summaryrefslogtreecommitdiff
path: root/kernel/kprobes.c (plain)
blob: e2845dd53b30ba8f8d80ac3f33260fdeef56f902
1/*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
33 */
34#include <linux/kprobes.h>
35#include <linux/hash.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/stddef.h>
39#include <linux/export.h>
40#include <linux/moduleloader.h>
41#include <linux/kallsyms.h>
42#include <linux/freezer.h>
43#include <linux/seq_file.h>
44#include <linux/debugfs.h>
45#include <linux/sysctl.h>
46#include <linux/kdebug.h>
47#include <linux/memory.h>
48#include <linux/ftrace.h>
49#include <linux/cpu.h>
50#include <linux/jump_label.h>
51
52#include <asm/sections.h>
53#include <asm/cacheflush.h>
54#include <asm/errno.h>
55#include <asm/uaccess.h>
56
57#define KPROBE_HASH_BITS 6
58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61/*
62 * Some oddball architectures like 64bit powerpc have function descriptors
63 * so this must be overridable.
64 */
65#ifndef kprobe_lookup_name
66#define kprobe_lookup_name(name, addr) \
67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68#endif
69
70static int kprobes_initialized;
71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73
74/* NOTE: change this value only with kprobe_mutex held */
75static bool kprobes_all_disarmed;
76
77/* This protects kprobe_table and optimizing_list */
78static DEFINE_MUTEX(kprobe_mutex);
79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80static struct {
81 raw_spinlock_t lock ____cacheline_aligned_in_smp;
82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
83
84static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85{
86 return &(kretprobe_table_locks[hash].lock);
87}
88
89/* Blacklist -- list of struct kprobe_blacklist_entry */
90static LIST_HEAD(kprobe_blacklist);
91
92#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
93/*
94 * kprobe->ainsn.insn points to the copy of the instruction to be
95 * single-stepped. x86_64, POWER4 and above have no-exec support and
96 * stepping on the instruction on a vmalloced/kmalloced/data page
97 * is a recipe for disaster
98 */
99struct kprobe_insn_page {
100 struct list_head list;
101 kprobe_opcode_t *insns; /* Page of instruction slots */
102 struct kprobe_insn_cache *cache;
103 int nused;
104 int ngarbage;
105 char slot_used[];
106};
107
108#define KPROBE_INSN_PAGE_SIZE(slots) \
109 (offsetof(struct kprobe_insn_page, slot_used) + \
110 (sizeof(char) * (slots)))
111
112static int slots_per_page(struct kprobe_insn_cache *c)
113{
114 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
115}
116
117enum kprobe_slot_state {
118 SLOT_CLEAN = 0,
119 SLOT_DIRTY = 1,
120 SLOT_USED = 2,
121};
122
123static void *alloc_insn_page(void)
124{
125 return module_alloc(PAGE_SIZE);
126}
127
128void __weak free_insn_page(void *page)
129{
130 module_memfree(page);
131}
132
133struct kprobe_insn_cache kprobe_insn_slots = {
134 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
135 .alloc = alloc_insn_page,
136 .free = free_insn_page,
137 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
138 .insn_size = MAX_INSN_SIZE,
139 .nr_garbage = 0,
140};
141static int collect_garbage_slots(struct kprobe_insn_cache *c);
142
143/**
144 * __get_insn_slot() - Find a slot on an executable page for an instruction.
145 * We allocate an executable page if there's no room on existing ones.
146 */
147kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
148{
149 struct kprobe_insn_page *kip;
150 kprobe_opcode_t *slot = NULL;
151
152 mutex_lock(&c->mutex);
153 retry:
154 list_for_each_entry(kip, &c->pages, list) {
155 if (kip->nused < slots_per_page(c)) {
156 int i;
157 for (i = 0; i < slots_per_page(c); i++) {
158 if (kip->slot_used[i] == SLOT_CLEAN) {
159 kip->slot_used[i] = SLOT_USED;
160 kip->nused++;
161 slot = kip->insns + (i * c->insn_size);
162 goto out;
163 }
164 }
165 /* kip->nused is broken. Fix it. */
166 kip->nused = slots_per_page(c);
167 WARN_ON(1);
168 }
169 }
170
171 /* If there are any garbage slots, collect it and try again. */
172 if (c->nr_garbage && collect_garbage_slots(c) == 0)
173 goto retry;
174
175 /* All out of space. Need to allocate a new page. */
176 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
177 if (!kip)
178 goto out;
179
180 /*
181 * Use module_alloc so this page is within +/- 2GB of where the
182 * kernel image and loaded module images reside. This is required
183 * so x86_64 can correctly handle the %rip-relative fixups.
184 */
185 kip->insns = c->alloc();
186 if (!kip->insns) {
187 kfree(kip);
188 goto out;
189 }
190 INIT_LIST_HEAD(&kip->list);
191 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
192 kip->slot_used[0] = SLOT_USED;
193 kip->nused = 1;
194 kip->ngarbage = 0;
195 kip->cache = c;
196 list_add(&kip->list, &c->pages);
197 slot = kip->insns;
198out:
199 mutex_unlock(&c->mutex);
200 return slot;
201}
202
203/* Return 1 if all garbages are collected, otherwise 0. */
204static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205{
206 kip->slot_used[idx] = SLOT_CLEAN;
207 kip->nused--;
208 if (kip->nused == 0) {
209 /*
210 * Page is no longer in use. Free it unless
211 * it's the last one. We keep the last one
212 * so as not to have to set it up again the
213 * next time somebody inserts a probe.
214 */
215 if (!list_is_singular(&kip->list)) {
216 list_del(&kip->list);
217 kip->cache->free(kip->insns);
218 kfree(kip);
219 }
220 return 1;
221 }
222 return 0;
223}
224
225static int collect_garbage_slots(struct kprobe_insn_cache *c)
226{
227 struct kprobe_insn_page *kip, *next;
228
229 /* Ensure no-one is interrupted on the garbages */
230 synchronize_sched();
231
232 list_for_each_entry_safe(kip, next, &c->pages, list) {
233 int i;
234 if (kip->ngarbage == 0)
235 continue;
236 kip->ngarbage = 0; /* we will collect all garbages */
237 for (i = 0; i < slots_per_page(c); i++) {
238 if (kip->slot_used[i] == SLOT_DIRTY &&
239 collect_one_slot(kip, i))
240 break;
241 }
242 }
243 c->nr_garbage = 0;
244 return 0;
245}
246
247void __free_insn_slot(struct kprobe_insn_cache *c,
248 kprobe_opcode_t *slot, int dirty)
249{
250 struct kprobe_insn_page *kip;
251
252 mutex_lock(&c->mutex);
253 list_for_each_entry(kip, &c->pages, list) {
254 long idx = ((long)slot - (long)kip->insns) /
255 (c->insn_size * sizeof(kprobe_opcode_t));
256 if (idx >= 0 && idx < slots_per_page(c)) {
257 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 if (dirty) {
259 kip->slot_used[idx] = SLOT_DIRTY;
260 kip->ngarbage++;
261 if (++c->nr_garbage > slots_per_page(c))
262 collect_garbage_slots(c);
263 } else
264 collect_one_slot(kip, idx);
265 goto out;
266 }
267 }
268 /* Could not free this slot. */
269 WARN_ON(1);
270out:
271 mutex_unlock(&c->mutex);
272}
273
274#ifdef CONFIG_OPTPROBES
275/* For optimized_kprobe buffer */
276struct kprobe_insn_cache kprobe_optinsn_slots = {
277 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
278 .alloc = alloc_insn_page,
279 .free = free_insn_page,
280 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
281 /* .insn_size is initialized later */
282 .nr_garbage = 0,
283};
284#endif
285#endif
286
287/* We have preemption disabled.. so it is safe to use __ versions */
288static inline void set_kprobe_instance(struct kprobe *kp)
289{
290 __this_cpu_write(kprobe_instance, kp);
291}
292
293static inline void reset_kprobe_instance(void)
294{
295 __this_cpu_write(kprobe_instance, NULL);
296}
297
298/*
299 * This routine is called either:
300 * - under the kprobe_mutex - during kprobe_[un]register()
301 * OR
302 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
303 */
304struct kprobe *get_kprobe(void *addr)
305{
306 struct hlist_head *head;
307 struct kprobe *p;
308
309 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
310 hlist_for_each_entry_rcu(p, head, hlist) {
311 if (p->addr == addr)
312 return p;
313 }
314
315 return NULL;
316}
317NOKPROBE_SYMBOL(get_kprobe);
318
319static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
320
321/* Return true if the kprobe is an aggregator */
322static inline int kprobe_aggrprobe(struct kprobe *p)
323{
324 return p->pre_handler == aggr_pre_handler;
325}
326
327/* Return true(!0) if the kprobe is unused */
328static inline int kprobe_unused(struct kprobe *p)
329{
330 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
331 list_empty(&p->list);
332}
333
334/*
335 * Keep all fields in the kprobe consistent
336 */
337static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
338{
339 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
340 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
341}
342
343#ifdef CONFIG_OPTPROBES
344/* NOTE: change this value only with kprobe_mutex held */
345static bool kprobes_allow_optimization;
346
347/*
348 * Call all pre_handler on the list, but ignores its return value.
349 * This must be called from arch-dep optimized caller.
350 */
351void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
352{
353 struct kprobe *kp;
354
355 list_for_each_entry_rcu(kp, &p->list, list) {
356 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
357 set_kprobe_instance(kp);
358 kp->pre_handler(kp, regs);
359 }
360 reset_kprobe_instance();
361 }
362}
363NOKPROBE_SYMBOL(opt_pre_handler);
364
365/* Free optimized instructions and optimized_kprobe */
366static void free_aggr_kprobe(struct kprobe *p)
367{
368 struct optimized_kprobe *op;
369
370 op = container_of(p, struct optimized_kprobe, kp);
371 arch_remove_optimized_kprobe(op);
372 arch_remove_kprobe(p);
373 kfree(op);
374}
375
376/* Return true(!0) if the kprobe is ready for optimization. */
377static inline int kprobe_optready(struct kprobe *p)
378{
379 struct optimized_kprobe *op;
380
381 if (kprobe_aggrprobe(p)) {
382 op = container_of(p, struct optimized_kprobe, kp);
383 return arch_prepared_optinsn(&op->optinsn);
384 }
385
386 return 0;
387}
388
389/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
390static inline int kprobe_disarmed(struct kprobe *p)
391{
392 struct optimized_kprobe *op;
393
394 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
395 if (!kprobe_aggrprobe(p))
396 return kprobe_disabled(p);
397
398 op = container_of(p, struct optimized_kprobe, kp);
399
400 return kprobe_disabled(p) && list_empty(&op->list);
401}
402
403/* Return true(!0) if the probe is queued on (un)optimizing lists */
404static int kprobe_queued(struct kprobe *p)
405{
406 struct optimized_kprobe *op;
407
408 if (kprobe_aggrprobe(p)) {
409 op = container_of(p, struct optimized_kprobe, kp);
410 if (!list_empty(&op->list))
411 return 1;
412 }
413 return 0;
414}
415
416/*
417 * Return an optimized kprobe whose optimizing code replaces
418 * instructions including addr (exclude breakpoint).
419 */
420static struct kprobe *get_optimized_kprobe(unsigned long addr)
421{
422 int i;
423 struct kprobe *p = NULL;
424 struct optimized_kprobe *op;
425
426 /* Don't check i == 0, since that is a breakpoint case. */
427 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
428 p = get_kprobe((void *)(addr - i));
429
430 if (p && kprobe_optready(p)) {
431 op = container_of(p, struct optimized_kprobe, kp);
432 if (arch_within_optimized_kprobe(op, addr))
433 return p;
434 }
435
436 return NULL;
437}
438
439/* Optimization staging list, protected by kprobe_mutex */
440static LIST_HEAD(optimizing_list);
441static LIST_HEAD(unoptimizing_list);
442static LIST_HEAD(freeing_list);
443
444static void kprobe_optimizer(struct work_struct *work);
445static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
446#define OPTIMIZE_DELAY 5
447
448/*
449 * Optimize (replace a breakpoint with a jump) kprobes listed on
450 * optimizing_list.
451 */
452static void do_optimize_kprobes(void)
453{
454 /* Optimization never be done when disarmed */
455 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
456 list_empty(&optimizing_list))
457 return;
458
459 /*
460 * The optimization/unoptimization refers online_cpus via
461 * stop_machine() and cpu-hotplug modifies online_cpus.
462 * And same time, text_mutex will be held in cpu-hotplug and here.
463 * This combination can cause a deadlock (cpu-hotplug try to lock
464 * text_mutex but stop_machine can not be done because online_cpus
465 * has been changed)
466 * To avoid this deadlock, we need to call get_online_cpus()
467 * for preventing cpu-hotplug outside of text_mutex locking.
468 */
469 get_online_cpus();
470 mutex_lock(&text_mutex);
471 arch_optimize_kprobes(&optimizing_list);
472 mutex_unlock(&text_mutex);
473 put_online_cpus();
474}
475
476/*
477 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
478 * if need) kprobes listed on unoptimizing_list.
479 */
480static void do_unoptimize_kprobes(void)
481{
482 struct optimized_kprobe *op, *tmp;
483
484 /* Unoptimization must be done anytime */
485 if (list_empty(&unoptimizing_list))
486 return;
487
488 /* Ditto to do_optimize_kprobes */
489 get_online_cpus();
490 mutex_lock(&text_mutex);
491 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
492 /* Loop free_list for disarming */
493 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
494 /* Disarm probes if marked disabled */
495 if (kprobe_disabled(&op->kp))
496 arch_disarm_kprobe(&op->kp);
497 if (kprobe_unused(&op->kp)) {
498 /*
499 * Remove unused probes from hash list. After waiting
500 * for synchronization, these probes are reclaimed.
501 * (reclaiming is done by do_free_cleaned_kprobes.)
502 */
503 hlist_del_rcu(&op->kp.hlist);
504 } else
505 list_del_init(&op->list);
506 }
507 mutex_unlock(&text_mutex);
508 put_online_cpus();
509}
510
511/* Reclaim all kprobes on the free_list */
512static void do_free_cleaned_kprobes(void)
513{
514 struct optimized_kprobe *op, *tmp;
515
516 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
517 BUG_ON(!kprobe_unused(&op->kp));
518 list_del_init(&op->list);
519 free_aggr_kprobe(&op->kp);
520 }
521}
522
523/* Start optimizer after OPTIMIZE_DELAY passed */
524static void kick_kprobe_optimizer(void)
525{
526 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
527}
528
529/* Kprobe jump optimizer */
530static void kprobe_optimizer(struct work_struct *work)
531{
532 mutex_lock(&kprobe_mutex);
533 /* Lock modules while optimizing kprobes */
534 mutex_lock(&module_mutex);
535
536 /*
537 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
538 * kprobes before waiting for quiesence period.
539 */
540 do_unoptimize_kprobes();
541
542 /*
543 * Step 2: Wait for quiesence period to ensure all running interrupts
544 * are done. Because optprobe may modify multiple instructions
545 * there is a chance that Nth instruction is interrupted. In that
546 * case, running interrupt can return to 2nd-Nth byte of jump
547 * instruction. This wait is for avoiding it.
548 */
549 synchronize_sched();
550
551 /* Step 3: Optimize kprobes after quiesence period */
552 do_optimize_kprobes();
553
554 /* Step 4: Free cleaned kprobes after quiesence period */
555 do_free_cleaned_kprobes();
556
557 mutex_unlock(&module_mutex);
558 mutex_unlock(&kprobe_mutex);
559
560 /* Step 5: Kick optimizer again if needed */
561 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
562 kick_kprobe_optimizer();
563}
564
565/* Wait for completing optimization and unoptimization */
566void wait_for_kprobe_optimizer(void)
567{
568 mutex_lock(&kprobe_mutex);
569
570 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
571 mutex_unlock(&kprobe_mutex);
572
573 /* this will also make optimizing_work execute immmediately */
574 flush_delayed_work(&optimizing_work);
575 /* @optimizing_work might not have been queued yet, relax */
576 cpu_relax();
577
578 mutex_lock(&kprobe_mutex);
579 }
580
581 mutex_unlock(&kprobe_mutex);
582}
583
584/* Optimize kprobe if p is ready to be optimized */
585static void optimize_kprobe(struct kprobe *p)
586{
587 struct optimized_kprobe *op;
588
589 /* Check if the kprobe is disabled or not ready for optimization. */
590 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
591 (kprobe_disabled(p) || kprobes_all_disarmed))
592 return;
593
594 /* Both of break_handler and post_handler are not supported. */
595 if (p->break_handler || p->post_handler)
596 return;
597
598 op = container_of(p, struct optimized_kprobe, kp);
599
600 /* Check there is no other kprobes at the optimized instructions */
601 if (arch_check_optimized_kprobe(op) < 0)
602 return;
603
604 /* Check if it is already optimized. */
605 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
606 return;
607 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
608
609 if (!list_empty(&op->list))
610 /* This is under unoptimizing. Just dequeue the probe */
611 list_del_init(&op->list);
612 else {
613 list_add(&op->list, &optimizing_list);
614 kick_kprobe_optimizer();
615 }
616}
617
618/* Short cut to direct unoptimizing */
619static void force_unoptimize_kprobe(struct optimized_kprobe *op)
620{
621 get_online_cpus();
622 arch_unoptimize_kprobe(op);
623 put_online_cpus();
624 if (kprobe_disabled(&op->kp))
625 arch_disarm_kprobe(&op->kp);
626}
627
628/* Unoptimize a kprobe if p is optimized */
629static void unoptimize_kprobe(struct kprobe *p, bool force)
630{
631 struct optimized_kprobe *op;
632
633 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
634 return; /* This is not an optprobe nor optimized */
635
636 op = container_of(p, struct optimized_kprobe, kp);
637 if (!kprobe_optimized(p)) {
638 /* Unoptimized or unoptimizing case */
639 if (force && !list_empty(&op->list)) {
640 /*
641 * Only if this is unoptimizing kprobe and forced,
642 * forcibly unoptimize it. (No need to unoptimize
643 * unoptimized kprobe again :)
644 */
645 list_del_init(&op->list);
646 force_unoptimize_kprobe(op);
647 }
648 return;
649 }
650
651 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
652 if (!list_empty(&op->list)) {
653 /* Dequeue from the optimization queue */
654 list_del_init(&op->list);
655 return;
656 }
657 /* Optimized kprobe case */
658 if (force)
659 /* Forcibly update the code: this is a special case */
660 force_unoptimize_kprobe(op);
661 else {
662 list_add(&op->list, &unoptimizing_list);
663 kick_kprobe_optimizer();
664 }
665}
666
667/* Cancel unoptimizing for reusing */
668static int reuse_unused_kprobe(struct kprobe *ap)
669{
670 struct optimized_kprobe *op;
671
672 BUG_ON(!kprobe_unused(ap));
673 /*
674 * Unused kprobe MUST be on the way of delayed unoptimizing (means
675 * there is still a relative jump) and disabled.
676 */
677 op = container_of(ap, struct optimized_kprobe, kp);
678 if (unlikely(list_empty(&op->list)))
679 printk(KERN_WARNING "Warning: found a stray unused "
680 "aggrprobe@%p\n", ap->addr);
681 /* Enable the probe again */
682 ap->flags &= ~KPROBE_FLAG_DISABLED;
683 /* Optimize it again (remove from op->list) */
684 if (!kprobe_optready(ap))
685 return -EINVAL;
686
687 optimize_kprobe(ap);
688 return 0;
689}
690
691/* Remove optimized instructions */
692static void kill_optimized_kprobe(struct kprobe *p)
693{
694 struct optimized_kprobe *op;
695
696 op = container_of(p, struct optimized_kprobe, kp);
697 if (!list_empty(&op->list))
698 /* Dequeue from the (un)optimization queue */
699 list_del_init(&op->list);
700 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
701
702 if (kprobe_unused(p)) {
703 /* Enqueue if it is unused */
704 list_add(&op->list, &freeing_list);
705 /*
706 * Remove unused probes from the hash list. After waiting
707 * for synchronization, this probe is reclaimed.
708 * (reclaiming is done by do_free_cleaned_kprobes().)
709 */
710 hlist_del_rcu(&op->kp.hlist);
711 }
712
713 /* Don't touch the code, because it is already freed. */
714 arch_remove_optimized_kprobe(op);
715}
716
717/* Try to prepare optimized instructions */
718static void prepare_optimized_kprobe(struct kprobe *p)
719{
720 struct optimized_kprobe *op;
721
722 op = container_of(p, struct optimized_kprobe, kp);
723 arch_prepare_optimized_kprobe(op, p);
724}
725
726/* Allocate new optimized_kprobe and try to prepare optimized instructions */
727static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
728{
729 struct optimized_kprobe *op;
730
731 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
732 if (!op)
733 return NULL;
734
735 INIT_LIST_HEAD(&op->list);
736 op->kp.addr = p->addr;
737 arch_prepare_optimized_kprobe(op, p);
738
739 return &op->kp;
740}
741
742static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
743
744/*
745 * Prepare an optimized_kprobe and optimize it
746 * NOTE: p must be a normal registered kprobe
747 */
748static void try_to_optimize_kprobe(struct kprobe *p)
749{
750 struct kprobe *ap;
751 struct optimized_kprobe *op;
752
753 /* Impossible to optimize ftrace-based kprobe */
754 if (kprobe_ftrace(p))
755 return;
756
757 /* For preparing optimization, jump_label_text_reserved() is called */
758 jump_label_lock();
759 mutex_lock(&text_mutex);
760
761 ap = alloc_aggr_kprobe(p);
762 if (!ap)
763 goto out;
764
765 op = container_of(ap, struct optimized_kprobe, kp);
766 if (!arch_prepared_optinsn(&op->optinsn)) {
767 /* If failed to setup optimizing, fallback to kprobe */
768 arch_remove_optimized_kprobe(op);
769 kfree(op);
770 goto out;
771 }
772
773 init_aggr_kprobe(ap, p);
774 optimize_kprobe(ap); /* This just kicks optimizer thread */
775
776out:
777 mutex_unlock(&text_mutex);
778 jump_label_unlock();
779}
780
781#ifdef CONFIG_SYSCTL
782static void optimize_all_kprobes(void)
783{
784 struct hlist_head *head;
785 struct kprobe *p;
786 unsigned int i;
787
788 mutex_lock(&kprobe_mutex);
789 /* If optimization is already allowed, just return */
790 if (kprobes_allow_optimization)
791 goto out;
792
793 kprobes_allow_optimization = true;
794 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
795 head = &kprobe_table[i];
796 hlist_for_each_entry_rcu(p, head, hlist)
797 if (!kprobe_disabled(p))
798 optimize_kprobe(p);
799 }
800 printk(KERN_INFO "Kprobes globally optimized\n");
801out:
802 mutex_unlock(&kprobe_mutex);
803}
804
805static void unoptimize_all_kprobes(void)
806{
807 struct hlist_head *head;
808 struct kprobe *p;
809 unsigned int i;
810
811 mutex_lock(&kprobe_mutex);
812 /* If optimization is already prohibited, just return */
813 if (!kprobes_allow_optimization) {
814 mutex_unlock(&kprobe_mutex);
815 return;
816 }
817
818 kprobes_allow_optimization = false;
819 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
820 head = &kprobe_table[i];
821 hlist_for_each_entry_rcu(p, head, hlist) {
822 if (!kprobe_disabled(p))
823 unoptimize_kprobe(p, false);
824 }
825 }
826 mutex_unlock(&kprobe_mutex);
827
828 /* Wait for unoptimizing completion */
829 wait_for_kprobe_optimizer();
830 printk(KERN_INFO "Kprobes globally unoptimized\n");
831}
832
833static DEFINE_MUTEX(kprobe_sysctl_mutex);
834int sysctl_kprobes_optimization;
835int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
836 void __user *buffer, size_t *length,
837 loff_t *ppos)
838{
839 int ret;
840
841 mutex_lock(&kprobe_sysctl_mutex);
842 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
843 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
844
845 if (sysctl_kprobes_optimization)
846 optimize_all_kprobes();
847 else
848 unoptimize_all_kprobes();
849 mutex_unlock(&kprobe_sysctl_mutex);
850
851 return ret;
852}
853#endif /* CONFIG_SYSCTL */
854
855/* Put a breakpoint for a probe. Must be called with text_mutex locked */
856static void __arm_kprobe(struct kprobe *p)
857{
858 struct kprobe *_p;
859
860 /* Check collision with other optimized kprobes */
861 _p = get_optimized_kprobe((unsigned long)p->addr);
862 if (unlikely(_p))
863 /* Fallback to unoptimized kprobe */
864 unoptimize_kprobe(_p, true);
865
866 arch_arm_kprobe(p);
867 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
868}
869
870/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
871static void __disarm_kprobe(struct kprobe *p, bool reopt)
872{
873 struct kprobe *_p;
874
875 /* Try to unoptimize */
876 unoptimize_kprobe(p, kprobes_all_disarmed);
877
878 if (!kprobe_queued(p)) {
879 arch_disarm_kprobe(p);
880 /* If another kprobe was blocked, optimize it. */
881 _p = get_optimized_kprobe((unsigned long)p->addr);
882 if (unlikely(_p) && reopt)
883 optimize_kprobe(_p);
884 }
885 /* TODO: reoptimize others after unoptimized this probe */
886}
887
888#else /* !CONFIG_OPTPROBES */
889
890#define optimize_kprobe(p) do {} while (0)
891#define unoptimize_kprobe(p, f) do {} while (0)
892#define kill_optimized_kprobe(p) do {} while (0)
893#define prepare_optimized_kprobe(p) do {} while (0)
894#define try_to_optimize_kprobe(p) do {} while (0)
895#define __arm_kprobe(p) arch_arm_kprobe(p)
896#define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
897#define kprobe_disarmed(p) kprobe_disabled(p)
898#define wait_for_kprobe_optimizer() do {} while (0)
899
900static int reuse_unused_kprobe(struct kprobe *ap)
901{
902 /*
903 * If the optimized kprobe is NOT supported, the aggr kprobe is
904 * released at the same time that the last aggregated kprobe is
905 * unregistered.
906 * Thus there should be no chance to reuse unused kprobe.
907 */
908 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
909 return -EINVAL;
910}
911
912static void free_aggr_kprobe(struct kprobe *p)
913{
914 arch_remove_kprobe(p);
915 kfree(p);
916}
917
918static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
919{
920 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
921}
922#endif /* CONFIG_OPTPROBES */
923
924#ifdef CONFIG_KPROBES_ON_FTRACE
925static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
926 .func = kprobe_ftrace_handler,
927 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
928};
929static int kprobe_ftrace_enabled;
930
931/* Must ensure p->addr is really on ftrace */
932static int prepare_kprobe(struct kprobe *p)
933{
934 if (!kprobe_ftrace(p))
935 return arch_prepare_kprobe(p);
936
937 return arch_prepare_kprobe_ftrace(p);
938}
939
940/* Caller must lock kprobe_mutex */
941static void arm_kprobe_ftrace(struct kprobe *p)
942{
943 int ret;
944
945 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
946 (unsigned long)p->addr, 0, 0);
947 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
948 kprobe_ftrace_enabled++;
949 if (kprobe_ftrace_enabled == 1) {
950 ret = register_ftrace_function(&kprobe_ftrace_ops);
951 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
952 }
953}
954
955/* Caller must lock kprobe_mutex */
956static void disarm_kprobe_ftrace(struct kprobe *p)
957{
958 int ret;
959
960 kprobe_ftrace_enabled--;
961 if (kprobe_ftrace_enabled == 0) {
962 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
963 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
964 }
965 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
966 (unsigned long)p->addr, 1, 0);
967 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
968}
969#else /* !CONFIG_KPROBES_ON_FTRACE */
970#define prepare_kprobe(p) arch_prepare_kprobe(p)
971#define arm_kprobe_ftrace(p) do {} while (0)
972#define disarm_kprobe_ftrace(p) do {} while (0)
973#endif
974
975/* Arm a kprobe with text_mutex */
976static void arm_kprobe(struct kprobe *kp)
977{
978 if (unlikely(kprobe_ftrace(kp))) {
979 arm_kprobe_ftrace(kp);
980 return;
981 }
982 /*
983 * Here, since __arm_kprobe() doesn't use stop_machine(),
984 * this doesn't cause deadlock on text_mutex. So, we don't
985 * need get_online_cpus().
986 */
987 mutex_lock(&text_mutex);
988 __arm_kprobe(kp);
989 mutex_unlock(&text_mutex);
990}
991
992/* Disarm a kprobe with text_mutex */
993static void disarm_kprobe(struct kprobe *kp, bool reopt)
994{
995 if (unlikely(kprobe_ftrace(kp))) {
996 disarm_kprobe_ftrace(kp);
997 return;
998 }
999 /* Ditto */
1000 mutex_lock(&text_mutex);
1001 __disarm_kprobe(kp, reopt);
1002 mutex_unlock(&text_mutex);
1003}
1004
1005/*
1006 * Aggregate handlers for multiple kprobes support - these handlers
1007 * take care of invoking the individual kprobe handlers on p->list
1008 */
1009static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1010{
1011 struct kprobe *kp;
1012
1013 list_for_each_entry_rcu(kp, &p->list, list) {
1014 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1015 set_kprobe_instance(kp);
1016 if (kp->pre_handler(kp, regs))
1017 return 1;
1018 }
1019 reset_kprobe_instance();
1020 }
1021 return 0;
1022}
1023NOKPROBE_SYMBOL(aggr_pre_handler);
1024
1025static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1026 unsigned long flags)
1027{
1028 struct kprobe *kp;
1029
1030 list_for_each_entry_rcu(kp, &p->list, list) {
1031 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1032 set_kprobe_instance(kp);
1033 kp->post_handler(kp, regs, flags);
1034 reset_kprobe_instance();
1035 }
1036 }
1037}
1038NOKPROBE_SYMBOL(aggr_post_handler);
1039
1040static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1041 int trapnr)
1042{
1043 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1044
1045 /*
1046 * if we faulted "during" the execution of a user specified
1047 * probe handler, invoke just that probe's fault handler
1048 */
1049 if (cur && cur->fault_handler) {
1050 if (cur->fault_handler(cur, regs, trapnr))
1051 return 1;
1052 }
1053 return 0;
1054}
1055NOKPROBE_SYMBOL(aggr_fault_handler);
1056
1057static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1058{
1059 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1060 int ret = 0;
1061
1062 if (cur && cur->break_handler) {
1063 if (cur->break_handler(cur, regs))
1064 ret = 1;
1065 }
1066 reset_kprobe_instance();
1067 return ret;
1068}
1069NOKPROBE_SYMBOL(aggr_break_handler);
1070
1071/* Walks the list and increments nmissed count for multiprobe case */
1072void kprobes_inc_nmissed_count(struct kprobe *p)
1073{
1074 struct kprobe *kp;
1075 if (!kprobe_aggrprobe(p)) {
1076 p->nmissed++;
1077 } else {
1078 list_for_each_entry_rcu(kp, &p->list, list)
1079 kp->nmissed++;
1080 }
1081 return;
1082}
1083NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1084
1085void recycle_rp_inst(struct kretprobe_instance *ri,
1086 struct hlist_head *head)
1087{
1088 struct kretprobe *rp = ri->rp;
1089
1090 /* remove rp inst off the rprobe_inst_table */
1091 hlist_del(&ri->hlist);
1092 INIT_HLIST_NODE(&ri->hlist);
1093 if (likely(rp)) {
1094 raw_spin_lock(&rp->lock);
1095 hlist_add_head(&ri->hlist, &rp->free_instances);
1096 raw_spin_unlock(&rp->lock);
1097 } else
1098 /* Unregistering */
1099 hlist_add_head(&ri->hlist, head);
1100}
1101NOKPROBE_SYMBOL(recycle_rp_inst);
1102
1103void kretprobe_hash_lock(struct task_struct *tsk,
1104 struct hlist_head **head, unsigned long *flags)
1105__acquires(hlist_lock)
1106{
1107 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1108 raw_spinlock_t *hlist_lock;
1109
1110 *head = &kretprobe_inst_table[hash];
1111 hlist_lock = kretprobe_table_lock_ptr(hash);
1112 raw_spin_lock_irqsave(hlist_lock, *flags);
1113}
1114NOKPROBE_SYMBOL(kretprobe_hash_lock);
1115
1116static void kretprobe_table_lock(unsigned long hash,
1117 unsigned long *flags)
1118__acquires(hlist_lock)
1119{
1120 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1121 raw_spin_lock_irqsave(hlist_lock, *flags);
1122}
1123NOKPROBE_SYMBOL(kretprobe_table_lock);
1124
1125void kretprobe_hash_unlock(struct task_struct *tsk,
1126 unsigned long *flags)
1127__releases(hlist_lock)
1128{
1129 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1130 raw_spinlock_t *hlist_lock;
1131
1132 hlist_lock = kretprobe_table_lock_ptr(hash);
1133 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1134}
1135NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1136
1137static void kretprobe_table_unlock(unsigned long hash,
1138 unsigned long *flags)
1139__releases(hlist_lock)
1140{
1141 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1142 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1143}
1144NOKPROBE_SYMBOL(kretprobe_table_unlock);
1145
1146/*
1147 * This function is called from finish_task_switch when task tk becomes dead,
1148 * so that we can recycle any function-return probe instances associated
1149 * with this task. These left over instances represent probed functions
1150 * that have been called but will never return.
1151 */
1152void kprobe_flush_task(struct task_struct *tk)
1153{
1154 struct kretprobe_instance *ri;
1155 struct hlist_head *head, empty_rp;
1156 struct hlist_node *tmp;
1157 unsigned long hash, flags = 0;
1158
1159 if (unlikely(!kprobes_initialized))
1160 /* Early boot. kretprobe_table_locks not yet initialized. */
1161 return;
1162
1163 INIT_HLIST_HEAD(&empty_rp);
1164 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1165 head = &kretprobe_inst_table[hash];
1166 kretprobe_table_lock(hash, &flags);
1167 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1168 if (ri->task == tk)
1169 recycle_rp_inst(ri, &empty_rp);
1170 }
1171 kretprobe_table_unlock(hash, &flags);
1172 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1173 hlist_del(&ri->hlist);
1174 kfree(ri);
1175 }
1176}
1177NOKPROBE_SYMBOL(kprobe_flush_task);
1178
1179static inline void free_rp_inst(struct kretprobe *rp)
1180{
1181 struct kretprobe_instance *ri;
1182 struct hlist_node *next;
1183
1184 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1185 hlist_del(&ri->hlist);
1186 kfree(ri);
1187 }
1188}
1189
1190static void cleanup_rp_inst(struct kretprobe *rp)
1191{
1192 unsigned long flags, hash;
1193 struct kretprobe_instance *ri;
1194 struct hlist_node *next;
1195 struct hlist_head *head;
1196
1197 /* No race here */
1198 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1199 kretprobe_table_lock(hash, &flags);
1200 head = &kretprobe_inst_table[hash];
1201 hlist_for_each_entry_safe(ri, next, head, hlist) {
1202 if (ri->rp == rp)
1203 ri->rp = NULL;
1204 }
1205 kretprobe_table_unlock(hash, &flags);
1206 }
1207 free_rp_inst(rp);
1208}
1209NOKPROBE_SYMBOL(cleanup_rp_inst);
1210
1211/*
1212* Add the new probe to ap->list. Fail if this is the
1213* second jprobe at the address - two jprobes can't coexist
1214*/
1215static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1216{
1217 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1218
1219 if (p->break_handler || p->post_handler)
1220 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1221
1222 if (p->break_handler) {
1223 if (ap->break_handler)
1224 return -EEXIST;
1225 list_add_tail_rcu(&p->list, &ap->list);
1226 ap->break_handler = aggr_break_handler;
1227 } else
1228 list_add_rcu(&p->list, &ap->list);
1229 if (p->post_handler && !ap->post_handler)
1230 ap->post_handler = aggr_post_handler;
1231
1232 return 0;
1233}
1234
1235/*
1236 * Fill in the required fields of the "manager kprobe". Replace the
1237 * earlier kprobe in the hlist with the manager kprobe
1238 */
1239static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1240{
1241 /* Copy p's insn slot to ap */
1242 copy_kprobe(p, ap);
1243 flush_insn_slot(ap);
1244 ap->addr = p->addr;
1245 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1246 ap->pre_handler = aggr_pre_handler;
1247 ap->fault_handler = aggr_fault_handler;
1248 /* We don't care the kprobe which has gone. */
1249 if (p->post_handler && !kprobe_gone(p))
1250 ap->post_handler = aggr_post_handler;
1251 if (p->break_handler && !kprobe_gone(p))
1252 ap->break_handler = aggr_break_handler;
1253
1254 INIT_LIST_HEAD(&ap->list);
1255 INIT_HLIST_NODE(&ap->hlist);
1256
1257 list_add_rcu(&p->list, &ap->list);
1258 hlist_replace_rcu(&p->hlist, &ap->hlist);
1259}
1260
1261/*
1262 * This is the second or subsequent kprobe at the address - handle
1263 * the intricacies
1264 */
1265static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1266{
1267 int ret = 0;
1268 struct kprobe *ap = orig_p;
1269
1270 /* For preparing optimization, jump_label_text_reserved() is called */
1271 jump_label_lock();
1272 /*
1273 * Get online CPUs to avoid text_mutex deadlock.with stop machine,
1274 * which is invoked by unoptimize_kprobe() in add_new_kprobe()
1275 */
1276 get_online_cpus();
1277 mutex_lock(&text_mutex);
1278
1279 if (!kprobe_aggrprobe(orig_p)) {
1280 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1281 ap = alloc_aggr_kprobe(orig_p);
1282 if (!ap) {
1283 ret = -ENOMEM;
1284 goto out;
1285 }
1286 init_aggr_kprobe(ap, orig_p);
1287 } else if (kprobe_unused(ap)) {
1288 /* This probe is going to die. Rescue it */
1289 ret = reuse_unused_kprobe(ap);
1290 if (ret)
1291 goto out;
1292 }
1293
1294 if (kprobe_gone(ap)) {
1295 /*
1296 * Attempting to insert new probe at the same location that
1297 * had a probe in the module vaddr area which already
1298 * freed. So, the instruction slot has already been
1299 * released. We need a new slot for the new probe.
1300 */
1301 ret = arch_prepare_kprobe(ap);
1302 if (ret)
1303 /*
1304 * Even if fail to allocate new slot, don't need to
1305 * free aggr_probe. It will be used next time, or
1306 * freed by unregister_kprobe.
1307 */
1308 goto out;
1309
1310 /* Prepare optimized instructions if possible. */
1311 prepare_optimized_kprobe(ap);
1312
1313 /*
1314 * Clear gone flag to prevent allocating new slot again, and
1315 * set disabled flag because it is not armed yet.
1316 */
1317 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1318 | KPROBE_FLAG_DISABLED;
1319 }
1320
1321 /* Copy ap's insn slot to p */
1322 copy_kprobe(ap, p);
1323 ret = add_new_kprobe(ap, p);
1324
1325out:
1326 mutex_unlock(&text_mutex);
1327 put_online_cpus();
1328 jump_label_unlock();
1329
1330 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1331 ap->flags &= ~KPROBE_FLAG_DISABLED;
1332 if (!kprobes_all_disarmed)
1333 /* Arm the breakpoint again. */
1334 arm_kprobe(ap);
1335 }
1336 return ret;
1337}
1338
1339bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1340{
1341 /* The __kprobes marked functions and entry code must not be probed */
1342 return addr >= (unsigned long)__kprobes_text_start &&
1343 addr < (unsigned long)__kprobes_text_end;
1344}
1345
1346bool within_kprobe_blacklist(unsigned long addr)
1347{
1348 struct kprobe_blacklist_entry *ent;
1349
1350 if (arch_within_kprobe_blacklist(addr))
1351 return true;
1352 /*
1353 * If there exists a kprobe_blacklist, verify and
1354 * fail any probe registration in the prohibited area
1355 */
1356 list_for_each_entry(ent, &kprobe_blacklist, list) {
1357 if (addr >= ent->start_addr && addr < ent->end_addr)
1358 return true;
1359 }
1360
1361 return false;
1362}
1363
1364/*
1365 * If we have a symbol_name argument, look it up and add the offset field
1366 * to it. This way, we can specify a relative address to a symbol.
1367 * This returns encoded errors if it fails to look up symbol or invalid
1368 * combination of parameters.
1369 */
1370static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1371{
1372 kprobe_opcode_t *addr = p->addr;
1373
1374 if ((p->symbol_name && p->addr) ||
1375 (!p->symbol_name && !p->addr))
1376 goto invalid;
1377
1378 if (p->symbol_name) {
1379 kprobe_lookup_name(p->symbol_name, addr);
1380 if (!addr)
1381 return ERR_PTR(-ENOENT);
1382 }
1383
1384 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
1385 if (addr)
1386 return addr;
1387
1388invalid:
1389 return ERR_PTR(-EINVAL);
1390}
1391
1392/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1393static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1394{
1395 struct kprobe *ap, *list_p;
1396
1397 ap = get_kprobe(p->addr);
1398 if (unlikely(!ap))
1399 return NULL;
1400
1401 if (p != ap) {
1402 list_for_each_entry_rcu(list_p, &ap->list, list)
1403 if (list_p == p)
1404 /* kprobe p is a valid probe */
1405 goto valid;
1406 return NULL;
1407 }
1408valid:
1409 return ap;
1410}
1411
1412/* Return error if the kprobe is being re-registered */
1413static inline int check_kprobe_rereg(struct kprobe *p)
1414{
1415 int ret = 0;
1416
1417 mutex_lock(&kprobe_mutex);
1418 if (__get_valid_kprobe(p))
1419 ret = -EINVAL;
1420 mutex_unlock(&kprobe_mutex);
1421
1422 return ret;
1423}
1424
1425int __weak arch_check_ftrace_location(struct kprobe *p)
1426{
1427 unsigned long ftrace_addr;
1428
1429 ftrace_addr = ftrace_location((unsigned long)p->addr);
1430 if (ftrace_addr) {
1431#ifdef CONFIG_KPROBES_ON_FTRACE
1432 /* Given address is not on the instruction boundary */
1433 if ((unsigned long)p->addr != ftrace_addr)
1434 return -EILSEQ;
1435 p->flags |= KPROBE_FLAG_FTRACE;
1436#else /* !CONFIG_KPROBES_ON_FTRACE */
1437 return -EINVAL;
1438#endif
1439 }
1440 return 0;
1441}
1442
1443static int check_kprobe_address_safe(struct kprobe *p,
1444 struct module **probed_mod)
1445{
1446 int ret;
1447
1448 ret = arch_check_ftrace_location(p);
1449 if (ret)
1450 return ret;
1451 jump_label_lock();
1452 preempt_disable();
1453
1454 /* Ensure it is not in reserved area nor out of text */
1455 if (!kernel_text_address((unsigned long) p->addr) ||
1456 within_kprobe_blacklist((unsigned long) p->addr) ||
1457 jump_label_text_reserved(p->addr, p->addr)) {
1458 ret = -EINVAL;
1459 goto out;
1460 }
1461
1462 /* Check if are we probing a module */
1463 *probed_mod = __module_text_address((unsigned long) p->addr);
1464 if (*probed_mod) {
1465 /*
1466 * We must hold a refcount of the probed module while updating
1467 * its code to prohibit unexpected unloading.
1468 */
1469 if (unlikely(!try_module_get(*probed_mod))) {
1470 ret = -ENOENT;
1471 goto out;
1472 }
1473
1474 /*
1475 * If the module freed .init.text, we couldn't insert
1476 * kprobes in there.
1477 */
1478 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1479 (*probed_mod)->state != MODULE_STATE_COMING) {
1480 module_put(*probed_mod);
1481 *probed_mod = NULL;
1482 ret = -ENOENT;
1483 }
1484 }
1485out:
1486 preempt_enable();
1487 jump_label_unlock();
1488
1489 return ret;
1490}
1491
1492int register_kprobe(struct kprobe *p)
1493{
1494 int ret;
1495 struct kprobe *old_p;
1496 struct module *probed_mod;
1497 kprobe_opcode_t *addr;
1498
1499 /* Adjust probe address from symbol */
1500 addr = kprobe_addr(p);
1501 if (IS_ERR(addr))
1502 return PTR_ERR(addr);
1503 p->addr = addr;
1504
1505 ret = check_kprobe_rereg(p);
1506 if (ret)
1507 return ret;
1508
1509 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1510 p->flags &= KPROBE_FLAG_DISABLED;
1511 p->nmissed = 0;
1512 INIT_LIST_HEAD(&p->list);
1513
1514 ret = check_kprobe_address_safe(p, &probed_mod);
1515 if (ret)
1516 return ret;
1517
1518 mutex_lock(&kprobe_mutex);
1519
1520 old_p = get_kprobe(p->addr);
1521 if (old_p) {
1522 /* Since this may unoptimize old_p, locking text_mutex. */
1523 ret = register_aggr_kprobe(old_p, p);
1524 goto out;
1525 }
1526
1527 mutex_lock(&text_mutex); /* Avoiding text modification */
1528 ret = prepare_kprobe(p);
1529 mutex_unlock(&text_mutex);
1530 if (ret)
1531 goto out;
1532
1533 INIT_HLIST_NODE(&p->hlist);
1534 hlist_add_head_rcu(&p->hlist,
1535 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1536
1537 if (!kprobes_all_disarmed && !kprobe_disabled(p))
1538 arm_kprobe(p);
1539
1540 /* Try to optimize kprobe */
1541 try_to_optimize_kprobe(p);
1542
1543out:
1544 mutex_unlock(&kprobe_mutex);
1545
1546 if (probed_mod)
1547 module_put(probed_mod);
1548
1549 return ret;
1550}
1551EXPORT_SYMBOL_GPL(register_kprobe);
1552
1553/* Check if all probes on the aggrprobe are disabled */
1554static int aggr_kprobe_disabled(struct kprobe *ap)
1555{
1556 struct kprobe *kp;
1557
1558 list_for_each_entry_rcu(kp, &ap->list, list)
1559 if (!kprobe_disabled(kp))
1560 /*
1561 * There is an active probe on the list.
1562 * We can't disable this ap.
1563 */
1564 return 0;
1565
1566 return 1;
1567}
1568
1569/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1570static struct kprobe *__disable_kprobe(struct kprobe *p)
1571{
1572 struct kprobe *orig_p;
1573
1574 /* Get an original kprobe for return */
1575 orig_p = __get_valid_kprobe(p);
1576 if (unlikely(orig_p == NULL))
1577 return NULL;
1578
1579 if (!kprobe_disabled(p)) {
1580 /* Disable probe if it is a child probe */
1581 if (p != orig_p)
1582 p->flags |= KPROBE_FLAG_DISABLED;
1583
1584 /* Try to disarm and disable this/parent probe */
1585 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1586 /*
1587 * If kprobes_all_disarmed is set, orig_p
1588 * should have already been disarmed, so
1589 * skip unneed disarming process.
1590 */
1591 if (!kprobes_all_disarmed)
1592 disarm_kprobe(orig_p, true);
1593 orig_p->flags |= KPROBE_FLAG_DISABLED;
1594 }
1595 }
1596
1597 return orig_p;
1598}
1599
1600/*
1601 * Unregister a kprobe without a scheduler synchronization.
1602 */
1603static int __unregister_kprobe_top(struct kprobe *p)
1604{
1605 struct kprobe *ap, *list_p;
1606
1607 /* Disable kprobe. This will disarm it if needed. */
1608 ap = __disable_kprobe(p);
1609 if (ap == NULL)
1610 return -EINVAL;
1611
1612 if (ap == p)
1613 /*
1614 * This probe is an independent(and non-optimized) kprobe
1615 * (not an aggrprobe). Remove from the hash list.
1616 */
1617 goto disarmed;
1618
1619 /* Following process expects this probe is an aggrprobe */
1620 WARN_ON(!kprobe_aggrprobe(ap));
1621
1622 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1623 /*
1624 * !disarmed could be happen if the probe is under delayed
1625 * unoptimizing.
1626 */
1627 goto disarmed;
1628 else {
1629 /* If disabling probe has special handlers, update aggrprobe */
1630 if (p->break_handler && !kprobe_gone(p))
1631 ap->break_handler = NULL;
1632 if (p->post_handler && !kprobe_gone(p)) {
1633 list_for_each_entry_rcu(list_p, &ap->list, list) {
1634 if ((list_p != p) && (list_p->post_handler))
1635 goto noclean;
1636 }
1637 ap->post_handler = NULL;
1638 }
1639noclean:
1640 /*
1641 * Remove from the aggrprobe: this path will do nothing in
1642 * __unregister_kprobe_bottom().
1643 */
1644 list_del_rcu(&p->list);
1645 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1646 /*
1647 * Try to optimize this probe again, because post
1648 * handler may have been changed.
1649 */
1650 optimize_kprobe(ap);
1651 }
1652 return 0;
1653
1654disarmed:
1655 BUG_ON(!kprobe_disarmed(ap));
1656 hlist_del_rcu(&ap->hlist);
1657 return 0;
1658}
1659
1660static void __unregister_kprobe_bottom(struct kprobe *p)
1661{
1662 struct kprobe *ap;
1663
1664 if (list_empty(&p->list))
1665 /* This is an independent kprobe */
1666 arch_remove_kprobe(p);
1667 else if (list_is_singular(&p->list)) {
1668 /* This is the last child of an aggrprobe */
1669 ap = list_entry(p->list.next, struct kprobe, list);
1670 list_del(&p->list);
1671 free_aggr_kprobe(ap);
1672 }
1673 /* Otherwise, do nothing. */
1674}
1675
1676int register_kprobes(struct kprobe **kps, int num)
1677{
1678 int i, ret = 0;
1679
1680 if (num <= 0)
1681 return -EINVAL;
1682 for (i = 0; i < num; i++) {
1683 ret = register_kprobe(kps[i]);
1684 if (ret < 0) {
1685 if (i > 0)
1686 unregister_kprobes(kps, i);
1687 break;
1688 }
1689 }
1690 return ret;
1691}
1692EXPORT_SYMBOL_GPL(register_kprobes);
1693
1694void unregister_kprobe(struct kprobe *p)
1695{
1696 unregister_kprobes(&p, 1);
1697}
1698EXPORT_SYMBOL_GPL(unregister_kprobe);
1699
1700void unregister_kprobes(struct kprobe **kps, int num)
1701{
1702 int i;
1703
1704 if (num <= 0)
1705 return;
1706 mutex_lock(&kprobe_mutex);
1707 for (i = 0; i < num; i++)
1708 if (__unregister_kprobe_top(kps[i]) < 0)
1709 kps[i]->addr = NULL;
1710 mutex_unlock(&kprobe_mutex);
1711
1712 synchronize_sched();
1713 for (i = 0; i < num; i++)
1714 if (kps[i]->addr)
1715 __unregister_kprobe_bottom(kps[i]);
1716}
1717EXPORT_SYMBOL_GPL(unregister_kprobes);
1718
1719static struct notifier_block kprobe_exceptions_nb = {
1720 .notifier_call = kprobe_exceptions_notify,
1721 .priority = 0x7fffffff /* we need to be notified first */
1722};
1723
1724unsigned long __weak arch_deref_entry_point(void *entry)
1725{
1726 return (unsigned long)entry;
1727}
1728
1729int register_jprobes(struct jprobe **jps, int num)
1730{
1731 struct jprobe *jp;
1732 int ret = 0, i;
1733
1734 if (num <= 0)
1735 return -EINVAL;
1736 for (i = 0; i < num; i++) {
1737 unsigned long addr, offset;
1738 jp = jps[i];
1739 addr = arch_deref_entry_point(jp->entry);
1740
1741 /* Verify probepoint is a function entry point */
1742 if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1743 offset == 0) {
1744 jp->kp.pre_handler = setjmp_pre_handler;
1745 jp->kp.break_handler = longjmp_break_handler;
1746 ret = register_kprobe(&jp->kp);
1747 } else
1748 ret = -EINVAL;
1749
1750 if (ret < 0) {
1751 if (i > 0)
1752 unregister_jprobes(jps, i);
1753 break;
1754 }
1755 }
1756 return ret;
1757}
1758EXPORT_SYMBOL_GPL(register_jprobes);
1759
1760int register_jprobe(struct jprobe *jp)
1761{
1762 return register_jprobes(&jp, 1);
1763}
1764EXPORT_SYMBOL_GPL(register_jprobe);
1765
1766void unregister_jprobe(struct jprobe *jp)
1767{
1768 unregister_jprobes(&jp, 1);
1769}
1770EXPORT_SYMBOL_GPL(unregister_jprobe);
1771
1772void unregister_jprobes(struct jprobe **jps, int num)
1773{
1774 int i;
1775
1776 if (num <= 0)
1777 return;
1778 mutex_lock(&kprobe_mutex);
1779 for (i = 0; i < num; i++)
1780 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1781 jps[i]->kp.addr = NULL;
1782 mutex_unlock(&kprobe_mutex);
1783
1784 synchronize_sched();
1785 for (i = 0; i < num; i++) {
1786 if (jps[i]->kp.addr)
1787 __unregister_kprobe_bottom(&jps[i]->kp);
1788 }
1789}
1790EXPORT_SYMBOL_GPL(unregister_jprobes);
1791
1792#ifdef CONFIG_KRETPROBES
1793/*
1794 * This kprobe pre_handler is registered with every kretprobe. When probe
1795 * hits it will set up the return probe.
1796 */
1797static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1798{
1799 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1800 unsigned long hash, flags = 0;
1801 struct kretprobe_instance *ri;
1802
1803 /*
1804 * To avoid deadlocks, prohibit return probing in NMI contexts,
1805 * just skip the probe and increase the (inexact) 'nmissed'
1806 * statistical counter, so that the user is informed that
1807 * something happened:
1808 */
1809 if (unlikely(in_nmi())) {
1810 rp->nmissed++;
1811 return 0;
1812 }
1813
1814 /* TODO: consider to only swap the RA after the last pre_handler fired */
1815 hash = hash_ptr(current, KPROBE_HASH_BITS);
1816 raw_spin_lock_irqsave(&rp->lock, flags);
1817 if (!hlist_empty(&rp->free_instances)) {
1818 ri = hlist_entry(rp->free_instances.first,
1819 struct kretprobe_instance, hlist);
1820 hlist_del(&ri->hlist);
1821 raw_spin_unlock_irqrestore(&rp->lock, flags);
1822
1823 ri->rp = rp;
1824 ri->task = current;
1825
1826 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1827 raw_spin_lock_irqsave(&rp->lock, flags);
1828 hlist_add_head(&ri->hlist, &rp->free_instances);
1829 raw_spin_unlock_irqrestore(&rp->lock, flags);
1830 return 0;
1831 }
1832
1833 arch_prepare_kretprobe(ri, regs);
1834
1835 /* XXX(hch): why is there no hlist_move_head? */
1836 INIT_HLIST_NODE(&ri->hlist);
1837 kretprobe_table_lock(hash, &flags);
1838 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1839 kretprobe_table_unlock(hash, &flags);
1840 } else {
1841 rp->nmissed++;
1842 raw_spin_unlock_irqrestore(&rp->lock, flags);
1843 }
1844 return 0;
1845}
1846NOKPROBE_SYMBOL(pre_handler_kretprobe);
1847
1848int register_kretprobe(struct kretprobe *rp)
1849{
1850 int ret = 0;
1851 struct kretprobe_instance *inst;
1852 int i;
1853 void *addr;
1854
1855 if (kretprobe_blacklist_size) {
1856 addr = kprobe_addr(&rp->kp);
1857 if (IS_ERR(addr))
1858 return PTR_ERR(addr);
1859
1860 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1861 if (kretprobe_blacklist[i].addr == addr)
1862 return -EINVAL;
1863 }
1864 }
1865
1866 rp->kp.pre_handler = pre_handler_kretprobe;
1867 rp->kp.post_handler = NULL;
1868 rp->kp.fault_handler = NULL;
1869 rp->kp.break_handler = NULL;
1870
1871 /* Pre-allocate memory for max kretprobe instances */
1872 if (rp->maxactive <= 0) {
1873#ifdef CONFIG_PREEMPT
1874 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1875#else
1876 rp->maxactive = num_possible_cpus();
1877#endif
1878 }
1879 raw_spin_lock_init(&rp->lock);
1880 INIT_HLIST_HEAD(&rp->free_instances);
1881 for (i = 0; i < rp->maxactive; i++) {
1882 inst = kmalloc(sizeof(struct kretprobe_instance) +
1883 rp->data_size, GFP_KERNEL);
1884 if (inst == NULL) {
1885 free_rp_inst(rp);
1886 return -ENOMEM;
1887 }
1888 INIT_HLIST_NODE(&inst->hlist);
1889 hlist_add_head(&inst->hlist, &rp->free_instances);
1890 }
1891
1892 rp->nmissed = 0;
1893 /* Establish function entry probe point */
1894 ret = register_kprobe(&rp->kp);
1895 if (ret != 0)
1896 free_rp_inst(rp);
1897 return ret;
1898}
1899EXPORT_SYMBOL_GPL(register_kretprobe);
1900
1901int register_kretprobes(struct kretprobe **rps, int num)
1902{
1903 int ret = 0, i;
1904
1905 if (num <= 0)
1906 return -EINVAL;
1907 for (i = 0; i < num; i++) {
1908 ret = register_kretprobe(rps[i]);
1909 if (ret < 0) {
1910 if (i > 0)
1911 unregister_kretprobes(rps, i);
1912 break;
1913 }
1914 }
1915 return ret;
1916}
1917EXPORT_SYMBOL_GPL(register_kretprobes);
1918
1919void unregister_kretprobe(struct kretprobe *rp)
1920{
1921 unregister_kretprobes(&rp, 1);
1922}
1923EXPORT_SYMBOL_GPL(unregister_kretprobe);
1924
1925void unregister_kretprobes(struct kretprobe **rps, int num)
1926{
1927 int i;
1928
1929 if (num <= 0)
1930 return;
1931 mutex_lock(&kprobe_mutex);
1932 for (i = 0; i < num; i++)
1933 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1934 rps[i]->kp.addr = NULL;
1935 mutex_unlock(&kprobe_mutex);
1936
1937 synchronize_sched();
1938 for (i = 0; i < num; i++) {
1939 if (rps[i]->kp.addr) {
1940 __unregister_kprobe_bottom(&rps[i]->kp);
1941 cleanup_rp_inst(rps[i]);
1942 }
1943 }
1944}
1945EXPORT_SYMBOL_GPL(unregister_kretprobes);
1946
1947#else /* CONFIG_KRETPROBES */
1948int register_kretprobe(struct kretprobe *rp)
1949{
1950 return -ENOSYS;
1951}
1952EXPORT_SYMBOL_GPL(register_kretprobe);
1953
1954int register_kretprobes(struct kretprobe **rps, int num)
1955{
1956 return -ENOSYS;
1957}
1958EXPORT_SYMBOL_GPL(register_kretprobes);
1959
1960void unregister_kretprobe(struct kretprobe *rp)
1961{
1962}
1963EXPORT_SYMBOL_GPL(unregister_kretprobe);
1964
1965void unregister_kretprobes(struct kretprobe **rps, int num)
1966{
1967}
1968EXPORT_SYMBOL_GPL(unregister_kretprobes);
1969
1970static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1971{
1972 return 0;
1973}
1974NOKPROBE_SYMBOL(pre_handler_kretprobe);
1975
1976#endif /* CONFIG_KRETPROBES */
1977
1978/* Set the kprobe gone and remove its instruction buffer. */
1979static void kill_kprobe(struct kprobe *p)
1980{
1981 struct kprobe *kp;
1982
1983 p->flags |= KPROBE_FLAG_GONE;
1984 if (kprobe_aggrprobe(p)) {
1985 /*
1986 * If this is an aggr_kprobe, we have to list all the
1987 * chained probes and mark them GONE.
1988 */
1989 list_for_each_entry_rcu(kp, &p->list, list)
1990 kp->flags |= KPROBE_FLAG_GONE;
1991 p->post_handler = NULL;
1992 p->break_handler = NULL;
1993 kill_optimized_kprobe(p);
1994 }
1995 /*
1996 * Here, we can remove insn_slot safely, because no thread calls
1997 * the original probed function (which will be freed soon) any more.
1998 */
1999 arch_remove_kprobe(p);
2000}
2001
2002/* Disable one kprobe */
2003int disable_kprobe(struct kprobe *kp)
2004{
2005 int ret = 0;
2006
2007 mutex_lock(&kprobe_mutex);
2008
2009 /* Disable this kprobe */
2010 if (__disable_kprobe(kp) == NULL)
2011 ret = -EINVAL;
2012
2013 mutex_unlock(&kprobe_mutex);
2014 return ret;
2015}
2016EXPORT_SYMBOL_GPL(disable_kprobe);
2017
2018/* Enable one kprobe */
2019int enable_kprobe(struct kprobe *kp)
2020{
2021 int ret = 0;
2022 struct kprobe *p;
2023
2024 mutex_lock(&kprobe_mutex);
2025
2026 /* Check whether specified probe is valid. */
2027 p = __get_valid_kprobe(kp);
2028 if (unlikely(p == NULL)) {
2029 ret = -EINVAL;
2030 goto out;
2031 }
2032
2033 if (kprobe_gone(kp)) {
2034 /* This kprobe has gone, we couldn't enable it. */
2035 ret = -EINVAL;
2036 goto out;
2037 }
2038
2039 if (p != kp)
2040 kp->flags &= ~KPROBE_FLAG_DISABLED;
2041
2042 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2043 p->flags &= ~KPROBE_FLAG_DISABLED;
2044 arm_kprobe(p);
2045 }
2046out:
2047 mutex_unlock(&kprobe_mutex);
2048 return ret;
2049}
2050EXPORT_SYMBOL_GPL(enable_kprobe);
2051
2052void dump_kprobe(struct kprobe *kp)
2053{
2054 printk(KERN_WARNING "Dumping kprobe:\n");
2055 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2056 kp->symbol_name, kp->addr, kp->offset);
2057}
2058NOKPROBE_SYMBOL(dump_kprobe);
2059
2060/*
2061 * Lookup and populate the kprobe_blacklist.
2062 *
2063 * Unlike the kretprobe blacklist, we'll need to determine
2064 * the range of addresses that belong to the said functions,
2065 * since a kprobe need not necessarily be at the beginning
2066 * of a function.
2067 */
2068static int __init populate_kprobe_blacklist(unsigned long *start,
2069 unsigned long *end)
2070{
2071 unsigned long *iter;
2072 struct kprobe_blacklist_entry *ent;
2073 unsigned long entry, offset = 0, size = 0;
2074
2075 for (iter = start; iter < end; iter++) {
2076 entry = arch_deref_entry_point((void *)*iter);
2077
2078 if (!kernel_text_address(entry) ||
2079 !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2080 pr_err("Failed to find blacklist at %p\n",
2081 (void *)entry);
2082 continue;
2083 }
2084
2085 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2086 if (!ent)
2087 return -ENOMEM;
2088 ent->start_addr = entry;
2089 ent->end_addr = entry + size;
2090 INIT_LIST_HEAD(&ent->list);
2091 list_add_tail(&ent->list, &kprobe_blacklist);
2092 }
2093 return 0;
2094}
2095
2096/* Module notifier call back, checking kprobes on the module */
2097static int kprobes_module_callback(struct notifier_block *nb,
2098 unsigned long val, void *data)
2099{
2100 struct module *mod = data;
2101 struct hlist_head *head;
2102 struct kprobe *p;
2103 unsigned int i;
2104 int checkcore = (val == MODULE_STATE_GOING);
2105
2106 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2107 return NOTIFY_DONE;
2108
2109 /*
2110 * When MODULE_STATE_GOING was notified, both of module .text and
2111 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2112 * notified, only .init.text section would be freed. We need to
2113 * disable kprobes which have been inserted in the sections.
2114 */
2115 mutex_lock(&kprobe_mutex);
2116 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2117 head = &kprobe_table[i];
2118 hlist_for_each_entry_rcu(p, head, hlist)
2119 if (within_module_init((unsigned long)p->addr, mod) ||
2120 (checkcore &&
2121 within_module_core((unsigned long)p->addr, mod))) {
2122 /*
2123 * The vaddr this probe is installed will soon
2124 * be vfreed buy not synced to disk. Hence,
2125 * disarming the breakpoint isn't needed.
2126 */
2127 kill_kprobe(p);
2128 }
2129 }
2130 mutex_unlock(&kprobe_mutex);
2131 return NOTIFY_DONE;
2132}
2133
2134static struct notifier_block kprobe_module_nb = {
2135 .notifier_call = kprobes_module_callback,
2136 .priority = 0
2137};
2138
2139/* Markers of _kprobe_blacklist section */
2140extern unsigned long __start_kprobe_blacklist[];
2141extern unsigned long __stop_kprobe_blacklist[];
2142
2143static int __init init_kprobes(void)
2144{
2145 int i, err = 0;
2146
2147 /* FIXME allocate the probe table, currently defined statically */
2148 /* initialize all list heads */
2149 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2150 INIT_HLIST_HEAD(&kprobe_table[i]);
2151 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2152 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2153 }
2154
2155 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2156 __stop_kprobe_blacklist);
2157 if (err) {
2158 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2159 pr_err("Please take care of using kprobes.\n");
2160 }
2161
2162 if (kretprobe_blacklist_size) {
2163 /* lookup the function address from its name */
2164 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2165 kprobe_lookup_name(kretprobe_blacklist[i].name,
2166 kretprobe_blacklist[i].addr);
2167 if (!kretprobe_blacklist[i].addr)
2168 printk("kretprobe: lookup failed: %s\n",
2169 kretprobe_blacklist[i].name);
2170 }
2171 }
2172
2173#if defined(CONFIG_OPTPROBES)
2174#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2175 /* Init kprobe_optinsn_slots */
2176 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2177#endif
2178 /* By default, kprobes can be optimized */
2179 kprobes_allow_optimization = true;
2180#endif
2181
2182 /* By default, kprobes are armed */
2183 kprobes_all_disarmed = false;
2184
2185 err = arch_init_kprobes();
2186 if (!err)
2187 err = register_die_notifier(&kprobe_exceptions_nb);
2188 if (!err)
2189 err = register_module_notifier(&kprobe_module_nb);
2190
2191 kprobes_initialized = (err == 0);
2192
2193 if (!err)
2194 init_test_probes();
2195 return err;
2196}
2197
2198#ifdef CONFIG_DEBUG_FS
2199static void report_probe(struct seq_file *pi, struct kprobe *p,
2200 const char *sym, int offset, char *modname, struct kprobe *pp)
2201{
2202 char *kprobe_type;
2203
2204 if (p->pre_handler == pre_handler_kretprobe)
2205 kprobe_type = "r";
2206 else if (p->pre_handler == setjmp_pre_handler)
2207 kprobe_type = "j";
2208 else
2209 kprobe_type = "k";
2210
2211 if (sym)
2212 seq_printf(pi, "%p %s %s+0x%x %s ",
2213 p->addr, kprobe_type, sym, offset,
2214 (modname ? modname : " "));
2215 else
2216 seq_printf(pi, "%p %s %p ",
2217 p->addr, kprobe_type, p->addr);
2218
2219 if (!pp)
2220 pp = p;
2221 seq_printf(pi, "%s%s%s%s\n",
2222 (kprobe_gone(p) ? "[GONE]" : ""),
2223 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2224 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2225 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2226}
2227
2228static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2229{
2230 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2231}
2232
2233static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2234{
2235 (*pos)++;
2236 if (*pos >= KPROBE_TABLE_SIZE)
2237 return NULL;
2238 return pos;
2239}
2240
2241static void kprobe_seq_stop(struct seq_file *f, void *v)
2242{
2243 /* Nothing to do */
2244}
2245
2246static int show_kprobe_addr(struct seq_file *pi, void *v)
2247{
2248 struct hlist_head *head;
2249 struct kprobe *p, *kp;
2250 const char *sym = NULL;
2251 unsigned int i = *(loff_t *) v;
2252 unsigned long offset = 0;
2253 char *modname, namebuf[KSYM_NAME_LEN];
2254
2255 head = &kprobe_table[i];
2256 preempt_disable();
2257 hlist_for_each_entry_rcu(p, head, hlist) {
2258 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2259 &offset, &modname, namebuf);
2260 if (kprobe_aggrprobe(p)) {
2261 list_for_each_entry_rcu(kp, &p->list, list)
2262 report_probe(pi, kp, sym, offset, modname, p);
2263 } else
2264 report_probe(pi, p, sym, offset, modname, NULL);
2265 }
2266 preempt_enable();
2267 return 0;
2268}
2269
2270static const struct seq_operations kprobes_seq_ops = {
2271 .start = kprobe_seq_start,
2272 .next = kprobe_seq_next,
2273 .stop = kprobe_seq_stop,
2274 .show = show_kprobe_addr
2275};
2276
2277static int kprobes_open(struct inode *inode, struct file *filp)
2278{
2279 return seq_open(filp, &kprobes_seq_ops);
2280}
2281
2282static const struct file_operations debugfs_kprobes_operations = {
2283 .open = kprobes_open,
2284 .read = seq_read,
2285 .llseek = seq_lseek,
2286 .release = seq_release,
2287};
2288
2289/* kprobes/blacklist -- shows which functions can not be probed */
2290static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2291{
2292 return seq_list_start(&kprobe_blacklist, *pos);
2293}
2294
2295static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2296{
2297 return seq_list_next(v, &kprobe_blacklist, pos);
2298}
2299
2300static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2301{
2302 struct kprobe_blacklist_entry *ent =
2303 list_entry(v, struct kprobe_blacklist_entry, list);
2304
2305 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2306 (void *)ent->end_addr, (void *)ent->start_addr);
2307 return 0;
2308}
2309
2310static const struct seq_operations kprobe_blacklist_seq_ops = {
2311 .start = kprobe_blacklist_seq_start,
2312 .next = kprobe_blacklist_seq_next,
2313 .stop = kprobe_seq_stop, /* Reuse void function */
2314 .show = kprobe_blacklist_seq_show,
2315};
2316
2317static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2318{
2319 return seq_open(filp, &kprobe_blacklist_seq_ops);
2320}
2321
2322static const struct file_operations debugfs_kprobe_blacklist_ops = {
2323 .open = kprobe_blacklist_open,
2324 .read = seq_read,
2325 .llseek = seq_lseek,
2326 .release = seq_release,
2327};
2328
2329static void arm_all_kprobes(void)
2330{
2331 struct hlist_head *head;
2332 struct kprobe *p;
2333 unsigned int i;
2334
2335 mutex_lock(&kprobe_mutex);
2336
2337 /* If kprobes are armed, just return */
2338 if (!kprobes_all_disarmed)
2339 goto already_enabled;
2340
2341 /*
2342 * optimize_kprobe() called by arm_kprobe() checks
2343 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2344 * arm_kprobe.
2345 */
2346 kprobes_all_disarmed = false;
2347 /* Arming kprobes doesn't optimize kprobe itself */
2348 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2349 head = &kprobe_table[i];
2350 hlist_for_each_entry_rcu(p, head, hlist)
2351 if (!kprobe_disabled(p))
2352 arm_kprobe(p);
2353 }
2354
2355 printk(KERN_INFO "Kprobes globally enabled\n");
2356
2357already_enabled:
2358 mutex_unlock(&kprobe_mutex);
2359 return;
2360}
2361
2362static void disarm_all_kprobes(void)
2363{
2364 struct hlist_head *head;
2365 struct kprobe *p;
2366 unsigned int i;
2367
2368 mutex_lock(&kprobe_mutex);
2369
2370 /* If kprobes are already disarmed, just return */
2371 if (kprobes_all_disarmed) {
2372 mutex_unlock(&kprobe_mutex);
2373 return;
2374 }
2375
2376 kprobes_all_disarmed = true;
2377 printk(KERN_INFO "Kprobes globally disabled\n");
2378
2379 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2380 head = &kprobe_table[i];
2381 hlist_for_each_entry_rcu(p, head, hlist) {
2382 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2383 disarm_kprobe(p, false);
2384 }
2385 }
2386 mutex_unlock(&kprobe_mutex);
2387
2388 /* Wait for disarming all kprobes by optimizer */
2389 wait_for_kprobe_optimizer();
2390}
2391
2392/*
2393 * XXX: The debugfs bool file interface doesn't allow for callbacks
2394 * when the bool state is switched. We can reuse that facility when
2395 * available
2396 */
2397static ssize_t read_enabled_file_bool(struct file *file,
2398 char __user *user_buf, size_t count, loff_t *ppos)
2399{
2400 char buf[3];
2401
2402 if (!kprobes_all_disarmed)
2403 buf[0] = '1';
2404 else
2405 buf[0] = '0';
2406 buf[1] = '\n';
2407 buf[2] = 0x00;
2408 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2409}
2410
2411static ssize_t write_enabled_file_bool(struct file *file,
2412 const char __user *user_buf, size_t count, loff_t *ppos)
2413{
2414 char buf[32];
2415 size_t buf_size;
2416
2417 buf_size = min(count, (sizeof(buf)-1));
2418 if (copy_from_user(buf, user_buf, buf_size))
2419 return -EFAULT;
2420
2421 buf[buf_size] = '\0';
2422 switch (buf[0]) {
2423 case 'y':
2424 case 'Y':
2425 case '1':
2426 arm_all_kprobes();
2427 break;
2428 case 'n':
2429 case 'N':
2430 case '0':
2431 disarm_all_kprobes();
2432 break;
2433 default:
2434 return -EINVAL;
2435 }
2436
2437 return count;
2438}
2439
2440static const struct file_operations fops_kp = {
2441 .read = read_enabled_file_bool,
2442 .write = write_enabled_file_bool,
2443 .llseek = default_llseek,
2444};
2445
2446static int __init debugfs_kprobe_init(void)
2447{
2448 struct dentry *dir, *file;
2449 unsigned int value = 1;
2450
2451 dir = debugfs_create_dir("kprobes", NULL);
2452 if (!dir)
2453 return -ENOMEM;
2454
2455 file = debugfs_create_file("list", 0400, dir, NULL,
2456 &debugfs_kprobes_operations);
2457 if (!file)
2458 goto error;
2459
2460 file = debugfs_create_file("enabled", 0600, dir,
2461 &value, &fops_kp);
2462 if (!file)
2463 goto error;
2464
2465 file = debugfs_create_file("blacklist", 0400, dir, NULL,
2466 &debugfs_kprobe_blacklist_ops);
2467 if (!file)
2468 goto error;
2469
2470 return 0;
2471
2472error:
2473 debugfs_remove(dir);
2474 return -ENOMEM;
2475}
2476
2477late_initcall(debugfs_kprobe_init);
2478#endif /* CONFIG_DEBUG_FS */
2479
2480module_init(init_kprobes);
2481
2482/* defined in arch/.../kernel/kprobes.c */
2483EXPORT_SYMBOL_GPL(jprobe_return);
2484