summaryrefslogtreecommitdiff
path: root/kernel/audit.c (plain)
blob: 3461a3d874feda801cef8af5d3b85a54e17187b7
1/* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46#include <linux/file.h>
47#include <linux/init.h>
48#include <linux/types.h>
49#include <linux/atomic.h>
50#include <linux/mm.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/err.h>
54#include <linux/kthread.h>
55#include <linux/kernel.h>
56#include <linux/syscalls.h>
57
58#include <linux/audit.h>
59
60#include <net/sock.h>
61#include <net/netlink.h>
62#include <linux/skbuff.h>
63#ifdef CONFIG_SECURITY
64#include <linux/security.h>
65#endif
66#include <linux/freezer.h>
67#include <linux/pid_namespace.h>
68#include <net/netns/generic.h>
69
70#include "audit.h"
71
72/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73 * (Initialization happens after skb_init is called.) */
74#define AUDIT_DISABLED -1
75#define AUDIT_UNINITIALIZED 0
76#define AUDIT_INITIALIZED 1
77static int audit_initialized;
78
79#define AUDIT_OFF 0
80#define AUDIT_ON 1
81#define AUDIT_LOCKED 2
82u32 audit_enabled = AUDIT_OFF;
83u32 audit_ever_enabled = !!AUDIT_OFF;
84
85EXPORT_SYMBOL_GPL(audit_enabled);
86
87/* Default state when kernel boots without any parameters. */
88static u32 audit_default = AUDIT_OFF;
89
90/* If auditing cannot proceed, audit_failure selects what happens. */
91static u32 audit_failure = AUDIT_FAIL_PRINTK;
92
93/*
94 * If audit records are to be written to the netlink socket, audit_pid
95 * contains the pid of the auditd process and audit_nlk_portid contains
96 * the portid to use to send netlink messages to that process.
97 */
98int audit_pid;
99static __u32 audit_nlk_portid;
100
101/* If audit_rate_limit is non-zero, limit the rate of sending audit records
102 * to that number per second. This prevents DoS attacks, but results in
103 * audit records being dropped. */
104static u32 audit_rate_limit;
105
106/* Number of outstanding audit_buffers allowed.
107 * When set to zero, this means unlimited. */
108static u32 audit_backlog_limit = 64;
109#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
111static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
112
113/* The identity of the user shutting down the audit system. */
114kuid_t audit_sig_uid = INVALID_UID;
115pid_t audit_sig_pid = -1;
116u32 audit_sig_sid = 0;
117
118/* Records can be lost in several ways:
119 0) [suppressed in audit_alloc]
120 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
121 2) out of memory in audit_log_move [alloc_skb]
122 3) suppressed due to audit_rate_limit
123 4) suppressed due to audit_backlog_limit
124*/
125static atomic_t audit_lost = ATOMIC_INIT(0);
126
127/* The netlink socket. */
128static struct sock *audit_sock;
129static int audit_net_id;
130
131/* Hash for inode-based rules */
132struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
133
134/* The audit_freelist is a list of pre-allocated audit buffers (if more
135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
136 * being placed on the freelist). */
137static DEFINE_SPINLOCK(audit_freelist_lock);
138static int audit_freelist_count;
139static LIST_HEAD(audit_freelist);
140
141static struct sk_buff_head audit_skb_queue;
142/* queue of skbs to send to auditd when/if it comes back */
143static struct sk_buff_head audit_skb_hold_queue;
144static struct task_struct *kauditd_task;
145static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
146static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
147
148static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
149 .mask = -1,
150 .features = 0,
151 .lock = 0,};
152
153static char *audit_feature_names[2] = {
154 "only_unset_loginuid",
155 "loginuid_immutable",
156};
157
158
159/* Serialize requests from userspace. */
160DEFINE_MUTEX(audit_cmd_mutex);
161
162/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
163 * audit records. Since printk uses a 1024 byte buffer, this buffer
164 * should be at least that large. */
165#define AUDIT_BUFSIZ 1024
166
167/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
168 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
169#define AUDIT_MAXFREE (2*NR_CPUS)
170
171/* The audit_buffer is used when formatting an audit record. The caller
172 * locks briefly to get the record off the freelist or to allocate the
173 * buffer, and locks briefly to send the buffer to the netlink layer or
174 * to place it on a transmit queue. Multiple audit_buffers can be in
175 * use simultaneously. */
176struct audit_buffer {
177 struct list_head list;
178 struct sk_buff *skb; /* formatted skb ready to send */
179 struct audit_context *ctx; /* NULL or associated context */
180 gfp_t gfp_mask;
181};
182
183struct audit_reply {
184 __u32 portid;
185 struct net *net;
186 struct sk_buff *skb;
187};
188
189static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
190{
191 if (ab) {
192 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
193 nlh->nlmsg_pid = portid;
194 }
195}
196
197void audit_panic(const char *message)
198{
199 switch (audit_failure) {
200 case AUDIT_FAIL_SILENT:
201 break;
202 case AUDIT_FAIL_PRINTK:
203 if (printk_ratelimit())
204 pr_err("%s\n", message);
205 break;
206 case AUDIT_FAIL_PANIC:
207 /* test audit_pid since printk is always losey, why bother? */
208 if (audit_pid)
209 panic("audit: %s\n", message);
210 break;
211 }
212}
213
214static inline int audit_rate_check(void)
215{
216 static unsigned long last_check = 0;
217 static int messages = 0;
218 static DEFINE_SPINLOCK(lock);
219 unsigned long flags;
220 unsigned long now;
221 unsigned long elapsed;
222 int retval = 0;
223
224 if (!audit_rate_limit) return 1;
225
226 spin_lock_irqsave(&lock, flags);
227 if (++messages < audit_rate_limit) {
228 retval = 1;
229 } else {
230 now = jiffies;
231 elapsed = now - last_check;
232 if (elapsed > HZ) {
233 last_check = now;
234 messages = 0;
235 retval = 1;
236 }
237 }
238 spin_unlock_irqrestore(&lock, flags);
239
240 return retval;
241}
242
243/**
244 * audit_log_lost - conditionally log lost audit message event
245 * @message: the message stating reason for lost audit message
246 *
247 * Emit at least 1 message per second, even if audit_rate_check is
248 * throttling.
249 * Always increment the lost messages counter.
250*/
251void audit_log_lost(const char *message)
252{
253 static unsigned long last_msg = 0;
254 static DEFINE_SPINLOCK(lock);
255 unsigned long flags;
256 unsigned long now;
257 int print;
258
259 atomic_inc(&audit_lost);
260
261 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
262
263 if (!print) {
264 spin_lock_irqsave(&lock, flags);
265 now = jiffies;
266 if (now - last_msg > HZ) {
267 print = 1;
268 last_msg = now;
269 }
270 spin_unlock_irqrestore(&lock, flags);
271 }
272
273 if (print) {
274 if (printk_ratelimit())
275 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
276 atomic_read(&audit_lost),
277 audit_rate_limit,
278 audit_backlog_limit);
279 audit_panic(message);
280 }
281}
282
283static int audit_log_config_change(char *function_name, u32 new, u32 old,
284 int allow_changes)
285{
286 struct audit_buffer *ab;
287 int rc = 0;
288
289 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
290 if (unlikely(!ab))
291 return rc;
292 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
293 audit_log_session_info(ab);
294 rc = audit_log_task_context(ab);
295 if (rc)
296 allow_changes = 0; /* Something weird, deny request */
297 audit_log_format(ab, " res=%d", allow_changes);
298 audit_log_end(ab);
299 return rc;
300}
301
302static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
303{
304 int allow_changes, rc = 0;
305 u32 old = *to_change;
306
307 /* check if we are locked */
308 if (audit_enabled == AUDIT_LOCKED)
309 allow_changes = 0;
310 else
311 allow_changes = 1;
312
313 if (audit_enabled != AUDIT_OFF) {
314 rc = audit_log_config_change(function_name, new, old, allow_changes);
315 if (rc)
316 allow_changes = 0;
317 }
318
319 /* If we are allowed, make the change */
320 if (allow_changes == 1)
321 *to_change = new;
322 /* Not allowed, update reason */
323 else if (rc == 0)
324 rc = -EPERM;
325 return rc;
326}
327
328static int audit_set_rate_limit(u32 limit)
329{
330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
331}
332
333static int audit_set_backlog_limit(u32 limit)
334{
335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
336}
337
338static int audit_set_backlog_wait_time(u32 timeout)
339{
340 return audit_do_config_change("audit_backlog_wait_time",
341 &audit_backlog_wait_time_master, timeout);
342}
343
344static int audit_set_enabled(u32 state)
345{
346 int rc;
347 if (state > AUDIT_LOCKED)
348 return -EINVAL;
349
350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
351 if (!rc)
352 audit_ever_enabled |= !!state;
353
354 return rc;
355}
356
357static int audit_set_failure(u32 state)
358{
359 if (state != AUDIT_FAIL_SILENT
360 && state != AUDIT_FAIL_PRINTK
361 && state != AUDIT_FAIL_PANIC)
362 return -EINVAL;
363
364 return audit_do_config_change("audit_failure", &audit_failure, state);
365}
366
367/*
368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
369 * already have been sent via prink/syslog and so if these messages are dropped
370 * it is not a huge concern since we already passed the audit_log_lost()
371 * notification and stuff. This is just nice to get audit messages during
372 * boot before auditd is running or messages generated while auditd is stopped.
373 * This only holds messages is audit_default is set, aka booting with audit=1
374 * or building your kernel that way.
375 */
376static void audit_hold_skb(struct sk_buff *skb)
377{
378 if (audit_default &&
379 (!audit_backlog_limit ||
380 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 skb_queue_tail(&audit_skb_hold_queue, skb);
382 else
383 kfree_skb(skb);
384}
385
386/*
387 * For one reason or another this nlh isn't getting delivered to the userspace
388 * audit daemon, just send it to printk.
389 */
390static void audit_printk_skb(struct sk_buff *skb)
391{
392 struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 char *data = nlmsg_data(nlh);
394
395 if (nlh->nlmsg_type != AUDIT_EOE) {
396 if (printk_ratelimit())
397 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
398 else
399 audit_log_lost("printk limit exceeded");
400 }
401
402 audit_hold_skb(skb);
403}
404
405static void kauditd_send_skb(struct sk_buff *skb)
406{
407 int err;
408 int attempts = 0;
409#define AUDITD_RETRIES 5
410
411restart:
412 /* take a reference in case we can't send it and we want to hold it */
413 skb_get(skb);
414 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
415 if (err < 0) {
416 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
417 audit_pid, err);
418 if (audit_pid) {
419 if (err == -ECONNREFUSED || err == -EPERM
420 || ++attempts >= AUDITD_RETRIES) {
421 char s[32];
422
423 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
424 audit_log_lost(s);
425 audit_pid = 0;
426 audit_sock = NULL;
427 } else {
428 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
429 attempts, audit_pid);
430 set_current_state(TASK_INTERRUPTIBLE);
431 schedule();
432 goto restart;
433 }
434 }
435 /* we might get lucky and get this in the next auditd */
436 audit_hold_skb(skb);
437 } else
438 /* drop the extra reference if sent ok */
439 consume_skb(skb);
440}
441
442/*
443 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
444 *
445 * This function doesn't consume an skb as might be expected since it has to
446 * copy it anyways.
447 */
448static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
449{
450 struct sk_buff *copy;
451 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
452 struct sock *sock = aunet->nlsk;
453
454 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
455 return;
456
457 /*
458 * The seemingly wasteful skb_copy() rather than bumping the refcount
459 * using skb_get() is necessary because non-standard mods are made to
460 * the skb by the original kaudit unicast socket send routine. The
461 * existing auditd daemon assumes this breakage. Fixing this would
462 * require co-ordinating a change in the established protocol between
463 * the kaudit kernel subsystem and the auditd userspace code. There is
464 * no reason for new multicast clients to continue with this
465 * non-compliance.
466 */
467 copy = skb_copy(skb, gfp_mask);
468 if (!copy)
469 return;
470
471 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
472}
473
474/*
475 * flush_hold_queue - empty the hold queue if auditd appears
476 *
477 * If auditd just started, drain the queue of messages already
478 * sent to syslog/printk. Remember loss here is ok. We already
479 * called audit_log_lost() if it didn't go out normally. so the
480 * race between the skb_dequeue and the next check for audit_pid
481 * doesn't matter.
482 *
483 * If you ever find kauditd to be too slow we can get a perf win
484 * by doing our own locking and keeping better track if there
485 * are messages in this queue. I don't see the need now, but
486 * in 5 years when I want to play with this again I'll see this
487 * note and still have no friggin idea what i'm thinking today.
488 */
489static void flush_hold_queue(void)
490{
491 struct sk_buff *skb;
492
493 if (!audit_default || !audit_pid)
494 return;
495
496 skb = skb_dequeue(&audit_skb_hold_queue);
497 if (likely(!skb))
498 return;
499
500 while (skb && audit_pid) {
501 kauditd_send_skb(skb);
502 skb = skb_dequeue(&audit_skb_hold_queue);
503 }
504
505 /*
506 * if auditd just disappeared but we
507 * dequeued an skb we need to drop ref
508 */
509 consume_skb(skb);
510}
511
512static int kauditd_thread(void *dummy)
513{
514 set_freezable();
515 while (!kthread_should_stop()) {
516 struct sk_buff *skb;
517
518 flush_hold_queue();
519
520 skb = skb_dequeue(&audit_skb_queue);
521
522 if (skb) {
523 if (!audit_backlog_limit ||
524 (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
525 wake_up(&audit_backlog_wait);
526 if (audit_pid)
527 kauditd_send_skb(skb);
528 else
529 audit_printk_skb(skb);
530 continue;
531 }
532
533 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
534 }
535 return 0;
536}
537
538int audit_send_list(void *_dest)
539{
540 struct audit_netlink_list *dest = _dest;
541 struct sk_buff *skb;
542 struct net *net = dest->net;
543 struct audit_net *aunet = net_generic(net, audit_net_id);
544
545 /* wait for parent to finish and send an ACK */
546 mutex_lock(&audit_cmd_mutex);
547 mutex_unlock(&audit_cmd_mutex);
548
549 while ((skb = __skb_dequeue(&dest->q)) != NULL)
550 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
551
552 put_net(net);
553 kfree(dest);
554
555 return 0;
556}
557
558struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
559 int multi, const void *payload, int size)
560{
561 struct sk_buff *skb;
562 struct nlmsghdr *nlh;
563 void *data;
564 int flags = multi ? NLM_F_MULTI : 0;
565 int t = done ? NLMSG_DONE : type;
566
567 skb = nlmsg_new(size, GFP_KERNEL);
568 if (!skb)
569 return NULL;
570
571 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
572 if (!nlh)
573 goto out_kfree_skb;
574 data = nlmsg_data(nlh);
575 memcpy(data, payload, size);
576 return skb;
577
578out_kfree_skb:
579 kfree_skb(skb);
580 return NULL;
581}
582
583static int audit_send_reply_thread(void *arg)
584{
585 struct audit_reply *reply = (struct audit_reply *)arg;
586 struct net *net = reply->net;
587 struct audit_net *aunet = net_generic(net, audit_net_id);
588
589 mutex_lock(&audit_cmd_mutex);
590 mutex_unlock(&audit_cmd_mutex);
591
592 /* Ignore failure. It'll only happen if the sender goes away,
593 because our timeout is set to infinite. */
594 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
595 put_net(net);
596 kfree(reply);
597 return 0;
598}
599/**
600 * audit_send_reply - send an audit reply message via netlink
601 * @request_skb: skb of request we are replying to (used to target the reply)
602 * @seq: sequence number
603 * @type: audit message type
604 * @done: done (last) flag
605 * @multi: multi-part message flag
606 * @payload: payload data
607 * @size: payload size
608 *
609 * Allocates an skb, builds the netlink message, and sends it to the port id.
610 * No failure notifications.
611 */
612static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
613 int multi, const void *payload, int size)
614{
615 u32 portid = NETLINK_CB(request_skb).portid;
616 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
617 struct sk_buff *skb;
618 struct task_struct *tsk;
619 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
620 GFP_KERNEL);
621
622 if (!reply)
623 return;
624
625 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
626 if (!skb)
627 goto out;
628
629 reply->net = get_net(net);
630 reply->portid = portid;
631 reply->skb = skb;
632
633 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
634 if (!IS_ERR(tsk))
635 return;
636 kfree_skb(skb);
637out:
638 kfree(reply);
639}
640
641/*
642 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
643 * control messages.
644 */
645static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
646{
647 int err = 0;
648
649 /* Only support initial user namespace for now. */
650 /*
651 * We return ECONNREFUSED because it tricks userspace into thinking
652 * that audit was not configured into the kernel. Lots of users
653 * configure their PAM stack (because that's what the distro does)
654 * to reject login if unable to send messages to audit. If we return
655 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
656 * configured in and will let login proceed. If we return EPERM
657 * userspace will reject all logins. This should be removed when we
658 * support non init namespaces!!
659 */
660 if (current_user_ns() != &init_user_ns)
661 return -ECONNREFUSED;
662
663 switch (msg_type) {
664 case AUDIT_LIST:
665 case AUDIT_ADD:
666 case AUDIT_DEL:
667 return -EOPNOTSUPP;
668 case AUDIT_GET:
669 case AUDIT_SET:
670 case AUDIT_GET_FEATURE:
671 case AUDIT_SET_FEATURE:
672 case AUDIT_LIST_RULES:
673 case AUDIT_ADD_RULE:
674 case AUDIT_DEL_RULE:
675 case AUDIT_SIGNAL_INFO:
676 case AUDIT_TTY_GET:
677 case AUDIT_TTY_SET:
678 case AUDIT_TRIM:
679 case AUDIT_MAKE_EQUIV:
680 /* Only support auditd and auditctl in initial pid namespace
681 * for now. */
682 if (task_active_pid_ns(current) != &init_pid_ns)
683 return -EPERM;
684
685 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
686 err = -EPERM;
687 break;
688 case AUDIT_USER:
689 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
690 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
691 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
692 err = -EPERM;
693 break;
694 default: /* bad msg */
695 err = -EINVAL;
696 }
697
698 return err;
699}
700
701static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
702{
703 uid_t uid = from_kuid(&init_user_ns, current_uid());
704 pid_t pid = task_tgid_nr(current);
705
706 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
707 *ab = NULL;
708 return;
709 }
710
711 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
712 if (unlikely(!*ab))
713 return;
714 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
715 audit_log_session_info(*ab);
716 audit_log_task_context(*ab);
717}
718
719int is_audit_feature_set(int i)
720{
721 return af.features & AUDIT_FEATURE_TO_MASK(i);
722}
723
724
725static int audit_get_feature(struct sk_buff *skb)
726{
727 u32 seq;
728
729 seq = nlmsg_hdr(skb)->nlmsg_seq;
730
731 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
732
733 return 0;
734}
735
736static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
737 u32 old_lock, u32 new_lock, int res)
738{
739 struct audit_buffer *ab;
740
741 if (audit_enabled == AUDIT_OFF)
742 return;
743
744 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
745 if (!ab)
746 return;
747 audit_log_task_info(ab, current);
748 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
749 audit_feature_names[which], !!old_feature, !!new_feature,
750 !!old_lock, !!new_lock, res);
751 audit_log_end(ab);
752}
753
754static int audit_set_feature(struct sk_buff *skb)
755{
756 struct audit_features *uaf;
757 int i;
758
759 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
760 uaf = nlmsg_data(nlmsg_hdr(skb));
761
762 /* if there is ever a version 2 we should handle that here */
763
764 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
765 u32 feature = AUDIT_FEATURE_TO_MASK(i);
766 u32 old_feature, new_feature, old_lock, new_lock;
767
768 /* if we are not changing this feature, move along */
769 if (!(feature & uaf->mask))
770 continue;
771
772 old_feature = af.features & feature;
773 new_feature = uaf->features & feature;
774 new_lock = (uaf->lock | af.lock) & feature;
775 old_lock = af.lock & feature;
776
777 /* are we changing a locked feature? */
778 if (old_lock && (new_feature != old_feature)) {
779 audit_log_feature_change(i, old_feature, new_feature,
780 old_lock, new_lock, 0);
781 return -EPERM;
782 }
783 }
784 /* nothing invalid, do the changes */
785 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
786 u32 feature = AUDIT_FEATURE_TO_MASK(i);
787 u32 old_feature, new_feature, old_lock, new_lock;
788
789 /* if we are not changing this feature, move along */
790 if (!(feature & uaf->mask))
791 continue;
792
793 old_feature = af.features & feature;
794 new_feature = uaf->features & feature;
795 old_lock = af.lock & feature;
796 new_lock = (uaf->lock | af.lock) & feature;
797
798 if (new_feature != old_feature)
799 audit_log_feature_change(i, old_feature, new_feature,
800 old_lock, new_lock, 1);
801
802 if (new_feature)
803 af.features |= feature;
804 else
805 af.features &= ~feature;
806 af.lock |= new_lock;
807 }
808
809 return 0;
810}
811
812static int audit_replace(pid_t pid)
813{
814 struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
815 &pid, sizeof(pid));
816
817 if (!skb)
818 return -ENOMEM;
819 return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
820}
821
822static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
823{
824 u32 seq;
825 void *data;
826 int err;
827 struct audit_buffer *ab;
828 u16 msg_type = nlh->nlmsg_type;
829 struct audit_sig_info *sig_data;
830 char *ctx = NULL;
831 u32 len;
832
833 err = audit_netlink_ok(skb, msg_type);
834 if (err)
835 return err;
836
837 /* As soon as there's any sign of userspace auditd,
838 * start kauditd to talk to it */
839 if (!kauditd_task) {
840 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
841 if (IS_ERR(kauditd_task)) {
842 err = PTR_ERR(kauditd_task);
843 kauditd_task = NULL;
844 return err;
845 }
846 }
847 seq = nlh->nlmsg_seq;
848 data = nlmsg_data(nlh);
849
850 switch (msg_type) {
851 case AUDIT_GET: {
852 struct audit_status s;
853 memset(&s, 0, sizeof(s));
854 s.enabled = audit_enabled;
855 s.failure = audit_failure;
856 s.pid = audit_pid;
857 s.rate_limit = audit_rate_limit;
858 s.backlog_limit = audit_backlog_limit;
859 s.lost = atomic_read(&audit_lost);
860 s.backlog = skb_queue_len(&audit_skb_queue);
861 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
862 s.backlog_wait_time = audit_backlog_wait_time_master;
863 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
864 break;
865 }
866 case AUDIT_SET: {
867 struct audit_status s;
868 memset(&s, 0, sizeof(s));
869 /* guard against past and future API changes */
870 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
871 if (s.mask & AUDIT_STATUS_ENABLED) {
872 err = audit_set_enabled(s.enabled);
873 if (err < 0)
874 return err;
875 }
876 if (s.mask & AUDIT_STATUS_FAILURE) {
877 err = audit_set_failure(s.failure);
878 if (err < 0)
879 return err;
880 }
881 if (s.mask & AUDIT_STATUS_PID) {
882 /* NOTE: we are using task_tgid_vnr() below because
883 * the s.pid value is relative to the namespace
884 * of the caller; at present this doesn't matter
885 * much since you can really only run auditd
886 * from the initial pid namespace, but something
887 * to keep in mind if this changes */
888 int new_pid = s.pid;
889 pid_t requesting_pid = task_tgid_vnr(current);
890
891 if ((!new_pid) && (requesting_pid != audit_pid)) {
892 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
893 return -EACCES;
894 }
895 if (audit_pid && new_pid &&
896 audit_replace(requesting_pid) != -ECONNREFUSED) {
897 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
898 return -EEXIST;
899 }
900 if (audit_enabled != AUDIT_OFF)
901 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
902 audit_pid = new_pid;
903 audit_nlk_portid = NETLINK_CB(skb).portid;
904 audit_sock = skb->sk;
905 }
906 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
907 err = audit_set_rate_limit(s.rate_limit);
908 if (err < 0)
909 return err;
910 }
911 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
912 err = audit_set_backlog_limit(s.backlog_limit);
913 if (err < 0)
914 return err;
915 }
916 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
917 if (sizeof(s) > (size_t)nlh->nlmsg_len)
918 return -EINVAL;
919 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
920 return -EINVAL;
921 err = audit_set_backlog_wait_time(s.backlog_wait_time);
922 if (err < 0)
923 return err;
924 }
925 break;
926 }
927 case AUDIT_GET_FEATURE:
928 err = audit_get_feature(skb);
929 if (err)
930 return err;
931 break;
932 case AUDIT_SET_FEATURE:
933 err = audit_set_feature(skb);
934 if (err)
935 return err;
936 break;
937 case AUDIT_USER:
938 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
939 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
940 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
941 return 0;
942
943 err = audit_filter(msg_type, AUDIT_FILTER_USER);
944 if (err == 1) { /* match or error */
945 err = 0;
946 if (msg_type == AUDIT_USER_TTY) {
947 err = tty_audit_push();
948 if (err)
949 break;
950 }
951 mutex_unlock(&audit_cmd_mutex);
952 audit_log_common_recv_msg(&ab, msg_type);
953 if (msg_type != AUDIT_USER_TTY)
954 audit_log_format(ab, " msg='%.*s'",
955 AUDIT_MESSAGE_TEXT_MAX,
956 (char *)data);
957 else {
958 int size;
959
960 audit_log_format(ab, " data=");
961 size = nlmsg_len(nlh);
962 if (size > 0 &&
963 ((unsigned char *)data)[size - 1] == '\0')
964 size--;
965 audit_log_n_untrustedstring(ab, data, size);
966 }
967 audit_set_portid(ab, NETLINK_CB(skb).portid);
968 audit_log_end(ab);
969 mutex_lock(&audit_cmd_mutex);
970 }
971 break;
972 case AUDIT_ADD_RULE:
973 case AUDIT_DEL_RULE:
974 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
975 return -EINVAL;
976 if (audit_enabled == AUDIT_LOCKED) {
977 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
978 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
979 audit_log_end(ab);
980 return -EPERM;
981 }
982 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
983 seq, data, nlmsg_len(nlh));
984 break;
985 case AUDIT_LIST_RULES:
986 err = audit_list_rules_send(skb, seq);
987 break;
988 case AUDIT_TRIM:
989 audit_trim_trees();
990 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
991 audit_log_format(ab, " op=trim res=1");
992 audit_log_end(ab);
993 break;
994 case AUDIT_MAKE_EQUIV: {
995 void *bufp = data;
996 u32 sizes[2];
997 size_t msglen = nlmsg_len(nlh);
998 char *old, *new;
999
1000 err = -EINVAL;
1001 if (msglen < 2 * sizeof(u32))
1002 break;
1003 memcpy(sizes, bufp, 2 * sizeof(u32));
1004 bufp += 2 * sizeof(u32);
1005 msglen -= 2 * sizeof(u32);
1006 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1007 if (IS_ERR(old)) {
1008 err = PTR_ERR(old);
1009 break;
1010 }
1011 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1012 if (IS_ERR(new)) {
1013 err = PTR_ERR(new);
1014 kfree(old);
1015 break;
1016 }
1017 /* OK, here comes... */
1018 err = audit_tag_tree(old, new);
1019
1020 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1021
1022 audit_log_format(ab, " op=make_equiv old=");
1023 audit_log_untrustedstring(ab, old);
1024 audit_log_format(ab, " new=");
1025 audit_log_untrustedstring(ab, new);
1026 audit_log_format(ab, " res=%d", !err);
1027 audit_log_end(ab);
1028 kfree(old);
1029 kfree(new);
1030 break;
1031 }
1032 case AUDIT_SIGNAL_INFO:
1033 len = 0;
1034 if (audit_sig_sid) {
1035 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1036 if (err)
1037 return err;
1038 }
1039 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1040 if (!sig_data) {
1041 if (audit_sig_sid)
1042 security_release_secctx(ctx, len);
1043 return -ENOMEM;
1044 }
1045 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1046 sig_data->pid = audit_sig_pid;
1047 if (audit_sig_sid) {
1048 memcpy(sig_data->ctx, ctx, len);
1049 security_release_secctx(ctx, len);
1050 }
1051 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1052 sig_data, sizeof(*sig_data) + len);
1053 kfree(sig_data);
1054 break;
1055 case AUDIT_TTY_GET: {
1056 struct audit_tty_status s;
1057 unsigned int t;
1058
1059 t = READ_ONCE(current->signal->audit_tty);
1060 s.enabled = t & AUDIT_TTY_ENABLE;
1061 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1062
1063 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1064 break;
1065 }
1066 case AUDIT_TTY_SET: {
1067 struct audit_tty_status s, old;
1068 struct audit_buffer *ab;
1069 unsigned int t;
1070
1071 memset(&s, 0, sizeof(s));
1072 /* guard against past and future API changes */
1073 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1074 /* check if new data is valid */
1075 if ((s.enabled != 0 && s.enabled != 1) ||
1076 (s.log_passwd != 0 && s.log_passwd != 1))
1077 err = -EINVAL;
1078
1079 if (err)
1080 t = READ_ONCE(current->signal->audit_tty);
1081 else {
1082 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1083 t = xchg(&current->signal->audit_tty, t);
1084 }
1085 old.enabled = t & AUDIT_TTY_ENABLE;
1086 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1087
1088 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1089 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1090 " old-log_passwd=%d new-log_passwd=%d res=%d",
1091 old.enabled, s.enabled, old.log_passwd,
1092 s.log_passwd, !err);
1093 audit_log_end(ab);
1094 break;
1095 }
1096 default:
1097 err = -EINVAL;
1098 break;
1099 }
1100
1101 return err < 0 ? err : 0;
1102}
1103
1104/*
1105 * Get message from skb. Each message is processed by audit_receive_msg.
1106 * Malformed skbs with wrong length are discarded silently.
1107 */
1108static void audit_receive_skb(struct sk_buff *skb)
1109{
1110 struct nlmsghdr *nlh;
1111 /*
1112 * len MUST be signed for nlmsg_next to be able to dec it below 0
1113 * if the nlmsg_len was not aligned
1114 */
1115 int len;
1116 int err;
1117
1118 nlh = nlmsg_hdr(skb);
1119 len = skb->len;
1120
1121 while (nlmsg_ok(nlh, len)) {
1122 err = audit_receive_msg(skb, nlh);
1123 /* if err or if this message says it wants a response */
1124 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1125 netlink_ack(skb, nlh, err);
1126
1127 nlh = nlmsg_next(nlh, &len);
1128 }
1129}
1130
1131/* Receive messages from netlink socket. */
1132static void audit_receive(struct sk_buff *skb)
1133{
1134 mutex_lock(&audit_cmd_mutex);
1135 audit_receive_skb(skb);
1136 mutex_unlock(&audit_cmd_mutex);
1137}
1138
1139/* Run custom bind function on netlink socket group connect or bind requests. */
1140static int audit_bind(struct net *net, int group)
1141{
1142 if (!capable(CAP_AUDIT_READ))
1143 return -EPERM;
1144
1145 return 0;
1146}
1147
1148static int __net_init audit_net_init(struct net *net)
1149{
1150 struct netlink_kernel_cfg cfg = {
1151 .input = audit_receive,
1152 .bind = audit_bind,
1153 .flags = NL_CFG_F_NONROOT_RECV,
1154 .groups = AUDIT_NLGRP_MAX,
1155 };
1156
1157 struct audit_net *aunet = net_generic(net, audit_net_id);
1158
1159 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1160 if (aunet->nlsk == NULL) {
1161 audit_panic("cannot initialize netlink socket in namespace");
1162 return -ENOMEM;
1163 }
1164 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1165 return 0;
1166}
1167
1168static void __net_exit audit_net_exit(struct net *net)
1169{
1170 struct audit_net *aunet = net_generic(net, audit_net_id);
1171 struct sock *sock = aunet->nlsk;
1172 if (sock == audit_sock) {
1173 audit_pid = 0;
1174 audit_sock = NULL;
1175 }
1176
1177 RCU_INIT_POINTER(aunet->nlsk, NULL);
1178 synchronize_net();
1179 netlink_kernel_release(sock);
1180}
1181
1182static struct pernet_operations audit_net_ops __net_initdata = {
1183 .init = audit_net_init,
1184 .exit = audit_net_exit,
1185 .id = &audit_net_id,
1186 .size = sizeof(struct audit_net),
1187};
1188
1189/* Initialize audit support at boot time. */
1190static int __init audit_init(void)
1191{
1192 int i;
1193
1194 if (audit_initialized == AUDIT_DISABLED)
1195 return 0;
1196
1197 pr_info("initializing netlink subsys (%s)\n",
1198 audit_default ? "enabled" : "disabled");
1199 register_pernet_subsys(&audit_net_ops);
1200
1201 skb_queue_head_init(&audit_skb_queue);
1202 skb_queue_head_init(&audit_skb_hold_queue);
1203 audit_initialized = AUDIT_INITIALIZED;
1204
1205 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1206
1207 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1208 INIT_LIST_HEAD(&audit_inode_hash[i]);
1209
1210 return 0;
1211}
1212__initcall(audit_init);
1213
1214/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1215static int __init audit_enable(char *str)
1216{
1217 audit_default = !!simple_strtol(str, NULL, 0);
1218 if (!audit_default)
1219 audit_initialized = AUDIT_DISABLED;
1220 audit_enabled = audit_default;
1221 audit_ever_enabled = !!audit_enabled;
1222
1223 pr_info("%s\n", audit_default ?
1224 "enabled (after initialization)" : "disabled (until reboot)");
1225
1226 return 1;
1227}
1228__setup("audit=", audit_enable);
1229
1230/* Process kernel command-line parameter at boot time.
1231 * audit_backlog_limit=<n> */
1232static int __init audit_backlog_limit_set(char *str)
1233{
1234 u32 audit_backlog_limit_arg;
1235
1236 pr_info("audit_backlog_limit: ");
1237 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1238 pr_cont("using default of %u, unable to parse %s\n",
1239 audit_backlog_limit, str);
1240 return 1;
1241 }
1242
1243 audit_backlog_limit = audit_backlog_limit_arg;
1244 pr_cont("%d\n", audit_backlog_limit);
1245
1246 return 1;
1247}
1248__setup("audit_backlog_limit=", audit_backlog_limit_set);
1249
1250static void audit_buffer_free(struct audit_buffer *ab)
1251{
1252 unsigned long flags;
1253
1254 if (!ab)
1255 return;
1256
1257 kfree_skb(ab->skb);
1258 spin_lock_irqsave(&audit_freelist_lock, flags);
1259 if (audit_freelist_count > AUDIT_MAXFREE)
1260 kfree(ab);
1261 else {
1262 audit_freelist_count++;
1263 list_add(&ab->list, &audit_freelist);
1264 }
1265 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1266}
1267
1268static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1269 gfp_t gfp_mask, int type)
1270{
1271 unsigned long flags;
1272 struct audit_buffer *ab = NULL;
1273 struct nlmsghdr *nlh;
1274
1275 spin_lock_irqsave(&audit_freelist_lock, flags);
1276 if (!list_empty(&audit_freelist)) {
1277 ab = list_entry(audit_freelist.next,
1278 struct audit_buffer, list);
1279 list_del(&ab->list);
1280 --audit_freelist_count;
1281 }
1282 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1283
1284 if (!ab) {
1285 ab = kmalloc(sizeof(*ab), gfp_mask);
1286 if (!ab)
1287 goto err;
1288 }
1289
1290 ab->ctx = ctx;
1291 ab->gfp_mask = gfp_mask;
1292
1293 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1294 if (!ab->skb)
1295 goto err;
1296
1297 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1298 if (!nlh)
1299 goto out_kfree_skb;
1300
1301 return ab;
1302
1303out_kfree_skb:
1304 kfree_skb(ab->skb);
1305 ab->skb = NULL;
1306err:
1307 audit_buffer_free(ab);
1308 return NULL;
1309}
1310
1311/**
1312 * audit_serial - compute a serial number for the audit record
1313 *
1314 * Compute a serial number for the audit record. Audit records are
1315 * written to user-space as soon as they are generated, so a complete
1316 * audit record may be written in several pieces. The timestamp of the
1317 * record and this serial number are used by the user-space tools to
1318 * determine which pieces belong to the same audit record. The
1319 * (timestamp,serial) tuple is unique for each syscall and is live from
1320 * syscall entry to syscall exit.
1321 *
1322 * NOTE: Another possibility is to store the formatted records off the
1323 * audit context (for those records that have a context), and emit them
1324 * all at syscall exit. However, this could delay the reporting of
1325 * significant errors until syscall exit (or never, if the system
1326 * halts).
1327 */
1328unsigned int audit_serial(void)
1329{
1330 static atomic_t serial = ATOMIC_INIT(0);
1331
1332 return atomic_add_return(1, &serial);
1333}
1334
1335static inline void audit_get_stamp(struct audit_context *ctx,
1336 struct timespec *t, unsigned int *serial)
1337{
1338 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1339 *t = CURRENT_TIME;
1340 *serial = audit_serial();
1341 }
1342}
1343
1344/*
1345 * Wait for auditd to drain the queue a little
1346 */
1347static long wait_for_auditd(long sleep_time)
1348{
1349 DECLARE_WAITQUEUE(wait, current);
1350
1351 if (audit_backlog_limit &&
1352 skb_queue_len(&audit_skb_queue) > audit_backlog_limit) {
1353 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1354 set_current_state(TASK_UNINTERRUPTIBLE);
1355 sleep_time = schedule_timeout(sleep_time);
1356 remove_wait_queue(&audit_backlog_wait, &wait);
1357 }
1358
1359 return sleep_time;
1360}
1361
1362/**
1363 * audit_log_start - obtain an audit buffer
1364 * @ctx: audit_context (may be NULL)
1365 * @gfp_mask: type of allocation
1366 * @type: audit message type
1367 *
1368 * Returns audit_buffer pointer on success or NULL on error.
1369 *
1370 * Obtain an audit buffer. This routine does locking to obtain the
1371 * audit buffer, but then no locking is required for calls to
1372 * audit_log_*format. If the task (ctx) is a task that is currently in a
1373 * syscall, then the syscall is marked as auditable and an audit record
1374 * will be written at syscall exit. If there is no associated task, then
1375 * task context (ctx) should be NULL.
1376 */
1377struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1378 int type)
1379{
1380 struct audit_buffer *ab = NULL;
1381 struct timespec t;
1382 unsigned int uninitialized_var(serial);
1383 int reserve = 5; /* Allow atomic callers to go up to five
1384 entries over the normal backlog limit */
1385 unsigned long timeout_start = jiffies;
1386
1387 if (audit_initialized != AUDIT_INITIALIZED)
1388 return NULL;
1389
1390 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1391 return NULL;
1392
1393 if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1394 if (audit_pid && audit_pid == current->tgid)
1395 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1396 else
1397 reserve = 0;
1398 }
1399
1400 while (audit_backlog_limit
1401 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1402 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1403 long sleep_time;
1404
1405 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1406 if (sleep_time > 0) {
1407 sleep_time = wait_for_auditd(sleep_time);
1408 if (sleep_time > 0)
1409 continue;
1410 }
1411 }
1412 if (audit_rate_check() && printk_ratelimit())
1413 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1414 skb_queue_len(&audit_skb_queue),
1415 audit_backlog_limit);
1416 audit_log_lost("backlog limit exceeded");
1417 audit_backlog_wait_time = 0;
1418 wake_up(&audit_backlog_wait);
1419 return NULL;
1420 }
1421
1422 if (!reserve && !audit_backlog_wait_time)
1423 audit_backlog_wait_time = audit_backlog_wait_time_master;
1424
1425 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1426 if (!ab) {
1427 audit_log_lost("out of memory in audit_log_start");
1428 return NULL;
1429 }
1430
1431 audit_get_stamp(ab->ctx, &t, &serial);
1432
1433 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1434 t.tv_sec, t.tv_nsec/1000000, serial);
1435 return ab;
1436}
1437
1438/**
1439 * audit_expand - expand skb in the audit buffer
1440 * @ab: audit_buffer
1441 * @extra: space to add at tail of the skb
1442 *
1443 * Returns 0 (no space) on failed expansion, or available space if
1444 * successful.
1445 */
1446static inline int audit_expand(struct audit_buffer *ab, int extra)
1447{
1448 struct sk_buff *skb = ab->skb;
1449 int oldtail = skb_tailroom(skb);
1450 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1451 int newtail = skb_tailroom(skb);
1452
1453 if (ret < 0) {
1454 audit_log_lost("out of memory in audit_expand");
1455 return 0;
1456 }
1457
1458 skb->truesize += newtail - oldtail;
1459 return newtail;
1460}
1461
1462/*
1463 * Format an audit message into the audit buffer. If there isn't enough
1464 * room in the audit buffer, more room will be allocated and vsnprint
1465 * will be called a second time. Currently, we assume that a printk
1466 * can't format message larger than 1024 bytes, so we don't either.
1467 */
1468static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1469 va_list args)
1470{
1471 int len, avail;
1472 struct sk_buff *skb;
1473 va_list args2;
1474
1475 if (!ab)
1476 return;
1477
1478 BUG_ON(!ab->skb);
1479 skb = ab->skb;
1480 avail = skb_tailroom(skb);
1481 if (avail == 0) {
1482 avail = audit_expand(ab, AUDIT_BUFSIZ);
1483 if (!avail)
1484 goto out;
1485 }
1486 va_copy(args2, args);
1487 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1488 if (len >= avail) {
1489 /* The printk buffer is 1024 bytes long, so if we get
1490 * here and AUDIT_BUFSIZ is at least 1024, then we can
1491 * log everything that printk could have logged. */
1492 avail = audit_expand(ab,
1493 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1494 if (!avail)
1495 goto out_va_end;
1496 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1497 }
1498 if (len > 0)
1499 skb_put(skb, len);
1500out_va_end:
1501 va_end(args2);
1502out:
1503 return;
1504}
1505
1506/**
1507 * audit_log_format - format a message into the audit buffer.
1508 * @ab: audit_buffer
1509 * @fmt: format string
1510 * @...: optional parameters matching @fmt string
1511 *
1512 * All the work is done in audit_log_vformat.
1513 */
1514void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1515{
1516 va_list args;
1517
1518 if (!ab)
1519 return;
1520 va_start(args, fmt);
1521 audit_log_vformat(ab, fmt, args);
1522 va_end(args);
1523}
1524
1525/**
1526 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1527 * @ab: the audit_buffer
1528 * @buf: buffer to convert to hex
1529 * @len: length of @buf to be converted
1530 *
1531 * No return value; failure to expand is silently ignored.
1532 *
1533 * This function will take the passed buf and convert it into a string of
1534 * ascii hex digits. The new string is placed onto the skb.
1535 */
1536void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1537 size_t len)
1538{
1539 int i, avail, new_len;
1540 unsigned char *ptr;
1541 struct sk_buff *skb;
1542
1543 if (!ab)
1544 return;
1545
1546 BUG_ON(!ab->skb);
1547 skb = ab->skb;
1548 avail = skb_tailroom(skb);
1549 new_len = len<<1;
1550 if (new_len >= avail) {
1551 /* Round the buffer request up to the next multiple */
1552 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1553 avail = audit_expand(ab, new_len);
1554 if (!avail)
1555 return;
1556 }
1557
1558 ptr = skb_tail_pointer(skb);
1559 for (i = 0; i < len; i++)
1560 ptr = hex_byte_pack_upper(ptr, buf[i]);
1561 *ptr = 0;
1562 skb_put(skb, len << 1); /* new string is twice the old string */
1563}
1564
1565/*
1566 * Format a string of no more than slen characters into the audit buffer,
1567 * enclosed in quote marks.
1568 */
1569void audit_log_n_string(struct audit_buffer *ab, const char *string,
1570 size_t slen)
1571{
1572 int avail, new_len;
1573 unsigned char *ptr;
1574 struct sk_buff *skb;
1575
1576 if (!ab)
1577 return;
1578
1579 BUG_ON(!ab->skb);
1580 skb = ab->skb;
1581 avail = skb_tailroom(skb);
1582 new_len = slen + 3; /* enclosing quotes + null terminator */
1583 if (new_len > avail) {
1584 avail = audit_expand(ab, new_len);
1585 if (!avail)
1586 return;
1587 }
1588 ptr = skb_tail_pointer(skb);
1589 *ptr++ = '"';
1590 memcpy(ptr, string, slen);
1591 ptr += slen;
1592 *ptr++ = '"';
1593 *ptr = 0;
1594 skb_put(skb, slen + 2); /* don't include null terminator */
1595}
1596
1597/**
1598 * audit_string_contains_control - does a string need to be logged in hex
1599 * @string: string to be checked
1600 * @len: max length of the string to check
1601 */
1602bool audit_string_contains_control(const char *string, size_t len)
1603{
1604 const unsigned char *p;
1605 for (p = string; p < (const unsigned char *)string + len; p++) {
1606 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1607 return true;
1608 }
1609 return false;
1610}
1611
1612/**
1613 * audit_log_n_untrustedstring - log a string that may contain random characters
1614 * @ab: audit_buffer
1615 * @len: length of string (not including trailing null)
1616 * @string: string to be logged
1617 *
1618 * This code will escape a string that is passed to it if the string
1619 * contains a control character, unprintable character, double quote mark,
1620 * or a space. Unescaped strings will start and end with a double quote mark.
1621 * Strings that are escaped are printed in hex (2 digits per char).
1622 *
1623 * The caller specifies the number of characters in the string to log, which may
1624 * or may not be the entire string.
1625 */
1626void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1627 size_t len)
1628{
1629 if (audit_string_contains_control(string, len))
1630 audit_log_n_hex(ab, string, len);
1631 else
1632 audit_log_n_string(ab, string, len);
1633}
1634
1635/**
1636 * audit_log_untrustedstring - log a string that may contain random characters
1637 * @ab: audit_buffer
1638 * @string: string to be logged
1639 *
1640 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1641 * determine string length.
1642 */
1643void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1644{
1645 audit_log_n_untrustedstring(ab, string, strlen(string));
1646}
1647
1648/* This is a helper-function to print the escaped d_path */
1649void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1650 const struct path *path)
1651{
1652 char *p, *pathname;
1653
1654 if (prefix)
1655 audit_log_format(ab, "%s", prefix);
1656
1657 /* We will allow 11 spaces for ' (deleted)' to be appended */
1658 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1659 if (!pathname) {
1660 audit_log_string(ab, "<no_memory>");
1661 return;
1662 }
1663 p = d_path(path, pathname, PATH_MAX+11);
1664 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1665 /* FIXME: can we save some information here? */
1666 audit_log_string(ab, "<too_long>");
1667 } else
1668 audit_log_untrustedstring(ab, p);
1669 kfree(pathname);
1670}
1671
1672void audit_log_session_info(struct audit_buffer *ab)
1673{
1674 unsigned int sessionid = audit_get_sessionid(current);
1675 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1676
1677 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1678}
1679
1680void audit_log_key(struct audit_buffer *ab, char *key)
1681{
1682 audit_log_format(ab, " key=");
1683 if (key)
1684 audit_log_untrustedstring(ab, key);
1685 else
1686 audit_log_format(ab, "(null)");
1687}
1688
1689void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1690{
1691 int i;
1692
1693 audit_log_format(ab, " %s=", prefix);
1694 CAP_FOR_EACH_U32(i) {
1695 audit_log_format(ab, "%08x",
1696 cap->cap[CAP_LAST_U32 - i]);
1697 }
1698}
1699
1700static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1701{
1702 kernel_cap_t *perm = &name->fcap.permitted;
1703 kernel_cap_t *inh = &name->fcap.inheritable;
1704 int log = 0;
1705
1706 if (!cap_isclear(*perm)) {
1707 audit_log_cap(ab, "cap_fp", perm);
1708 log = 1;
1709 }
1710 if (!cap_isclear(*inh)) {
1711 audit_log_cap(ab, "cap_fi", inh);
1712 log = 1;
1713 }
1714
1715 if (log)
1716 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1717 name->fcap.fE, name->fcap_ver);
1718}
1719
1720static inline int audit_copy_fcaps(struct audit_names *name,
1721 const struct dentry *dentry)
1722{
1723 struct cpu_vfs_cap_data caps;
1724 int rc;
1725
1726 if (!dentry)
1727 return 0;
1728
1729 rc = get_vfs_caps_from_disk(dentry, &caps);
1730 if (rc)
1731 return rc;
1732
1733 name->fcap.permitted = caps.permitted;
1734 name->fcap.inheritable = caps.inheritable;
1735 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1736 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1737 VFS_CAP_REVISION_SHIFT;
1738
1739 return 0;
1740}
1741
1742/* Copy inode data into an audit_names. */
1743void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1744 struct inode *inode)
1745{
1746 name->ino = inode->i_ino;
1747 name->dev = inode->i_sb->s_dev;
1748 name->mode = inode->i_mode;
1749 name->uid = inode->i_uid;
1750 name->gid = inode->i_gid;
1751 name->rdev = inode->i_rdev;
1752 security_inode_getsecid(inode, &name->osid);
1753 audit_copy_fcaps(name, dentry);
1754}
1755
1756/**
1757 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1758 * @context: audit_context for the task
1759 * @n: audit_names structure with reportable details
1760 * @path: optional path to report instead of audit_names->name
1761 * @record_num: record number to report when handling a list of names
1762 * @call_panic: optional pointer to int that will be updated if secid fails
1763 */
1764void audit_log_name(struct audit_context *context, struct audit_names *n,
1765 struct path *path, int record_num, int *call_panic)
1766{
1767 struct audit_buffer *ab;
1768 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1769 if (!ab)
1770 return;
1771
1772 audit_log_format(ab, "item=%d", record_num);
1773
1774 if (path)
1775 audit_log_d_path(ab, " name=", path);
1776 else if (n->name) {
1777 switch (n->name_len) {
1778 case AUDIT_NAME_FULL:
1779 /* log the full path */
1780 audit_log_format(ab, " name=");
1781 audit_log_untrustedstring(ab, n->name->name);
1782 break;
1783 case 0:
1784 /* name was specified as a relative path and the
1785 * directory component is the cwd */
1786 audit_log_d_path(ab, " name=", &context->pwd);
1787 break;
1788 default:
1789 /* log the name's directory component */
1790 audit_log_format(ab, " name=");
1791 audit_log_n_untrustedstring(ab, n->name->name,
1792 n->name_len);
1793 }
1794 } else
1795 audit_log_format(ab, " name=(null)");
1796
1797 if (n->ino != AUDIT_INO_UNSET)
1798 audit_log_format(ab, " inode=%lu"
1799 " dev=%02x:%02x mode=%#ho"
1800 " ouid=%u ogid=%u rdev=%02x:%02x",
1801 n->ino,
1802 MAJOR(n->dev),
1803 MINOR(n->dev),
1804 n->mode,
1805 from_kuid(&init_user_ns, n->uid),
1806 from_kgid(&init_user_ns, n->gid),
1807 MAJOR(n->rdev),
1808 MINOR(n->rdev));
1809 if (n->osid != 0) {
1810 char *ctx = NULL;
1811 u32 len;
1812 if (security_secid_to_secctx(
1813 n->osid, &ctx, &len)) {
1814 audit_log_format(ab, " osid=%u", n->osid);
1815 if (call_panic)
1816 *call_panic = 2;
1817 } else {
1818 audit_log_format(ab, " obj=%s", ctx);
1819 security_release_secctx(ctx, len);
1820 }
1821 }
1822
1823 /* log the audit_names record type */
1824 audit_log_format(ab, " nametype=");
1825 switch(n->type) {
1826 case AUDIT_TYPE_NORMAL:
1827 audit_log_format(ab, "NORMAL");
1828 break;
1829 case AUDIT_TYPE_PARENT:
1830 audit_log_format(ab, "PARENT");
1831 break;
1832 case AUDIT_TYPE_CHILD_DELETE:
1833 audit_log_format(ab, "DELETE");
1834 break;
1835 case AUDIT_TYPE_CHILD_CREATE:
1836 audit_log_format(ab, "CREATE");
1837 break;
1838 default:
1839 audit_log_format(ab, "UNKNOWN");
1840 break;
1841 }
1842
1843 audit_log_fcaps(ab, n);
1844 audit_log_end(ab);
1845}
1846
1847int audit_log_task_context(struct audit_buffer *ab)
1848{
1849 char *ctx = NULL;
1850 unsigned len;
1851 int error;
1852 u32 sid;
1853
1854 security_task_getsecid(current, &sid);
1855 if (!sid)
1856 return 0;
1857
1858 error = security_secid_to_secctx(sid, &ctx, &len);
1859 if (error) {
1860 if (error != -EINVAL)
1861 goto error_path;
1862 return 0;
1863 }
1864
1865 audit_log_format(ab, " subj=%s", ctx);
1866 security_release_secctx(ctx, len);
1867 return 0;
1868
1869error_path:
1870 audit_panic("error in audit_log_task_context");
1871 return error;
1872}
1873EXPORT_SYMBOL(audit_log_task_context);
1874
1875void audit_log_d_path_exe(struct audit_buffer *ab,
1876 struct mm_struct *mm)
1877{
1878 struct file *exe_file;
1879
1880 if (!mm)
1881 goto out_null;
1882
1883 exe_file = get_mm_exe_file(mm);
1884 if (!exe_file)
1885 goto out_null;
1886
1887 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1888 fput(exe_file);
1889 return;
1890out_null:
1891 audit_log_format(ab, " exe=(null)");
1892}
1893
1894struct tty_struct *audit_get_tty(struct task_struct *tsk)
1895{
1896 struct tty_struct *tty = NULL;
1897 unsigned long flags;
1898
1899 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1900 if (tsk->signal)
1901 tty = tty_kref_get(tsk->signal->tty);
1902 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1903 return tty;
1904}
1905
1906void audit_put_tty(struct tty_struct *tty)
1907{
1908 tty_kref_put(tty);
1909}
1910
1911void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1912{
1913 const struct cred *cred;
1914 char comm[sizeof(tsk->comm)];
1915 struct tty_struct *tty;
1916
1917 if (!ab)
1918 return;
1919
1920 /* tsk == current */
1921 cred = current_cred();
1922 tty = audit_get_tty(tsk);
1923 audit_log_format(ab,
1924 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1925 " euid=%u suid=%u fsuid=%u"
1926 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1927 task_ppid_nr(tsk),
1928 task_tgid_nr(tsk),
1929 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1930 from_kuid(&init_user_ns, cred->uid),
1931 from_kgid(&init_user_ns, cred->gid),
1932 from_kuid(&init_user_ns, cred->euid),
1933 from_kuid(&init_user_ns, cred->suid),
1934 from_kuid(&init_user_ns, cred->fsuid),
1935 from_kgid(&init_user_ns, cred->egid),
1936 from_kgid(&init_user_ns, cred->sgid),
1937 from_kgid(&init_user_ns, cred->fsgid),
1938 tty ? tty_name(tty) : "(none)",
1939 audit_get_sessionid(tsk));
1940 audit_put_tty(tty);
1941 audit_log_format(ab, " comm=");
1942 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1943 audit_log_d_path_exe(ab, tsk->mm);
1944 audit_log_task_context(ab);
1945}
1946EXPORT_SYMBOL(audit_log_task_info);
1947
1948/**
1949 * audit_log_link_denied - report a link restriction denial
1950 * @operation: specific link operation
1951 * @link: the path that triggered the restriction
1952 */
1953void audit_log_link_denied(const char *operation, struct path *link)
1954{
1955 struct audit_buffer *ab;
1956 struct audit_names *name;
1957
1958 name = kzalloc(sizeof(*name), GFP_NOFS);
1959 if (!name)
1960 return;
1961
1962 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1963 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1964 AUDIT_ANOM_LINK);
1965 if (!ab)
1966 goto out;
1967 audit_log_format(ab, "op=%s", operation);
1968 audit_log_task_info(ab, current);
1969 audit_log_format(ab, " res=0");
1970 audit_log_end(ab);
1971
1972 /* Generate AUDIT_PATH record with object. */
1973 name->type = AUDIT_TYPE_NORMAL;
1974 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1975 audit_log_name(current->audit_context, name, link, 0, NULL);
1976out:
1977 kfree(name);
1978}
1979
1980/**
1981 * audit_log_end - end one audit record
1982 * @ab: the audit_buffer
1983 *
1984 * netlink_unicast() cannot be called inside an irq context because it blocks
1985 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1986 * on a queue and a tasklet is scheduled to remove them from the queue outside
1987 * the irq context. May be called in any context.
1988 */
1989void audit_log_end(struct audit_buffer *ab)
1990{
1991 if (!ab)
1992 return;
1993 if (!audit_rate_check()) {
1994 audit_log_lost("rate limit exceeded");
1995 } else {
1996 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1997
1998 nlh->nlmsg_len = ab->skb->len;
1999 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
2000
2001 /*
2002 * The original kaudit unicast socket sends up messages with
2003 * nlmsg_len set to the payload length rather than the entire
2004 * message length. This breaks the standard set by netlink.
2005 * The existing auditd daemon assumes this breakage. Fixing
2006 * this would require co-ordinating a change in the established
2007 * protocol between the kaudit kernel subsystem and the auditd
2008 * userspace code.
2009 */
2010 nlh->nlmsg_len -= NLMSG_HDRLEN;
2011
2012 if (audit_pid) {
2013 skb_queue_tail(&audit_skb_queue, ab->skb);
2014 wake_up_interruptible(&kauditd_wait);
2015 } else {
2016 audit_printk_skb(ab->skb);
2017 }
2018 ab->skb = NULL;
2019 }
2020 audit_buffer_free(ab);
2021}
2022
2023/**
2024 * audit_log - Log an audit record
2025 * @ctx: audit context
2026 * @gfp_mask: type of allocation
2027 * @type: audit message type
2028 * @fmt: format string to use
2029 * @...: variable parameters matching the format string
2030 *
2031 * This is a convenience function that calls audit_log_start,
2032 * audit_log_vformat, and audit_log_end. It may be called
2033 * in any context.
2034 */
2035void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2036 const char *fmt, ...)
2037{
2038 struct audit_buffer *ab;
2039 va_list args;
2040
2041 ab = audit_log_start(ctx, gfp_mask, type);
2042 if (ab) {
2043 va_start(args, fmt);
2044 audit_log_vformat(ab, fmt, args);
2045 va_end(args);
2046 audit_log_end(ab);
2047 }
2048}
2049
2050#ifdef CONFIG_SECURITY
2051/**
2052 * audit_log_secctx - Converts and logs SELinux context
2053 * @ab: audit_buffer
2054 * @secid: security number
2055 *
2056 * This is a helper function that calls security_secid_to_secctx to convert
2057 * secid to secctx and then adds the (converted) SELinux context to the audit
2058 * log by calling audit_log_format, thus also preventing leak of internal secid
2059 * to userspace. If secid cannot be converted audit_panic is called.
2060 */
2061void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2062{
2063 u32 len;
2064 char *secctx;
2065
2066 if (security_secid_to_secctx(secid, &secctx, &len)) {
2067 audit_panic("Cannot convert secid to context");
2068 } else {
2069 audit_log_format(ab, " obj=%s", secctx);
2070 security_release_secctx(secctx, len);
2071 }
2072}
2073EXPORT_SYMBOL(audit_log_secctx);
2074#endif
2075
2076EXPORT_SYMBOL(audit_log_start);
2077EXPORT_SYMBOL(audit_log_end);
2078EXPORT_SYMBOL(audit_log_format);
2079EXPORT_SYMBOL(audit_log);
2080