summaryrefslogtreecommitdiff
path: root/kernel/auditsc.c (plain)
blob: c2aaf539728fb2764d81caa74a979b04663e4b2d
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47#include <linux/init.h>
48#include <asm/types.h>
49#include <linux/atomic.h>
50#include <linux/fs.h>
51#include <linux/namei.h>
52#include <linux/mm.h>
53#include <linux/export.h>
54#include <linux/slab.h>
55#include <linux/mount.h>
56#include <linux/socket.h>
57#include <linux/mqueue.h>
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
61#include <linux/netlink.h>
62#include <linux/compiler.h>
63#include <asm/unistd.h>
64#include <linux/security.h>
65#include <linux/list.h>
66#include <linux/binfmts.h>
67#include <linux/highmem.h>
68#include <linux/syscalls.h>
69#include <asm/syscall.h>
70#include <linux/capability.h>
71#include <linux/fs_struct.h>
72#include <linux/compat.h>
73#include <linux/ctype.h>
74#include <linux/string.h>
75#include <linux/uaccess.h>
76#include <uapi/linux/limits.h>
77
78#include "audit.h"
79
80/* flags stating the success for a syscall */
81#define AUDITSC_INVALID 0
82#define AUDITSC_SUCCESS 1
83#define AUDITSC_FAILURE 2
84
85/* no execve audit message should be longer than this (userspace limits),
86 * see the note near the top of audit_log_execve_info() about this value */
87#define MAX_EXECVE_AUDIT_LEN 7500
88
89/* max length to print of cmdline/proctitle value during audit */
90#define MAX_PROCTITLE_AUDIT_LEN 128
91
92/* number of audit rules */
93int audit_n_rules;
94
95/* determines whether we collect data for signals sent */
96int audit_signals;
97
98struct audit_aux_data {
99 struct audit_aux_data *next;
100 int type;
101};
102
103#define AUDIT_AUX_IPCPERM 0
104
105/* Number of target pids per aux struct. */
106#define AUDIT_AUX_PIDS 16
107
108struct audit_aux_data_pids {
109 struct audit_aux_data d;
110 pid_t target_pid[AUDIT_AUX_PIDS];
111 kuid_t target_auid[AUDIT_AUX_PIDS];
112 kuid_t target_uid[AUDIT_AUX_PIDS];
113 unsigned int target_sessionid[AUDIT_AUX_PIDS];
114 u32 target_sid[AUDIT_AUX_PIDS];
115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 int pid_count;
117};
118
119struct audit_aux_data_bprm_fcaps {
120 struct audit_aux_data d;
121 struct audit_cap_data fcap;
122 unsigned int fcap_ver;
123 struct audit_cap_data old_pcap;
124 struct audit_cap_data new_pcap;
125};
126
127struct audit_tree_refs {
128 struct audit_tree_refs *next;
129 struct audit_chunk *c[31];
130};
131
132static int audit_match_perm(struct audit_context *ctx, int mask)
133{
134 unsigned n;
135 if (unlikely(!ctx))
136 return 0;
137 n = ctx->major;
138
139 switch (audit_classify_syscall(ctx->arch, n)) {
140 case 0: /* native */
141 if ((mask & AUDIT_PERM_WRITE) &&
142 audit_match_class(AUDIT_CLASS_WRITE, n))
143 return 1;
144 if ((mask & AUDIT_PERM_READ) &&
145 audit_match_class(AUDIT_CLASS_READ, n))
146 return 1;
147 if ((mask & AUDIT_PERM_ATTR) &&
148 audit_match_class(AUDIT_CLASS_CHATTR, n))
149 return 1;
150 return 0;
151 case 1: /* 32bit on biarch */
152 if ((mask & AUDIT_PERM_WRITE) &&
153 audit_match_class(AUDIT_CLASS_WRITE_32, n))
154 return 1;
155 if ((mask & AUDIT_PERM_READ) &&
156 audit_match_class(AUDIT_CLASS_READ_32, n))
157 return 1;
158 if ((mask & AUDIT_PERM_ATTR) &&
159 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
160 return 1;
161 return 0;
162 case 2: /* open */
163 return mask & ACC_MODE(ctx->argv[1]);
164 case 3: /* openat */
165 return mask & ACC_MODE(ctx->argv[2]);
166 case 4: /* socketcall */
167 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
168 case 5: /* execve */
169 return mask & AUDIT_PERM_EXEC;
170 default:
171 return 0;
172 }
173}
174
175static int audit_match_filetype(struct audit_context *ctx, int val)
176{
177 struct audit_names *n;
178 umode_t mode = (umode_t)val;
179
180 if (unlikely(!ctx))
181 return 0;
182
183 list_for_each_entry(n, &ctx->names_list, list) {
184 if ((n->ino != AUDIT_INO_UNSET) &&
185 ((n->mode & S_IFMT) == mode))
186 return 1;
187 }
188
189 return 0;
190}
191
192/*
193 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
194 * ->first_trees points to its beginning, ->trees - to the current end of data.
195 * ->tree_count is the number of free entries in array pointed to by ->trees.
196 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
197 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
198 * it's going to remain 1-element for almost any setup) until we free context itself.
199 * References in it _are_ dropped - at the same time we free/drop aux stuff.
200 */
201
202#ifdef CONFIG_AUDIT_TREE
203static void audit_set_auditable(struct audit_context *ctx)
204{
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 }
209}
210
211static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212{
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
219 }
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
228 }
229 return 0;
230}
231
232static int grow_tree_refs(struct audit_context *ctx)
233{
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
239 }
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
246}
247#endif
248
249static void unroll_tree_refs(struct audit_context *ctx,
250 struct audit_tree_refs *p, int count)
251{
252#ifdef CONFIG_AUDIT_TREE
253 struct audit_tree_refs *q;
254 int n;
255 if (!p) {
256 /* we started with empty chain */
257 p = ctx->first_trees;
258 count = 31;
259 /* if the very first allocation has failed, nothing to do */
260 if (!p)
261 return;
262 }
263 n = count;
264 for (q = p; q != ctx->trees; q = q->next, n = 31) {
265 while (n--) {
266 audit_put_chunk(q->c[n]);
267 q->c[n] = NULL;
268 }
269 }
270 while (n-- > ctx->tree_count) {
271 audit_put_chunk(q->c[n]);
272 q->c[n] = NULL;
273 }
274 ctx->trees = p;
275 ctx->tree_count = count;
276#endif
277}
278
279static void free_tree_refs(struct audit_context *ctx)
280{
281 struct audit_tree_refs *p, *q;
282 for (p = ctx->first_trees; p; p = q) {
283 q = p->next;
284 kfree(p);
285 }
286}
287
288static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
289{
290#ifdef CONFIG_AUDIT_TREE
291 struct audit_tree_refs *p;
292 int n;
293 if (!tree)
294 return 0;
295 /* full ones */
296 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
297 for (n = 0; n < 31; n++)
298 if (audit_tree_match(p->c[n], tree))
299 return 1;
300 }
301 /* partial */
302 if (p) {
303 for (n = ctx->tree_count; n < 31; n++)
304 if (audit_tree_match(p->c[n], tree))
305 return 1;
306 }
307#endif
308 return 0;
309}
310
311static int audit_compare_uid(kuid_t uid,
312 struct audit_names *name,
313 struct audit_field *f,
314 struct audit_context *ctx)
315{
316 struct audit_names *n;
317 int rc;
318
319 if (name) {
320 rc = audit_uid_comparator(uid, f->op, name->uid);
321 if (rc)
322 return rc;
323 }
324
325 if (ctx) {
326 list_for_each_entry(n, &ctx->names_list, list) {
327 rc = audit_uid_comparator(uid, f->op, n->uid);
328 if (rc)
329 return rc;
330 }
331 }
332 return 0;
333}
334
335static int audit_compare_gid(kgid_t gid,
336 struct audit_names *name,
337 struct audit_field *f,
338 struct audit_context *ctx)
339{
340 struct audit_names *n;
341 int rc;
342
343 if (name) {
344 rc = audit_gid_comparator(gid, f->op, name->gid);
345 if (rc)
346 return rc;
347 }
348
349 if (ctx) {
350 list_for_each_entry(n, &ctx->names_list, list) {
351 rc = audit_gid_comparator(gid, f->op, n->gid);
352 if (rc)
353 return rc;
354 }
355 }
356 return 0;
357}
358
359static int audit_field_compare(struct task_struct *tsk,
360 const struct cred *cred,
361 struct audit_field *f,
362 struct audit_context *ctx,
363 struct audit_names *name)
364{
365 switch (f->val) {
366 /* process to file object comparisons */
367 case AUDIT_COMPARE_UID_TO_OBJ_UID:
368 return audit_compare_uid(cred->uid, name, f, ctx);
369 case AUDIT_COMPARE_GID_TO_OBJ_GID:
370 return audit_compare_gid(cred->gid, name, f, ctx);
371 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
372 return audit_compare_uid(cred->euid, name, f, ctx);
373 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
374 return audit_compare_gid(cred->egid, name, f, ctx);
375 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
376 return audit_compare_uid(tsk->loginuid, name, f, ctx);
377 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
378 return audit_compare_uid(cred->suid, name, f, ctx);
379 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
380 return audit_compare_gid(cred->sgid, name, f, ctx);
381 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
382 return audit_compare_uid(cred->fsuid, name, f, ctx);
383 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
384 return audit_compare_gid(cred->fsgid, name, f, ctx);
385 /* uid comparisons */
386 case AUDIT_COMPARE_UID_TO_AUID:
387 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
388 case AUDIT_COMPARE_UID_TO_EUID:
389 return audit_uid_comparator(cred->uid, f->op, cred->euid);
390 case AUDIT_COMPARE_UID_TO_SUID:
391 return audit_uid_comparator(cred->uid, f->op, cred->suid);
392 case AUDIT_COMPARE_UID_TO_FSUID:
393 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
394 /* auid comparisons */
395 case AUDIT_COMPARE_AUID_TO_EUID:
396 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
397 case AUDIT_COMPARE_AUID_TO_SUID:
398 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
399 case AUDIT_COMPARE_AUID_TO_FSUID:
400 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
401 /* euid comparisons */
402 case AUDIT_COMPARE_EUID_TO_SUID:
403 return audit_uid_comparator(cred->euid, f->op, cred->suid);
404 case AUDIT_COMPARE_EUID_TO_FSUID:
405 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
406 /* suid comparisons */
407 case AUDIT_COMPARE_SUID_TO_FSUID:
408 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
409 /* gid comparisons */
410 case AUDIT_COMPARE_GID_TO_EGID:
411 return audit_gid_comparator(cred->gid, f->op, cred->egid);
412 case AUDIT_COMPARE_GID_TO_SGID:
413 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
414 case AUDIT_COMPARE_GID_TO_FSGID:
415 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
416 /* egid comparisons */
417 case AUDIT_COMPARE_EGID_TO_SGID:
418 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
419 case AUDIT_COMPARE_EGID_TO_FSGID:
420 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
421 /* sgid comparison */
422 case AUDIT_COMPARE_SGID_TO_FSGID:
423 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
424 default:
425 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
426 return 0;
427 }
428 return 0;
429}
430
431/* Determine if any context name data matches a rule's watch data */
432/* Compare a task_struct with an audit_rule. Return 1 on match, 0
433 * otherwise.
434 *
435 * If task_creation is true, this is an explicit indication that we are
436 * filtering a task rule at task creation time. This and tsk == current are
437 * the only situations where tsk->cred may be accessed without an rcu read lock.
438 */
439static int audit_filter_rules(struct task_struct *tsk,
440 struct audit_krule *rule,
441 struct audit_context *ctx,
442 struct audit_names *name,
443 enum audit_state *state,
444 bool task_creation)
445{
446 const struct cred *cred;
447 int i, need_sid = 1;
448 u32 sid;
449
450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451
452 for (i = 0; i < rule->field_count; i++) {
453 struct audit_field *f = &rule->fields[i];
454 struct audit_names *n;
455 int result = 0;
456 pid_t pid;
457
458 switch (f->type) {
459 case AUDIT_PID:
460 pid = task_tgid_nr(tsk);
461 result = audit_comparator(pid, f->op, f->val);
462 break;
463 case AUDIT_PPID:
464 if (ctx) {
465 if (!ctx->ppid)
466 ctx->ppid = task_ppid_nr(tsk);
467 result = audit_comparator(ctx->ppid, f->op, f->val);
468 }
469 break;
470 case AUDIT_EXE:
471 result = audit_exe_compare(tsk, rule->exe);
472 if (f->op == Audit_not_equal)
473 result = !result;
474 break;
475 case AUDIT_UID:
476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 break;
478 case AUDIT_EUID:
479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 break;
481 case AUDIT_SUID:
482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 break;
484 case AUDIT_FSUID:
485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 break;
487 case AUDIT_GID:
488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 if (f->op == Audit_equal) {
490 if (!result)
491 result = in_group_p(f->gid);
492 } else if (f->op == Audit_not_equal) {
493 if (result)
494 result = !in_group_p(f->gid);
495 }
496 break;
497 case AUDIT_EGID:
498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 if (f->op == Audit_equal) {
500 if (!result)
501 result = in_egroup_p(f->gid);
502 } else if (f->op == Audit_not_equal) {
503 if (result)
504 result = !in_egroup_p(f->gid);
505 }
506 break;
507 case AUDIT_SGID:
508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 break;
510 case AUDIT_FSGID:
511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 break;
513 case AUDIT_PERS:
514 result = audit_comparator(tsk->personality, f->op, f->val);
515 break;
516 case AUDIT_ARCH:
517 if (ctx)
518 result = audit_comparator(ctx->arch, f->op, f->val);
519 break;
520
521 case AUDIT_EXIT:
522 if (ctx && ctx->return_valid)
523 result = audit_comparator(ctx->return_code, f->op, f->val);
524 break;
525 case AUDIT_SUCCESS:
526 if (ctx && ctx->return_valid) {
527 if (f->val)
528 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
529 else
530 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
531 }
532 break;
533 case AUDIT_DEVMAJOR:
534 if (name) {
535 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
536 audit_comparator(MAJOR(name->rdev), f->op, f->val))
537 ++result;
538 } else if (ctx) {
539 list_for_each_entry(n, &ctx->names_list, list) {
540 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
541 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
542 ++result;
543 break;
544 }
545 }
546 }
547 break;
548 case AUDIT_DEVMINOR:
549 if (name) {
550 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
551 audit_comparator(MINOR(name->rdev), f->op, f->val))
552 ++result;
553 } else if (ctx) {
554 list_for_each_entry(n, &ctx->names_list, list) {
555 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
556 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
557 ++result;
558 break;
559 }
560 }
561 }
562 break;
563 case AUDIT_INODE:
564 if (name)
565 result = audit_comparator(name->ino, f->op, f->val);
566 else if (ctx) {
567 list_for_each_entry(n, &ctx->names_list, list) {
568 if (audit_comparator(n->ino, f->op, f->val)) {
569 ++result;
570 break;
571 }
572 }
573 }
574 break;
575 case AUDIT_OBJ_UID:
576 if (name) {
577 result = audit_uid_comparator(name->uid, f->op, f->uid);
578 } else if (ctx) {
579 list_for_each_entry(n, &ctx->names_list, list) {
580 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
581 ++result;
582 break;
583 }
584 }
585 }
586 break;
587 case AUDIT_OBJ_GID:
588 if (name) {
589 result = audit_gid_comparator(name->gid, f->op, f->gid);
590 } else if (ctx) {
591 list_for_each_entry(n, &ctx->names_list, list) {
592 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
593 ++result;
594 break;
595 }
596 }
597 }
598 break;
599 case AUDIT_WATCH:
600 if (name)
601 result = audit_watch_compare(rule->watch, name->ino, name->dev);
602 break;
603 case AUDIT_DIR:
604 if (ctx)
605 result = match_tree_refs(ctx, rule->tree);
606 break;
607 case AUDIT_LOGINUID:
608 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
609 break;
610 case AUDIT_LOGINUID_SET:
611 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
612 break;
613 case AUDIT_SUBJ_USER:
614 case AUDIT_SUBJ_ROLE:
615 case AUDIT_SUBJ_TYPE:
616 case AUDIT_SUBJ_SEN:
617 case AUDIT_SUBJ_CLR:
618 /* NOTE: this may return negative values indicating
619 a temporary error. We simply treat this as a
620 match for now to avoid losing information that
621 may be wanted. An error message will also be
622 logged upon error */
623 if (f->lsm_rule) {
624 if (need_sid) {
625 security_task_getsecid(tsk, &sid);
626 need_sid = 0;
627 }
628 result = security_audit_rule_match(sid, f->type,
629 f->op,
630 f->lsm_rule,
631 ctx);
632 }
633 break;
634 case AUDIT_OBJ_USER:
635 case AUDIT_OBJ_ROLE:
636 case AUDIT_OBJ_TYPE:
637 case AUDIT_OBJ_LEV_LOW:
638 case AUDIT_OBJ_LEV_HIGH:
639 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
640 also applies here */
641 if (f->lsm_rule) {
642 /* Find files that match */
643 if (name) {
644 result = security_audit_rule_match(
645 name->osid, f->type, f->op,
646 f->lsm_rule, ctx);
647 } else if (ctx) {
648 list_for_each_entry(n, &ctx->names_list, list) {
649 if (security_audit_rule_match(n->osid, f->type,
650 f->op, f->lsm_rule,
651 ctx)) {
652 ++result;
653 break;
654 }
655 }
656 }
657 /* Find ipc objects that match */
658 if (!ctx || ctx->type != AUDIT_IPC)
659 break;
660 if (security_audit_rule_match(ctx->ipc.osid,
661 f->type, f->op,
662 f->lsm_rule, ctx))
663 ++result;
664 }
665 break;
666 case AUDIT_ARG0:
667 case AUDIT_ARG1:
668 case AUDIT_ARG2:
669 case AUDIT_ARG3:
670 if (ctx)
671 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
672 break;
673 case AUDIT_FILTERKEY:
674 /* ignore this field for filtering */
675 result = 1;
676 break;
677 case AUDIT_PERM:
678 result = audit_match_perm(ctx, f->val);
679 break;
680 case AUDIT_FILETYPE:
681 result = audit_match_filetype(ctx, f->val);
682 break;
683 case AUDIT_FIELD_COMPARE:
684 result = audit_field_compare(tsk, cred, f, ctx, name);
685 break;
686 }
687 if (!result)
688 return 0;
689 }
690
691 if (ctx) {
692 if (rule->prio <= ctx->prio)
693 return 0;
694 if (rule->filterkey) {
695 kfree(ctx->filterkey);
696 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
697 }
698 ctx->prio = rule->prio;
699 }
700 switch (rule->action) {
701 case AUDIT_NEVER:
702 *state = AUDIT_DISABLED;
703 break;
704 case AUDIT_ALWAYS:
705 *state = AUDIT_RECORD_CONTEXT;
706 break;
707 }
708 return 1;
709}
710
711/* At process creation time, we can determine if system-call auditing is
712 * completely disabled for this task. Since we only have the task
713 * structure at this point, we can only check uid and gid.
714 */
715static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
716{
717 struct audit_entry *e;
718 enum audit_state state;
719
720 rcu_read_lock();
721 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
722 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
723 &state, true)) {
724 if (state == AUDIT_RECORD_CONTEXT)
725 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
726 rcu_read_unlock();
727 return state;
728 }
729 }
730 rcu_read_unlock();
731 return AUDIT_BUILD_CONTEXT;
732}
733
734static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
735{
736 int word, bit;
737
738 if (val > 0xffffffff)
739 return false;
740
741 word = AUDIT_WORD(val);
742 if (word >= AUDIT_BITMASK_SIZE)
743 return false;
744
745 bit = AUDIT_BIT(val);
746
747 return rule->mask[word] & bit;
748}
749
750/* At syscall entry and exit time, this filter is called if the
751 * audit_state is not low enough that auditing cannot take place, but is
752 * also not high enough that we already know we have to write an audit
753 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
754 */
755static enum audit_state audit_filter_syscall(struct task_struct *tsk,
756 struct audit_context *ctx,
757 struct list_head *list)
758{
759 struct audit_entry *e;
760 enum audit_state state;
761
762 if (audit_pid && tsk->tgid == audit_pid)
763 return AUDIT_DISABLED;
764
765 rcu_read_lock();
766 if (!list_empty(list)) {
767 list_for_each_entry_rcu(e, list, list) {
768 if (audit_in_mask(&e->rule, ctx->major) &&
769 audit_filter_rules(tsk, &e->rule, ctx, NULL,
770 &state, false)) {
771 rcu_read_unlock();
772 ctx->current_state = state;
773 return state;
774 }
775 }
776 }
777 rcu_read_unlock();
778 return AUDIT_BUILD_CONTEXT;
779}
780
781/*
782 * Given an audit_name check the inode hash table to see if they match.
783 * Called holding the rcu read lock to protect the use of audit_inode_hash
784 */
785static int audit_filter_inode_name(struct task_struct *tsk,
786 struct audit_names *n,
787 struct audit_context *ctx) {
788 int h = audit_hash_ino((u32)n->ino);
789 struct list_head *list = &audit_inode_hash[h];
790 struct audit_entry *e;
791 enum audit_state state;
792
793 if (list_empty(list))
794 return 0;
795
796 list_for_each_entry_rcu(e, list, list) {
797 if (audit_in_mask(&e->rule, ctx->major) &&
798 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
799 ctx->current_state = state;
800 return 1;
801 }
802 }
803
804 return 0;
805}
806
807/* At syscall exit time, this filter is called if any audit_names have been
808 * collected during syscall processing. We only check rules in sublists at hash
809 * buckets applicable to the inode numbers in audit_names.
810 * Regarding audit_state, same rules apply as for audit_filter_syscall().
811 */
812void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
813{
814 struct audit_names *n;
815
816 if (audit_pid && tsk->tgid == audit_pid)
817 return;
818
819 rcu_read_lock();
820
821 list_for_each_entry(n, &ctx->names_list, list) {
822 if (audit_filter_inode_name(tsk, n, ctx))
823 break;
824 }
825 rcu_read_unlock();
826}
827
828/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
829static inline struct audit_context *audit_take_context(struct task_struct *tsk,
830 int return_valid,
831 long return_code)
832{
833 struct audit_context *context = tsk->audit_context;
834
835 if (!context)
836 return NULL;
837 context->return_valid = return_valid;
838
839 /*
840 * we need to fix up the return code in the audit logs if the actual
841 * return codes are later going to be fixed up by the arch specific
842 * signal handlers
843 *
844 * This is actually a test for:
845 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
846 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
847 *
848 * but is faster than a bunch of ||
849 */
850 if (unlikely(return_code <= -ERESTARTSYS) &&
851 (return_code >= -ERESTART_RESTARTBLOCK) &&
852 (return_code != -ENOIOCTLCMD))
853 context->return_code = -EINTR;
854 else
855 context->return_code = return_code;
856
857 if (context->in_syscall && !context->dummy) {
858 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
859 audit_filter_inodes(tsk, context);
860 }
861
862 tsk->audit_context = NULL;
863 return context;
864}
865
866static inline void audit_proctitle_free(struct audit_context *context)
867{
868 kfree(context->proctitle.value);
869 context->proctitle.value = NULL;
870 context->proctitle.len = 0;
871}
872
873static inline void audit_free_names(struct audit_context *context)
874{
875 struct audit_names *n, *next;
876
877 list_for_each_entry_safe(n, next, &context->names_list, list) {
878 list_del(&n->list);
879 if (n->name)
880 putname(n->name);
881 if (n->should_free)
882 kfree(n);
883 }
884 context->name_count = 0;
885 path_put(&context->pwd);
886 context->pwd.dentry = NULL;
887 context->pwd.mnt = NULL;
888}
889
890static inline void audit_free_aux(struct audit_context *context)
891{
892 struct audit_aux_data *aux;
893
894 while ((aux = context->aux)) {
895 context->aux = aux->next;
896 kfree(aux);
897 }
898 while ((aux = context->aux_pids)) {
899 context->aux_pids = aux->next;
900 kfree(aux);
901 }
902}
903
904static inline struct audit_context *audit_alloc_context(enum audit_state state)
905{
906 struct audit_context *context;
907
908 context = kzalloc(sizeof(*context), GFP_KERNEL);
909 if (!context)
910 return NULL;
911 context->state = state;
912 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
913 INIT_LIST_HEAD(&context->killed_trees);
914 INIT_LIST_HEAD(&context->names_list);
915 return context;
916}
917
918/**
919 * audit_alloc - allocate an audit context block for a task
920 * @tsk: task
921 *
922 * Filter on the task information and allocate a per-task audit context
923 * if necessary. Doing so turns on system call auditing for the
924 * specified task. This is called from copy_process, so no lock is
925 * needed.
926 */
927int audit_alloc(struct task_struct *tsk)
928{
929 struct audit_context *context;
930 enum audit_state state;
931 char *key = NULL;
932
933 if (likely(!audit_ever_enabled))
934 return 0; /* Return if not auditing. */
935
936 state = audit_filter_task(tsk, &key);
937 if (state == AUDIT_DISABLED) {
938 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
939 return 0;
940 }
941
942 if (!(context = audit_alloc_context(state))) {
943 kfree(key);
944 audit_log_lost("out of memory in audit_alloc");
945 return -ENOMEM;
946 }
947 context->filterkey = key;
948
949 tsk->audit_context = context;
950 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
951 return 0;
952}
953
954static inline void audit_free_context(struct audit_context *context)
955{
956 audit_free_names(context);
957 unroll_tree_refs(context, NULL, 0);
958 free_tree_refs(context);
959 audit_free_aux(context);
960 kfree(context->filterkey);
961 kfree(context->sockaddr);
962 audit_proctitle_free(context);
963 kfree(context);
964}
965
966static int audit_log_pid_context(struct audit_context *context, pid_t pid,
967 kuid_t auid, kuid_t uid, unsigned int sessionid,
968 u32 sid, char *comm)
969{
970 struct audit_buffer *ab;
971 char *ctx = NULL;
972 u32 len;
973 int rc = 0;
974
975 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
976 if (!ab)
977 return rc;
978
979 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
980 from_kuid(&init_user_ns, auid),
981 from_kuid(&init_user_ns, uid), sessionid);
982 if (sid) {
983 if (security_secid_to_secctx(sid, &ctx, &len)) {
984 audit_log_format(ab, " obj=(none)");
985 rc = 1;
986 } else {
987 audit_log_format(ab, " obj=%s", ctx);
988 security_release_secctx(ctx, len);
989 }
990 }
991 audit_log_format(ab, " ocomm=");
992 audit_log_untrustedstring(ab, comm);
993 audit_log_end(ab);
994
995 return rc;
996}
997
998static void audit_log_execve_info(struct audit_context *context,
999 struct audit_buffer **ab)
1000{
1001 long len_max;
1002 long len_rem;
1003 long len_full;
1004 long len_buf;
1005 long len_abuf;
1006 long len_tmp;
1007 bool require_data;
1008 bool encode;
1009 unsigned int iter;
1010 unsigned int arg;
1011 char *buf_head;
1012 char *buf;
1013 const char __user *p = (const char __user *)current->mm->arg_start;
1014
1015 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1016 * data we put in the audit record for this argument (see the
1017 * code below) ... at this point in time 96 is plenty */
1018 char abuf[96];
1019
1020 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1021 * current value of 7500 is not as important as the fact that it
1022 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1023 * room if we go over a little bit in the logging below */
1024 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1025 len_max = MAX_EXECVE_AUDIT_LEN;
1026
1027 /* scratch buffer to hold the userspace args */
1028 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1029 if (!buf_head) {
1030 audit_panic("out of memory for argv string");
1031 return;
1032 }
1033 buf = buf_head;
1034
1035 audit_log_format(*ab, "argc=%d", context->execve.argc);
1036
1037 len_rem = len_max;
1038 len_buf = 0;
1039 len_full = 0;
1040 require_data = true;
1041 encode = false;
1042 iter = 0;
1043 arg = 0;
1044 do {
1045 /* NOTE: we don't ever want to trust this value for anything
1046 * serious, but the audit record format insists we
1047 * provide an argument length for really long arguments,
1048 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1049 * to use strncpy_from_user() to obtain this value for
1050 * recording in the log, although we don't use it
1051 * anywhere here to avoid a double-fetch problem */
1052 if (len_full == 0)
1053 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1054
1055 /* read more data from userspace */
1056 if (require_data) {
1057 /* can we make more room in the buffer? */
1058 if (buf != buf_head) {
1059 memmove(buf_head, buf, len_buf);
1060 buf = buf_head;
1061 }
1062
1063 /* fetch as much as we can of the argument */
1064 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1065 len_max - len_buf);
1066 if (len_tmp == -EFAULT) {
1067 /* unable to copy from userspace */
1068 send_sig(SIGKILL, current, 0);
1069 goto out;
1070 } else if (len_tmp == (len_max - len_buf)) {
1071 /* buffer is not large enough */
1072 require_data = true;
1073 /* NOTE: if we are going to span multiple
1074 * buffers force the encoding so we stand
1075 * a chance at a sane len_full value and
1076 * consistent record encoding */
1077 encode = true;
1078 len_full = len_full * 2;
1079 p += len_tmp;
1080 } else {
1081 require_data = false;
1082 if (!encode)
1083 encode = audit_string_contains_control(
1084 buf, len_tmp);
1085 /* try to use a trusted value for len_full */
1086 if (len_full < len_max)
1087 len_full = (encode ?
1088 len_tmp * 2 : len_tmp);
1089 p += len_tmp + 1;
1090 }
1091 len_buf += len_tmp;
1092 buf_head[len_buf] = '\0';
1093
1094 /* length of the buffer in the audit record? */
1095 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1096 }
1097
1098 /* write as much as we can to the audit log */
1099 if (len_buf > 0) {
1100 /* NOTE: some magic numbers here - basically if we
1101 * can't fit a reasonable amount of data into the
1102 * existing audit buffer, flush it and start with
1103 * a new buffer */
1104 if ((sizeof(abuf) + 8) > len_rem) {
1105 len_rem = len_max;
1106 audit_log_end(*ab);
1107 *ab = audit_log_start(context,
1108 GFP_KERNEL, AUDIT_EXECVE);
1109 if (!*ab)
1110 goto out;
1111 }
1112
1113 /* create the non-arg portion of the arg record */
1114 len_tmp = 0;
1115 if (require_data || (iter > 0) ||
1116 ((len_abuf + sizeof(abuf)) > len_rem)) {
1117 if (iter == 0) {
1118 len_tmp += snprintf(&abuf[len_tmp],
1119 sizeof(abuf) - len_tmp,
1120 " a%d_len=%lu",
1121 arg, len_full);
1122 }
1123 len_tmp += snprintf(&abuf[len_tmp],
1124 sizeof(abuf) - len_tmp,
1125 " a%d[%d]=", arg, iter++);
1126 } else
1127 len_tmp += snprintf(&abuf[len_tmp],
1128 sizeof(abuf) - len_tmp,
1129 " a%d=", arg);
1130 WARN_ON(len_tmp >= sizeof(abuf));
1131 abuf[sizeof(abuf) - 1] = '\0';
1132
1133 /* log the arg in the audit record */
1134 audit_log_format(*ab, "%s", abuf);
1135 len_rem -= len_tmp;
1136 len_tmp = len_buf;
1137 if (encode) {
1138 if (len_abuf > len_rem)
1139 len_tmp = len_rem / 2; /* encoding */
1140 audit_log_n_hex(*ab, buf, len_tmp);
1141 len_rem -= len_tmp * 2;
1142 len_abuf -= len_tmp * 2;
1143 } else {
1144 if (len_abuf > len_rem)
1145 len_tmp = len_rem - 2; /* quotes */
1146 audit_log_n_string(*ab, buf, len_tmp);
1147 len_rem -= len_tmp + 2;
1148 /* don't subtract the "2" because we still need
1149 * to add quotes to the remaining string */
1150 len_abuf -= len_tmp;
1151 }
1152 len_buf -= len_tmp;
1153 buf += len_tmp;
1154 }
1155
1156 /* ready to move to the next argument? */
1157 if ((len_buf == 0) && !require_data) {
1158 arg++;
1159 iter = 0;
1160 len_full = 0;
1161 require_data = true;
1162 encode = false;
1163 }
1164 } while (arg < context->execve.argc);
1165
1166 /* NOTE: the caller handles the final audit_log_end() call */
1167
1168out:
1169 kfree(buf_head);
1170}
1171
1172static void show_special(struct audit_context *context, int *call_panic)
1173{
1174 struct audit_buffer *ab;
1175 int i;
1176
1177 ab = audit_log_start(context, GFP_KERNEL, context->type);
1178 if (!ab)
1179 return;
1180
1181 switch (context->type) {
1182 case AUDIT_SOCKETCALL: {
1183 int nargs = context->socketcall.nargs;
1184 audit_log_format(ab, "nargs=%d", nargs);
1185 for (i = 0; i < nargs; i++)
1186 audit_log_format(ab, " a%d=%lx", i,
1187 context->socketcall.args[i]);
1188 break; }
1189 case AUDIT_IPC: {
1190 u32 osid = context->ipc.osid;
1191
1192 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1193 from_kuid(&init_user_ns, context->ipc.uid),
1194 from_kgid(&init_user_ns, context->ipc.gid),
1195 context->ipc.mode);
1196 if (osid) {
1197 char *ctx = NULL;
1198 u32 len;
1199 if (security_secid_to_secctx(osid, &ctx, &len)) {
1200 audit_log_format(ab, " osid=%u", osid);
1201 *call_panic = 1;
1202 } else {
1203 audit_log_format(ab, " obj=%s", ctx);
1204 security_release_secctx(ctx, len);
1205 }
1206 }
1207 if (context->ipc.has_perm) {
1208 audit_log_end(ab);
1209 ab = audit_log_start(context, GFP_KERNEL,
1210 AUDIT_IPC_SET_PERM);
1211 if (unlikely(!ab))
1212 return;
1213 audit_log_format(ab,
1214 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1215 context->ipc.qbytes,
1216 context->ipc.perm_uid,
1217 context->ipc.perm_gid,
1218 context->ipc.perm_mode);
1219 }
1220 break; }
1221 case AUDIT_MQ_OPEN: {
1222 audit_log_format(ab,
1223 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1224 "mq_msgsize=%ld mq_curmsgs=%ld",
1225 context->mq_open.oflag, context->mq_open.mode,
1226 context->mq_open.attr.mq_flags,
1227 context->mq_open.attr.mq_maxmsg,
1228 context->mq_open.attr.mq_msgsize,
1229 context->mq_open.attr.mq_curmsgs);
1230 break; }
1231 case AUDIT_MQ_SENDRECV: {
1232 audit_log_format(ab,
1233 "mqdes=%d msg_len=%zd msg_prio=%u "
1234 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1235 context->mq_sendrecv.mqdes,
1236 context->mq_sendrecv.msg_len,
1237 context->mq_sendrecv.msg_prio,
1238 context->mq_sendrecv.abs_timeout.tv_sec,
1239 context->mq_sendrecv.abs_timeout.tv_nsec);
1240 break; }
1241 case AUDIT_MQ_NOTIFY: {
1242 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1243 context->mq_notify.mqdes,
1244 context->mq_notify.sigev_signo);
1245 break; }
1246 case AUDIT_MQ_GETSETATTR: {
1247 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1248 audit_log_format(ab,
1249 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1250 "mq_curmsgs=%ld ",
1251 context->mq_getsetattr.mqdes,
1252 attr->mq_flags, attr->mq_maxmsg,
1253 attr->mq_msgsize, attr->mq_curmsgs);
1254 break; }
1255 case AUDIT_CAPSET: {
1256 audit_log_format(ab, "pid=%d", context->capset.pid);
1257 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1258 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1259 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1260 break; }
1261 case AUDIT_MMAP: {
1262 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1263 context->mmap.flags);
1264 break; }
1265 case AUDIT_EXECVE: {
1266 audit_log_execve_info(context, &ab);
1267 break; }
1268 }
1269 audit_log_end(ab);
1270}
1271
1272static inline int audit_proctitle_rtrim(char *proctitle, int len)
1273{
1274 char *end = proctitle + len - 1;
1275 while (end > proctitle && !isprint(*end))
1276 end--;
1277
1278 /* catch the case where proctitle is only 1 non-print character */
1279 len = end - proctitle + 1;
1280 len -= isprint(proctitle[len-1]) == 0;
1281 return len;
1282}
1283
1284static void audit_log_proctitle(struct task_struct *tsk,
1285 struct audit_context *context)
1286{
1287 int res;
1288 char *buf;
1289 char *msg = "(null)";
1290 int len = strlen(msg);
1291 struct audit_buffer *ab;
1292
1293 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1294 if (!ab)
1295 return; /* audit_panic or being filtered */
1296
1297 audit_log_format(ab, "proctitle=");
1298
1299 /* Not cached */
1300 if (!context->proctitle.value) {
1301 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1302 if (!buf)
1303 goto out;
1304 /* Historically called this from procfs naming */
1305 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1306 if (res == 0) {
1307 kfree(buf);
1308 goto out;
1309 }
1310 res = audit_proctitle_rtrim(buf, res);
1311 if (res == 0) {
1312 kfree(buf);
1313 goto out;
1314 }
1315 context->proctitle.value = buf;
1316 context->proctitle.len = res;
1317 }
1318 msg = context->proctitle.value;
1319 len = context->proctitle.len;
1320out:
1321 audit_log_n_untrustedstring(ab, msg, len);
1322 audit_log_end(ab);
1323}
1324
1325static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1326{
1327 int i, call_panic = 0;
1328 struct audit_buffer *ab;
1329 struct audit_aux_data *aux;
1330 struct audit_names *n;
1331
1332 /* tsk == current */
1333 context->personality = tsk->personality;
1334
1335 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1336 if (!ab)
1337 return; /* audit_panic has been called */
1338 audit_log_format(ab, "arch=%x syscall=%d",
1339 context->arch, context->major);
1340 if (context->personality != PER_LINUX)
1341 audit_log_format(ab, " per=%lx", context->personality);
1342 if (context->return_valid)
1343 audit_log_format(ab, " success=%s exit=%ld",
1344 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1345 context->return_code);
1346
1347 audit_log_format(ab,
1348 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1349 context->argv[0],
1350 context->argv[1],
1351 context->argv[2],
1352 context->argv[3],
1353 context->name_count);
1354
1355 audit_log_task_info(ab, tsk);
1356 audit_log_key(ab, context->filterkey);
1357 audit_log_end(ab);
1358
1359 for (aux = context->aux; aux; aux = aux->next) {
1360
1361 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1362 if (!ab)
1363 continue; /* audit_panic has been called */
1364
1365 switch (aux->type) {
1366
1367 case AUDIT_BPRM_FCAPS: {
1368 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1369 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1370 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1371 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1372 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1373 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1374 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1375 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1376 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1377 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1378 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1379 break; }
1380
1381 }
1382 audit_log_end(ab);
1383 }
1384
1385 if (context->type)
1386 show_special(context, &call_panic);
1387
1388 if (context->fds[0] >= 0) {
1389 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1390 if (ab) {
1391 audit_log_format(ab, "fd0=%d fd1=%d",
1392 context->fds[0], context->fds[1]);
1393 audit_log_end(ab);
1394 }
1395 }
1396
1397 if (context->sockaddr_len) {
1398 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1399 if (ab) {
1400 audit_log_format(ab, "saddr=");
1401 audit_log_n_hex(ab, (void *)context->sockaddr,
1402 context->sockaddr_len);
1403 audit_log_end(ab);
1404 }
1405 }
1406
1407 for (aux = context->aux_pids; aux; aux = aux->next) {
1408 struct audit_aux_data_pids *axs = (void *)aux;
1409
1410 for (i = 0; i < axs->pid_count; i++)
1411 if (audit_log_pid_context(context, axs->target_pid[i],
1412 axs->target_auid[i],
1413 axs->target_uid[i],
1414 axs->target_sessionid[i],
1415 axs->target_sid[i],
1416 axs->target_comm[i]))
1417 call_panic = 1;
1418 }
1419
1420 if (context->target_pid &&
1421 audit_log_pid_context(context, context->target_pid,
1422 context->target_auid, context->target_uid,
1423 context->target_sessionid,
1424 context->target_sid, context->target_comm))
1425 call_panic = 1;
1426
1427 if (context->pwd.dentry && context->pwd.mnt) {
1428 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1429 if (ab) {
1430 audit_log_d_path(ab, "cwd=", &context->pwd);
1431 audit_log_end(ab);
1432 }
1433 }
1434
1435 i = 0;
1436 list_for_each_entry(n, &context->names_list, list) {
1437 if (n->hidden)
1438 continue;
1439 audit_log_name(context, n, NULL, i++, &call_panic);
1440 }
1441
1442 audit_log_proctitle(tsk, context);
1443
1444 /* Send end of event record to help user space know we are finished */
1445 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1446 if (ab)
1447 audit_log_end(ab);
1448 if (call_panic)
1449 audit_panic("error converting sid to string");
1450}
1451
1452/**
1453 * audit_free - free a per-task audit context
1454 * @tsk: task whose audit context block to free
1455 *
1456 * Called from copy_process and do_exit
1457 */
1458void __audit_free(struct task_struct *tsk)
1459{
1460 struct audit_context *context;
1461
1462 context = audit_take_context(tsk, 0, 0);
1463 if (!context)
1464 return;
1465
1466 /* Check for system calls that do not go through the exit
1467 * function (e.g., exit_group), then free context block.
1468 * We use GFP_ATOMIC here because we might be doing this
1469 * in the context of the idle thread */
1470 /* that can happen only if we are called from do_exit() */
1471 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1472 audit_log_exit(context, tsk);
1473 if (!list_empty(&context->killed_trees))
1474 audit_kill_trees(&context->killed_trees);
1475
1476 audit_free_context(context);
1477}
1478
1479/**
1480 * audit_syscall_entry - fill in an audit record at syscall entry
1481 * @major: major syscall type (function)
1482 * @a1: additional syscall register 1
1483 * @a2: additional syscall register 2
1484 * @a3: additional syscall register 3
1485 * @a4: additional syscall register 4
1486 *
1487 * Fill in audit context at syscall entry. This only happens if the
1488 * audit context was created when the task was created and the state or
1489 * filters demand the audit context be built. If the state from the
1490 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1491 * then the record will be written at syscall exit time (otherwise, it
1492 * will only be written if another part of the kernel requests that it
1493 * be written).
1494 */
1495void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1496 unsigned long a3, unsigned long a4)
1497{
1498 struct task_struct *tsk = current;
1499 struct audit_context *context = tsk->audit_context;
1500 enum audit_state state;
1501
1502 if (!context)
1503 return;
1504
1505 BUG_ON(context->in_syscall || context->name_count);
1506
1507 if (!audit_enabled)
1508 return;
1509
1510 context->arch = syscall_get_arch();
1511 context->major = major;
1512 context->argv[0] = a1;
1513 context->argv[1] = a2;
1514 context->argv[2] = a3;
1515 context->argv[3] = a4;
1516
1517 state = context->state;
1518 context->dummy = !audit_n_rules;
1519 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1520 context->prio = 0;
1521 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1522 }
1523 if (state == AUDIT_DISABLED)
1524 return;
1525
1526 context->serial = 0;
1527 context->ctime = CURRENT_TIME;
1528 context->in_syscall = 1;
1529 context->current_state = state;
1530 context->ppid = 0;
1531}
1532
1533/**
1534 * audit_syscall_exit - deallocate audit context after a system call
1535 * @success: success value of the syscall
1536 * @return_code: return value of the syscall
1537 *
1538 * Tear down after system call. If the audit context has been marked as
1539 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1540 * filtering, or because some other part of the kernel wrote an audit
1541 * message), then write out the syscall information. In call cases,
1542 * free the names stored from getname().
1543 */
1544void __audit_syscall_exit(int success, long return_code)
1545{
1546 struct task_struct *tsk = current;
1547 struct audit_context *context;
1548
1549 if (success)
1550 success = AUDITSC_SUCCESS;
1551 else
1552 success = AUDITSC_FAILURE;
1553
1554 context = audit_take_context(tsk, success, return_code);
1555 if (!context)
1556 return;
1557
1558 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1559 audit_log_exit(context, tsk);
1560
1561 context->in_syscall = 0;
1562 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1563
1564 if (!list_empty(&context->killed_trees))
1565 audit_kill_trees(&context->killed_trees);
1566
1567 audit_free_names(context);
1568 unroll_tree_refs(context, NULL, 0);
1569 audit_free_aux(context);
1570 context->aux = NULL;
1571 context->aux_pids = NULL;
1572 context->target_pid = 0;
1573 context->target_sid = 0;
1574 context->sockaddr_len = 0;
1575 context->type = 0;
1576 context->fds[0] = -1;
1577 if (context->state != AUDIT_RECORD_CONTEXT) {
1578 kfree(context->filterkey);
1579 context->filterkey = NULL;
1580 }
1581 tsk->audit_context = context;
1582}
1583
1584static inline void handle_one(const struct inode *inode)
1585{
1586#ifdef CONFIG_AUDIT_TREE
1587 struct audit_context *context;
1588 struct audit_tree_refs *p;
1589 struct audit_chunk *chunk;
1590 int count;
1591 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1592 return;
1593 context = current->audit_context;
1594 p = context->trees;
1595 count = context->tree_count;
1596 rcu_read_lock();
1597 chunk = audit_tree_lookup(inode);
1598 rcu_read_unlock();
1599 if (!chunk)
1600 return;
1601 if (likely(put_tree_ref(context, chunk)))
1602 return;
1603 if (unlikely(!grow_tree_refs(context))) {
1604 pr_warn("out of memory, audit has lost a tree reference\n");
1605 audit_set_auditable(context);
1606 audit_put_chunk(chunk);
1607 unroll_tree_refs(context, p, count);
1608 return;
1609 }
1610 put_tree_ref(context, chunk);
1611#endif
1612}
1613
1614static void handle_path(const struct dentry *dentry)
1615{
1616#ifdef CONFIG_AUDIT_TREE
1617 struct audit_context *context;
1618 struct audit_tree_refs *p;
1619 const struct dentry *d, *parent;
1620 struct audit_chunk *drop;
1621 unsigned long seq;
1622 int count;
1623
1624 context = current->audit_context;
1625 p = context->trees;
1626 count = context->tree_count;
1627retry:
1628 drop = NULL;
1629 d = dentry;
1630 rcu_read_lock();
1631 seq = read_seqbegin(&rename_lock);
1632 for(;;) {
1633 struct inode *inode = d_backing_inode(d);
1634 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1635 struct audit_chunk *chunk;
1636 chunk = audit_tree_lookup(inode);
1637 if (chunk) {
1638 if (unlikely(!put_tree_ref(context, chunk))) {
1639 drop = chunk;
1640 break;
1641 }
1642 }
1643 }
1644 parent = d->d_parent;
1645 if (parent == d)
1646 break;
1647 d = parent;
1648 }
1649 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1650 rcu_read_unlock();
1651 if (!drop) {
1652 /* just a race with rename */
1653 unroll_tree_refs(context, p, count);
1654 goto retry;
1655 }
1656 audit_put_chunk(drop);
1657 if (grow_tree_refs(context)) {
1658 /* OK, got more space */
1659 unroll_tree_refs(context, p, count);
1660 goto retry;
1661 }
1662 /* too bad */
1663 pr_warn("out of memory, audit has lost a tree reference\n");
1664 unroll_tree_refs(context, p, count);
1665 audit_set_auditable(context);
1666 return;
1667 }
1668 rcu_read_unlock();
1669#endif
1670}
1671
1672static struct audit_names *audit_alloc_name(struct audit_context *context,
1673 unsigned char type)
1674{
1675 struct audit_names *aname;
1676
1677 if (context->name_count < AUDIT_NAMES) {
1678 aname = &context->preallocated_names[context->name_count];
1679 memset(aname, 0, sizeof(*aname));
1680 } else {
1681 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1682 if (!aname)
1683 return NULL;
1684 aname->should_free = true;
1685 }
1686
1687 aname->ino = AUDIT_INO_UNSET;
1688 aname->type = type;
1689 list_add_tail(&aname->list, &context->names_list);
1690
1691 context->name_count++;
1692 return aname;
1693}
1694
1695/**
1696 * audit_reusename - fill out filename with info from existing entry
1697 * @uptr: userland ptr to pathname
1698 *
1699 * Search the audit_names list for the current audit context. If there is an
1700 * existing entry with a matching "uptr" then return the filename
1701 * associated with that audit_name. If not, return NULL.
1702 */
1703struct filename *
1704__audit_reusename(const __user char *uptr)
1705{
1706 struct audit_context *context = current->audit_context;
1707 struct audit_names *n;
1708
1709 list_for_each_entry(n, &context->names_list, list) {
1710 if (!n->name)
1711 continue;
1712 if (n->name->uptr == uptr) {
1713 n->name->refcnt++;
1714 return n->name;
1715 }
1716 }
1717 return NULL;
1718}
1719
1720/**
1721 * audit_getname - add a name to the list
1722 * @name: name to add
1723 *
1724 * Add a name to the list of audit names for this context.
1725 * Called from fs/namei.c:getname().
1726 */
1727void __audit_getname(struct filename *name)
1728{
1729 struct audit_context *context = current->audit_context;
1730 struct audit_names *n;
1731
1732 if (!context->in_syscall)
1733 return;
1734
1735 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1736 if (!n)
1737 return;
1738
1739 n->name = name;
1740 n->name_len = AUDIT_NAME_FULL;
1741 name->aname = n;
1742 name->refcnt++;
1743
1744 if (!context->pwd.dentry)
1745 get_fs_pwd(current->fs, &context->pwd);
1746}
1747
1748/**
1749 * __audit_inode - store the inode and device from a lookup
1750 * @name: name being audited
1751 * @dentry: dentry being audited
1752 * @flags: attributes for this particular entry
1753 */
1754void __audit_inode(struct filename *name, const struct dentry *dentry,
1755 unsigned int flags)
1756{
1757 struct audit_context *context = current->audit_context;
1758 struct inode *inode = d_backing_inode(dentry);
1759 struct audit_names *n;
1760 bool parent = flags & AUDIT_INODE_PARENT;
1761
1762 if (!context->in_syscall)
1763 return;
1764
1765 if (!name)
1766 goto out_alloc;
1767
1768 /*
1769 * If we have a pointer to an audit_names entry already, then we can
1770 * just use it directly if the type is correct.
1771 */
1772 n = name->aname;
1773 if (n) {
1774 if (parent) {
1775 if (n->type == AUDIT_TYPE_PARENT ||
1776 n->type == AUDIT_TYPE_UNKNOWN)
1777 goto out;
1778 } else {
1779 if (n->type != AUDIT_TYPE_PARENT)
1780 goto out;
1781 }
1782 }
1783
1784 list_for_each_entry_reverse(n, &context->names_list, list) {
1785 if (n->ino) {
1786 /* valid inode number, use that for the comparison */
1787 if (n->ino != inode->i_ino ||
1788 n->dev != inode->i_sb->s_dev)
1789 continue;
1790 } else if (n->name) {
1791 /* inode number has not been set, check the name */
1792 if (strcmp(n->name->name, name->name))
1793 continue;
1794 } else
1795 /* no inode and no name (?!) ... this is odd ... */
1796 continue;
1797
1798 /* match the correct record type */
1799 if (parent) {
1800 if (n->type == AUDIT_TYPE_PARENT ||
1801 n->type == AUDIT_TYPE_UNKNOWN)
1802 goto out;
1803 } else {
1804 if (n->type != AUDIT_TYPE_PARENT)
1805 goto out;
1806 }
1807 }
1808
1809out_alloc:
1810 /* unable to find an entry with both a matching name and type */
1811 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1812 if (!n)
1813 return;
1814 if (name) {
1815 n->name = name;
1816 name->refcnt++;
1817 }
1818
1819out:
1820 if (parent) {
1821 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1822 n->type = AUDIT_TYPE_PARENT;
1823 if (flags & AUDIT_INODE_HIDDEN)
1824 n->hidden = true;
1825 } else {
1826 n->name_len = AUDIT_NAME_FULL;
1827 n->type = AUDIT_TYPE_NORMAL;
1828 }
1829 handle_path(dentry);
1830 audit_copy_inode(n, dentry, inode);
1831}
1832
1833void __audit_file(const struct file *file)
1834{
1835 __audit_inode(NULL, file->f_path.dentry, 0);
1836}
1837
1838/**
1839 * __audit_inode_child - collect inode info for created/removed objects
1840 * @parent: inode of dentry parent
1841 * @dentry: dentry being audited
1842 * @type: AUDIT_TYPE_* value that we're looking for
1843 *
1844 * For syscalls that create or remove filesystem objects, audit_inode
1845 * can only collect information for the filesystem object's parent.
1846 * This call updates the audit context with the child's information.
1847 * Syscalls that create a new filesystem object must be hooked after
1848 * the object is created. Syscalls that remove a filesystem object
1849 * must be hooked prior, in order to capture the target inode during
1850 * unsuccessful attempts.
1851 */
1852void __audit_inode_child(struct inode *parent,
1853 const struct dentry *dentry,
1854 const unsigned char type)
1855{
1856 struct audit_context *context = current->audit_context;
1857 struct inode *inode = d_backing_inode(dentry);
1858 const char *dname = dentry->d_name.name;
1859 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1860
1861 if (!context->in_syscall)
1862 return;
1863
1864 if (inode)
1865 handle_one(inode);
1866
1867 /* look for a parent entry first */
1868 list_for_each_entry(n, &context->names_list, list) {
1869 if (!n->name ||
1870 (n->type != AUDIT_TYPE_PARENT &&
1871 n->type != AUDIT_TYPE_UNKNOWN))
1872 continue;
1873
1874 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1875 !audit_compare_dname_path(dname,
1876 n->name->name, n->name_len)) {
1877 if (n->type == AUDIT_TYPE_UNKNOWN)
1878 n->type = AUDIT_TYPE_PARENT;
1879 found_parent = n;
1880 break;
1881 }
1882 }
1883
1884 /* is there a matching child entry? */
1885 list_for_each_entry(n, &context->names_list, list) {
1886 /* can only match entries that have a name */
1887 if (!n->name ||
1888 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1889 continue;
1890
1891 if (!strcmp(dname, n->name->name) ||
1892 !audit_compare_dname_path(dname, n->name->name,
1893 found_parent ?
1894 found_parent->name_len :
1895 AUDIT_NAME_FULL)) {
1896 if (n->type == AUDIT_TYPE_UNKNOWN)
1897 n->type = type;
1898 found_child = n;
1899 break;
1900 }
1901 }
1902
1903 if (!found_parent) {
1904 /* create a new, "anonymous" parent record */
1905 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1906 if (!n)
1907 return;
1908 audit_copy_inode(n, NULL, parent);
1909 }
1910
1911 if (!found_child) {
1912 found_child = audit_alloc_name(context, type);
1913 if (!found_child)
1914 return;
1915
1916 /* Re-use the name belonging to the slot for a matching parent
1917 * directory. All names for this context are relinquished in
1918 * audit_free_names() */
1919 if (found_parent) {
1920 found_child->name = found_parent->name;
1921 found_child->name_len = AUDIT_NAME_FULL;
1922 found_child->name->refcnt++;
1923 }
1924 }
1925
1926 if (inode)
1927 audit_copy_inode(found_child, dentry, inode);
1928 else
1929 found_child->ino = AUDIT_INO_UNSET;
1930}
1931EXPORT_SYMBOL_GPL(__audit_inode_child);
1932
1933/**
1934 * auditsc_get_stamp - get local copies of audit_context values
1935 * @ctx: audit_context for the task
1936 * @t: timespec to store time recorded in the audit_context
1937 * @serial: serial value that is recorded in the audit_context
1938 *
1939 * Also sets the context as auditable.
1940 */
1941int auditsc_get_stamp(struct audit_context *ctx,
1942 struct timespec *t, unsigned int *serial)
1943{
1944 if (!ctx->in_syscall)
1945 return 0;
1946 if (!ctx->serial)
1947 ctx->serial = audit_serial();
1948 t->tv_sec = ctx->ctime.tv_sec;
1949 t->tv_nsec = ctx->ctime.tv_nsec;
1950 *serial = ctx->serial;
1951 if (!ctx->prio) {
1952 ctx->prio = 1;
1953 ctx->current_state = AUDIT_RECORD_CONTEXT;
1954 }
1955 return 1;
1956}
1957
1958/* global counter which is incremented every time something logs in */
1959static atomic_t session_id = ATOMIC_INIT(0);
1960
1961static int audit_set_loginuid_perm(kuid_t loginuid)
1962{
1963 /* if we are unset, we don't need privs */
1964 if (!audit_loginuid_set(current))
1965 return 0;
1966 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1967 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1968 return -EPERM;
1969 /* it is set, you need permission */
1970 if (!capable(CAP_AUDIT_CONTROL))
1971 return -EPERM;
1972 /* reject if this is not an unset and we don't allow that */
1973 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1974 return -EPERM;
1975 return 0;
1976}
1977
1978static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1979 unsigned int oldsessionid, unsigned int sessionid,
1980 int rc)
1981{
1982 struct audit_buffer *ab;
1983 uid_t uid, oldloginuid, loginuid;
1984 struct tty_struct *tty;
1985
1986 if (!audit_enabled)
1987 return;
1988
1989 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1990 if (!ab)
1991 return;
1992
1993 uid = from_kuid(&init_user_ns, task_uid(current));
1994 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1995 loginuid = from_kuid(&init_user_ns, kloginuid),
1996 tty = audit_get_tty(current);
1997
1998 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
1999 audit_log_task_context(ab);
2000 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2001 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2002 oldsessionid, sessionid, !rc);
2003 audit_put_tty(tty);
2004 audit_log_end(ab);
2005}
2006
2007/**
2008 * audit_set_loginuid - set current task's audit_context loginuid
2009 * @loginuid: loginuid value
2010 *
2011 * Returns 0.
2012 *
2013 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2014 */
2015int audit_set_loginuid(kuid_t loginuid)
2016{
2017 struct task_struct *task = current;
2018 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2019 kuid_t oldloginuid;
2020 int rc;
2021
2022 oldloginuid = audit_get_loginuid(current);
2023 oldsessionid = audit_get_sessionid(current);
2024
2025 rc = audit_set_loginuid_perm(loginuid);
2026 if (rc)
2027 goto out;
2028
2029 /* are we setting or clearing? */
2030 if (uid_valid(loginuid))
2031 sessionid = (unsigned int)atomic_inc_return(&session_id);
2032
2033 task->sessionid = sessionid;
2034 task->loginuid = loginuid;
2035out:
2036 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2037 return rc;
2038}
2039
2040/**
2041 * __audit_mq_open - record audit data for a POSIX MQ open
2042 * @oflag: open flag
2043 * @mode: mode bits
2044 * @attr: queue attributes
2045 *
2046 */
2047void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2048{
2049 struct audit_context *context = current->audit_context;
2050
2051 if (attr)
2052 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2053 else
2054 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2055
2056 context->mq_open.oflag = oflag;
2057 context->mq_open.mode = mode;
2058
2059 context->type = AUDIT_MQ_OPEN;
2060}
2061
2062/**
2063 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2064 * @mqdes: MQ descriptor
2065 * @msg_len: Message length
2066 * @msg_prio: Message priority
2067 * @abs_timeout: Message timeout in absolute time
2068 *
2069 */
2070void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2071 const struct timespec *abs_timeout)
2072{
2073 struct audit_context *context = current->audit_context;
2074 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2075
2076 if (abs_timeout)
2077 memcpy(p, abs_timeout, sizeof(struct timespec));
2078 else
2079 memset(p, 0, sizeof(struct timespec));
2080
2081 context->mq_sendrecv.mqdes = mqdes;
2082 context->mq_sendrecv.msg_len = msg_len;
2083 context->mq_sendrecv.msg_prio = msg_prio;
2084
2085 context->type = AUDIT_MQ_SENDRECV;
2086}
2087
2088/**
2089 * __audit_mq_notify - record audit data for a POSIX MQ notify
2090 * @mqdes: MQ descriptor
2091 * @notification: Notification event
2092 *
2093 */
2094
2095void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2096{
2097 struct audit_context *context = current->audit_context;
2098
2099 if (notification)
2100 context->mq_notify.sigev_signo = notification->sigev_signo;
2101 else
2102 context->mq_notify.sigev_signo = 0;
2103
2104 context->mq_notify.mqdes = mqdes;
2105 context->type = AUDIT_MQ_NOTIFY;
2106}
2107
2108/**
2109 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2110 * @mqdes: MQ descriptor
2111 * @mqstat: MQ flags
2112 *
2113 */
2114void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2115{
2116 struct audit_context *context = current->audit_context;
2117 context->mq_getsetattr.mqdes = mqdes;
2118 context->mq_getsetattr.mqstat = *mqstat;
2119 context->type = AUDIT_MQ_GETSETATTR;
2120}
2121
2122/**
2123 * audit_ipc_obj - record audit data for ipc object
2124 * @ipcp: ipc permissions
2125 *
2126 */
2127void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2128{
2129 struct audit_context *context = current->audit_context;
2130 context->ipc.uid = ipcp->uid;
2131 context->ipc.gid = ipcp->gid;
2132 context->ipc.mode = ipcp->mode;
2133 context->ipc.has_perm = 0;
2134 security_ipc_getsecid(ipcp, &context->ipc.osid);
2135 context->type = AUDIT_IPC;
2136}
2137
2138/**
2139 * audit_ipc_set_perm - record audit data for new ipc permissions
2140 * @qbytes: msgq bytes
2141 * @uid: msgq user id
2142 * @gid: msgq group id
2143 * @mode: msgq mode (permissions)
2144 *
2145 * Called only after audit_ipc_obj().
2146 */
2147void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2148{
2149 struct audit_context *context = current->audit_context;
2150
2151 context->ipc.qbytes = qbytes;
2152 context->ipc.perm_uid = uid;
2153 context->ipc.perm_gid = gid;
2154 context->ipc.perm_mode = mode;
2155 context->ipc.has_perm = 1;
2156}
2157
2158void __audit_bprm(struct linux_binprm *bprm)
2159{
2160 struct audit_context *context = current->audit_context;
2161
2162 context->type = AUDIT_EXECVE;
2163 context->execve.argc = bprm->argc;
2164}
2165
2166
2167/**
2168 * audit_socketcall - record audit data for sys_socketcall
2169 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2170 * @args: args array
2171 *
2172 */
2173int __audit_socketcall(int nargs, unsigned long *args)
2174{
2175 struct audit_context *context = current->audit_context;
2176
2177 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2178 return -EINVAL;
2179 context->type = AUDIT_SOCKETCALL;
2180 context->socketcall.nargs = nargs;
2181 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2182 return 0;
2183}
2184
2185/**
2186 * __audit_fd_pair - record audit data for pipe and socketpair
2187 * @fd1: the first file descriptor
2188 * @fd2: the second file descriptor
2189 *
2190 */
2191void __audit_fd_pair(int fd1, int fd2)
2192{
2193 struct audit_context *context = current->audit_context;
2194 context->fds[0] = fd1;
2195 context->fds[1] = fd2;
2196}
2197
2198/**
2199 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2200 * @len: data length in user space
2201 * @a: data address in kernel space
2202 *
2203 * Returns 0 for success or NULL context or < 0 on error.
2204 */
2205int __audit_sockaddr(int len, void *a)
2206{
2207 struct audit_context *context = current->audit_context;
2208
2209 if (!context->sockaddr) {
2210 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2211 if (!p)
2212 return -ENOMEM;
2213 context->sockaddr = p;
2214 }
2215
2216 context->sockaddr_len = len;
2217 memcpy(context->sockaddr, a, len);
2218 return 0;
2219}
2220
2221void __audit_ptrace(struct task_struct *t)
2222{
2223 struct audit_context *context = current->audit_context;
2224
2225 context->target_pid = task_tgid_nr(t);
2226 context->target_auid = audit_get_loginuid(t);
2227 context->target_uid = task_uid(t);
2228 context->target_sessionid = audit_get_sessionid(t);
2229 security_task_getsecid(t, &context->target_sid);
2230 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2231}
2232
2233/**
2234 * audit_signal_info - record signal info for shutting down audit subsystem
2235 * @sig: signal value
2236 * @t: task being signaled
2237 *
2238 * If the audit subsystem is being terminated, record the task (pid)
2239 * and uid that is doing that.
2240 */
2241int __audit_signal_info(int sig, struct task_struct *t)
2242{
2243 struct audit_aux_data_pids *axp;
2244 struct task_struct *tsk = current;
2245 struct audit_context *ctx = tsk->audit_context;
2246 kuid_t uid = current_uid(), t_uid = task_uid(t);
2247
2248 if (audit_pid && t->tgid == audit_pid) {
2249 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2250 audit_sig_pid = task_tgid_nr(tsk);
2251 if (uid_valid(tsk->loginuid))
2252 audit_sig_uid = tsk->loginuid;
2253 else
2254 audit_sig_uid = uid;
2255 security_task_getsecid(tsk, &audit_sig_sid);
2256 }
2257 if (!audit_signals || audit_dummy_context())
2258 return 0;
2259 }
2260
2261 /* optimize the common case by putting first signal recipient directly
2262 * in audit_context */
2263 if (!ctx->target_pid) {
2264 ctx->target_pid = task_tgid_nr(t);
2265 ctx->target_auid = audit_get_loginuid(t);
2266 ctx->target_uid = t_uid;
2267 ctx->target_sessionid = audit_get_sessionid(t);
2268 security_task_getsecid(t, &ctx->target_sid);
2269 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2270 return 0;
2271 }
2272
2273 axp = (void *)ctx->aux_pids;
2274 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2275 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2276 if (!axp)
2277 return -ENOMEM;
2278
2279 axp->d.type = AUDIT_OBJ_PID;
2280 axp->d.next = ctx->aux_pids;
2281 ctx->aux_pids = (void *)axp;
2282 }
2283 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2284
2285 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2286 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2287 axp->target_uid[axp->pid_count] = t_uid;
2288 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2289 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2290 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2291 axp->pid_count++;
2292
2293 return 0;
2294}
2295
2296/**
2297 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2298 * @bprm: pointer to the bprm being processed
2299 * @new: the proposed new credentials
2300 * @old: the old credentials
2301 *
2302 * Simply check if the proc already has the caps given by the file and if not
2303 * store the priv escalation info for later auditing at the end of the syscall
2304 *
2305 * -Eric
2306 */
2307int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2308 const struct cred *new, const struct cred *old)
2309{
2310 struct audit_aux_data_bprm_fcaps *ax;
2311 struct audit_context *context = current->audit_context;
2312 struct cpu_vfs_cap_data vcaps;
2313
2314 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2315 if (!ax)
2316 return -ENOMEM;
2317
2318 ax->d.type = AUDIT_BPRM_FCAPS;
2319 ax->d.next = context->aux;
2320 context->aux = (void *)ax;
2321
2322 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2323
2324 ax->fcap.permitted = vcaps.permitted;
2325 ax->fcap.inheritable = vcaps.inheritable;
2326 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2327 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2328
2329 ax->old_pcap.permitted = old->cap_permitted;
2330 ax->old_pcap.inheritable = old->cap_inheritable;
2331 ax->old_pcap.effective = old->cap_effective;
2332
2333 ax->new_pcap.permitted = new->cap_permitted;
2334 ax->new_pcap.inheritable = new->cap_inheritable;
2335 ax->new_pcap.effective = new->cap_effective;
2336 return 0;
2337}
2338
2339/**
2340 * __audit_log_capset - store information about the arguments to the capset syscall
2341 * @new: the new credentials
2342 * @old: the old (current) credentials
2343 *
2344 * Record the arguments userspace sent to sys_capset for later printing by the
2345 * audit system if applicable
2346 */
2347void __audit_log_capset(const struct cred *new, const struct cred *old)
2348{
2349 struct audit_context *context = current->audit_context;
2350 context->capset.pid = task_tgid_nr(current);
2351 context->capset.cap.effective = new->cap_effective;
2352 context->capset.cap.inheritable = new->cap_effective;
2353 context->capset.cap.permitted = new->cap_permitted;
2354 context->type = AUDIT_CAPSET;
2355}
2356
2357void __audit_mmap_fd(int fd, int flags)
2358{
2359 struct audit_context *context = current->audit_context;
2360 context->mmap.fd = fd;
2361 context->mmap.flags = flags;
2362 context->type = AUDIT_MMAP;
2363}
2364
2365static void audit_log_task(struct audit_buffer *ab)
2366{
2367 kuid_t auid, uid;
2368 kgid_t gid;
2369 unsigned int sessionid;
2370 char comm[sizeof(current->comm)];
2371
2372 auid = audit_get_loginuid(current);
2373 sessionid = audit_get_sessionid(current);
2374 current_uid_gid(&uid, &gid);
2375
2376 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2377 from_kuid(&init_user_ns, auid),
2378 from_kuid(&init_user_ns, uid),
2379 from_kgid(&init_user_ns, gid),
2380 sessionid);
2381 audit_log_task_context(ab);
2382 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2383 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2384 audit_log_d_path_exe(ab, current->mm);
2385}
2386
2387/**
2388 * audit_core_dumps - record information about processes that end abnormally
2389 * @signr: signal value
2390 *
2391 * If a process ends with a core dump, something fishy is going on and we
2392 * should record the event for investigation.
2393 */
2394void audit_core_dumps(long signr)
2395{
2396 struct audit_buffer *ab;
2397
2398 if (!audit_enabled)
2399 return;
2400
2401 if (signr == SIGQUIT) /* don't care for those */
2402 return;
2403
2404 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2405 if (unlikely(!ab))
2406 return;
2407 audit_log_task(ab);
2408 audit_log_format(ab, " sig=%ld", signr);
2409 audit_log_end(ab);
2410}
2411
2412void __audit_seccomp(unsigned long syscall, long signr, int code)
2413{
2414 struct audit_buffer *ab;
2415
2416 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2417 if (unlikely(!ab))
2418 return;
2419 audit_log_task(ab);
2420 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2421 signr, syscall_get_arch(), syscall,
2422 in_compat_syscall(), KSTK_EIP(current), code);
2423 audit_log_end(ab);
2424}
2425
2426struct list_head *audit_killed_trees(void)
2427{
2428 struct audit_context *ctx = current->audit_context;
2429 if (likely(!ctx || !ctx->in_syscall))
2430 return NULL;
2431 return &ctx->killed_trees;
2432}
2433