem_perm);
1119 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1120 list_del(&un->list_id);
1121 spin_lock(&un->ulp->lock);
1122 un->semid = -1;
1123 list_del_rcu(&un->list_proc);
1124 spin_unlock(&un->ulp->lock);
1125 kfree_rcu(un, rcu);
1126 }
1127
1128 /* Wake up all pending processes and let them fail with EIDRM. */
1129 INIT_LIST_HEAD(&tasks);
1130 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1131 unlink_queue(sma, q);
1132 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1133 }
1134
1135 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1136 unlink_queue(sma, q);
1137 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1138 }
1139 for (i = 0; i < sma->sem_nsems; i++) {
1140 struct sem *sem = sma->sem_base + i;
1141 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1142 unlink_queue(sma, q);
1143 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1144 }
1145 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1146 unlink_queue(sma, q);
1147 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1148 }
1149 }
1150
1151 /* Remove the semaphore set from the IDR */
1152 sem_rmid(ns, sma);
1153 sem_unlock(sma, -1);
1154 rcu_read_unlock();
1155
1156 wake_up_sem_queue_do(&tasks);
1157 ns->used_sems -= sma->sem_nsems;
1158 ipc_rcu_putref(sma, sem_rcu_free);
1159}
1160
1161static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1162{
1163 switch (version) {
1164 case IPC_64:
1165 return copy_to_user(buf, in, sizeof(*in));
1166 case IPC_OLD:
1167 {
1168 struct semid_ds out;
1169
1170 memset(&out, 0, sizeof(out));
1171
1172 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1173
1174 out.sem_otime = in->sem_otime;
1175 out.sem_ctime = in->sem_ctime;
1176 out.sem_nsems = in->sem_nsems;
1177
1178 return copy_to_user(buf, &out, sizeof(out));
1179 }
1180 default:
1181 return -EINVAL;
1182 }
1183}
1184
1185static time_t get_semotime(struct sem_array *sma)
1186{
1187 int i;
1188 time_t res;
1189
1190 res = sma->sem_base[0].sem_otime;
1191 for (i = 1; i < sma->sem_nsems; i++) {
1192 time_t to = sma->sem_base[i].sem_otime;
1193
1194 if (to > res)
1195 res = to;
1196 }
1197 return res;
1198}
1199
1200static int semctl_nolock(struct ipc_namespace *ns, int semid,
1201 int cmd, int version, void __user *p)
1202{
1203 int err;
1204 struct sem_array *sma;
1205
1206 switch (cmd) {
1207 case IPC_INFO:
1208 case SEM_INFO:
1209 {
1210 struct seminfo seminfo;
1211 int max_id;
1212
1213 err = security_sem_semctl(NULL, cmd);
1214 if (err)
1215 return err;
1216
1217 memset(&seminfo, 0, sizeof(seminfo));
1218 seminfo.semmni = ns->sc_semmni;
1219 seminfo.semmns = ns->sc_semmns;
1220 seminfo.semmsl = ns->sc_semmsl;
1221 seminfo.semopm = ns->sc_semopm;
1222 seminfo.semvmx = SEMVMX;
1223 seminfo.semmnu = SEMMNU;
1224 seminfo.semmap = SEMMAP;
1225 seminfo.semume = SEMUME;
1226 down_read(&sem_ids(ns).rwsem);
1227 if (cmd == SEM_INFO) {
1228 seminfo.semusz = sem_ids(ns).in_use;
1229 seminfo.semaem = ns->used_sems;
1230 } else {
1231 seminfo.semusz = SEMUSZ;
1232 seminfo.semaem = SEMAEM;
1233 }
1234 max_id = ipc_get_maxid(&sem_ids(ns));
1235 up_read(&sem_ids(ns).rwsem);
1236 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1237 return -EFAULT;
1238 return (max_id < 0) ? 0 : max_id;
1239 }
1240 case IPC_STAT:
1241 case SEM_STAT:
1242 {
1243 struct semid64_ds tbuf;
1244 int id = 0;
1245
1246 memset(&tbuf, 0, sizeof(tbuf));
1247
1248 rcu_read_lock();
1249 if (cmd == SEM_STAT) {
1250 sma = sem_obtain_object(ns, semid);
1251 if (IS_ERR(sma)) {
1252 err = PTR_ERR(sma);
1253 goto out_unlock;
1254 }
1255 id = sma->sem_perm.id;
1256 } else {
1257 sma = sem_obtain_object_check(ns, semid);
1258 if (IS_ERR(sma)) {
1259 err = PTR_ERR(sma);
1260 goto out_unlock;
1261 }
1262 }
1263
1264 err = -EACCES;
1265 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1266 goto out_unlock;
1267
1268 err = security_sem_semctl(sma, cmd);
1269 if (err)
1270 goto out_unlock;
1271
1272 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1273 tbuf.sem_otime = get_semotime(sma);
1274 tbuf.sem_ctime = sma->sem_ctime;
1275 tbuf.sem_nsems = sma->sem_nsems;
1276 rcu_read_unlock();
1277 if (copy_semid_to_user(p, &tbuf, version))
1278 return -EFAULT;
1279 return id;
1280 }
1281 default:
1282 return -EINVAL;
1283 }
1284out_unlock:
1285 rcu_read_unlock();
1286 return err;
1287}
1288
1289static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1290 unsigned long arg)
1291{
1292 struct sem_undo *un;
1293 struct sem_array *sma;
1294 struct sem *curr;
1295 int err;
1296 struct list_head tasks;
1297 int val;
1298#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1299 /* big-endian 64bit */
1300 val = arg >> 32;
1301#else
1302 /* 32bit or little-endian 64bit */
1303 val = arg;
1304#endif
1305
1306 if (val > SEMVMX || val < 0)
1307 return -ERANGE;
1308
1309 INIT_LIST_HEAD(&tasks);
1310
1311 rcu_read_lock();
1312 sma = sem_obtain_object_check(ns, semid);
1313 if (IS_ERR(sma)) {
1314 rcu_read_unlock();
1315 return PTR_ERR(sma);
1316 }
1317
1318 if (semnum < 0 || semnum >= sma->sem_nsems) {
1319 rcu_read_unlock();
1320 return -EINVAL;
1321 }
1322
1323
1324 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1325 rcu_read_unlock();
1326 return -EACCES;
1327 }
1328
1329 err = security_sem_semctl(sma, SETVAL);
1330 if (err) {
1331 rcu_read_unlock();
1332 return -EACCES;
1333 }
1334
1335 sem_lock(sma, NULL, -1);
1336
1337 if (!ipc_valid_object(&sma->sem_perm)) {
1338 sem_unlock(sma, -1);
1339 rcu_read_unlock();
1340 return -EIDRM;
1341 }
1342
1343 curr = &sma->sem_base[semnum];
1344
1345 ipc_assert_locked_object(&sma->sem_perm);
1346 list_for_each_entry(un, &sma->list_id, list_id)
1347 un->semadj[semnum] = 0;
1348
1349 curr->semval = val;
1350 curr->sempid = task_tgid_vnr(current);
1351 sma->sem_ctime = get_seconds();
1352 /* maybe some queued-up processes were waiting for this */
1353 do_smart_update(sma, NULL, 0, 0, &tasks);
1354 sem_unlock(sma, -1);
1355 rcu_read_unlock();
1356 wake_up_sem_queue_do(&tasks);
1357 return 0;
1358}
1359
1360static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1361 int cmd, void __user *p)
1362{
1363 struct sem_array *sma;
1364 struct sem *curr;
1365 int err, nsems;
1366 ushort fast_sem_io[SEMMSL_FAST];
1367 ushort *sem_io = fast_sem_io;
1368 struct list_head tasks;
1369
1370 INIT_LIST_HEAD(&tasks);
1371
1372 rcu_read_lock();
1373 sma = sem_obtain_object_check(ns, semid);
1374 if (IS_ERR(sma)) {
1375 rcu_read_unlock();
1376 return PTR_ERR(sma);
1377 }
1378
1379 nsems = sma->sem_nsems;
1380
1381 err = -EACCES;
1382 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1383 goto out_rcu_wakeup;
1384
1385 err = security_sem_semctl(sma, cmd);
1386 if (err)
1387 goto out_rcu_wakeup;
1388
1389 err = -EACCES;
1390 switch (cmd) {
1391 case GETALL:
1392 {
1393 ushort __user *array = p;
1394 int i;
1395
1396 sem_lock(sma, NULL, -1);
1397 if (!ipc_valid_object(&sma->sem_perm)) {
1398 err = -EIDRM;
1399 goto out_unlock;
1400 }
1401 if (nsems > SEMMSL_FAST) {
1402 if (!ipc_rcu_getref(sma)) {
1403 err = -EIDRM;
1404 goto out_unlock;
1405 }
1406 sem_unlock(sma, -1);
1407 rcu_read_unlock();
1408 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1409 if (sem_io == NULL) {
1410 ipc_rcu_putref(sma, sem_rcu_free);
1411 return -ENOMEM;
1412 }
1413
1414 rcu_read_lock();
1415 sem_lock_and_putref(sma);
1416 if (!ipc_valid_object(&sma->sem_perm)) {
1417 err = -EIDRM;
1418 goto out_unlock;
1419 }
1420 }
1421 for (i = 0; i < sma->sem_nsems; i++)
1422 sem_io[i] = sma->sem_base[i].semval;
1423 sem_unlock(sma, -1);
1424 rcu_read_unlock();
1425 err = 0;
1426 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1427 err = -EFAULT;
1428 goto out_free;
1429 }
1430 case SETALL:
1431 {
1432 int i;
1433 struct sem_undo *un;
1434
1435 if (!ipc_rcu_getref(sma)) {
1436 err = -EIDRM;
1437 goto out_rcu_wakeup;
1438 }
1439 rcu_read_unlock();
1440
1441 if (nsems > SEMMSL_FAST) {
1442 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1443 if (sem_io == NULL) {
1444 ipc_rcu_putref(sma, sem_rcu_free);
1445 return -ENOMEM;
1446 }
1447 }
1448
1449 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1450 ipc_rcu_putref(sma, sem_rcu_free);
1451 err = -EFAULT;
1452 goto out_free;
1453 }
1454
1455 for (i = 0; i < nsems; i++) {
1456 if (sem_io[i] > SEMVMX) {
1457 ipc_rcu_putref(sma, sem_rcu_free);
1458 err = -ERANGE;
1459 goto out_free;
1460 }
1461 }
1462 rcu_read_lock();
1463 sem_lock_and_putref(sma);
1464 if (!ipc_valid_object(&sma->sem_perm)) {
1465 err = -EIDRM;
1466 goto out_unlock;
1467 }
1468
1469 for (i = 0; i < nsems; i++) {
1470 sma->sem_base[i].semval = sem_io[i];
1471 sma->sem_base[i].sempid = task_tgid_vnr(current);
1472 }
1473
1474 ipc_assert_locked_object(&sma->sem_perm);
1475 list_for_each_entry(un, &sma->list_id, list_id) {
1476 for (i = 0; i < nsems; i++)
1477 un->semadj[i] = 0;
1478 }
1479 sma->sem_ctime = get_seconds();
1480 /* maybe some queued-up processes were waiting for this */
1481 do_smart_update(sma, NULL, 0, 0, &tasks);
1482 err = 0;
1483 goto out_unlock;
1484 }
1485 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1486 }
1487 err = -EINVAL;
1488 if (semnum < 0 || semnum >= nsems)
1489 goto out_rcu_wakeup;
1490
1491 sem_lock(sma, NULL, -1);
1492 if (!ipc_valid_object(&sma->sem_perm)) {
1493 err = -EIDRM;
1494 goto out_unlock;
1495 }
1496 curr = &sma->sem_base[semnum];
1497
1498 switch (cmd) {
1499 case GETVAL:
1500 err = curr->semval;
1501 goto out_unlock;
1502 case GETPID:
1503 err = curr->sempid;
1504 goto out_unlock;
1505 case GETNCNT:
1506 err = count_semcnt(sma, semnum, 0);
1507 goto out_unlock;
1508 case GETZCNT:
1509 err = count_semcnt(sma, semnum, 1);
1510 goto out_unlock;
1511 }
1512
1513out_unlock:
1514 sem_unlock(sma, -1);
1515out_rcu_wakeup:
1516 rcu_read_unlock();
1517 wake_up_sem_queue_do(&tasks);
1518out_free:
1519 if (sem_io != fast_sem_io)
1520 ipc_free(sem_io);
1521 return err;
1522}
1523
1524static inline unsigned long
1525copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1526{
1527 switch (version) {
1528 case IPC_64:
1529 if (copy_from_user(out, buf, sizeof(*out)))
1530 return -EFAULT;
1531 return 0;
1532 case IPC_OLD:
1533 {
1534 struct semid_ds tbuf_old;
1535
1536 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1537 return -EFAULT;
1538
1539 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1540 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1541 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1542
1543 return 0;
1544 }
1545 default:
1546 return -EINVAL;
1547 }
1548}
1549
1550/*
1551 * This function handles some semctl commands which require the rwsem
1552 * to be held in write mode.
1553 * NOTE: no locks must be held, the rwsem is taken inside this function.
1554 */
1555static int semctl_down(struct ipc_namespace *ns, int semid,
1556 int cmd, int version, void __user *p)
1557{
1558 struct sem_array *sma;
1559 int err;
1560 struct semid64_ds semid64;
1561 struct kern_ipc_perm *ipcp;
1562
1563 if (cmd == IPC_SET) {
1564 if (copy_semid_from_user(&semid64, p, version))
1565 return -EFAULT;
1566 }
1567
1568 down_write(&sem_ids(ns).rwsem);
1569 rcu_read_lock();
1570
1571 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1572 &semid64.sem_perm, 0);
1573 if (IS_ERR(ipcp)) {
1574 err = PTR_ERR(ipcp);
1575 goto out_unlock1;
1576 }
1577
1578 sma = container_of(ipcp, struct sem_array, sem_perm);
1579
1580 err = security_sem_semctl(sma, cmd);
1581 if (err)
1582 goto out_unlock1;
1583
1584 switch (cmd) {
1585 case IPC_RMID:
1586 sem_lock(sma, NULL, -1);
1587 /* freeary unlocks the ipc object and rcu */
1588 freeary(ns, ipcp);
1589 goto out_up;
1590 case IPC_SET:
1591 sem_lock(sma, NULL, -1);
1592 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1593 if (err)
1594 goto out_unlock0;
1595 sma->sem_ctime = get_seconds();
1596 break;
1597 default:
1598 err = -EINVAL;
1599 goto out_unlock1;
1600 }
1601
1602out_unlock0:
1603 sem_unlock(sma, -1);
1604out_unlock1:
1605 rcu_read_unlock();
1606out_up:
1607 up_write(&sem_ids(ns).rwsem);
1608 return err;
1609}
1610
1611SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1612{
1613 int version;
1614 struct ipc_namespace *ns;
1615 void __user *p = (void __user *)arg;
1616
1617 if (semid < 0)
1618 return -EINVAL;
1619
1620 version = ipc_parse_version(&cmd);
1621 ns = current->nsproxy->ipc_ns;
1622
1623 switch (cmd) {
1624 case IPC_INFO:
1625 case SEM_INFO:
1626 case IPC_STAT:
1627 case SEM_STAT:
1628 return semctl_nolock(ns, semid, cmd, version, p);
1629 case GETALL:
1630 case GETVAL:
1631 case GETPID:
1632 case GETNCNT:
1633 case GETZCNT:
1634 case SETALL:
1635 return semctl_main(ns, semid, semnum, cmd, p);
1636 case SETVAL:
1637 return semctl_setval(ns, semid, semnum, arg);
1638 case IPC_RMID:
1639 case IPC_SET:
1640 return semctl_down(ns, semid, cmd, version, p);
1641 default:
1642 return -EINVAL;
1643 }
1644}
1645
1646/* If the task doesn't already have a undo_list, then allocate one
1647 * here. We guarantee there is only one thread using this undo list,
1648 * and current is THE ONE
1649 *
1650 * If this allocation and assignment succeeds, but later
1651 * portions of this code fail, there is no need to free the sem_undo_list.
1652 * Just let it stay associated with the task, and it'll be freed later
1653 * at exit time.
1654 *
1655 * This can block, so callers must hold no locks.
1656 */
1657static inline int get_undo_list(struct sem_undo_list **undo_listp)
1658{
1659 struct sem_undo_list *undo_list;
1660
1661 undo_list = current->sysvsem.undo_list;
1662 if (!undo_list) {
1663 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1664 if (undo_list == NULL)
1665 return -ENOMEM;
1666 spin_lock_init(&undo_list->lock);
1667 atomic_set(&undo_list->refcnt, 1);
1668 INIT_LIST_HEAD(&undo_list->list_proc);
1669
1670 current->sysvsem.undo_list = undo_list;
1671 }
1672 *undo_listp = undo_list;
1673 return 0;
1674}
1675
1676static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1677{
1678 struct sem_undo *un;
1679
1680 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1681 if (un->semid == semid)
1682 return un;
1683 }
1684 return NULL;
1685}
1686
1687static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1688{
1689 struct sem_undo *un;
1690
1691 assert_spin_locked(&ulp->lock);
1692
1693 un = __lookup_undo(ulp, semid);
1694 if (un) {
1695 list_del_rcu(&un->list_proc);
1696 list_add_rcu(&un->list_proc, &ulp->list_proc);
1697 }
1698 return un;
1699}
1700
1701/**
1702 * find_alloc_undo - lookup (and if not present create) undo array
1703 * @ns: namespace
1704 * @semid: semaphore array id
1705 *
1706 * The function looks up (and if not present creates) the undo structure.
1707 * The size of the undo structure depends on the size of the semaphore
1708 * array, thus the alloc path is not that straightforward.
1709 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1710 * performs a rcu_read_lock().
1711 */
1712static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1713{
1714 struct sem_array *sma;
1715 struct sem_undo_list *ulp;
1716 struct sem_undo *un, *new;
1717 int nsems, error;
1718
1719 error = get_undo_list(&ulp);
1720 if (error)
1721 return ERR_PTR(error);
1722
1723 rcu_read_lock();
1724 spin_lock(&ulp->lock);
1725 un = lookup_undo(ulp, semid);
1726 spin_unlock(&ulp->lock);
1727 if (likely(un != NULL))
1728 goto out;
1729
1730 /* no undo structure around - allocate one. */
1731 /* step 1: figure out the size of the semaphore array */
1732 sma = sem_obtain_object_check(ns, semid);
1733 if (IS_ERR(sma)) {
1734 rcu_read_unlock();
1735 return ERR_CAST(sma);
1736 }
1737
1738 nsems = sma->sem_nsems;
1739 if (!ipc_rcu_getref(sma)) {
1740 rcu_read_unlock();
1741 un = ERR_PTR(-EIDRM);
1742 goto out;
1743 }
1744 rcu_read_unlock();
1745
1746 /* step 2: allocate new undo structure */
1747 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1748 if (!new) {
1749 ipc_rcu_putref(sma, sem_rcu_free);
1750 return ERR_PTR(-ENOMEM);
1751 }
1752
1753 /* step 3: Acquire the lock on semaphore array */
1754 rcu_read_lock();
1755 sem_lock_and_putref(sma);
1756 if (!ipc_valid_object(&sma->sem_perm)) {
1757 sem_unlock(sma, -1);
1758 rcu_read_unlock();
1759 kfree(new);
1760 un = ERR_PTR(-EIDRM);
1761 goto out;
1762 }
1763 spin_lock(&ulp->lock);
1764
1765 /*
1766 * step 4: check for races: did someone else allocate the undo struct?
1767 */
1768 un = lookup_undo(ulp, semid);
1769 if (un) {
1770 kfree(new);
1771 goto success;
1772 }
1773 /* step 5: initialize & link new undo structure */
1774 new->semadj = (short *) &new[1];
1775 new->ulp = ulp;
1776 new->semid = semid;
1777 assert_spin_locked(&ulp->lock);
1778 list_add_rcu(&new->list_proc, &ulp->list_proc);
1779 ipc_assert_locked_object(&sma->sem_perm);
1780 list_add(&new->list_id, &sma->list_id);
1781 un = new;
1782
1783success:
1784 spin_unlock(&ulp->lock);
1785 sem_unlock(sma, -1);
1786out:
1787 return un;
1788}
1789
1790
1791/**
1792 * get_queue_result - retrieve the result code from sem_queue
1793 * @q: Pointer to queue structure
1794 *
1795 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1796 * q->status, then we must loop until the value is replaced with the final
1797 * value: This may happen if a task is woken up by an unrelated event (e.g.
1798 * signal) and in parallel the task is woken up by another task because it got
1799 * the requested semaphores.
1800 *
1801 * The function can be called with or without holding the semaphore spinlock.
1802 */
1803static int get_queue_result(struct sem_queue *q)
1804{
1805 int error;
1806
1807 error = q->status;
1808 while (unlikely(error == IN_WAKEUP)) {
1809 cpu_relax();
1810 error = q->status;
1811 }
1812
1813 return error;
1814}
1815
1816SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1817 unsigned, nsops, const struct timespec __user *, timeout)
1818{
1819 int error = -EINVAL;
1820 struct sem_array *sma;
1821 struct sembuf fast_sops[SEMOPM_FAST];
1822 struct sembuf *sops = fast_sops, *sop;
1823 struct sem_undo *un;
1824 int undos = 0, alter = 0, max, locknum;
1825 struct sem_queue queue;
1826 unsigned long jiffies_left = 0;
1827 struct ipc_namespace *ns;
1828 struct list_head tasks;
1829
1830 ns = current->nsproxy->ipc_ns;
1831
1832 if (nsops < 1 || semid < 0)
1833 return -EINVAL;
1834 if (nsops > ns->sc_semopm)
1835 return -E2BIG;
1836 if (nsops > SEMOPM_FAST) {
1837 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1838 if (sops == NULL)
1839 return -ENOMEM;
1840 }
1841 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1842 error = -EFAULT;
1843 goto out_free;
1844 }
1845 if (timeout) {
1846 struct timespec _timeout;
1847 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1848 error = -EFAULT;
1849 goto out_free;
1850 }
1851 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1852 _timeout.tv_nsec >= 1000000000L) {
1853 error = -EINVAL;
1854 goto out_free;
1855 }
1856 jiffies_left = timespec_to_jiffies(&_timeout);
1857 }
1858 max = 0;
1859 for (sop = sops; sop < sops + nsops; sop++) {
1860 if (sop->sem_num >= max)
1861 max = sop->sem_num;
1862 if (sop->sem_flg & SEM_UNDO)
1863 undos = 1;
1864 if (sop->sem_op != 0)
1865 alter = 1;
1866 }
1867
1868 INIT_LIST_HEAD(&tasks);
1869
1870 if (undos) {
1871 /* On success, find_alloc_undo takes the rcu_read_lock */
1872 un = find_alloc_undo(ns, semid);
1873 if (IS_ERR(un)) {
1874 error = PTR_ERR(un);
1875 goto out_free;
1876 }
1877 } else {
1878 un = NULL;
1879 rcu_read_lock();
1880 }
1881
1882 sma = sem_obtain_object_check(ns, semid);
1883 if (IS_ERR(sma)) {
1884 rcu_read_unlock();
1885 error = PTR_ERR(sma);
1886 goto out_free;
1887 }
1888
1889 error = -EFBIG;
1890 if (max >= sma->sem_nsems)
1891 goto out_rcu_wakeup;
1892
1893 error = -EACCES;
1894 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1895 goto out_rcu_wakeup;
1896
1897 error = security_sem_semop(sma, sops, nsops, alter);
1898 if (error)
1899 goto out_rcu_wakeup;
1900
1901 error = -EIDRM;
1902 locknum = sem_lock(sma, sops, nsops);
1903 /*
1904 * We eventually might perform the following check in a lockless
1905 * fashion, considering ipc_valid_object() locking constraints.
1906 * If nsops == 1 and there is no contention for sem_perm.lock, then
1907 * only a per-semaphore lock is held and it's OK to proceed with the
1908 * check below. More details on the fine grained locking scheme
1909 * entangled here and why it's RMID race safe on comments at sem_lock()
1910 */
1911 if (!ipc_valid_object(&sma->sem_perm))
1912 goto out_unlock_free;
1913 /*
1914 * semid identifiers are not unique - find_alloc_undo may have
1915 * allocated an undo structure, it was invalidated by an RMID
1916 * and now a new array with received the same id. Check and fail.
1917 * This case can be detected checking un->semid. The existence of
1918 * "un" itself is guaranteed by rcu.
1919 */
1920 if (un && un->semid == -1)
1921 goto out_unlock_free;
1922
1923 queue.sops = sops;
1924 queue.nsops = nsops;
1925 queue.undo = un;
1926 queue.pid = task_tgid_vnr(current);
1927 queue.alter = alter;
1928
1929 error = perform_atomic_semop(sma, &queue);
1930 if (error == 0) {
1931 /* If the operation was successful, then do
1932 * the required updates.
1933 */
1934 if (alter)
1935 do_smart_update(sma, sops, nsops, 1, &tasks);
1936 else
1937 set_semotime(sma, sops);
1938 }
1939 if (error <= 0)
1940 goto out_unlock_free;
1941
1942 /* We need to sleep on this operation, so we put the current
1943 * task into the pending queue and go to sleep.
1944 */
1945
1946 if (nsops == 1) {
1947 struct sem *curr;
1948 curr = &sma->sem_base[sops->sem_num];
1949
1950 if (alter) {
1951 if (sma->complex_count) {
1952 list_add_tail(&queue.list,
1953 &sma->pending_alter);
1954 } else {
1955
1956 list_add_tail(&queue.list,
1957 &curr->pending_alter);
1958 }
1959 } else {
1960 list_add_tail(&queue.list, &curr->pending_const);
1961 }
1962 } else {
1963 if (!sma->complex_count)
1964 merge_queues(sma);
1965
1966 if (alter)
1967 list_add_tail(&queue.list, &sma->pending_alter);
1968 else
1969 list_add_tail(&queue.list, &sma->pending_const);
1970
1971 sma->complex_count++;
1972 }
1973
1974 queue.status = -EINTR;
1975 queue.sleeper = current;
1976
1977sleep_again:
1978 __set_current_state(TASK_INTERRUPTIBLE);
1979 sem_unlock(sma, locknum);
1980 rcu_read_unlock();
1981
1982 if (timeout)
1983 jiffies_left = schedule_timeout(jiffies_left);
1984 else
1985 schedule();
1986
1987 error = get_queue_result(&queue);
1988
1989 if (error != -EINTR) {
1990 /* fast path: update_queue already obtained all requested
1991 * resources.
1992 * Perform a smp_mb(): User space could assume that semop()
1993 * is a memory barrier: Without the mb(), the cpu could
1994 * speculatively read in user space stale data that was
1995 * overwritten by the previous owner of the semaphore.
1996 */
1997 smp_mb();
1998
1999 goto out_free;
2000 }
2001
2002 rcu_read_lock();
2003 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
2004
2005 /*
2006 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
2007 */
2008 error = get_queue_result(&queue);
2009
2010 /*
2011 * Array removed? If yes, leave without sem_unlock().
2012 */
2013 if (IS_ERR(sma)) {
2014 rcu_read_unlock();
2015 goto out_free;
2016 }
2017
2018
2019 /*
2020 * If queue.status != -EINTR we are woken up by another process.
2021 * Leave without unlink_queue(), but with sem_unlock().
2022 */
2023 if (error != -EINTR)
2024 goto out_unlock_free;
2025
2026 /*
2027 * If an interrupt occurred we have to clean up the queue
2028 */
2029 if (timeout && jiffies_left == 0)
2030 error = -EAGAIN;
2031
2032 /*
2033 * If the wakeup was spurious, just retry
2034 */
2035 if (error == -EINTR && !signal_pending(current))
2036 goto sleep_again;
2037
2038 unlink_queue(sma, &queue);
2039
2040out_unlock_free:
2041 sem_unlock(sma, locknum);
2042out_rcu_wakeup:
2043 rcu_read_unlock();
2044 wake_up_sem_queue_do(&tasks);
2045out_free:
2046 if (sops != fast_sops)
2047 kfree(sops);
2048 return error;
2049}
2050
2051SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2052 unsigned, nsops)
2053{
2054 return sys_semtimedop(semid, tsops, nsops, NULL);
2055}
2056
2057/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2058 * parent and child tasks.
2059 */
2060
2061int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2062{
2063 struct sem_undo_list *undo_list;
2064 int error;
2065
2066 if (clone_flags & CLONE_SYSVSEM) {
2067 error = get_undo_list(&undo_list);
2068 if (error)
2069 return error;
2070 atomic_inc(&undo_list->refcnt);
2071 tsk->sysvsem.undo_list = undo_list;
2072 } else
2073 tsk->sysvsem.undo_list = NULL;
2074
2075 return 0;
2076}
2077
2078/*
2079 * add semadj values to semaphores, free undo structures.
2080 * undo structures are not freed when semaphore arrays are destroyed
2081 * so some of them may be out of date.
2082 * IMPLEMENTATION NOTE: There is some confusion over whether the
2083 * set of adjustments that needs to be done should be done in an atomic
2084 * manner or not. That is, if we are attempting to decrement the semval
2085 * should we queue up and wait until we can do so legally?
2086 * The original implementation attempted to do this (queue and wait).
2087 * The current implementation does not do so. The POSIX standard
2088 * and SVID should be consulted to determine what behavior is mandated.
2089 */
2090void exit_sem(struct task_struct *tsk)
2091{
2092 struct sem_undo_list *ulp;
2093
2094 ulp = tsk->sysvsem.undo_list;
2095 if (!ulp)
2096 return;
2097 tsk->sysvsem.undo_list = NULL;
2098
2099 if (!atomic_dec_and_test(&ulp->refcnt))
2100 return;
2101
2102 for (;;) {
2103 struct sem_array *sma;
2104 struct sem_undo *un;
2105 struct list_head tasks;
2106 int semid, i;
2107
2108 cond_resched();
2109
2110 rcu_read_lock();
2111 un = list_entry_rcu(ulp->list_proc.next,
2112 struct sem_undo, list_proc);
2113 if (&un->list_proc == &ulp->list_proc) {
2114 /*
2115 * We must wait for freeary() before freeing this ulp,
2116 * in case we raced with last sem_undo. There is a small
2117 * possibility where we exit while freeary() didn't
2118 * finish unlocking sem_undo_list.
2119 */
2120 spin_unlock_wait(&ulp->lock);
2121 rcu_read_unlock();
2122 break;
2123 }
2124 spin_lock(&ulp->lock);
2125 semid = un->semid;
2126 spin_unlock(&ulp->lock);
2127
2128 /* exit_sem raced with IPC_RMID, nothing to do */
2129 if (semid == -1) {
2130 rcu_read_unlock();
2131 continue;
2132 }
2133
2134 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2135 /* exit_sem raced with IPC_RMID, nothing to do */
2136 if (IS_ERR(sma)) {
2137 rcu_read_unlock();
2138 continue;
2139 }
2140
2141 sem_lock(sma, NULL, -1);
2142 /* exit_sem raced with IPC_RMID, nothing to do */
2143 if (!ipc_valid_object(&sma->sem_perm)) {
2144 sem_unlock(sma, -1);
2145 rcu_read_unlock();
2146 continue;
2147 }
2148 un = __lookup_undo(ulp, semid);
2149 if (un == NULL) {
2150 /* exit_sem raced with IPC_RMID+semget() that created
2151 * exactly the same semid. Nothing to do.
2152 */
2153 sem_unlock(sma, -1);
2154 rcu_read_unlock();
2155 continue;
2156 }
2157
2158 /* remove un from the linked lists */
2159 ipc_assert_locked_object(&sma->sem_perm);
2160 list_del(&un->list_id);
2161
2162 /* we are the last process using this ulp, acquiring ulp->lock
2163 * isn't required. Besides that, we are also protected against
2164 * IPC_RMID as we hold sma->sem_perm lock now
2165 */
2166 list_del_rcu(&un->list_proc);
2167
2168 /* perform adjustments registered in un */
2169 for (i = 0; i < sma->sem_nsems; i++) {
2170 struct sem *semaphore = &sma->sem_base[i];
2171 if (un->semadj[i]) {
2172 semaphore->semval += un->semadj[i];
2173 /*
2174 * Range checks of the new semaphore value,
2175 * not defined by sus:
2176 * - Some unices ignore the undo entirely
2177 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2178 * - some cap the value (e.g. FreeBSD caps
2179 * at 0, but doesn't enforce SEMVMX)
2180 *
2181 * Linux caps the semaphore value, both at 0
2182 * and at SEMVMX.
2183 *
2184 * Manfred <manfred@colorfullife.com>
2185 */
2186 if (semaphore->semval < 0)
2187 semaphore->semval = 0;
2188 if (semaphore->semval > SEMVMX)
2189 semaphore->semval = SEMVMX;
2190 semaphore->sempid = task_tgid_vnr(current);
2191 }
2192 }
2193 /* maybe some queued-up processes were waiting for this */
2194 INIT_LIST_HEAD(&tasks);
2195 do_smart_update(sma, NULL, 0, 1, &tasks);
2196 sem_unlock(sma, -1);
2197 rcu_read_unlock();
2198 wake_up_sem_queue_do(&tasks);
2199
2200 kfree_rcu(un, rcu);
2201 }
2202 kfree(ulp);
2203}
2204
2205#ifdef CONFIG_PROC_FS
2206static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2207{
2208 struct user_namespace *user_ns = seq_user_ns(s);
2209 struct sem_array *sma = it;
2210 time_t sem_otime;
2211
2212 /*
2213 * The proc interface isn't aware of sem_lock(), it calls
2214 * ipc_lock_object() directly (in sysvipc_find_ipc).
2215 * In order to stay compatible with sem_lock(), we must
2216 * enter / leave complex_mode.
2217 */
2218 complexmode_enter(sma);
2219
2220 sem_otime = get_semotime(sma);
2221
2222 seq_printf(s,
2223 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2224 sma->sem_perm.key,
2225 sma->sem_perm.id,
2226 sma->sem_perm.mode,
2227 sma->sem_nsems,
2228 from_kuid_munged(user_ns, sma->sem_perm.uid),
2229 from_kgid_munged(user_ns, sma->sem_perm.gid),
2230 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2231 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2232 sem_otime,
2233 sma->sem_ctime);
2234
2235 complexmode_tryleave(sma);
2236
2237 return 0;
2238}
2239#endif
2240