summaryrefslogtreecommitdiff
path: root/kernel/cpuset.c (plain)
blob: 194e2f24841bb48e158f6f24ffed4e7c3dbdae87
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
37#include <linux/mempolicy.h>
38#include <linux/mm.h>
39#include <linux/memory.h>
40#include <linux/export.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
45#include <linux/rcupdate.h>
46#include <linux/sched.h>
47#include <linux/seq_file.h>
48#include <linux/security.h>
49#include <linux/slab.h>
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/time64.h>
55#include <linux/backing-dev.h>
56#include <linux/sort.h>
57
58#include <asm/uaccess.h>
59#include <linux/atomic.h>
60#include <linux/mutex.h>
61#include <linux/cgroup.h>
62#include <linux/wait.h>
63
64DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
65DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
66
67/* See "Frequency meter" comments, below. */
68
69struct fmeter {
70 int cnt; /* unprocessed events count */
71 int val; /* most recent output value */
72 time64_t time; /* clock (secs) when val computed */
73 spinlock_t lock; /* guards read or write of above */
74};
75
76struct cpuset {
77 struct cgroup_subsys_state css;
78
79 unsigned long flags; /* "unsigned long" so bitops work */
80
81 /*
82 * On default hierarchy:
83 *
84 * The user-configured masks can only be changed by writing to
85 * cpuset.cpus and cpuset.mems, and won't be limited by the
86 * parent masks.
87 *
88 * The effective masks is the real masks that apply to the tasks
89 * in the cpuset. They may be changed if the configured masks are
90 * changed or hotplug happens.
91 *
92 * effective_mask == configured_mask & parent's effective_mask,
93 * and if it ends up empty, it will inherit the parent's mask.
94 *
95 *
96 * On legacy hierachy:
97 *
98 * The user-configured masks are always the same with effective masks.
99 */
100
101 /* user-configured CPUs and Memory Nodes allow to tasks */
102 cpumask_var_t cpus_allowed;
103 cpumask_var_t cpus_requested;
104 nodemask_t mems_allowed;
105
106 /* effective CPUs and Memory Nodes allow to tasks */
107 cpumask_var_t effective_cpus;
108 nodemask_t effective_mems;
109
110 /*
111 * This is old Memory Nodes tasks took on.
112 *
113 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
114 * - A new cpuset's old_mems_allowed is initialized when some
115 * task is moved into it.
116 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
117 * cpuset.mems_allowed and have tasks' nodemask updated, and
118 * then old_mems_allowed is updated to mems_allowed.
119 */
120 nodemask_t old_mems_allowed;
121
122 struct fmeter fmeter; /* memory_pressure filter */
123
124 /*
125 * Tasks are being attached to this cpuset. Used to prevent
126 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
127 */
128 int attach_in_progress;
129
130 /* partition number for rebuild_sched_domains() */
131 int pn;
132
133 /* for custom sched domain */
134 int relax_domain_level;
135};
136
137static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
138{
139 return css ? container_of(css, struct cpuset, css) : NULL;
140}
141
142/* Retrieve the cpuset for a task */
143static inline struct cpuset *task_cs(struct task_struct *task)
144{
145 return css_cs(task_css(task, cpuset_cgrp_id));
146}
147
148static inline struct cpuset *parent_cs(struct cpuset *cs)
149{
150 return css_cs(cs->css.parent);
151}
152
153#ifdef CONFIG_NUMA
154static inline bool task_has_mempolicy(struct task_struct *task)
155{
156 return task->mempolicy;
157}
158#else
159static inline bool task_has_mempolicy(struct task_struct *task)
160{
161 return false;
162}
163#endif
164
165
166/* bits in struct cpuset flags field */
167typedef enum {
168 CS_ONLINE,
169 CS_CPU_EXCLUSIVE,
170 CS_MEM_EXCLUSIVE,
171 CS_MEM_HARDWALL,
172 CS_MEMORY_MIGRATE,
173 CS_SCHED_LOAD_BALANCE,
174 CS_SPREAD_PAGE,
175 CS_SPREAD_SLAB,
176} cpuset_flagbits_t;
177
178/* convenient tests for these bits */
179static inline bool is_cpuset_online(struct cpuset *cs)
180{
181 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
182}
183
184static inline int is_cpu_exclusive(const struct cpuset *cs)
185{
186 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
187}
188
189static inline int is_mem_exclusive(const struct cpuset *cs)
190{
191 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
192}
193
194static inline int is_mem_hardwall(const struct cpuset *cs)
195{
196 return test_bit(CS_MEM_HARDWALL, &cs->flags);
197}
198
199static inline int is_sched_load_balance(const struct cpuset *cs)
200{
201 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
202}
203
204static inline int is_memory_migrate(const struct cpuset *cs)
205{
206 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
207}
208
209static inline int is_spread_page(const struct cpuset *cs)
210{
211 return test_bit(CS_SPREAD_PAGE, &cs->flags);
212}
213
214static inline int is_spread_slab(const struct cpuset *cs)
215{
216 return test_bit(CS_SPREAD_SLAB, &cs->flags);
217}
218
219static struct cpuset top_cpuset = {
220 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
221 (1 << CS_MEM_EXCLUSIVE)),
222};
223
224/**
225 * cpuset_for_each_child - traverse online children of a cpuset
226 * @child_cs: loop cursor pointing to the current child
227 * @pos_css: used for iteration
228 * @parent_cs: target cpuset to walk children of
229 *
230 * Walk @child_cs through the online children of @parent_cs. Must be used
231 * with RCU read locked.
232 */
233#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
234 css_for_each_child((pos_css), &(parent_cs)->css) \
235 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
236
237/**
238 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
239 * @des_cs: loop cursor pointing to the current descendant
240 * @pos_css: used for iteration
241 * @root_cs: target cpuset to walk ancestor of
242 *
243 * Walk @des_cs through the online descendants of @root_cs. Must be used
244 * with RCU read locked. The caller may modify @pos_css by calling
245 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
246 * iteration and the first node to be visited.
247 */
248#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
249 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
250 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
251
252/*
253 * There are two global locks guarding cpuset structures - cpuset_mutex and
254 * callback_lock. We also require taking task_lock() when dereferencing a
255 * task's cpuset pointer. See "The task_lock() exception", at the end of this
256 * comment.
257 *
258 * A task must hold both locks to modify cpusets. If a task holds
259 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
260 * is the only task able to also acquire callback_lock and be able to
261 * modify cpusets. It can perform various checks on the cpuset structure
262 * first, knowing nothing will change. It can also allocate memory while
263 * just holding cpuset_mutex. While it is performing these checks, various
264 * callback routines can briefly acquire callback_lock to query cpusets.
265 * Once it is ready to make the changes, it takes callback_lock, blocking
266 * everyone else.
267 *
268 * Calls to the kernel memory allocator can not be made while holding
269 * callback_lock, as that would risk double tripping on callback_lock
270 * from one of the callbacks into the cpuset code from within
271 * __alloc_pages().
272 *
273 * If a task is only holding callback_lock, then it has read-only
274 * access to cpusets.
275 *
276 * Now, the task_struct fields mems_allowed and mempolicy may be changed
277 * by other task, we use alloc_lock in the task_struct fields to protect
278 * them.
279 *
280 * The cpuset_common_file_read() handlers only hold callback_lock across
281 * small pieces of code, such as when reading out possibly multi-word
282 * cpumasks and nodemasks.
283 *
284 * Accessing a task's cpuset should be done in accordance with the
285 * guidelines for accessing subsystem state in kernel/cgroup.c
286 */
287
288static DEFINE_MUTEX(cpuset_mutex);
289static DEFINE_SPINLOCK(callback_lock);
290
291static struct workqueue_struct *cpuset_migrate_mm_wq;
292
293/*
294 * CPU / memory hotplug is handled asynchronously.
295 */
296static void cpuset_hotplug_workfn(struct work_struct *work);
297static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
298
299static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
300
301/*
302 * This is ugly, but preserves the userspace API for existing cpuset
303 * users. If someone tries to mount the "cpuset" filesystem, we
304 * silently switch it to mount "cgroup" instead
305 */
306static struct dentry *cpuset_mount(struct file_system_type *fs_type,
307 int flags, const char *unused_dev_name, void *data)
308{
309 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
310 struct dentry *ret = ERR_PTR(-ENODEV);
311 if (cgroup_fs) {
312 char mountopts[] =
313 "cpuset,noprefix,"
314 "release_agent=/sbin/cpuset_release_agent";
315 ret = cgroup_fs->mount(cgroup_fs, flags,
316 unused_dev_name, mountopts);
317 put_filesystem(cgroup_fs);
318 }
319 return ret;
320}
321
322static struct file_system_type cpuset_fs_type = {
323 .name = "cpuset",
324 .mount = cpuset_mount,
325};
326
327/*
328 * Return in pmask the portion of a cpusets's cpus_allowed that
329 * are online. If none are online, walk up the cpuset hierarchy
330 * until we find one that does have some online cpus.
331 *
332 * One way or another, we guarantee to return some non-empty subset
333 * of cpu_online_mask.
334 *
335 * Call with callback_lock or cpuset_mutex held.
336 */
337static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
338{
339 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
340 cs = parent_cs(cs);
341 if (unlikely(!cs)) {
342 /*
343 * The top cpuset doesn't have any online cpu as a
344 * consequence of a race between cpuset_hotplug_work
345 * and cpu hotplug notifier. But we know the top
346 * cpuset's effective_cpus is on its way to to be
347 * identical to cpu_online_mask.
348 */
349 cpumask_copy(pmask, cpu_online_mask);
350 return;
351 }
352 }
353 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
354}
355
356/*
357 * Return in *pmask the portion of a cpusets's mems_allowed that
358 * are online, with memory. If none are online with memory, walk
359 * up the cpuset hierarchy until we find one that does have some
360 * online mems. The top cpuset always has some mems online.
361 *
362 * One way or another, we guarantee to return some non-empty subset
363 * of node_states[N_MEMORY].
364 *
365 * Call with callback_lock or cpuset_mutex held.
366 */
367static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
368{
369 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
370 cs = parent_cs(cs);
371 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
372}
373
374/*
375 * update task's spread flag if cpuset's page/slab spread flag is set
376 *
377 * Call with callback_lock or cpuset_mutex held.
378 */
379static void cpuset_update_task_spread_flag(struct cpuset *cs,
380 struct task_struct *tsk)
381{
382 if (is_spread_page(cs))
383 task_set_spread_page(tsk);
384 else
385 task_clear_spread_page(tsk);
386
387 if (is_spread_slab(cs))
388 task_set_spread_slab(tsk);
389 else
390 task_clear_spread_slab(tsk);
391}
392
393/*
394 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
395 *
396 * One cpuset is a subset of another if all its allowed CPUs and
397 * Memory Nodes are a subset of the other, and its exclusive flags
398 * are only set if the other's are set. Call holding cpuset_mutex.
399 */
400
401static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
402{
403 return cpumask_subset(p->cpus_requested, q->cpus_requested) &&
404 nodes_subset(p->mems_allowed, q->mems_allowed) &&
405 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
406 is_mem_exclusive(p) <= is_mem_exclusive(q);
407}
408
409/**
410 * alloc_trial_cpuset - allocate a trial cpuset
411 * @cs: the cpuset that the trial cpuset duplicates
412 */
413static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
414{
415 struct cpuset *trial;
416
417 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
418 if (!trial)
419 return NULL;
420
421 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
422 goto free_cs;
423 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
424 goto free_cpus;
425
426 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
427 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
428 return trial;
429
430free_cpus:
431 free_cpumask_var(trial->cpus_allowed);
432free_cs:
433 kfree(trial);
434 return NULL;
435}
436
437/**
438 * free_trial_cpuset - free the trial cpuset
439 * @trial: the trial cpuset to be freed
440 */
441static void free_trial_cpuset(struct cpuset *trial)
442{
443 free_cpumask_var(trial->effective_cpus);
444 free_cpumask_var(trial->cpus_allowed);
445 kfree(trial);
446}
447
448/*
449 * validate_change() - Used to validate that any proposed cpuset change
450 * follows the structural rules for cpusets.
451 *
452 * If we replaced the flag and mask values of the current cpuset
453 * (cur) with those values in the trial cpuset (trial), would
454 * our various subset and exclusive rules still be valid? Presumes
455 * cpuset_mutex held.
456 *
457 * 'cur' is the address of an actual, in-use cpuset. Operations
458 * such as list traversal that depend on the actual address of the
459 * cpuset in the list must use cur below, not trial.
460 *
461 * 'trial' is the address of bulk structure copy of cur, with
462 * perhaps one or more of the fields cpus_allowed, mems_allowed,
463 * or flags changed to new, trial values.
464 *
465 * Return 0 if valid, -errno if not.
466 */
467
468static int validate_change(struct cpuset *cur, struct cpuset *trial)
469{
470 struct cgroup_subsys_state *css;
471 struct cpuset *c, *par;
472 int ret;
473
474 rcu_read_lock();
475
476 /* Each of our child cpusets must be a subset of us */
477 ret = -EBUSY;
478 cpuset_for_each_child(c, css, cur)
479 if (!is_cpuset_subset(c, trial))
480 goto out;
481
482 /* Remaining checks don't apply to root cpuset */
483 ret = 0;
484 if (cur == &top_cpuset)
485 goto out;
486
487 par = parent_cs(cur);
488
489 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
490 ret = -EACCES;
491 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
492 !is_cpuset_subset(trial, par))
493 goto out;
494
495 /*
496 * If either I or some sibling (!= me) is exclusive, we can't
497 * overlap
498 */
499 ret = -EINVAL;
500 cpuset_for_each_child(c, css, par) {
501 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
502 c != cur &&
503 cpumask_intersects(trial->cpus_requested, c->cpus_requested))
504 goto out;
505 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
506 c != cur &&
507 nodes_intersects(trial->mems_allowed, c->mems_allowed))
508 goto out;
509 }
510
511 /*
512 * Cpusets with tasks - existing or newly being attached - can't
513 * be changed to have empty cpus_allowed or mems_allowed.
514 */
515 ret = -ENOSPC;
516 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
517 if (!cpumask_empty(cur->cpus_allowed) &&
518 cpumask_empty(trial->cpus_allowed))
519 goto out;
520 if (!nodes_empty(cur->mems_allowed) &&
521 nodes_empty(trial->mems_allowed))
522 goto out;
523 }
524
525 /*
526 * We can't shrink if we won't have enough room for SCHED_DEADLINE
527 * tasks.
528 */
529 ret = -EBUSY;
530 if (is_cpu_exclusive(cur) &&
531 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
532 trial->cpus_allowed))
533 goto out;
534
535 ret = 0;
536out:
537 rcu_read_unlock();
538 return ret;
539}
540
541#ifdef CONFIG_SMP
542/*
543 * Helper routine for generate_sched_domains().
544 * Do cpusets a, b have overlapping effective cpus_allowed masks?
545 */
546static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
547{
548 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
549}
550
551static void
552update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
553{
554 if (dattr->relax_domain_level < c->relax_domain_level)
555 dattr->relax_domain_level = c->relax_domain_level;
556 return;
557}
558
559static void update_domain_attr_tree(struct sched_domain_attr *dattr,
560 struct cpuset *root_cs)
561{
562 struct cpuset *cp;
563 struct cgroup_subsys_state *pos_css;
564
565 rcu_read_lock();
566 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
567 /* skip the whole subtree if @cp doesn't have any CPU */
568 if (cpumask_empty(cp->cpus_allowed)) {
569 pos_css = css_rightmost_descendant(pos_css);
570 continue;
571 }
572
573 if (is_sched_load_balance(cp))
574 update_domain_attr(dattr, cp);
575 }
576 rcu_read_unlock();
577}
578
579/*
580 * generate_sched_domains()
581 *
582 * This function builds a partial partition of the systems CPUs
583 * A 'partial partition' is a set of non-overlapping subsets whose
584 * union is a subset of that set.
585 * The output of this function needs to be passed to kernel/sched/core.c
586 * partition_sched_domains() routine, which will rebuild the scheduler's
587 * load balancing domains (sched domains) as specified by that partial
588 * partition.
589 *
590 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
591 * for a background explanation of this.
592 *
593 * Does not return errors, on the theory that the callers of this
594 * routine would rather not worry about failures to rebuild sched
595 * domains when operating in the severe memory shortage situations
596 * that could cause allocation failures below.
597 *
598 * Must be called with cpuset_mutex held.
599 *
600 * The three key local variables below are:
601 * q - a linked-list queue of cpuset pointers, used to implement a
602 * top-down scan of all cpusets. This scan loads a pointer
603 * to each cpuset marked is_sched_load_balance into the
604 * array 'csa'. For our purposes, rebuilding the schedulers
605 * sched domains, we can ignore !is_sched_load_balance cpusets.
606 * csa - (for CpuSet Array) Array of pointers to all the cpusets
607 * that need to be load balanced, for convenient iterative
608 * access by the subsequent code that finds the best partition,
609 * i.e the set of domains (subsets) of CPUs such that the
610 * cpus_allowed of every cpuset marked is_sched_load_balance
611 * is a subset of one of these domains, while there are as
612 * many such domains as possible, each as small as possible.
613 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
614 * the kernel/sched/core.c routine partition_sched_domains() in a
615 * convenient format, that can be easily compared to the prior
616 * value to determine what partition elements (sched domains)
617 * were changed (added or removed.)
618 *
619 * Finding the best partition (set of domains):
620 * The triple nested loops below over i, j, k scan over the
621 * load balanced cpusets (using the array of cpuset pointers in
622 * csa[]) looking for pairs of cpusets that have overlapping
623 * cpus_allowed, but which don't have the same 'pn' partition
624 * number and gives them in the same partition number. It keeps
625 * looping on the 'restart' label until it can no longer find
626 * any such pairs.
627 *
628 * The union of the cpus_allowed masks from the set of
629 * all cpusets having the same 'pn' value then form the one
630 * element of the partition (one sched domain) to be passed to
631 * partition_sched_domains().
632 */
633static int generate_sched_domains(cpumask_var_t **domains,
634 struct sched_domain_attr **attributes)
635{
636 struct cpuset *cp; /* scans q */
637 struct cpuset **csa; /* array of all cpuset ptrs */
638 int csn; /* how many cpuset ptrs in csa so far */
639 int i, j, k; /* indices for partition finding loops */
640 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
641 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
642 struct sched_domain_attr *dattr; /* attributes for custom domains */
643 int ndoms = 0; /* number of sched domains in result */
644 int nslot; /* next empty doms[] struct cpumask slot */
645 struct cgroup_subsys_state *pos_css;
646
647 doms = NULL;
648 dattr = NULL;
649 csa = NULL;
650
651 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
652 goto done;
653 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
654
655 /* Special case for the 99% of systems with one, full, sched domain */
656 if (is_sched_load_balance(&top_cpuset)) {
657 ndoms = 1;
658 doms = alloc_sched_domains(ndoms);
659 if (!doms)
660 goto done;
661
662 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
663 if (dattr) {
664 *dattr = SD_ATTR_INIT;
665 update_domain_attr_tree(dattr, &top_cpuset);
666 }
667 cpumask_and(doms[0], top_cpuset.effective_cpus,
668 non_isolated_cpus);
669
670 goto done;
671 }
672
673 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
674 if (!csa)
675 goto done;
676 csn = 0;
677
678 rcu_read_lock();
679 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
680 if (cp == &top_cpuset)
681 continue;
682 /*
683 * Continue traversing beyond @cp iff @cp has some CPUs and
684 * isn't load balancing. The former is obvious. The
685 * latter: All child cpusets contain a subset of the
686 * parent's cpus, so just skip them, and then we call
687 * update_domain_attr_tree() to calc relax_domain_level of
688 * the corresponding sched domain.
689 */
690 if (!cpumask_empty(cp->cpus_allowed) &&
691 !(is_sched_load_balance(cp) &&
692 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
693 continue;
694
695 if (is_sched_load_balance(cp))
696 csa[csn++] = cp;
697
698 /* skip @cp's subtree */
699 pos_css = css_rightmost_descendant(pos_css);
700 }
701 rcu_read_unlock();
702
703 for (i = 0; i < csn; i++)
704 csa[i]->pn = i;
705 ndoms = csn;
706
707restart:
708 /* Find the best partition (set of sched domains) */
709 for (i = 0; i < csn; i++) {
710 struct cpuset *a = csa[i];
711 int apn = a->pn;
712
713 for (j = 0; j < csn; j++) {
714 struct cpuset *b = csa[j];
715 int bpn = b->pn;
716
717 if (apn != bpn && cpusets_overlap(a, b)) {
718 for (k = 0; k < csn; k++) {
719 struct cpuset *c = csa[k];
720
721 if (c->pn == bpn)
722 c->pn = apn;
723 }
724 ndoms--; /* one less element */
725 goto restart;
726 }
727 }
728 }
729
730 /*
731 * Now we know how many domains to create.
732 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
733 */
734 doms = alloc_sched_domains(ndoms);
735 if (!doms)
736 goto done;
737
738 /*
739 * The rest of the code, including the scheduler, can deal with
740 * dattr==NULL case. No need to abort if alloc fails.
741 */
742 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
743
744 for (nslot = 0, i = 0; i < csn; i++) {
745 struct cpuset *a = csa[i];
746 struct cpumask *dp;
747 int apn = a->pn;
748
749 if (apn < 0) {
750 /* Skip completed partitions */
751 continue;
752 }
753
754 dp = doms[nslot];
755
756 if (nslot == ndoms) {
757 static int warnings = 10;
758 if (warnings) {
759 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
760 nslot, ndoms, csn, i, apn);
761 warnings--;
762 }
763 continue;
764 }
765
766 cpumask_clear(dp);
767 if (dattr)
768 *(dattr + nslot) = SD_ATTR_INIT;
769 for (j = i; j < csn; j++) {
770 struct cpuset *b = csa[j];
771
772 if (apn == b->pn) {
773 cpumask_or(dp, dp, b->effective_cpus);
774 cpumask_and(dp, dp, non_isolated_cpus);
775 if (dattr)
776 update_domain_attr_tree(dattr + nslot, b);
777
778 /* Done with this partition */
779 b->pn = -1;
780 }
781 }
782 nslot++;
783 }
784 BUG_ON(nslot != ndoms);
785
786done:
787 free_cpumask_var(non_isolated_cpus);
788 kfree(csa);
789
790 /*
791 * Fallback to the default domain if kmalloc() failed.
792 * See comments in partition_sched_domains().
793 */
794 if (doms == NULL)
795 ndoms = 1;
796
797 *domains = doms;
798 *attributes = dattr;
799 return ndoms;
800}
801
802/*
803 * Rebuild scheduler domains.
804 *
805 * If the flag 'sched_load_balance' of any cpuset with non-empty
806 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
807 * which has that flag enabled, or if any cpuset with a non-empty
808 * 'cpus' is removed, then call this routine to rebuild the
809 * scheduler's dynamic sched domains.
810 *
811 * Call with cpuset_mutex held. Takes get_online_cpus().
812 */
813static void rebuild_sched_domains_locked(void)
814{
815 struct sched_domain_attr *attr;
816 cpumask_var_t *doms;
817 int ndoms;
818
819 lockdep_assert_held(&cpuset_mutex);
820 get_online_cpus();
821
822 /*
823 * We have raced with CPU hotplug. Don't do anything to avoid
824 * passing doms with offlined cpu to partition_sched_domains().
825 * Anyways, hotplug work item will rebuild sched domains.
826 */
827 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
828 goto out;
829
830 /* Generate domain masks and attrs */
831 ndoms = generate_sched_domains(&doms, &attr);
832
833 /* Have scheduler rebuild the domains */
834 partition_sched_domains(ndoms, doms, attr);
835out:
836 put_online_cpus();
837}
838#else /* !CONFIG_SMP */
839static void rebuild_sched_domains_locked(void)
840{
841}
842#endif /* CONFIG_SMP */
843
844void rebuild_sched_domains(void)
845{
846 mutex_lock(&cpuset_mutex);
847 rebuild_sched_domains_locked();
848 mutex_unlock(&cpuset_mutex);
849}
850
851/**
852 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
853 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
854 *
855 * Iterate through each task of @cs updating its cpus_allowed to the
856 * effective cpuset's. As this function is called with cpuset_mutex held,
857 * cpuset membership stays stable.
858 */
859static void update_tasks_cpumask(struct cpuset *cs)
860{
861 struct css_task_iter it;
862 struct task_struct *task;
863
864 css_task_iter_start(&cs->css, &it);
865 while ((task = css_task_iter_next(&it)))
866 set_cpus_allowed_ptr(task, cs->effective_cpus);
867 css_task_iter_end(&it);
868}
869
870/*
871 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
872 * @cs: the cpuset to consider
873 * @new_cpus: temp variable for calculating new effective_cpus
874 *
875 * When congifured cpumask is changed, the effective cpumasks of this cpuset
876 * and all its descendants need to be updated.
877 *
878 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
879 *
880 * Called with cpuset_mutex held
881 */
882static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
883{
884 struct cpuset *cp;
885 struct cgroup_subsys_state *pos_css;
886 bool need_rebuild_sched_domains = false;
887
888 rcu_read_lock();
889 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
890 struct cpuset *parent = parent_cs(cp);
891
892 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
893
894 /*
895 * If it becomes empty, inherit the effective mask of the
896 * parent, which is guaranteed to have some CPUs.
897 */
898 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
899 cpumask_empty(new_cpus))
900 cpumask_copy(new_cpus, parent->effective_cpus);
901
902 /* Skip the whole subtree if the cpumask remains the same. */
903 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
904 pos_css = css_rightmost_descendant(pos_css);
905 continue;
906 }
907
908 if (!css_tryget_online(&cp->css))
909 continue;
910 rcu_read_unlock();
911
912 spin_lock_irq(&callback_lock);
913 cpumask_copy(cp->effective_cpus, new_cpus);
914 spin_unlock_irq(&callback_lock);
915
916 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
917 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
918
919 update_tasks_cpumask(cp);
920
921 /*
922 * If the effective cpumask of any non-empty cpuset is changed,
923 * we need to rebuild sched domains.
924 */
925 if (!cpumask_empty(cp->cpus_allowed) &&
926 is_sched_load_balance(cp))
927 need_rebuild_sched_domains = true;
928
929 rcu_read_lock();
930 css_put(&cp->css);
931 }
932 rcu_read_unlock();
933
934 if (need_rebuild_sched_domains)
935 rebuild_sched_domains_locked();
936}
937
938/**
939 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
940 * @cs: the cpuset to consider
941 * @trialcs: trial cpuset
942 * @buf: buffer of cpu numbers written to this cpuset
943 */
944static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
945 const char *buf)
946{
947 int retval;
948
949 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
950 if (cs == &top_cpuset)
951 return -EACCES;
952
953 /*
954 * An empty cpus_allowed is ok only if the cpuset has no tasks.
955 * Since cpulist_parse() fails on an empty mask, we special case
956 * that parsing. The validate_change() call ensures that cpusets
957 * with tasks have cpus.
958 */
959 if (!*buf) {
960 cpumask_clear(trialcs->cpus_allowed);
961 } else {
962 retval = cpulist_parse(buf, trialcs->cpus_requested);
963 if (retval < 0)
964 return retval;
965
966 if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
967 return -EINVAL;
968
969 cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested, cpu_active_mask);
970 }
971
972 /* Nothing to do if the cpus didn't change */
973 if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
974 return 0;
975
976 retval = validate_change(cs, trialcs);
977 if (retval < 0)
978 return retval;
979
980 spin_lock_irq(&callback_lock);
981 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
982 cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
983 spin_unlock_irq(&callback_lock);
984
985 /* use trialcs->cpus_allowed as a temp variable */
986 update_cpumasks_hier(cs, trialcs->cpus_allowed);
987 return 0;
988}
989
990/*
991 * Migrate memory region from one set of nodes to another. This is
992 * performed asynchronously as it can be called from process migration path
993 * holding locks involved in process management. All mm migrations are
994 * performed in the queued order and can be waited for by flushing
995 * cpuset_migrate_mm_wq.
996 */
997
998struct cpuset_migrate_mm_work {
999 struct work_struct work;
1000 struct mm_struct *mm;
1001 nodemask_t from;
1002 nodemask_t to;
1003};
1004
1005static void cpuset_migrate_mm_workfn(struct work_struct *work)
1006{
1007 struct cpuset_migrate_mm_work *mwork =
1008 container_of(work, struct cpuset_migrate_mm_work, work);
1009
1010 /* on a wq worker, no need to worry about %current's mems_allowed */
1011 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1012 mmput(mwork->mm);
1013 kfree(mwork);
1014}
1015
1016static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1017 const nodemask_t *to)
1018{
1019 struct cpuset_migrate_mm_work *mwork;
1020
1021 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1022 if (mwork) {
1023 mwork->mm = mm;
1024 mwork->from = *from;
1025 mwork->to = *to;
1026 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1027 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1028 } else {
1029 mmput(mm);
1030 }
1031}
1032
1033static void cpuset_post_attach(void)
1034{
1035 flush_workqueue(cpuset_migrate_mm_wq);
1036}
1037
1038/*
1039 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1040 * @tsk: the task to change
1041 * @newmems: new nodes that the task will be set
1042 *
1043 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1044 * we structure updates as setting all new allowed nodes, then clearing newly
1045 * disallowed ones.
1046 */
1047static void cpuset_change_task_nodemask(struct task_struct *tsk,
1048 nodemask_t *newmems)
1049{
1050 bool need_loop;
1051
1052 task_lock(tsk);
1053 /*
1054 * Determine if a loop is necessary if another thread is doing
1055 * read_mems_allowed_begin(). If at least one node remains unchanged and
1056 * tsk does not have a mempolicy, then an empty nodemask will not be
1057 * possible when mems_allowed is larger than a word.
1058 */
1059 need_loop = task_has_mempolicy(tsk) ||
1060 !nodes_intersects(*newmems, tsk->mems_allowed);
1061
1062 if (need_loop) {
1063 local_irq_disable();
1064 write_seqcount_begin(&tsk->mems_allowed_seq);
1065 }
1066
1067 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1068 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1069
1070 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1071 tsk->mems_allowed = *newmems;
1072
1073 if (need_loop) {
1074 write_seqcount_end(&tsk->mems_allowed_seq);
1075 local_irq_enable();
1076 }
1077
1078 task_unlock(tsk);
1079}
1080
1081static void *cpuset_being_rebound;
1082
1083/**
1084 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1085 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1086 *
1087 * Iterate through each task of @cs updating its mems_allowed to the
1088 * effective cpuset's. As this function is called with cpuset_mutex held,
1089 * cpuset membership stays stable.
1090 */
1091static void update_tasks_nodemask(struct cpuset *cs)
1092{
1093 static nodemask_t newmems; /* protected by cpuset_mutex */
1094 struct css_task_iter it;
1095 struct task_struct *task;
1096
1097 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1098
1099 guarantee_online_mems(cs, &newmems);
1100
1101 /*
1102 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1103 * take while holding tasklist_lock. Forks can happen - the
1104 * mpol_dup() cpuset_being_rebound check will catch such forks,
1105 * and rebind their vma mempolicies too. Because we still hold
1106 * the global cpuset_mutex, we know that no other rebind effort
1107 * will be contending for the global variable cpuset_being_rebound.
1108 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1109 * is idempotent. Also migrate pages in each mm to new nodes.
1110 */
1111 css_task_iter_start(&cs->css, &it);
1112 while ((task = css_task_iter_next(&it))) {
1113 struct mm_struct *mm;
1114 bool migrate;
1115
1116 cpuset_change_task_nodemask(task, &newmems);
1117
1118 mm = get_task_mm(task);
1119 if (!mm)
1120 continue;
1121
1122 migrate = is_memory_migrate(cs);
1123
1124 mpol_rebind_mm(mm, &cs->mems_allowed);
1125 if (migrate)
1126 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1127 else
1128 mmput(mm);
1129 }
1130 css_task_iter_end(&it);
1131
1132 /*
1133 * All the tasks' nodemasks have been updated, update
1134 * cs->old_mems_allowed.
1135 */
1136 cs->old_mems_allowed = newmems;
1137
1138 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1139 cpuset_being_rebound = NULL;
1140}
1141
1142/*
1143 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1144 * @cs: the cpuset to consider
1145 * @new_mems: a temp variable for calculating new effective_mems
1146 *
1147 * When configured nodemask is changed, the effective nodemasks of this cpuset
1148 * and all its descendants need to be updated.
1149 *
1150 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1151 *
1152 * Called with cpuset_mutex held
1153 */
1154static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1155{
1156 struct cpuset *cp;
1157 struct cgroup_subsys_state *pos_css;
1158
1159 rcu_read_lock();
1160 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1161 struct cpuset *parent = parent_cs(cp);
1162
1163 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1164
1165 /*
1166 * If it becomes empty, inherit the effective mask of the
1167 * parent, which is guaranteed to have some MEMs.
1168 */
1169 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1170 nodes_empty(*new_mems))
1171 *new_mems = parent->effective_mems;
1172
1173 /* Skip the whole subtree if the nodemask remains the same. */
1174 if (nodes_equal(*new_mems, cp->effective_mems)) {
1175 pos_css = css_rightmost_descendant(pos_css);
1176 continue;
1177 }
1178
1179 if (!css_tryget_online(&cp->css))
1180 continue;
1181 rcu_read_unlock();
1182
1183 spin_lock_irq(&callback_lock);
1184 cp->effective_mems = *new_mems;
1185 spin_unlock_irq(&callback_lock);
1186
1187 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1188 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1189
1190 update_tasks_nodemask(cp);
1191
1192 rcu_read_lock();
1193 css_put(&cp->css);
1194 }
1195 rcu_read_unlock();
1196}
1197
1198/*
1199 * Handle user request to change the 'mems' memory placement
1200 * of a cpuset. Needs to validate the request, update the
1201 * cpusets mems_allowed, and for each task in the cpuset,
1202 * update mems_allowed and rebind task's mempolicy and any vma
1203 * mempolicies and if the cpuset is marked 'memory_migrate',
1204 * migrate the tasks pages to the new memory.
1205 *
1206 * Call with cpuset_mutex held. May take callback_lock during call.
1207 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1208 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1209 * their mempolicies to the cpusets new mems_allowed.
1210 */
1211static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1212 const char *buf)
1213{
1214 int retval;
1215
1216 /*
1217 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1218 * it's read-only
1219 */
1220 if (cs == &top_cpuset) {
1221 retval = -EACCES;
1222 goto done;
1223 }
1224
1225 /*
1226 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1227 * Since nodelist_parse() fails on an empty mask, we special case
1228 * that parsing. The validate_change() call ensures that cpusets
1229 * with tasks have memory.
1230 */
1231 if (!*buf) {
1232 nodes_clear(trialcs->mems_allowed);
1233 } else {
1234 retval = nodelist_parse(buf, trialcs->mems_allowed);
1235 if (retval < 0)
1236 goto done;
1237
1238 if (!nodes_subset(trialcs->mems_allowed,
1239 top_cpuset.mems_allowed)) {
1240 retval = -EINVAL;
1241 goto done;
1242 }
1243 }
1244
1245 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1246 retval = 0; /* Too easy - nothing to do */
1247 goto done;
1248 }
1249 retval = validate_change(cs, trialcs);
1250 if (retval < 0)
1251 goto done;
1252
1253 spin_lock_irq(&callback_lock);
1254 cs->mems_allowed = trialcs->mems_allowed;
1255 spin_unlock_irq(&callback_lock);
1256
1257 /* use trialcs->mems_allowed as a temp variable */
1258 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1259done:
1260 return retval;
1261}
1262
1263int current_cpuset_is_being_rebound(void)
1264{
1265 int ret;
1266
1267 rcu_read_lock();
1268 ret = task_cs(current) == cpuset_being_rebound;
1269 rcu_read_unlock();
1270
1271 return ret;
1272}
1273
1274static int update_relax_domain_level(struct cpuset *cs, s64 val)
1275{
1276#ifdef CONFIG_SMP
1277 if (val < -1 || val >= sched_domain_level_max)
1278 return -EINVAL;
1279#endif
1280
1281 if (val != cs->relax_domain_level) {
1282 cs->relax_domain_level = val;
1283 if (!cpumask_empty(cs->cpus_allowed) &&
1284 is_sched_load_balance(cs))
1285 rebuild_sched_domains_locked();
1286 }
1287
1288 return 0;
1289}
1290
1291/**
1292 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1293 * @cs: the cpuset in which each task's spread flags needs to be changed
1294 *
1295 * Iterate through each task of @cs updating its spread flags. As this
1296 * function is called with cpuset_mutex held, cpuset membership stays
1297 * stable.
1298 */
1299static void update_tasks_flags(struct cpuset *cs)
1300{
1301 struct css_task_iter it;
1302 struct task_struct *task;
1303
1304 css_task_iter_start(&cs->css, &it);
1305 while ((task = css_task_iter_next(&it)))
1306 cpuset_update_task_spread_flag(cs, task);
1307 css_task_iter_end(&it);
1308}
1309
1310/*
1311 * update_flag - read a 0 or a 1 in a file and update associated flag
1312 * bit: the bit to update (see cpuset_flagbits_t)
1313 * cs: the cpuset to update
1314 * turning_on: whether the flag is being set or cleared
1315 *
1316 * Call with cpuset_mutex held.
1317 */
1318
1319static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1320 int turning_on)
1321{
1322 struct cpuset *trialcs;
1323 int balance_flag_changed;
1324 int spread_flag_changed;
1325 int err;
1326
1327 trialcs = alloc_trial_cpuset(cs);
1328 if (!trialcs)
1329 return -ENOMEM;
1330
1331 if (turning_on)
1332 set_bit(bit, &trialcs->flags);
1333 else
1334 clear_bit(bit, &trialcs->flags);
1335
1336 err = validate_change(cs, trialcs);
1337 if (err < 0)
1338 goto out;
1339
1340 balance_flag_changed = (is_sched_load_balance(cs) !=
1341 is_sched_load_balance(trialcs));
1342
1343 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1344 || (is_spread_page(cs) != is_spread_page(trialcs)));
1345
1346 spin_lock_irq(&callback_lock);
1347 cs->flags = trialcs->flags;
1348 spin_unlock_irq(&callback_lock);
1349
1350 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1351 rebuild_sched_domains_locked();
1352
1353 if (spread_flag_changed)
1354 update_tasks_flags(cs);
1355out:
1356 free_trial_cpuset(trialcs);
1357 return err;
1358}
1359
1360/*
1361 * Frequency meter - How fast is some event occurring?
1362 *
1363 * These routines manage a digitally filtered, constant time based,
1364 * event frequency meter. There are four routines:
1365 * fmeter_init() - initialize a frequency meter.
1366 * fmeter_markevent() - called each time the event happens.
1367 * fmeter_getrate() - returns the recent rate of such events.
1368 * fmeter_update() - internal routine used to update fmeter.
1369 *
1370 * A common data structure is passed to each of these routines,
1371 * which is used to keep track of the state required to manage the
1372 * frequency meter and its digital filter.
1373 *
1374 * The filter works on the number of events marked per unit time.
1375 * The filter is single-pole low-pass recursive (IIR). The time unit
1376 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1377 * simulate 3 decimal digits of precision (multiplied by 1000).
1378 *
1379 * With an FM_COEF of 933, and a time base of 1 second, the filter
1380 * has a half-life of 10 seconds, meaning that if the events quit
1381 * happening, then the rate returned from the fmeter_getrate()
1382 * will be cut in half each 10 seconds, until it converges to zero.
1383 *
1384 * It is not worth doing a real infinitely recursive filter. If more
1385 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1386 * just compute FM_MAXTICKS ticks worth, by which point the level
1387 * will be stable.
1388 *
1389 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1390 * arithmetic overflow in the fmeter_update() routine.
1391 *
1392 * Given the simple 32 bit integer arithmetic used, this meter works
1393 * best for reporting rates between one per millisecond (msec) and
1394 * one per 32 (approx) seconds. At constant rates faster than one
1395 * per msec it maxes out at values just under 1,000,000. At constant
1396 * rates between one per msec, and one per second it will stabilize
1397 * to a value N*1000, where N is the rate of events per second.
1398 * At constant rates between one per second and one per 32 seconds,
1399 * it will be choppy, moving up on the seconds that have an event,
1400 * and then decaying until the next event. At rates slower than
1401 * about one in 32 seconds, it decays all the way back to zero between
1402 * each event.
1403 */
1404
1405#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1406#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1407#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1408#define FM_SCALE 1000 /* faux fixed point scale */
1409
1410/* Initialize a frequency meter */
1411static void fmeter_init(struct fmeter *fmp)
1412{
1413 fmp->cnt = 0;
1414 fmp->val = 0;
1415 fmp->time = 0;
1416 spin_lock_init(&fmp->lock);
1417}
1418
1419/* Internal meter update - process cnt events and update value */
1420static void fmeter_update(struct fmeter *fmp)
1421{
1422 time64_t now;
1423 u32 ticks;
1424
1425 now = ktime_get_seconds();
1426 ticks = now - fmp->time;
1427
1428 if (ticks == 0)
1429 return;
1430
1431 ticks = min(FM_MAXTICKS, ticks);
1432 while (ticks-- > 0)
1433 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1434 fmp->time = now;
1435
1436 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1437 fmp->cnt = 0;
1438}
1439
1440/* Process any previous ticks, then bump cnt by one (times scale). */
1441static void fmeter_markevent(struct fmeter *fmp)
1442{
1443 spin_lock(&fmp->lock);
1444 fmeter_update(fmp);
1445 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1446 spin_unlock(&fmp->lock);
1447}
1448
1449/* Process any previous ticks, then return current value. */
1450static int fmeter_getrate(struct fmeter *fmp)
1451{
1452 int val;
1453
1454 spin_lock(&fmp->lock);
1455 fmeter_update(fmp);
1456 val = fmp->val;
1457 spin_unlock(&fmp->lock);
1458 return val;
1459}
1460
1461static struct cpuset *cpuset_attach_old_cs;
1462
1463/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1464static int cpuset_can_attach(struct cgroup_taskset *tset)
1465{
1466 struct cgroup_subsys_state *css;
1467 struct cpuset *cs;
1468 struct task_struct *task;
1469 int ret;
1470
1471 /* used later by cpuset_attach() */
1472 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1473 cs = css_cs(css);
1474
1475 mutex_lock(&cpuset_mutex);
1476
1477 /* allow moving tasks into an empty cpuset if on default hierarchy */
1478 ret = -ENOSPC;
1479 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1480 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1481 goto out_unlock;
1482
1483 cgroup_taskset_for_each(task, css, tset) {
1484 ret = task_can_attach(task, cs->cpus_allowed);
1485 if (ret)
1486 goto out_unlock;
1487 ret = security_task_setscheduler(task);
1488 if (ret)
1489 goto out_unlock;
1490 }
1491
1492 /*
1493 * Mark attach is in progress. This makes validate_change() fail
1494 * changes which zero cpus/mems_allowed.
1495 */
1496 cs->attach_in_progress++;
1497 ret = 0;
1498out_unlock:
1499 mutex_unlock(&cpuset_mutex);
1500 return ret;
1501}
1502
1503static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1504{
1505 struct cgroup_subsys_state *css;
1506 struct cpuset *cs;
1507
1508 cgroup_taskset_first(tset, &css);
1509 cs = css_cs(css);
1510
1511 mutex_lock(&cpuset_mutex);
1512 css_cs(css)->attach_in_progress--;
1513 mutex_unlock(&cpuset_mutex);
1514}
1515
1516/*
1517 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1518 * but we can't allocate it dynamically there. Define it global and
1519 * allocate from cpuset_init().
1520 */
1521static cpumask_var_t cpus_attach;
1522
1523static void cpuset_attach(struct cgroup_taskset *tset)
1524{
1525 /* static buf protected by cpuset_mutex */
1526 static nodemask_t cpuset_attach_nodemask_to;
1527 struct task_struct *task;
1528 struct task_struct *leader;
1529 struct cgroup_subsys_state *css;
1530 struct cpuset *cs;
1531 struct cpuset *oldcs = cpuset_attach_old_cs;
1532
1533 cgroup_taskset_first(tset, &css);
1534 cs = css_cs(css);
1535
1536 mutex_lock(&cpuset_mutex);
1537
1538 /* prepare for attach */
1539 if (cs == &top_cpuset)
1540 cpumask_copy(cpus_attach, cpu_possible_mask);
1541 else
1542 guarantee_online_cpus(cs, cpus_attach);
1543
1544 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1545
1546 cgroup_taskset_for_each(task, css, tset) {
1547 /*
1548 * can_attach beforehand should guarantee that this doesn't
1549 * fail. TODO: have a better way to handle failure here
1550 */
1551 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1552
1553 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1554 cpuset_update_task_spread_flag(cs, task);
1555 }
1556
1557 /*
1558 * Change mm for all threadgroup leaders. This is expensive and may
1559 * sleep and should be moved outside migration path proper.
1560 */
1561 cpuset_attach_nodemask_to = cs->effective_mems;
1562 cgroup_taskset_for_each_leader(leader, css, tset) {
1563 struct mm_struct *mm = get_task_mm(leader);
1564
1565 if (mm) {
1566 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1567
1568 /*
1569 * old_mems_allowed is the same with mems_allowed
1570 * here, except if this task is being moved
1571 * automatically due to hotplug. In that case
1572 * @mems_allowed has been updated and is empty, so
1573 * @old_mems_allowed is the right nodesets that we
1574 * migrate mm from.
1575 */
1576 if (is_memory_migrate(cs))
1577 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1578 &cpuset_attach_nodemask_to);
1579 else
1580 mmput(mm);
1581 }
1582 }
1583
1584 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1585
1586 cs->attach_in_progress--;
1587 if (!cs->attach_in_progress)
1588 wake_up(&cpuset_attach_wq);
1589
1590 mutex_unlock(&cpuset_mutex);
1591}
1592
1593/* The various types of files and directories in a cpuset file system */
1594
1595typedef enum {
1596 FILE_MEMORY_MIGRATE,
1597 FILE_CPULIST,
1598 FILE_MEMLIST,
1599 FILE_EFFECTIVE_CPULIST,
1600 FILE_EFFECTIVE_MEMLIST,
1601 FILE_CPU_EXCLUSIVE,
1602 FILE_MEM_EXCLUSIVE,
1603 FILE_MEM_HARDWALL,
1604 FILE_SCHED_LOAD_BALANCE,
1605 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1606 FILE_MEMORY_PRESSURE_ENABLED,
1607 FILE_MEMORY_PRESSURE,
1608 FILE_SPREAD_PAGE,
1609 FILE_SPREAD_SLAB,
1610} cpuset_filetype_t;
1611
1612static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1613 u64 val)
1614{
1615 struct cpuset *cs = css_cs(css);
1616 cpuset_filetype_t type = cft->private;
1617 int retval = 0;
1618
1619 mutex_lock(&cpuset_mutex);
1620 if (!is_cpuset_online(cs)) {
1621 retval = -ENODEV;
1622 goto out_unlock;
1623 }
1624
1625 switch (type) {
1626 case FILE_CPU_EXCLUSIVE:
1627 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1628 break;
1629 case FILE_MEM_EXCLUSIVE:
1630 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1631 break;
1632 case FILE_MEM_HARDWALL:
1633 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1634 break;
1635 case FILE_SCHED_LOAD_BALANCE:
1636 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1637 break;
1638 case FILE_MEMORY_MIGRATE:
1639 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1640 break;
1641 case FILE_MEMORY_PRESSURE_ENABLED:
1642 cpuset_memory_pressure_enabled = !!val;
1643 break;
1644 case FILE_SPREAD_PAGE:
1645 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1646 break;
1647 case FILE_SPREAD_SLAB:
1648 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1649 break;
1650 default:
1651 retval = -EINVAL;
1652 break;
1653 }
1654out_unlock:
1655 mutex_unlock(&cpuset_mutex);
1656 return retval;
1657}
1658
1659static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1660 s64 val)
1661{
1662 struct cpuset *cs = css_cs(css);
1663 cpuset_filetype_t type = cft->private;
1664 int retval = -ENODEV;
1665
1666 mutex_lock(&cpuset_mutex);
1667 if (!is_cpuset_online(cs))
1668 goto out_unlock;
1669
1670 switch (type) {
1671 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1672 retval = update_relax_domain_level(cs, val);
1673 break;
1674 default:
1675 retval = -EINVAL;
1676 break;
1677 }
1678out_unlock:
1679 mutex_unlock(&cpuset_mutex);
1680 return retval;
1681}
1682
1683/*
1684 * Common handling for a write to a "cpus" or "mems" file.
1685 */
1686static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1687 char *buf, size_t nbytes, loff_t off)
1688{
1689 struct cpuset *cs = css_cs(of_css(of));
1690 struct cpuset *trialcs;
1691 int retval = -ENODEV;
1692
1693 buf = strstrip(buf);
1694
1695 /*
1696 * CPU or memory hotunplug may leave @cs w/o any execution
1697 * resources, in which case the hotplug code asynchronously updates
1698 * configuration and transfers all tasks to the nearest ancestor
1699 * which can execute.
1700 *
1701 * As writes to "cpus" or "mems" may restore @cs's execution
1702 * resources, wait for the previously scheduled operations before
1703 * proceeding, so that we don't end up keep removing tasks added
1704 * after execution capability is restored.
1705 *
1706 * cpuset_hotplug_work calls back into cgroup core via
1707 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1708 * operation like this one can lead to a deadlock through kernfs
1709 * active_ref protection. Let's break the protection. Losing the
1710 * protection is okay as we check whether @cs is online after
1711 * grabbing cpuset_mutex anyway. This only happens on the legacy
1712 * hierarchies.
1713 */
1714 css_get(&cs->css);
1715 kernfs_break_active_protection(of->kn);
1716 flush_work(&cpuset_hotplug_work);
1717
1718 mutex_lock(&cpuset_mutex);
1719 if (!is_cpuset_online(cs))
1720 goto out_unlock;
1721
1722 trialcs = alloc_trial_cpuset(cs);
1723 if (!trialcs) {
1724 retval = -ENOMEM;
1725 goto out_unlock;
1726 }
1727
1728 switch (of_cft(of)->private) {
1729 case FILE_CPULIST:
1730 retval = update_cpumask(cs, trialcs, buf);
1731 break;
1732 case FILE_MEMLIST:
1733 retval = update_nodemask(cs, trialcs, buf);
1734 break;
1735 default:
1736 retval = -EINVAL;
1737 break;
1738 }
1739
1740 free_trial_cpuset(trialcs);
1741out_unlock:
1742 mutex_unlock(&cpuset_mutex);
1743 kernfs_unbreak_active_protection(of->kn);
1744 css_put(&cs->css);
1745 flush_workqueue(cpuset_migrate_mm_wq);
1746 return retval ?: nbytes;
1747}
1748
1749/*
1750 * These ascii lists should be read in a single call, by using a user
1751 * buffer large enough to hold the entire map. If read in smaller
1752 * chunks, there is no guarantee of atomicity. Since the display format
1753 * used, list of ranges of sequential numbers, is variable length,
1754 * and since these maps can change value dynamically, one could read
1755 * gibberish by doing partial reads while a list was changing.
1756 */
1757static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1758{
1759 struct cpuset *cs = css_cs(seq_css(sf));
1760 cpuset_filetype_t type = seq_cft(sf)->private;
1761 int ret = 0;
1762
1763 spin_lock_irq(&callback_lock);
1764
1765 switch (type) {
1766 case FILE_CPULIST:
1767 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
1768 break;
1769 case FILE_MEMLIST:
1770 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1771 break;
1772 case FILE_EFFECTIVE_CPULIST:
1773 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1774 break;
1775 case FILE_EFFECTIVE_MEMLIST:
1776 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1777 break;
1778 default:
1779 ret = -EINVAL;
1780 }
1781
1782 spin_unlock_irq(&callback_lock);
1783 return ret;
1784}
1785
1786static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1787{
1788 struct cpuset *cs = css_cs(css);
1789 cpuset_filetype_t type = cft->private;
1790 switch (type) {
1791 case FILE_CPU_EXCLUSIVE:
1792 return is_cpu_exclusive(cs);
1793 case FILE_MEM_EXCLUSIVE:
1794 return is_mem_exclusive(cs);
1795 case FILE_MEM_HARDWALL:
1796 return is_mem_hardwall(cs);
1797 case FILE_SCHED_LOAD_BALANCE:
1798 return is_sched_load_balance(cs);
1799 case FILE_MEMORY_MIGRATE:
1800 return is_memory_migrate(cs);
1801 case FILE_MEMORY_PRESSURE_ENABLED:
1802 return cpuset_memory_pressure_enabled;
1803 case FILE_MEMORY_PRESSURE:
1804 return fmeter_getrate(&cs->fmeter);
1805 case FILE_SPREAD_PAGE:
1806 return is_spread_page(cs);
1807 case FILE_SPREAD_SLAB:
1808 return is_spread_slab(cs);
1809 default:
1810 BUG();
1811 }
1812
1813 /* Unreachable but makes gcc happy */
1814 return 0;
1815}
1816
1817static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1818{
1819 struct cpuset *cs = css_cs(css);
1820 cpuset_filetype_t type = cft->private;
1821 switch (type) {
1822 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1823 return cs->relax_domain_level;
1824 default:
1825 BUG();
1826 }
1827
1828 /* Unrechable but makes gcc happy */
1829 return 0;
1830}
1831
1832
1833/*
1834 * for the common functions, 'private' gives the type of file
1835 */
1836
1837static struct cftype files[] = {
1838 {
1839 .name = "cpus",
1840 .seq_show = cpuset_common_seq_show,
1841 .write = cpuset_write_resmask,
1842 .max_write_len = (100U + 6 * NR_CPUS),
1843 .private = FILE_CPULIST,
1844 },
1845
1846 {
1847 .name = "mems",
1848 .seq_show = cpuset_common_seq_show,
1849 .write = cpuset_write_resmask,
1850 .max_write_len = (100U + 6 * MAX_NUMNODES),
1851 .private = FILE_MEMLIST,
1852 },
1853
1854 {
1855 .name = "effective_cpus",
1856 .seq_show = cpuset_common_seq_show,
1857 .private = FILE_EFFECTIVE_CPULIST,
1858 },
1859
1860 {
1861 .name = "effective_mems",
1862 .seq_show = cpuset_common_seq_show,
1863 .private = FILE_EFFECTIVE_MEMLIST,
1864 },
1865
1866 {
1867 .name = "cpu_exclusive",
1868 .read_u64 = cpuset_read_u64,
1869 .write_u64 = cpuset_write_u64,
1870 .private = FILE_CPU_EXCLUSIVE,
1871 },
1872
1873 {
1874 .name = "mem_exclusive",
1875 .read_u64 = cpuset_read_u64,
1876 .write_u64 = cpuset_write_u64,
1877 .private = FILE_MEM_EXCLUSIVE,
1878 },
1879
1880 {
1881 .name = "mem_hardwall",
1882 .read_u64 = cpuset_read_u64,
1883 .write_u64 = cpuset_write_u64,
1884 .private = FILE_MEM_HARDWALL,
1885 },
1886
1887 {
1888 .name = "sched_load_balance",
1889 .read_u64 = cpuset_read_u64,
1890 .write_u64 = cpuset_write_u64,
1891 .private = FILE_SCHED_LOAD_BALANCE,
1892 },
1893
1894 {
1895 .name = "sched_relax_domain_level",
1896 .read_s64 = cpuset_read_s64,
1897 .write_s64 = cpuset_write_s64,
1898 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1899 },
1900
1901 {
1902 .name = "memory_migrate",
1903 .read_u64 = cpuset_read_u64,
1904 .write_u64 = cpuset_write_u64,
1905 .private = FILE_MEMORY_MIGRATE,
1906 },
1907
1908 {
1909 .name = "memory_pressure",
1910 .read_u64 = cpuset_read_u64,
1911 .private = FILE_MEMORY_PRESSURE,
1912 },
1913
1914 {
1915 .name = "memory_spread_page",
1916 .read_u64 = cpuset_read_u64,
1917 .write_u64 = cpuset_write_u64,
1918 .private = FILE_SPREAD_PAGE,
1919 },
1920
1921 {
1922 .name = "memory_spread_slab",
1923 .read_u64 = cpuset_read_u64,
1924 .write_u64 = cpuset_write_u64,
1925 .private = FILE_SPREAD_SLAB,
1926 },
1927
1928 {
1929 .name = "memory_pressure_enabled",
1930 .flags = CFTYPE_ONLY_ON_ROOT,
1931 .read_u64 = cpuset_read_u64,
1932 .write_u64 = cpuset_write_u64,
1933 .private = FILE_MEMORY_PRESSURE_ENABLED,
1934 },
1935
1936 { } /* terminate */
1937};
1938
1939/*
1940 * cpuset_css_alloc - allocate a cpuset css
1941 * cgrp: control group that the new cpuset will be part of
1942 */
1943
1944static struct cgroup_subsys_state *
1945cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1946{
1947 struct cpuset *cs;
1948
1949 if (!parent_css)
1950 return &top_cpuset.css;
1951
1952 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1953 if (!cs)
1954 return ERR_PTR(-ENOMEM);
1955 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1956 goto free_cs;
1957 if (!alloc_cpumask_var(&cs->cpus_requested, GFP_KERNEL))
1958 goto free_allowed;
1959 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1960 goto free_requested;
1961
1962 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1963 cpumask_clear(cs->cpus_allowed);
1964 cpumask_clear(cs->cpus_requested);
1965 nodes_clear(cs->mems_allowed);
1966 cpumask_clear(cs->effective_cpus);
1967 nodes_clear(cs->effective_mems);
1968 fmeter_init(&cs->fmeter);
1969 cs->relax_domain_level = -1;
1970
1971 return &cs->css;
1972
1973free_requested:
1974 free_cpumask_var(cs->cpus_requested);
1975free_allowed:
1976 free_cpumask_var(cs->cpus_allowed);
1977free_cs:
1978 kfree(cs);
1979 return ERR_PTR(-ENOMEM);
1980}
1981
1982static int cpuset_css_online(struct cgroup_subsys_state *css)
1983{
1984 struct cpuset *cs = css_cs(css);
1985 struct cpuset *parent = parent_cs(cs);
1986 struct cpuset *tmp_cs;
1987 struct cgroup_subsys_state *pos_css;
1988
1989 if (!parent)
1990 return 0;
1991
1992 mutex_lock(&cpuset_mutex);
1993
1994 set_bit(CS_ONLINE, &cs->flags);
1995 if (is_spread_page(parent))
1996 set_bit(CS_SPREAD_PAGE, &cs->flags);
1997 if (is_spread_slab(parent))
1998 set_bit(CS_SPREAD_SLAB, &cs->flags);
1999
2000 cpuset_inc();
2001
2002 spin_lock_irq(&callback_lock);
2003 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2004 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2005 cs->effective_mems = parent->effective_mems;
2006 }
2007 spin_unlock_irq(&callback_lock);
2008
2009 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2010 goto out_unlock;
2011
2012 /*
2013 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2014 * set. This flag handling is implemented in cgroup core for
2015 * histrical reasons - the flag may be specified during mount.
2016 *
2017 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2018 * refuse to clone the configuration - thereby refusing the task to
2019 * be entered, and as a result refusing the sys_unshare() or
2020 * clone() which initiated it. If this becomes a problem for some
2021 * users who wish to allow that scenario, then this could be
2022 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2023 * (and likewise for mems) to the new cgroup.
2024 */
2025 rcu_read_lock();
2026 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2027 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2028 rcu_read_unlock();
2029 goto out_unlock;
2030 }
2031 }
2032 rcu_read_unlock();
2033
2034 spin_lock_irq(&callback_lock);
2035 cs->mems_allowed = parent->mems_allowed;
2036 cs->effective_mems = parent->mems_allowed;
2037 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2038 cpumask_copy(cs->cpus_requested, parent->cpus_requested);
2039 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2040 spin_unlock_irq(&callback_lock);
2041out_unlock:
2042 mutex_unlock(&cpuset_mutex);
2043 return 0;
2044}
2045
2046/*
2047 * If the cpuset being removed has its flag 'sched_load_balance'
2048 * enabled, then simulate turning sched_load_balance off, which
2049 * will call rebuild_sched_domains_locked().
2050 */
2051
2052static void cpuset_css_offline(struct cgroup_subsys_state *css)
2053{
2054 struct cpuset *cs = css_cs(css);
2055
2056 mutex_lock(&cpuset_mutex);
2057
2058 if (is_sched_load_balance(cs))
2059 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2060
2061 cpuset_dec();
2062 clear_bit(CS_ONLINE, &cs->flags);
2063
2064 mutex_unlock(&cpuset_mutex);
2065}
2066
2067static void cpuset_css_free(struct cgroup_subsys_state *css)
2068{
2069 struct cpuset *cs = css_cs(css);
2070
2071 free_cpumask_var(cs->effective_cpus);
2072 free_cpumask_var(cs->cpus_allowed);
2073 free_cpumask_var(cs->cpus_requested);
2074 kfree(cs);
2075}
2076
2077static void cpuset_bind(struct cgroup_subsys_state *root_css)
2078{
2079 mutex_lock(&cpuset_mutex);
2080 spin_lock_irq(&callback_lock);
2081
2082 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2083 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2084 top_cpuset.mems_allowed = node_possible_map;
2085 } else {
2086 cpumask_copy(top_cpuset.cpus_allowed,
2087 top_cpuset.effective_cpus);
2088 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2089 }
2090
2091 spin_unlock_irq(&callback_lock);
2092 mutex_unlock(&cpuset_mutex);
2093}
2094
2095/*
2096 * Make sure the new task conform to the current state of its parent,
2097 * which could have been changed by cpuset just after it inherits the
2098 * state from the parent and before it sits on the cgroup's task list.
2099 */
2100static void cpuset_fork(struct task_struct *task)
2101{
2102 if (task_css_is_root(task, cpuset_cgrp_id))
2103 return;
2104
2105 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2106 task->mems_allowed = current->mems_allowed;
2107}
2108
2109struct cgroup_subsys cpuset_cgrp_subsys = {
2110 .css_alloc = cpuset_css_alloc,
2111 .css_online = cpuset_css_online,
2112 .css_offline = cpuset_css_offline,
2113 .css_free = cpuset_css_free,
2114 .can_attach = cpuset_can_attach,
2115 .cancel_attach = cpuset_cancel_attach,
2116 .attach = cpuset_attach,
2117 .post_attach = cpuset_post_attach,
2118 .bind = cpuset_bind,
2119 .fork = cpuset_fork,
2120 .legacy_cftypes = files,
2121 .early_init = true,
2122};
2123
2124/**
2125 * cpuset_init - initialize cpusets at system boot
2126 *
2127 * Description: Initialize top_cpuset and the cpuset internal file system,
2128 **/
2129
2130int __init cpuset_init(void)
2131{
2132 int err = 0;
2133
2134 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2135 BUG();
2136 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2137 BUG();
2138 if (!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL))
2139 BUG();
2140
2141 cpumask_setall(top_cpuset.cpus_allowed);
2142 cpumask_setall(top_cpuset.cpus_requested);
2143 nodes_setall(top_cpuset.mems_allowed);
2144 cpumask_setall(top_cpuset.effective_cpus);
2145 nodes_setall(top_cpuset.effective_mems);
2146
2147 fmeter_init(&top_cpuset.fmeter);
2148 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2149 top_cpuset.relax_domain_level = -1;
2150
2151 err = register_filesystem(&cpuset_fs_type);
2152 if (err < 0)
2153 return err;
2154
2155 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2156 BUG();
2157
2158 return 0;
2159}
2160
2161/*
2162 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2163 * or memory nodes, we need to walk over the cpuset hierarchy,
2164 * removing that CPU or node from all cpusets. If this removes the
2165 * last CPU or node from a cpuset, then move the tasks in the empty
2166 * cpuset to its next-highest non-empty parent.
2167 */
2168static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2169{
2170 struct cpuset *parent;
2171
2172 /*
2173 * Find its next-highest non-empty parent, (top cpuset
2174 * has online cpus, so can't be empty).
2175 */
2176 parent = parent_cs(cs);
2177 while (cpumask_empty(parent->cpus_allowed) ||
2178 nodes_empty(parent->mems_allowed))
2179 parent = parent_cs(parent);
2180
2181 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2182 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2183 pr_cont_cgroup_name(cs->css.cgroup);
2184 pr_cont("\n");
2185 }
2186}
2187
2188static void
2189hotplug_update_tasks_legacy(struct cpuset *cs,
2190 struct cpumask *new_cpus, nodemask_t *new_mems,
2191 bool cpus_updated, bool mems_updated)
2192{
2193 bool is_empty;
2194
2195 spin_lock_irq(&callback_lock);
2196 cpumask_copy(cs->cpus_allowed, new_cpus);
2197 cpumask_copy(cs->effective_cpus, new_cpus);
2198 cs->mems_allowed = *new_mems;
2199 cs->effective_mems = *new_mems;
2200 spin_unlock_irq(&callback_lock);
2201
2202 /*
2203 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2204 * as the tasks will be migratecd to an ancestor.
2205 */
2206 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2207 update_tasks_cpumask(cs);
2208 if (mems_updated && !nodes_empty(cs->mems_allowed))
2209 update_tasks_nodemask(cs);
2210
2211 is_empty = cpumask_empty(cs->cpus_allowed) ||
2212 nodes_empty(cs->mems_allowed);
2213
2214 mutex_unlock(&cpuset_mutex);
2215
2216 /*
2217 * Move tasks to the nearest ancestor with execution resources,
2218 * This is full cgroup operation which will also call back into
2219 * cpuset. Should be done outside any lock.
2220 */
2221 if (is_empty)
2222 remove_tasks_in_empty_cpuset(cs);
2223
2224 mutex_lock(&cpuset_mutex);
2225}
2226
2227static void
2228hotplug_update_tasks(struct cpuset *cs,
2229 struct cpumask *new_cpus, nodemask_t *new_mems,
2230 bool cpus_updated, bool mems_updated)
2231{
2232 if (cpumask_empty(new_cpus))
2233 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2234 if (nodes_empty(*new_mems))
2235 *new_mems = parent_cs(cs)->effective_mems;
2236
2237 spin_lock_irq(&callback_lock);
2238 cpumask_copy(cs->effective_cpus, new_cpus);
2239 cs->effective_mems = *new_mems;
2240 spin_unlock_irq(&callback_lock);
2241
2242 if (cpus_updated)
2243 update_tasks_cpumask(cs);
2244 if (mems_updated)
2245 update_tasks_nodemask(cs);
2246}
2247
2248/**
2249 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2250 * @cs: cpuset in interest
2251 *
2252 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2253 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2254 * all its tasks are moved to the nearest ancestor with both resources.
2255 */
2256static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2257{
2258 static cpumask_t new_cpus;
2259 static nodemask_t new_mems;
2260 bool cpus_updated;
2261 bool mems_updated;
2262retry:
2263 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2264
2265 mutex_lock(&cpuset_mutex);
2266
2267 /*
2268 * We have raced with task attaching. We wait until attaching
2269 * is finished, so we won't attach a task to an empty cpuset.
2270 */
2271 if (cs->attach_in_progress) {
2272 mutex_unlock(&cpuset_mutex);
2273 goto retry;
2274 }
2275
2276 cpumask_and(&new_cpus, cs->cpus_requested, parent_cs(cs)->effective_cpus);
2277 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2278
2279 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2280 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2281
2282 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2283 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2284 cpus_updated, mems_updated);
2285 else
2286 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2287 cpus_updated, mems_updated);
2288
2289 mutex_unlock(&cpuset_mutex);
2290}
2291
2292static bool force_rebuild;
2293
2294void cpuset_force_rebuild(void)
2295{
2296 force_rebuild = true;
2297}
2298
2299/**
2300 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2301 *
2302 * This function is called after either CPU or memory configuration has
2303 * changed and updates cpuset accordingly. The top_cpuset is always
2304 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2305 * order to make cpusets transparent (of no affect) on systems that are
2306 * actively using CPU hotplug but making no active use of cpusets.
2307 *
2308 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2309 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2310 * all descendants.
2311 *
2312 * Note that CPU offlining during suspend is ignored. We don't modify
2313 * cpusets across suspend/resume cycles at all.
2314 */
2315static void cpuset_hotplug_workfn(struct work_struct *work)
2316{
2317 static cpumask_t new_cpus;
2318 static nodemask_t new_mems;
2319 bool cpus_updated, mems_updated;
2320 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2321
2322 mutex_lock(&cpuset_mutex);
2323
2324 /* fetch the available cpus/mems and find out which changed how */
2325 cpumask_copy(&new_cpus, cpu_active_mask);
2326 new_mems = node_states[N_MEMORY];
2327
2328 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2329 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2330
2331 /* synchronize cpus_allowed to cpu_active_mask */
2332 if (cpus_updated) {
2333 spin_lock_irq(&callback_lock);
2334 if (!on_dfl)
2335 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2336 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2337 spin_unlock_irq(&callback_lock);
2338 /* we don't mess with cpumasks of tasks in top_cpuset */
2339 }
2340
2341 /* synchronize mems_allowed to N_MEMORY */
2342 if (mems_updated) {
2343 spin_lock_irq(&callback_lock);
2344 if (!on_dfl)
2345 top_cpuset.mems_allowed = new_mems;
2346 top_cpuset.effective_mems = new_mems;
2347 spin_unlock_irq(&callback_lock);
2348 update_tasks_nodemask(&top_cpuset);
2349 }
2350
2351 mutex_unlock(&cpuset_mutex);
2352
2353 /* if cpus or mems changed, we need to propagate to descendants */
2354 if (cpus_updated || mems_updated) {
2355 struct cpuset *cs;
2356 struct cgroup_subsys_state *pos_css;
2357
2358 rcu_read_lock();
2359 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2360 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2361 continue;
2362 rcu_read_unlock();
2363
2364 cpuset_hotplug_update_tasks(cs);
2365
2366 rcu_read_lock();
2367 css_put(&cs->css);
2368 }
2369 rcu_read_unlock();
2370 }
2371
2372 /* rebuild sched domains if cpus_allowed has changed */
2373 if (cpus_updated || force_rebuild) {
2374 force_rebuild = false;
2375 rebuild_sched_domains();
2376 }
2377}
2378
2379void cpuset_update_active_cpus(bool cpu_online)
2380{
2381 /*
2382 * We're inside cpu hotplug critical region which usually nests
2383 * inside cgroup synchronization. Bounce actual hotplug processing
2384 * to a work item to avoid reverse locking order.
2385 *
2386 * We still need to do partition_sched_domains() synchronously;
2387 * otherwise, the scheduler will get confused and put tasks to the
2388 * dead CPU. Fall back to the default single domain.
2389 * cpuset_hotplug_workfn() will rebuild it as necessary.
2390 */
2391 partition_sched_domains(1, NULL, NULL);
2392 schedule_work(&cpuset_hotplug_work);
2393}
2394
2395void cpuset_wait_for_hotplug(void)
2396{
2397 flush_work(&cpuset_hotplug_work);
2398}
2399
2400/*
2401 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2402 * Call this routine anytime after node_states[N_MEMORY] changes.
2403 * See cpuset_update_active_cpus() for CPU hotplug handling.
2404 */
2405static int cpuset_track_online_nodes(struct notifier_block *self,
2406 unsigned long action, void *arg)
2407{
2408 schedule_work(&cpuset_hotplug_work);
2409 return NOTIFY_OK;
2410}
2411
2412static struct notifier_block cpuset_track_online_nodes_nb = {
2413 .notifier_call = cpuset_track_online_nodes,
2414 .priority = 10, /* ??! */
2415};
2416
2417/**
2418 * cpuset_init_smp - initialize cpus_allowed
2419 *
2420 * Description: Finish top cpuset after cpu, node maps are initialized
2421 */
2422void __init cpuset_init_smp(void)
2423{
2424 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2425 top_cpuset.mems_allowed = node_states[N_MEMORY];
2426 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2427
2428 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2429 top_cpuset.effective_mems = node_states[N_MEMORY];
2430
2431 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2432
2433 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2434 BUG_ON(!cpuset_migrate_mm_wq);
2435}
2436
2437/**
2438 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2439 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2440 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2441 *
2442 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2443 * attached to the specified @tsk. Guaranteed to return some non-empty
2444 * subset of cpu_online_mask, even if this means going outside the
2445 * tasks cpuset.
2446 **/
2447
2448void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2449{
2450 unsigned long flags;
2451
2452 spin_lock_irqsave(&callback_lock, flags);
2453 rcu_read_lock();
2454 guarantee_online_cpus(task_cs(tsk), pmask);
2455 rcu_read_unlock();
2456 spin_unlock_irqrestore(&callback_lock, flags);
2457}
2458
2459void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2460{
2461 rcu_read_lock();
2462 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2463 rcu_read_unlock();
2464
2465 /*
2466 * We own tsk->cpus_allowed, nobody can change it under us.
2467 *
2468 * But we used cs && cs->cpus_allowed lockless and thus can
2469 * race with cgroup_attach_task() or update_cpumask() and get
2470 * the wrong tsk->cpus_allowed. However, both cases imply the
2471 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2472 * which takes task_rq_lock().
2473 *
2474 * If we are called after it dropped the lock we must see all
2475 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2476 * set any mask even if it is not right from task_cs() pov,
2477 * the pending set_cpus_allowed_ptr() will fix things.
2478 *
2479 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2480 * if required.
2481 */
2482}
2483
2484void __init cpuset_init_current_mems_allowed(void)
2485{
2486 nodes_setall(current->mems_allowed);
2487}
2488
2489/**
2490 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2491 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2492 *
2493 * Description: Returns the nodemask_t mems_allowed of the cpuset
2494 * attached to the specified @tsk. Guaranteed to return some non-empty
2495 * subset of node_states[N_MEMORY], even if this means going outside the
2496 * tasks cpuset.
2497 **/
2498
2499nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2500{
2501 nodemask_t mask;
2502 unsigned long flags;
2503
2504 spin_lock_irqsave(&callback_lock, flags);
2505 rcu_read_lock();
2506 guarantee_online_mems(task_cs(tsk), &mask);
2507 rcu_read_unlock();
2508 spin_unlock_irqrestore(&callback_lock, flags);
2509
2510 return mask;
2511}
2512
2513/**
2514 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2515 * @nodemask: the nodemask to be checked
2516 *
2517 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2518 */
2519int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2520{
2521 return nodes_intersects(*nodemask, current->mems_allowed);
2522}
2523
2524/*
2525 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2526 * mem_hardwall ancestor to the specified cpuset. Call holding
2527 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2528 * (an unusual configuration), then returns the root cpuset.
2529 */
2530static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2531{
2532 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2533 cs = parent_cs(cs);
2534 return cs;
2535}
2536
2537/**
2538 * cpuset_node_allowed - Can we allocate on a memory node?
2539 * @node: is this an allowed node?
2540 * @gfp_mask: memory allocation flags
2541 *
2542 * If we're in interrupt, yes, we can always allocate. If @node is set in
2543 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2544 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2545 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
2546 * Otherwise, no.
2547 *
2548 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2549 * and do not allow allocations outside the current tasks cpuset
2550 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2551 * GFP_KERNEL allocations are not so marked, so can escape to the
2552 * nearest enclosing hardwalled ancestor cpuset.
2553 *
2554 * Scanning up parent cpusets requires callback_lock. The
2555 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2556 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2557 * current tasks mems_allowed came up empty on the first pass over
2558 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2559 * cpuset are short of memory, might require taking the callback_lock.
2560 *
2561 * The first call here from mm/page_alloc:get_page_from_freelist()
2562 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2563 * so no allocation on a node outside the cpuset is allowed (unless
2564 * in interrupt, of course).
2565 *
2566 * The second pass through get_page_from_freelist() doesn't even call
2567 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2568 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2569 * in alloc_flags. That logic and the checks below have the combined
2570 * affect that:
2571 * in_interrupt - any node ok (current task context irrelevant)
2572 * GFP_ATOMIC - any node ok
2573 * TIF_MEMDIE - any node ok
2574 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2575 * GFP_USER - only nodes in current tasks mems allowed ok.
2576 */
2577bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2578{
2579 struct cpuset *cs; /* current cpuset ancestors */
2580 int allowed; /* is allocation in zone z allowed? */
2581 unsigned long flags;
2582
2583 if (in_interrupt())
2584 return true;
2585 if (node_isset(node, current->mems_allowed))
2586 return true;
2587 /*
2588 * Allow tasks that have access to memory reserves because they have
2589 * been OOM killed to get memory anywhere.
2590 */
2591 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2592 return true;
2593 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2594 return false;
2595
2596 if (current->flags & PF_EXITING) /* Let dying task have memory */
2597 return true;
2598
2599 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2600 spin_lock_irqsave(&callback_lock, flags);
2601
2602 rcu_read_lock();
2603 cs = nearest_hardwall_ancestor(task_cs(current));
2604 allowed = node_isset(node, cs->mems_allowed);
2605 rcu_read_unlock();
2606
2607 spin_unlock_irqrestore(&callback_lock, flags);
2608 return allowed;
2609}
2610
2611/**
2612 * cpuset_mem_spread_node() - On which node to begin search for a file page
2613 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2614 *
2615 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2616 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2617 * and if the memory allocation used cpuset_mem_spread_node()
2618 * to determine on which node to start looking, as it will for
2619 * certain page cache or slab cache pages such as used for file
2620 * system buffers and inode caches, then instead of starting on the
2621 * local node to look for a free page, rather spread the starting
2622 * node around the tasks mems_allowed nodes.
2623 *
2624 * We don't have to worry about the returned node being offline
2625 * because "it can't happen", and even if it did, it would be ok.
2626 *
2627 * The routines calling guarantee_online_mems() are careful to
2628 * only set nodes in task->mems_allowed that are online. So it
2629 * should not be possible for the following code to return an
2630 * offline node. But if it did, that would be ok, as this routine
2631 * is not returning the node where the allocation must be, only
2632 * the node where the search should start. The zonelist passed to
2633 * __alloc_pages() will include all nodes. If the slab allocator
2634 * is passed an offline node, it will fall back to the local node.
2635 * See kmem_cache_alloc_node().
2636 */
2637
2638static int cpuset_spread_node(int *rotor)
2639{
2640 return *rotor = next_node_in(*rotor, current->mems_allowed);
2641}
2642
2643int cpuset_mem_spread_node(void)
2644{
2645 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2646 current->cpuset_mem_spread_rotor =
2647 node_random(&current->mems_allowed);
2648
2649 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2650}
2651
2652int cpuset_slab_spread_node(void)
2653{
2654 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2655 current->cpuset_slab_spread_rotor =
2656 node_random(&current->mems_allowed);
2657
2658 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2659}
2660
2661EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2662
2663/**
2664 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2665 * @tsk1: pointer to task_struct of some task.
2666 * @tsk2: pointer to task_struct of some other task.
2667 *
2668 * Description: Return true if @tsk1's mems_allowed intersects the
2669 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2670 * one of the task's memory usage might impact the memory available
2671 * to the other.
2672 **/
2673
2674int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2675 const struct task_struct *tsk2)
2676{
2677 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2678}
2679
2680/**
2681 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2682 *
2683 * Description: Prints current's name, cpuset name, and cached copy of its
2684 * mems_allowed to the kernel log.
2685 */
2686void cpuset_print_current_mems_allowed(void)
2687{
2688 struct cgroup *cgrp;
2689
2690 rcu_read_lock();
2691
2692 cgrp = task_cs(current)->css.cgroup;
2693 pr_info("%s cpuset=", current->comm);
2694 pr_cont_cgroup_name(cgrp);
2695 pr_cont(" mems_allowed=%*pbl\n",
2696 nodemask_pr_args(&current->mems_allowed));
2697
2698 rcu_read_unlock();
2699}
2700
2701/*
2702 * Collection of memory_pressure is suppressed unless
2703 * this flag is enabled by writing "1" to the special
2704 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2705 */
2706
2707int cpuset_memory_pressure_enabled __read_mostly;
2708
2709/**
2710 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2711 *
2712 * Keep a running average of the rate of synchronous (direct)
2713 * page reclaim efforts initiated by tasks in each cpuset.
2714 *
2715 * This represents the rate at which some task in the cpuset
2716 * ran low on memory on all nodes it was allowed to use, and
2717 * had to enter the kernels page reclaim code in an effort to
2718 * create more free memory by tossing clean pages or swapping
2719 * or writing dirty pages.
2720 *
2721 * Display to user space in the per-cpuset read-only file
2722 * "memory_pressure". Value displayed is an integer
2723 * representing the recent rate of entry into the synchronous
2724 * (direct) page reclaim by any task attached to the cpuset.
2725 **/
2726
2727void __cpuset_memory_pressure_bump(void)
2728{
2729 rcu_read_lock();
2730 fmeter_markevent(&task_cs(current)->fmeter);
2731 rcu_read_unlock();
2732}
2733
2734#ifdef CONFIG_PROC_PID_CPUSET
2735/*
2736 * proc_cpuset_show()
2737 * - Print tasks cpuset path into seq_file.
2738 * - Used for /proc/<pid>/cpuset.
2739 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2740 * doesn't really matter if tsk->cpuset changes after we read it,
2741 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2742 * anyway.
2743 */
2744int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2745 struct pid *pid, struct task_struct *tsk)
2746{
2747 char *buf;
2748 struct cgroup_subsys_state *css;
2749 int retval;
2750
2751 retval = -ENOMEM;
2752 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2753 if (!buf)
2754 goto out;
2755
2756 css = task_get_css(tsk, cpuset_cgrp_id);
2757 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2758 current->nsproxy->cgroup_ns);
2759 css_put(css);
2760 if (retval >= PATH_MAX)
2761 retval = -ENAMETOOLONG;
2762 if (retval < 0)
2763 goto out_free;
2764 seq_puts(m, buf);
2765 seq_putc(m, '\n');
2766 retval = 0;
2767out_free:
2768 kfree(buf);
2769out:
2770 return retval;
2771}
2772#endif /* CONFIG_PROC_PID_CPUSET */
2773
2774/* Display task mems_allowed in /proc/<pid>/status file. */
2775void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2776{
2777 seq_printf(m, "Mems_allowed:\t%*pb\n",
2778 nodemask_pr_args(&task->mems_allowed));
2779 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2780 nodemask_pr_args(&task->mems_allowed));
2781}
2782