summaryrefslogtreecommitdiff
path: root/kernel/exit.c (plain)
blob: a4959643cc98287874e3b48766a2b022810ae3b0
1/*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/mm.h>
8#include <linux/slab.h>
9#include <linux/interrupt.h>
10#include <linux/module.h>
11#include <linux/capability.h>
12#include <linux/completion.h>
13#include <linux/personality.h>
14#include <linux/tty.h>
15#include <linux/iocontext.h>
16#include <linux/key.h>
17#include <linux/security.h>
18#include <linux/cpu.h>
19#include <linux/acct.h>
20#include <linux/tsacct_kern.h>
21#include <linux/file.h>
22#include <linux/fdtable.h>
23#include <linux/freezer.h>
24#include <linux/binfmts.h>
25#include <linux/nsproxy.h>
26#include <linux/pid_namespace.h>
27#include <linux/ptrace.h>
28#include <linux/profile.h>
29#include <linux/mount.h>
30#include <linux/proc_fs.h>
31#include <linux/kthread.h>
32#include <linux/mempolicy.h>
33#include <linux/taskstats_kern.h>
34#include <linux/delayacct.h>
35#include <linux/cgroup.h>
36#include <linux/syscalls.h>
37#include <linux/signal.h>
38#include <linux/posix-timers.h>
39#include <linux/cn_proc.h>
40#include <linux/mutex.h>
41#include <linux/futex.h>
42#include <linux/pipe_fs_i.h>
43#include <linux/audit.h> /* for audit_free() */
44#include <linux/resource.h>
45#include <linux/blkdev.h>
46#include <linux/task_io_accounting_ops.h>
47#include <linux/tracehook.h>
48#include <linux/fs_struct.h>
49#include <linux/init_task.h>
50#include <linux/perf_event.h>
51#include <trace/events/sched.h>
52#include <linux/hw_breakpoint.h>
53#include <linux/oom.h>
54#include <linux/writeback.h>
55#include <linux/shm.h>
56#include <linux/kcov.h>
57
58#include "sched/tune.h"
59
60#include <asm/uaccess.h>
61#include <asm/unistd.h>
62#include <asm/pgtable.h>
63#include <asm/mmu_context.h>
64
65static void __unhash_process(struct task_struct *p, bool group_dead)
66{
67 nr_threads--;
68 detach_pid(p, PIDTYPE_PID);
69 if (group_dead) {
70 detach_pid(p, PIDTYPE_PGID);
71 detach_pid(p, PIDTYPE_SID);
72
73 list_del_rcu(&p->tasks);
74 list_del_init(&p->sibling);
75 __this_cpu_dec(process_counts);
76 }
77 list_del_rcu(&p->thread_group);
78 list_del_rcu(&p->thread_node);
79}
80
81/*
82 * This function expects the tasklist_lock write-locked.
83 */
84static void __exit_signal(struct task_struct *tsk)
85{
86 struct signal_struct *sig = tsk->signal;
87 bool group_dead = thread_group_leader(tsk);
88 struct sighand_struct *sighand;
89 struct tty_struct *uninitialized_var(tty);
90 cputime_t utime, stime;
91
92 sighand = rcu_dereference_check(tsk->sighand,
93 lockdep_tasklist_lock_is_held());
94 spin_lock(&sighand->siglock);
95
96 posix_cpu_timers_exit(tsk);
97 if (group_dead) {
98 posix_cpu_timers_exit_group(tsk);
99 tty = sig->tty;
100 sig->tty = NULL;
101 } else {
102 /*
103 * This can only happen if the caller is de_thread().
104 * FIXME: this is the temporary hack, we should teach
105 * posix-cpu-timers to handle this case correctly.
106 */
107 if (unlikely(has_group_leader_pid(tsk)))
108 posix_cpu_timers_exit_group(tsk);
109
110 /*
111 * If there is any task waiting for the group exit
112 * then notify it:
113 */
114 if (sig->notify_count > 0 && !--sig->notify_count)
115 wake_up_process(sig->group_exit_task);
116
117 if (tsk == sig->curr_target)
118 sig->curr_target = next_thread(tsk);
119 }
120
121 /*
122 * Accumulate here the counters for all threads as they die. We could
123 * skip the group leader because it is the last user of signal_struct,
124 * but we want to avoid the race with thread_group_cputime() which can
125 * see the empty ->thread_head list.
126 */
127 task_cputime(tsk, &utime, &stime);
128 write_seqlock(&sig->stats_lock);
129 sig->utime += utime;
130 sig->stime += stime;
131 sig->gtime += task_gtime(tsk);
132 sig->min_flt += tsk->min_flt;
133 sig->maj_flt += tsk->maj_flt;
134 sig->nvcsw += tsk->nvcsw;
135 sig->nivcsw += tsk->nivcsw;
136 sig->inblock += task_io_get_inblock(tsk);
137 sig->oublock += task_io_get_oublock(tsk);
138 task_io_accounting_add(&sig->ioac, &tsk->ioac);
139 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
140 sig->nr_threads--;
141 __unhash_process(tsk, group_dead);
142 write_sequnlock(&sig->stats_lock);
143
144 /*
145 * Do this under ->siglock, we can race with another thread
146 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
147 */
148 flush_sigqueue(&tsk->pending);
149 tsk->sighand = NULL;
150 spin_unlock(&sighand->siglock);
151
152 __cleanup_sighand(sighand);
153 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
154 if (group_dead) {
155 flush_sigqueue(&sig->shared_pending);
156 tty_kref_put(tty);
157 }
158}
159
160static void delayed_put_task_struct(struct rcu_head *rhp)
161{
162 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
163
164 perf_event_delayed_put(tsk);
165 trace_sched_process_free(tsk);
166 put_task_struct(tsk);
167}
168
169
170void release_task(struct task_struct *p)
171{
172 struct task_struct *leader;
173 int zap_leader;
174repeat:
175 /* don't need to get the RCU readlock here - the process is dead and
176 * can't be modifying its own credentials. But shut RCU-lockdep up */
177 rcu_read_lock();
178 atomic_dec(&__task_cred(p)->user->processes);
179 rcu_read_unlock();
180
181 proc_flush_task(p);
182
183 write_lock_irq(&tasklist_lock);
184 ptrace_release_task(p);
185 __exit_signal(p);
186
187 /*
188 * If we are the last non-leader member of the thread
189 * group, and the leader is zombie, then notify the
190 * group leader's parent process. (if it wants notification.)
191 */
192 zap_leader = 0;
193 leader = p->group_leader;
194 if (leader != p && thread_group_empty(leader)
195 && leader->exit_state == EXIT_ZOMBIE) {
196 /*
197 * If we were the last child thread and the leader has
198 * exited already, and the leader's parent ignores SIGCHLD,
199 * then we are the one who should release the leader.
200 */
201 zap_leader = do_notify_parent(leader, leader->exit_signal);
202 if (zap_leader)
203 leader->exit_state = EXIT_DEAD;
204 }
205
206 write_unlock_irq(&tasklist_lock);
207 release_thread(p);
208 call_rcu(&p->rcu, delayed_put_task_struct);
209
210 p = leader;
211 if (unlikely(zap_leader))
212 goto repeat;
213}
214
215/*
216 * Note that if this function returns a valid task_struct pointer (!NULL)
217 * task->usage must remain >0 for the duration of the RCU critical section.
218 */
219struct task_struct *task_rcu_dereference(struct task_struct **ptask)
220{
221 struct sighand_struct *sighand;
222 struct task_struct *task;
223
224 /*
225 * We need to verify that release_task() was not called and thus
226 * delayed_put_task_struct() can't run and drop the last reference
227 * before rcu_read_unlock(). We check task->sighand != NULL,
228 * but we can read the already freed and reused memory.
229 */
230retry:
231 task = rcu_dereference(*ptask);
232 if (!task)
233 return NULL;
234
235 probe_kernel_address(&task->sighand, sighand);
236
237 /*
238 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
239 * was already freed we can not miss the preceding update of this
240 * pointer.
241 */
242 smp_rmb();
243 if (unlikely(task != READ_ONCE(*ptask)))
244 goto retry;
245
246 /*
247 * We've re-checked that "task == *ptask", now we have two different
248 * cases:
249 *
250 * 1. This is actually the same task/task_struct. In this case
251 * sighand != NULL tells us it is still alive.
252 *
253 * 2. This is another task which got the same memory for task_struct.
254 * We can't know this of course, and we can not trust
255 * sighand != NULL.
256 *
257 * In this case we actually return a random value, but this is
258 * correct.
259 *
260 * If we return NULL - we can pretend that we actually noticed that
261 * *ptask was updated when the previous task has exited. Or pretend
262 * that probe_slab_address(&sighand) reads NULL.
263 *
264 * If we return the new task (because sighand is not NULL for any
265 * reason) - this is fine too. This (new) task can't go away before
266 * another gp pass.
267 *
268 * And note: We could even eliminate the false positive if re-read
269 * task->sighand once again to avoid the falsely NULL. But this case
270 * is very unlikely so we don't care.
271 */
272 if (!sighand)
273 return NULL;
274
275 return task;
276}
277
278struct task_struct *try_get_task_struct(struct task_struct **ptask)
279{
280 struct task_struct *task;
281
282 rcu_read_lock();
283 task = task_rcu_dereference(ptask);
284 if (task)
285 get_task_struct(task);
286 rcu_read_unlock();
287
288 return task;
289}
290
291/*
292 * Determine if a process group is "orphaned", according to the POSIX
293 * definition in 2.2.2.52. Orphaned process groups are not to be affected
294 * by terminal-generated stop signals. Newly orphaned process groups are
295 * to receive a SIGHUP and a SIGCONT.
296 *
297 * "I ask you, have you ever known what it is to be an orphan?"
298 */
299static int will_become_orphaned_pgrp(struct pid *pgrp,
300 struct task_struct *ignored_task)
301{
302 struct task_struct *p;
303
304 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305 if ((p == ignored_task) ||
306 (p->exit_state && thread_group_empty(p)) ||
307 is_global_init(p->real_parent))
308 continue;
309
310 if (task_pgrp(p->real_parent) != pgrp &&
311 task_session(p->real_parent) == task_session(p))
312 return 0;
313 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
314
315 return 1;
316}
317
318int is_current_pgrp_orphaned(void)
319{
320 int retval;
321
322 read_lock(&tasklist_lock);
323 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
324 read_unlock(&tasklist_lock);
325
326 return retval;
327}
328
329static bool has_stopped_jobs(struct pid *pgrp)
330{
331 struct task_struct *p;
332
333 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
334 if (p->signal->flags & SIGNAL_STOP_STOPPED)
335 return true;
336 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
337
338 return false;
339}
340
341/*
342 * Check to see if any process groups have become orphaned as
343 * a result of our exiting, and if they have any stopped jobs,
344 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
345 */
346static void
347kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
348{
349 struct pid *pgrp = task_pgrp(tsk);
350 struct task_struct *ignored_task = tsk;
351
352 if (!parent)
353 /* exit: our father is in a different pgrp than
354 * we are and we were the only connection outside.
355 */
356 parent = tsk->real_parent;
357 else
358 /* reparent: our child is in a different pgrp than
359 * we are, and it was the only connection outside.
360 */
361 ignored_task = NULL;
362
363 if (task_pgrp(parent) != pgrp &&
364 task_session(parent) == task_session(tsk) &&
365 will_become_orphaned_pgrp(pgrp, ignored_task) &&
366 has_stopped_jobs(pgrp)) {
367 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
368 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
369 }
370}
371
372#ifdef CONFIG_MEMCG
373/*
374 * A task is exiting. If it owned this mm, find a new owner for the mm.
375 */
376void mm_update_next_owner(struct mm_struct *mm)
377{
378 struct task_struct *c, *g, *p = current;
379
380retry:
381 /*
382 * If the exiting or execing task is not the owner, it's
383 * someone else's problem.
384 */
385 if (mm->owner != p)
386 return;
387 /*
388 * The current owner is exiting/execing and there are no other
389 * candidates. Do not leave the mm pointing to a possibly
390 * freed task structure.
391 */
392 if (atomic_read(&mm->mm_users) <= 1) {
393 mm->owner = NULL;
394 return;
395 }
396
397 read_lock(&tasklist_lock);
398 /*
399 * Search in the children
400 */
401 list_for_each_entry(c, &p->children, sibling) {
402 if (c->mm == mm)
403 goto assign_new_owner;
404 }
405
406 /*
407 * Search in the siblings
408 */
409 list_for_each_entry(c, &p->real_parent->children, sibling) {
410 if (c->mm == mm)
411 goto assign_new_owner;
412 }
413
414 /*
415 * Search through everything else, we should not get here often.
416 */
417 for_each_process(g) {
418 if (g->flags & PF_KTHREAD)
419 continue;
420 for_each_thread(g, c) {
421 if (c->mm == mm)
422 goto assign_new_owner;
423 if (c->mm)
424 break;
425 }
426 }
427 read_unlock(&tasklist_lock);
428 /*
429 * We found no owner yet mm_users > 1: this implies that we are
430 * most likely racing with swapoff (try_to_unuse()) or /proc or
431 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
432 */
433 mm->owner = NULL;
434 return;
435
436assign_new_owner:
437 BUG_ON(c == p);
438 get_task_struct(c);
439 /*
440 * The task_lock protects c->mm from changing.
441 * We always want mm->owner->mm == mm
442 */
443 task_lock(c);
444 /*
445 * Delay read_unlock() till we have the task_lock()
446 * to ensure that c does not slip away underneath us
447 */
448 read_unlock(&tasklist_lock);
449 if (c->mm != mm) {
450 task_unlock(c);
451 put_task_struct(c);
452 goto retry;
453 }
454 mm->owner = c;
455 task_unlock(c);
456 put_task_struct(c);
457}
458#endif /* CONFIG_MEMCG */
459
460/*
461 * Turn us into a lazy TLB process if we
462 * aren't already..
463 */
464static void exit_mm(struct task_struct *tsk)
465{
466 struct mm_struct *mm = tsk->mm;
467 struct core_state *core_state;
468
469 mm_release(tsk, mm);
470 if (!mm)
471 return;
472 sync_mm_rss(mm);
473 /*
474 * Serialize with any possible pending coredump.
475 * We must hold mmap_sem around checking core_state
476 * and clearing tsk->mm. The core-inducing thread
477 * will increment ->nr_threads for each thread in the
478 * group with ->mm != NULL.
479 */
480 down_read(&mm->mmap_sem);
481 core_state = mm->core_state;
482 if (core_state) {
483 struct core_thread self;
484
485 up_read(&mm->mmap_sem);
486
487 self.task = tsk;
488 self.next = xchg(&core_state->dumper.next, &self);
489 /*
490 * Implies mb(), the result of xchg() must be visible
491 * to core_state->dumper.
492 */
493 if (atomic_dec_and_test(&core_state->nr_threads))
494 complete(&core_state->startup);
495
496 for (;;) {
497 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
498 if (!self.task) /* see coredump_finish() */
499 break;
500 freezable_schedule();
501 }
502 __set_task_state(tsk, TASK_RUNNING);
503 down_read(&mm->mmap_sem);
504 }
505 atomic_inc(&mm->mm_count);
506 BUG_ON(mm != tsk->active_mm);
507 /* more a memory barrier than a real lock */
508 task_lock(tsk);
509 tsk->mm = NULL;
510 up_read(&mm->mmap_sem);
511 enter_lazy_tlb(mm, current);
512 task_unlock(tsk);
513 mm_update_next_owner(mm);
514 mmput(mm);
515 if (test_thread_flag(TIF_MEMDIE))
516 exit_oom_victim();
517}
518
519static struct task_struct *find_alive_thread(struct task_struct *p)
520{
521 struct task_struct *t;
522
523 for_each_thread(p, t) {
524 if (!(t->flags & PF_EXITING))
525 return t;
526 }
527 return NULL;
528}
529
530static struct task_struct *find_child_reaper(struct task_struct *father,
531 struct list_head *dead)
532 __releases(&tasklist_lock)
533 __acquires(&tasklist_lock)
534{
535 struct pid_namespace *pid_ns = task_active_pid_ns(father);
536 struct task_struct *reaper = pid_ns->child_reaper;
537 struct task_struct *p, *n;
538
539 if (likely(reaper != father))
540 return reaper;
541
542 reaper = find_alive_thread(father);
543 if (reaper) {
544 pid_ns->child_reaper = reaper;
545 return reaper;
546 }
547
548 write_unlock_irq(&tasklist_lock);
549 if (unlikely(pid_ns == &init_pid_ns)) {
550 panic("Attempted to kill init! exitcode=0x%08x\n",
551 father->signal->group_exit_code ?: father->exit_code);
552 }
553
554 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
555 list_del_init(&p->ptrace_entry);
556 release_task(p);
557 }
558
559 zap_pid_ns_processes(pid_ns);
560 write_lock_irq(&tasklist_lock);
561
562 return father;
563}
564
565/*
566 * When we die, we re-parent all our children, and try to:
567 * 1. give them to another thread in our thread group, if such a member exists
568 * 2. give it to the first ancestor process which prctl'd itself as a
569 * child_subreaper for its children (like a service manager)
570 * 3. give it to the init process (PID 1) in our pid namespace
571 */
572static struct task_struct *find_new_reaper(struct task_struct *father,
573 struct task_struct *child_reaper)
574{
575 struct task_struct *thread, *reaper;
576
577 thread = find_alive_thread(father);
578 if (thread)
579 return thread;
580
581 if (father->signal->has_child_subreaper) {
582 /*
583 * Find the first ->is_child_subreaper ancestor in our pid_ns.
584 * We start from father to ensure we can not look into another
585 * namespace, this is safe because all its threads are dead.
586 */
587 for (reaper = father;
588 !same_thread_group(reaper, child_reaper);
589 reaper = reaper->real_parent) {
590 /* call_usermodehelper() descendants need this check */
591 if (reaper == &init_task)
592 break;
593 if (!reaper->signal->is_child_subreaper)
594 continue;
595 thread = find_alive_thread(reaper);
596 if (thread)
597 return thread;
598 }
599 }
600
601 return child_reaper;
602}
603
604/*
605* Any that need to be release_task'd are put on the @dead list.
606 */
607static void reparent_leader(struct task_struct *father, struct task_struct *p,
608 struct list_head *dead)
609{
610 if (unlikely(p->exit_state == EXIT_DEAD))
611 return;
612
613 /* We don't want people slaying init. */
614 p->exit_signal = SIGCHLD;
615
616 /* If it has exited notify the new parent about this child's death. */
617 if (!p->ptrace &&
618 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
619 if (do_notify_parent(p, p->exit_signal)) {
620 p->exit_state = EXIT_DEAD;
621 list_add(&p->ptrace_entry, dead);
622 }
623 }
624
625 kill_orphaned_pgrp(p, father);
626}
627
628/*
629 * This does two things:
630 *
631 * A. Make init inherit all the child processes
632 * B. Check to see if any process groups have become orphaned
633 * as a result of our exiting, and if they have any stopped
634 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
635 */
636static void forget_original_parent(struct task_struct *father,
637 struct list_head *dead)
638{
639 struct task_struct *p, *t, *reaper;
640
641 if (unlikely(!list_empty(&father->ptraced)))
642 exit_ptrace(father, dead);
643
644 /* Can drop and reacquire tasklist_lock */
645 reaper = find_child_reaper(father, dead);
646 if (list_empty(&father->children))
647 return;
648
649 reaper = find_new_reaper(father, reaper);
650 list_for_each_entry(p, &father->children, sibling) {
651 for_each_thread(p, t) {
652 t->real_parent = reaper;
653 BUG_ON((!t->ptrace) != (t->parent == father));
654 if (likely(!t->ptrace))
655 t->parent = t->real_parent;
656 if (t->pdeath_signal)
657 group_send_sig_info(t->pdeath_signal,
658 SEND_SIG_NOINFO, t);
659 }
660 /*
661 * If this is a threaded reparent there is no need to
662 * notify anyone anything has happened.
663 */
664 if (!same_thread_group(reaper, father))
665 reparent_leader(father, p, dead);
666 }
667 list_splice_tail_init(&father->children, &reaper->children);
668}
669
670/*
671 * Send signals to all our closest relatives so that they know
672 * to properly mourn us..
673 */
674static void exit_notify(struct task_struct *tsk, int group_dead)
675{
676 bool autoreap;
677 struct task_struct *p, *n;
678 LIST_HEAD(dead);
679
680 write_lock_irq(&tasklist_lock);
681 forget_original_parent(tsk, &dead);
682
683 if (group_dead)
684 kill_orphaned_pgrp(tsk->group_leader, NULL);
685
686 if (unlikely(tsk->ptrace)) {
687 int sig = thread_group_leader(tsk) &&
688 thread_group_empty(tsk) &&
689 !ptrace_reparented(tsk) ?
690 tsk->exit_signal : SIGCHLD;
691 autoreap = do_notify_parent(tsk, sig);
692 } else if (thread_group_leader(tsk)) {
693 autoreap = thread_group_empty(tsk) &&
694 do_notify_parent(tsk, tsk->exit_signal);
695 } else {
696 autoreap = true;
697 }
698
699 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
700 if (tsk->exit_state == EXIT_DEAD)
701 list_add(&tsk->ptrace_entry, &dead);
702
703 /* mt-exec, de_thread() is waiting for group leader */
704 if (unlikely(tsk->signal->notify_count < 0))
705 wake_up_process(tsk->signal->group_exit_task);
706 write_unlock_irq(&tasklist_lock);
707
708 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
709 list_del_init(&p->ptrace_entry);
710 release_task(p);
711 }
712}
713
714#ifdef CONFIG_DEBUG_STACK_USAGE
715static void check_stack_usage(void)
716{
717 static DEFINE_SPINLOCK(low_water_lock);
718 static int lowest_to_date = THREAD_SIZE;
719 unsigned long free;
720
721 free = stack_not_used(current);
722
723 if (free >= lowest_to_date)
724 return;
725
726 spin_lock(&low_water_lock);
727 if (free < lowest_to_date) {
728 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
729 current->comm, task_pid_nr(current), free);
730 lowest_to_date = free;
731 }
732 spin_unlock(&low_water_lock);
733}
734#else
735static inline void check_stack_usage(void) {}
736#endif
737
738void __noreturn do_exit(long code)
739{
740 struct task_struct *tsk = current;
741 int group_dead;
742 TASKS_RCU(int tasks_rcu_i);
743
744 profile_task_exit(tsk);
745 kcov_task_exit(tsk);
746
747 WARN_ON(blk_needs_flush_plug(tsk));
748
749 if (unlikely(in_interrupt()))
750 panic("Aiee, killing interrupt handler!");
751 if (unlikely(!tsk->pid))
752 panic("Attempted to kill the idle task!");
753
754 /*
755 * If do_exit is called because this processes oopsed, it's possible
756 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
757 * continuing. Amongst other possible reasons, this is to prevent
758 * mm_release()->clear_child_tid() from writing to a user-controlled
759 * kernel address.
760 */
761 set_fs(USER_DS);
762
763 ptrace_event(PTRACE_EVENT_EXIT, code);
764
765 validate_creds_for_do_exit(tsk);
766
767 /*
768 * We're taking recursive faults here in do_exit. Safest is to just
769 * leave this task alone and wait for reboot.
770 */
771 if (unlikely(tsk->flags & PF_EXITING)) {
772 pr_alert("Fixing recursive fault but reboot is needed!\n");
773 /*
774 * We can do this unlocked here. The futex code uses
775 * this flag just to verify whether the pi state
776 * cleanup has been done or not. In the worst case it
777 * loops once more. We pretend that the cleanup was
778 * done as there is no way to return. Either the
779 * OWNER_DIED bit is set by now or we push the blocked
780 * task into the wait for ever nirwana as well.
781 */
782 tsk->flags |= PF_EXITPIDONE;
783 set_current_state(TASK_UNINTERRUPTIBLE);
784 schedule();
785 }
786
787 exit_signals(tsk); /* sets PF_EXITING */
788
789 schedtune_exit_task(tsk);
790
791 /*
792 * Ensure that all new tsk->pi_lock acquisitions must observe
793 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
794 */
795 smp_mb();
796 /*
797 * Ensure that we must observe the pi_state in exit_mm() ->
798 * mm_release() -> exit_pi_state_list().
799 */
800 raw_spin_unlock_wait(&tsk->pi_lock);
801
802 if (unlikely(in_atomic())) {
803 pr_info("note: %s[%d] exited with preempt_count %d\n",
804 current->comm, task_pid_nr(current),
805 preempt_count());
806 preempt_count_set(PREEMPT_ENABLED);
807 }
808
809 /* sync mm's RSS info before statistics gathering */
810 if (tsk->mm)
811 sync_mm_rss(tsk->mm);
812 acct_update_integrals(tsk);
813 group_dead = atomic_dec_and_test(&tsk->signal->live);
814 if (group_dead) {
815 hrtimer_cancel(&tsk->signal->real_timer);
816 exit_itimers(tsk->signal);
817 if (tsk->mm)
818 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
819 }
820 acct_collect(code, group_dead);
821 if (group_dead)
822 tty_audit_exit();
823 audit_free(tsk);
824
825 tsk->exit_code = code;
826 taskstats_exit(tsk, group_dead);
827
828 exit_mm(tsk);
829
830 if (group_dead)
831 acct_process();
832 trace_sched_process_exit(tsk);
833
834 exit_sem(tsk);
835 exit_shm(tsk);
836 exit_files(tsk);
837 exit_fs(tsk);
838 if (group_dead)
839 disassociate_ctty(1);
840 exit_task_namespaces(tsk);
841 exit_task_work(tsk);
842 exit_thread(tsk);
843
844 /*
845 * Flush inherited counters to the parent - before the parent
846 * gets woken up by child-exit notifications.
847 *
848 * because of cgroup mode, must be called before cgroup_exit()
849 */
850 perf_event_exit_task(tsk);
851
852 sched_autogroup_exit_task(tsk);
853 cgroup_exit(tsk);
854
855 /*
856 * FIXME: do that only when needed, using sched_exit tracepoint
857 */
858 flush_ptrace_hw_breakpoint(tsk);
859
860 TASKS_RCU(preempt_disable());
861 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
862 TASKS_RCU(preempt_enable());
863 exit_notify(tsk, group_dead);
864 proc_exit_connector(tsk);
865 mpol_put_task_policy(tsk);
866#ifdef CONFIG_FUTEX
867 if (unlikely(current->pi_state_cache))
868 kfree(current->pi_state_cache);
869#endif
870 /*
871 * Make sure we are holding no locks:
872 */
873 debug_check_no_locks_held();
874 /*
875 * We can do this unlocked here. The futex code uses this flag
876 * just to verify whether the pi state cleanup has been done
877 * or not. In the worst case it loops once more.
878 */
879 tsk->flags |= PF_EXITPIDONE;
880
881 if (tsk->io_context)
882 exit_io_context(tsk);
883
884 if (tsk->splice_pipe)
885 free_pipe_info(tsk->splice_pipe);
886
887 if (tsk->task_frag.page)
888 put_page(tsk->task_frag.page);
889
890 validate_creds_for_do_exit(tsk);
891
892 check_stack_usage();
893 preempt_disable();
894 if (tsk->nr_dirtied)
895 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
896 exit_rcu();
897 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
898
899 do_task_dead();
900}
901EXPORT_SYMBOL_GPL(do_exit);
902
903void complete_and_exit(struct completion *comp, long code)
904{
905 if (comp)
906 complete(comp);
907
908 do_exit(code);
909}
910EXPORT_SYMBOL(complete_and_exit);
911
912SYSCALL_DEFINE1(exit, int, error_code)
913{
914 do_exit((error_code&0xff)<<8);
915}
916
917/*
918 * Take down every thread in the group. This is called by fatal signals
919 * as well as by sys_exit_group (below).
920 */
921void
922do_group_exit(int exit_code)
923{
924 struct signal_struct *sig = current->signal;
925
926 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
927
928 if (signal_group_exit(sig))
929 exit_code = sig->group_exit_code;
930 else if (!thread_group_empty(current)) {
931 struct sighand_struct *const sighand = current->sighand;
932
933 spin_lock_irq(&sighand->siglock);
934 if (signal_group_exit(sig))
935 /* Another thread got here before we took the lock. */
936 exit_code = sig->group_exit_code;
937 else {
938 sig->group_exit_code = exit_code;
939 sig->flags = SIGNAL_GROUP_EXIT;
940 zap_other_threads(current);
941 }
942 spin_unlock_irq(&sighand->siglock);
943 }
944
945 do_exit(exit_code);
946 /* NOTREACHED */
947}
948
949/*
950 * this kills every thread in the thread group. Note that any externally
951 * wait4()-ing process will get the correct exit code - even if this
952 * thread is not the thread group leader.
953 */
954SYSCALL_DEFINE1(exit_group, int, error_code)
955{
956 do_group_exit((error_code & 0xff) << 8);
957 /* NOTREACHED */
958 return 0;
959}
960
961struct wait_opts {
962 enum pid_type wo_type;
963 int wo_flags;
964 struct pid *wo_pid;
965
966 struct siginfo __user *wo_info;
967 int __user *wo_stat;
968 struct rusage __user *wo_rusage;
969
970 wait_queue_t child_wait;
971 int notask_error;
972};
973
974static inline
975struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
976{
977 if (type != PIDTYPE_PID)
978 task = task->group_leader;
979 return task->pids[type].pid;
980}
981
982static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
983{
984 return wo->wo_type == PIDTYPE_MAX ||
985 task_pid_type(p, wo->wo_type) == wo->wo_pid;
986}
987
988static int
989eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
990{
991 if (!eligible_pid(wo, p))
992 return 0;
993
994 /*
995 * Wait for all children (clone and not) if __WALL is set or
996 * if it is traced by us.
997 */
998 if (ptrace || (wo->wo_flags & __WALL))
999 return 1;
1000
1001 /*
1002 * Otherwise, wait for clone children *only* if __WCLONE is set;
1003 * otherwise, wait for non-clone children *only*.
1004 *
1005 * Note: a "clone" child here is one that reports to its parent
1006 * using a signal other than SIGCHLD, or a non-leader thread which
1007 * we can only see if it is traced by us.
1008 */
1009 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1010 return 0;
1011
1012 return 1;
1013}
1014
1015static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1016 pid_t pid, uid_t uid, int why, int status)
1017{
1018 struct siginfo __user *infop;
1019 int retval = wo->wo_rusage
1020 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1021
1022 put_task_struct(p);
1023 infop = wo->wo_info;
1024 if (infop) {
1025 if (!retval)
1026 retval = put_user(SIGCHLD, &infop->si_signo);
1027 if (!retval)
1028 retval = put_user(0, &infop->si_errno);
1029 if (!retval)
1030 retval = put_user((short)why, &infop->si_code);
1031 if (!retval)
1032 retval = put_user(pid, &infop->si_pid);
1033 if (!retval)
1034 retval = put_user(uid, &infop->si_uid);
1035 if (!retval)
1036 retval = put_user(status, &infop->si_status);
1037 }
1038 if (!retval)
1039 retval = pid;
1040 return retval;
1041}
1042
1043/*
1044 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1045 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1046 * the lock and this task is uninteresting. If we return nonzero, we have
1047 * released the lock and the system call should return.
1048 */
1049static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1050{
1051 int state, retval, status;
1052 pid_t pid = task_pid_vnr(p);
1053 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1054 struct siginfo __user *infop;
1055
1056 if (!likely(wo->wo_flags & WEXITED))
1057 return 0;
1058
1059 if (unlikely(wo->wo_flags & WNOWAIT)) {
1060 int exit_code = p->exit_code;
1061 int why;
1062
1063 get_task_struct(p);
1064 read_unlock(&tasklist_lock);
1065 sched_annotate_sleep();
1066
1067 if ((exit_code & 0x7f) == 0) {
1068 why = CLD_EXITED;
1069 status = exit_code >> 8;
1070 } else {
1071 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1072 status = exit_code & 0x7f;
1073 }
1074 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1075 }
1076 /*
1077 * Move the task's state to DEAD/TRACE, only one thread can do this.
1078 */
1079 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1080 EXIT_TRACE : EXIT_DEAD;
1081 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1082 return 0;
1083 /*
1084 * We own this thread, nobody else can reap it.
1085 */
1086 read_unlock(&tasklist_lock);
1087 sched_annotate_sleep();
1088
1089 /*
1090 * Check thread_group_leader() to exclude the traced sub-threads.
1091 */
1092 if (state == EXIT_DEAD && thread_group_leader(p)) {
1093 struct signal_struct *sig = p->signal;
1094 struct signal_struct *psig = current->signal;
1095 unsigned long maxrss;
1096 cputime_t tgutime, tgstime;
1097
1098 /*
1099 * The resource counters for the group leader are in its
1100 * own task_struct. Those for dead threads in the group
1101 * are in its signal_struct, as are those for the child
1102 * processes it has previously reaped. All these
1103 * accumulate in the parent's signal_struct c* fields.
1104 *
1105 * We don't bother to take a lock here to protect these
1106 * p->signal fields because the whole thread group is dead
1107 * and nobody can change them.
1108 *
1109 * psig->stats_lock also protects us from our sub-theads
1110 * which can reap other children at the same time. Until
1111 * we change k_getrusage()-like users to rely on this lock
1112 * we have to take ->siglock as well.
1113 *
1114 * We use thread_group_cputime_adjusted() to get times for
1115 * the thread group, which consolidates times for all threads
1116 * in the group including the group leader.
1117 */
1118 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1119 spin_lock_irq(&current->sighand->siglock);
1120 write_seqlock(&psig->stats_lock);
1121 psig->cutime += tgutime + sig->cutime;
1122 psig->cstime += tgstime + sig->cstime;
1123 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1124 psig->cmin_flt +=
1125 p->min_flt + sig->min_flt + sig->cmin_flt;
1126 psig->cmaj_flt +=
1127 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1128 psig->cnvcsw +=
1129 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1130 psig->cnivcsw +=
1131 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1132 psig->cinblock +=
1133 task_io_get_inblock(p) +
1134 sig->inblock + sig->cinblock;
1135 psig->coublock +=
1136 task_io_get_oublock(p) +
1137 sig->oublock + sig->coublock;
1138 maxrss = max(sig->maxrss, sig->cmaxrss);
1139 if (psig->cmaxrss < maxrss)
1140 psig->cmaxrss = maxrss;
1141 task_io_accounting_add(&psig->ioac, &p->ioac);
1142 task_io_accounting_add(&psig->ioac, &sig->ioac);
1143 write_sequnlock(&psig->stats_lock);
1144 spin_unlock_irq(&current->sighand->siglock);
1145 }
1146
1147 retval = wo->wo_rusage
1148 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1149 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1150 ? p->signal->group_exit_code : p->exit_code;
1151 if (!retval && wo->wo_stat)
1152 retval = put_user(status, wo->wo_stat);
1153
1154 infop = wo->wo_info;
1155 if (!retval && infop)
1156 retval = put_user(SIGCHLD, &infop->si_signo);
1157 if (!retval && infop)
1158 retval = put_user(0, &infop->si_errno);
1159 if (!retval && infop) {
1160 int why;
1161
1162 if ((status & 0x7f) == 0) {
1163 why = CLD_EXITED;
1164 status >>= 8;
1165 } else {
1166 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1167 status &= 0x7f;
1168 }
1169 retval = put_user((short)why, &infop->si_code);
1170 if (!retval)
1171 retval = put_user(status, &infop->si_status);
1172 }
1173 if (!retval && infop)
1174 retval = put_user(pid, &infop->si_pid);
1175 if (!retval && infop)
1176 retval = put_user(uid, &infop->si_uid);
1177 if (!retval)
1178 retval = pid;
1179
1180 if (state == EXIT_TRACE) {
1181 write_lock_irq(&tasklist_lock);
1182 /* We dropped tasklist, ptracer could die and untrace */
1183 ptrace_unlink(p);
1184
1185 /* If parent wants a zombie, don't release it now */
1186 state = EXIT_ZOMBIE;
1187 if (do_notify_parent(p, p->exit_signal))
1188 state = EXIT_DEAD;
1189 p->exit_state = state;
1190 write_unlock_irq(&tasklist_lock);
1191 }
1192 if (state == EXIT_DEAD)
1193 release_task(p);
1194
1195 return retval;
1196}
1197
1198static int *task_stopped_code(struct task_struct *p, bool ptrace)
1199{
1200 if (ptrace) {
1201 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1202 return &p->exit_code;
1203 } else {
1204 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1205 return &p->signal->group_exit_code;
1206 }
1207 return NULL;
1208}
1209
1210/**
1211 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1212 * @wo: wait options
1213 * @ptrace: is the wait for ptrace
1214 * @p: task to wait for
1215 *
1216 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1217 *
1218 * CONTEXT:
1219 * read_lock(&tasklist_lock), which is released if return value is
1220 * non-zero. Also, grabs and releases @p->sighand->siglock.
1221 *
1222 * RETURNS:
1223 * 0 if wait condition didn't exist and search for other wait conditions
1224 * should continue. Non-zero return, -errno on failure and @p's pid on
1225 * success, implies that tasklist_lock is released and wait condition
1226 * search should terminate.
1227 */
1228static int wait_task_stopped(struct wait_opts *wo,
1229 int ptrace, struct task_struct *p)
1230{
1231 struct siginfo __user *infop;
1232 int retval, exit_code, *p_code, why;
1233 uid_t uid = 0; /* unneeded, required by compiler */
1234 pid_t pid;
1235
1236 /*
1237 * Traditionally we see ptrace'd stopped tasks regardless of options.
1238 */
1239 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1240 return 0;
1241
1242 if (!task_stopped_code(p, ptrace))
1243 return 0;
1244
1245 exit_code = 0;
1246 spin_lock_irq(&p->sighand->siglock);
1247
1248 p_code = task_stopped_code(p, ptrace);
1249 if (unlikely(!p_code))
1250 goto unlock_sig;
1251
1252 exit_code = *p_code;
1253 if (!exit_code)
1254 goto unlock_sig;
1255
1256 if (!unlikely(wo->wo_flags & WNOWAIT))
1257 *p_code = 0;
1258
1259 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1260unlock_sig:
1261 spin_unlock_irq(&p->sighand->siglock);
1262 if (!exit_code)
1263 return 0;
1264
1265 /*
1266 * Now we are pretty sure this task is interesting.
1267 * Make sure it doesn't get reaped out from under us while we
1268 * give up the lock and then examine it below. We don't want to
1269 * keep holding onto the tasklist_lock while we call getrusage and
1270 * possibly take page faults for user memory.
1271 */
1272 get_task_struct(p);
1273 pid = task_pid_vnr(p);
1274 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1275 read_unlock(&tasklist_lock);
1276 sched_annotate_sleep();
1277
1278 if (unlikely(wo->wo_flags & WNOWAIT))
1279 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1280
1281 retval = wo->wo_rusage
1282 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1283 if (!retval && wo->wo_stat)
1284 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1285
1286 infop = wo->wo_info;
1287 if (!retval && infop)
1288 retval = put_user(SIGCHLD, &infop->si_signo);
1289 if (!retval && infop)
1290 retval = put_user(0, &infop->si_errno);
1291 if (!retval && infop)
1292 retval = put_user((short)why, &infop->si_code);
1293 if (!retval && infop)
1294 retval = put_user(exit_code, &infop->si_status);
1295 if (!retval && infop)
1296 retval = put_user(pid, &infop->si_pid);
1297 if (!retval && infop)
1298 retval = put_user(uid, &infop->si_uid);
1299 if (!retval)
1300 retval = pid;
1301 put_task_struct(p);
1302
1303 BUG_ON(!retval);
1304 return retval;
1305}
1306
1307/*
1308 * Handle do_wait work for one task in a live, non-stopped state.
1309 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1310 * the lock and this task is uninteresting. If we return nonzero, we have
1311 * released the lock and the system call should return.
1312 */
1313static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1314{
1315 int retval;
1316 pid_t pid;
1317 uid_t uid;
1318
1319 if (!unlikely(wo->wo_flags & WCONTINUED))
1320 return 0;
1321
1322 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1323 return 0;
1324
1325 spin_lock_irq(&p->sighand->siglock);
1326 /* Re-check with the lock held. */
1327 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1328 spin_unlock_irq(&p->sighand->siglock);
1329 return 0;
1330 }
1331 if (!unlikely(wo->wo_flags & WNOWAIT))
1332 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1333 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1334 spin_unlock_irq(&p->sighand->siglock);
1335
1336 pid = task_pid_vnr(p);
1337 get_task_struct(p);
1338 read_unlock(&tasklist_lock);
1339 sched_annotate_sleep();
1340
1341 if (!wo->wo_info) {
1342 retval = wo->wo_rusage
1343 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1344 put_task_struct(p);
1345 if (!retval && wo->wo_stat)
1346 retval = put_user(0xffff, wo->wo_stat);
1347 if (!retval)
1348 retval = pid;
1349 } else {
1350 retval = wait_noreap_copyout(wo, p, pid, uid,
1351 CLD_CONTINUED, SIGCONT);
1352 BUG_ON(retval == 0);
1353 }
1354
1355 return retval;
1356}
1357
1358/*
1359 * Consider @p for a wait by @parent.
1360 *
1361 * -ECHILD should be in ->notask_error before the first call.
1362 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1363 * Returns zero if the search for a child should continue;
1364 * then ->notask_error is 0 if @p is an eligible child,
1365 * or another error from security_task_wait(), or still -ECHILD.
1366 */
1367static int wait_consider_task(struct wait_opts *wo, int ptrace,
1368 struct task_struct *p)
1369{
1370 /*
1371 * We can race with wait_task_zombie() from another thread.
1372 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1373 * can't confuse the checks below.
1374 */
1375 int exit_state = ACCESS_ONCE(p->exit_state);
1376 int ret;
1377
1378 if (unlikely(exit_state == EXIT_DEAD))
1379 return 0;
1380
1381 ret = eligible_child(wo, ptrace, p);
1382 if (!ret)
1383 return ret;
1384
1385 ret = security_task_wait(p);
1386 if (unlikely(ret < 0)) {
1387 /*
1388 * If we have not yet seen any eligible child,
1389 * then let this error code replace -ECHILD.
1390 * A permission error will give the user a clue
1391 * to look for security policy problems, rather
1392 * than for mysterious wait bugs.
1393 */
1394 if (wo->notask_error)
1395 wo->notask_error = ret;
1396 return 0;
1397 }
1398
1399 if (unlikely(exit_state == EXIT_TRACE)) {
1400 /*
1401 * ptrace == 0 means we are the natural parent. In this case
1402 * we should clear notask_error, debugger will notify us.
1403 */
1404 if (likely(!ptrace))
1405 wo->notask_error = 0;
1406 return 0;
1407 }
1408
1409 if (likely(!ptrace) && unlikely(p->ptrace)) {
1410 /*
1411 * If it is traced by its real parent's group, just pretend
1412 * the caller is ptrace_do_wait() and reap this child if it
1413 * is zombie.
1414 *
1415 * This also hides group stop state from real parent; otherwise
1416 * a single stop can be reported twice as group and ptrace stop.
1417 * If a ptracer wants to distinguish these two events for its
1418 * own children it should create a separate process which takes
1419 * the role of real parent.
1420 */
1421 if (!ptrace_reparented(p))
1422 ptrace = 1;
1423 }
1424
1425 /* slay zombie? */
1426 if (exit_state == EXIT_ZOMBIE) {
1427 /* we don't reap group leaders with subthreads */
1428 if (!delay_group_leader(p)) {
1429 /*
1430 * A zombie ptracee is only visible to its ptracer.
1431 * Notification and reaping will be cascaded to the
1432 * real parent when the ptracer detaches.
1433 */
1434 if (unlikely(ptrace) || likely(!p->ptrace))
1435 return wait_task_zombie(wo, p);
1436 }
1437
1438 /*
1439 * Allow access to stopped/continued state via zombie by
1440 * falling through. Clearing of notask_error is complex.
1441 *
1442 * When !@ptrace:
1443 *
1444 * If WEXITED is set, notask_error should naturally be
1445 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1446 * so, if there are live subthreads, there are events to
1447 * wait for. If all subthreads are dead, it's still safe
1448 * to clear - this function will be called again in finite
1449 * amount time once all the subthreads are released and
1450 * will then return without clearing.
1451 *
1452 * When @ptrace:
1453 *
1454 * Stopped state is per-task and thus can't change once the
1455 * target task dies. Only continued and exited can happen.
1456 * Clear notask_error if WCONTINUED | WEXITED.
1457 */
1458 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1459 wo->notask_error = 0;
1460 } else {
1461 /*
1462 * @p is alive and it's gonna stop, continue or exit, so
1463 * there always is something to wait for.
1464 */
1465 wo->notask_error = 0;
1466 }
1467
1468 /*
1469 * Wait for stopped. Depending on @ptrace, different stopped state
1470 * is used and the two don't interact with each other.
1471 */
1472 ret = wait_task_stopped(wo, ptrace, p);
1473 if (ret)
1474 return ret;
1475
1476 /*
1477 * Wait for continued. There's only one continued state and the
1478 * ptracer can consume it which can confuse the real parent. Don't
1479 * use WCONTINUED from ptracer. You don't need or want it.
1480 */
1481 return wait_task_continued(wo, p);
1482}
1483
1484/*
1485 * Do the work of do_wait() for one thread in the group, @tsk.
1486 *
1487 * -ECHILD should be in ->notask_error before the first call.
1488 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1489 * Returns zero if the search for a child should continue; then
1490 * ->notask_error is 0 if there were any eligible children,
1491 * or another error from security_task_wait(), or still -ECHILD.
1492 */
1493static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1494{
1495 struct task_struct *p;
1496
1497 list_for_each_entry(p, &tsk->children, sibling) {
1498 int ret = wait_consider_task(wo, 0, p);
1499
1500 if (ret)
1501 return ret;
1502 }
1503
1504 return 0;
1505}
1506
1507static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1508{
1509 struct task_struct *p;
1510
1511 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1512 int ret = wait_consider_task(wo, 1, p);
1513
1514 if (ret)
1515 return ret;
1516 }
1517
1518 return 0;
1519}
1520
1521static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1522 int sync, void *key)
1523{
1524 struct wait_opts *wo = container_of(wait, struct wait_opts,
1525 child_wait);
1526 struct task_struct *p = key;
1527
1528 if (!eligible_pid(wo, p))
1529 return 0;
1530
1531 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1532 return 0;
1533
1534 return default_wake_function(wait, mode, sync, key);
1535}
1536
1537void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1538{
1539 __wake_up_sync_key(&parent->signal->wait_chldexit,
1540 TASK_INTERRUPTIBLE, 1, p);
1541}
1542
1543static long do_wait(struct wait_opts *wo)
1544{
1545 struct task_struct *tsk;
1546 int retval;
1547
1548 trace_sched_process_wait(wo->wo_pid);
1549
1550 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1551 wo->child_wait.private = current;
1552 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1553repeat:
1554 /*
1555 * If there is nothing that can match our criteria, just get out.
1556 * We will clear ->notask_error to zero if we see any child that
1557 * might later match our criteria, even if we are not able to reap
1558 * it yet.
1559 */
1560 wo->notask_error = -ECHILD;
1561 if ((wo->wo_type < PIDTYPE_MAX) &&
1562 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1563 goto notask;
1564
1565 set_current_state(TASK_INTERRUPTIBLE);
1566 read_lock(&tasklist_lock);
1567 tsk = current;
1568 do {
1569 retval = do_wait_thread(wo, tsk);
1570 if (retval)
1571 goto end;
1572
1573 retval = ptrace_do_wait(wo, tsk);
1574 if (retval)
1575 goto end;
1576
1577 if (wo->wo_flags & __WNOTHREAD)
1578 break;
1579 } while_each_thread(current, tsk);
1580 read_unlock(&tasklist_lock);
1581
1582notask:
1583 retval = wo->notask_error;
1584 if (!retval && !(wo->wo_flags & WNOHANG)) {
1585 retval = -ERESTARTSYS;
1586 if (!signal_pending(current)) {
1587 schedule();
1588 goto repeat;
1589 }
1590 }
1591end:
1592 __set_current_state(TASK_RUNNING);
1593 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1594 return retval;
1595}
1596
1597SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1598 infop, int, options, struct rusage __user *, ru)
1599{
1600 struct wait_opts wo;
1601 struct pid *pid = NULL;
1602 enum pid_type type;
1603 long ret;
1604
1605 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1606 __WNOTHREAD|__WCLONE|__WALL))
1607 return -EINVAL;
1608 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1609 return -EINVAL;
1610
1611 switch (which) {
1612 case P_ALL:
1613 type = PIDTYPE_MAX;
1614 break;
1615 case P_PID:
1616 type = PIDTYPE_PID;
1617 if (upid <= 0)
1618 return -EINVAL;
1619 break;
1620 case P_PGID:
1621 type = PIDTYPE_PGID;
1622 if (upid <= 0)
1623 return -EINVAL;
1624 break;
1625 default:
1626 return -EINVAL;
1627 }
1628
1629 if (type < PIDTYPE_MAX)
1630 pid = find_get_pid(upid);
1631
1632 wo.wo_type = type;
1633 wo.wo_pid = pid;
1634 wo.wo_flags = options;
1635 wo.wo_info = infop;
1636 wo.wo_stat = NULL;
1637 wo.wo_rusage = ru;
1638 ret = do_wait(&wo);
1639
1640 if (ret > 0) {
1641 ret = 0;
1642 } else if (infop) {
1643 /*
1644 * For a WNOHANG return, clear out all the fields
1645 * we would set so the user can easily tell the
1646 * difference.
1647 */
1648 if (!ret)
1649 ret = put_user(0, &infop->si_signo);
1650 if (!ret)
1651 ret = put_user(0, &infop->si_errno);
1652 if (!ret)
1653 ret = put_user(0, &infop->si_code);
1654 if (!ret)
1655 ret = put_user(0, &infop->si_pid);
1656 if (!ret)
1657 ret = put_user(0, &infop->si_uid);
1658 if (!ret)
1659 ret = put_user(0, &infop->si_status);
1660 }
1661
1662 put_pid(pid);
1663 return ret;
1664}
1665
1666SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1667 int, options, struct rusage __user *, ru)
1668{
1669 struct wait_opts wo;
1670 struct pid *pid = NULL;
1671 enum pid_type type;
1672 long ret;
1673
1674 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1675 __WNOTHREAD|__WCLONE|__WALL))
1676 return -EINVAL;
1677
1678 /* -INT_MIN is not defined */
1679 if (upid == INT_MIN)
1680 return -ESRCH;
1681
1682 if (upid == -1)
1683 type = PIDTYPE_MAX;
1684 else if (upid < 0) {
1685 type = PIDTYPE_PGID;
1686 pid = find_get_pid(-upid);
1687 } else if (upid == 0) {
1688 type = PIDTYPE_PGID;
1689 pid = get_task_pid(current, PIDTYPE_PGID);
1690 } else /* upid > 0 */ {
1691 type = PIDTYPE_PID;
1692 pid = find_get_pid(upid);
1693 }
1694
1695 wo.wo_type = type;
1696 wo.wo_pid = pid;
1697 wo.wo_flags = options | WEXITED;
1698 wo.wo_info = NULL;
1699 wo.wo_stat = stat_addr;
1700 wo.wo_rusage = ru;
1701 ret = do_wait(&wo);
1702 put_pid(pid);
1703
1704 return ret;
1705}
1706
1707#ifdef __ARCH_WANT_SYS_WAITPID
1708
1709/*
1710 * sys_waitpid() remains for compatibility. waitpid() should be
1711 * implemented by calling sys_wait4() from libc.a.
1712 */
1713SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1714{
1715 return sys_wait4(pid, stat_addr, options, NULL);
1716}
1717
1718#endif
1719