summaryrefslogtreecommitdiff
path: root/kernel/panic.c (plain)
blob: 409557ebcf05e943ee71c8acb273c4f621015205
1/*
2 * linux/kernel/panic.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * This function is used through-out the kernel (including mm and fs)
9 * to indicate a major problem.
10 */
11#include <linux/debug_locks.h>
12#include <linux/interrupt.h>
13#include <linux/kmsg_dump.h>
14#include <linux/kallsyms.h>
15#include <linux/notifier.h>
16#include <linux/vt_kern.h>
17#include <linux/module.h>
18#include <linux/random.h>
19#include <linux/ftrace.h>
20#include <linux/reboot.h>
21#include <linux/delay.h>
22#include <linux/kexec.h>
23#include <linux/sched.h>
24#include <linux/sysrq.h>
25#include <linux/init.h>
26#include <linux/nmi.h>
27#include <linux/console.h>
28#include <linux/bug.h>
29#ifdef CONFIG_AMLOGIC_RAMDUMP
30#include <linux/amlogic/ramdump.h>
31#endif
32
33#define PANIC_TIMER_STEP 100
34#define PANIC_BLINK_SPD 18
35
36int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
37static unsigned long tainted_mask;
38static int pause_on_oops;
39static int pause_on_oops_flag;
40static DEFINE_SPINLOCK(pause_on_oops_lock);
41bool crash_kexec_post_notifiers;
42int panic_on_warn __read_mostly;
43
44int panic_timeout = CONFIG_PANIC_TIMEOUT;
45EXPORT_SYMBOL_GPL(panic_timeout);
46
47ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
48
49EXPORT_SYMBOL(panic_notifier_list);
50
51static long no_blink(int state)
52{
53 return 0;
54}
55
56/* Returns how long it waited in ms */
57long (*panic_blink)(int state);
58EXPORT_SYMBOL(panic_blink);
59
60/*
61 * Stop ourself in panic -- architecture code may override this
62 */
63void __weak panic_smp_self_stop(void)
64{
65 while (1)
66 cpu_relax();
67}
68
69/*
70 * Stop ourselves in NMI context if another CPU has already panicked. Arch code
71 * may override this to prepare for crash dumping, e.g. save regs info.
72 */
73void __weak nmi_panic_self_stop(struct pt_regs *regs)
74{
75 panic_smp_self_stop();
76}
77
78/*
79 * Stop other CPUs in panic. Architecture dependent code may override this
80 * with more suitable version. For example, if the architecture supports
81 * crash dump, it should save registers of each stopped CPU and disable
82 * per-CPU features such as virtualization extensions.
83 */
84void __weak crash_smp_send_stop(void)
85{
86 static int cpus_stopped;
87
88 /*
89 * This function can be called twice in panic path, but obviously
90 * we execute this only once.
91 */
92 if (cpus_stopped)
93 return;
94
95 /*
96 * Note smp_send_stop is the usual smp shutdown function, which
97 * unfortunately means it may not be hardened to work in a panic
98 * situation.
99 */
100 smp_send_stop();
101 cpus_stopped = 1;
102}
103
104atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
105
106/*
107 * A variant of panic() called from NMI context. We return if we've already
108 * panicked on this CPU. If another CPU already panicked, loop in
109 * nmi_panic_self_stop() which can provide architecture dependent code such
110 * as saving register state for crash dump.
111 */
112void nmi_panic(struct pt_regs *regs, const char *msg)
113{
114 int old_cpu, cpu;
115
116 cpu = raw_smp_processor_id();
117 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
118
119 if (old_cpu == PANIC_CPU_INVALID)
120 panic("%s", msg);
121 else if (old_cpu != cpu)
122 nmi_panic_self_stop(regs);
123}
124EXPORT_SYMBOL(nmi_panic);
125
126/**
127 * panic - halt the system
128 * @fmt: The text string to print
129 *
130 * Display a message, then perform cleanups.
131 *
132 * This function never returns.
133 */
134void panic(const char *fmt, ...)
135{
136 static char buf[1024];
137 va_list args;
138 long i, i_next = 0;
139 int state = 0;
140 int old_cpu, this_cpu;
141 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
142
143 /*
144 * Disable local interrupts. This will prevent panic_smp_self_stop
145 * from deadlocking the first cpu that invokes the panic, since
146 * there is nothing to prevent an interrupt handler (that runs
147 * after setting panic_cpu) from invoking panic() again.
148 */
149 local_irq_disable();
150
151 /*
152 * It's possible to come here directly from a panic-assertion and
153 * not have preempt disabled. Some functions called from here want
154 * preempt to be disabled. No point enabling it later though...
155 *
156 * Only one CPU is allowed to execute the panic code from here. For
157 * multiple parallel invocations of panic, all other CPUs either
158 * stop themself or will wait until they are stopped by the 1st CPU
159 * with smp_send_stop().
160 *
161 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
162 * comes here, so go ahead.
163 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
164 * panic_cpu to this CPU. In this case, this is also the 1st CPU.
165 */
166 this_cpu = raw_smp_processor_id();
167 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
168
169 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
170 panic_smp_self_stop();
171
172 console_verbose();
173 bust_spinlocks(1);
174 va_start(args, fmt);
175 vsnprintf(buf, sizeof(buf), fmt, args);
176 va_end(args);
177 pr_emerg("Kernel panic - not syncing: %s\n", buf);
178#ifdef CONFIG_DEBUG_BUGVERBOSE
179 /*
180 * Avoid nested stack-dumping if a panic occurs during oops processing
181 */
182 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
183 dump_stack();
184#endif
185
186#ifdef CONFIG_AMLOGIC_RAMDUMP
187 ramdump_sync_data();
188#endif
189 /*
190 * If we have crashed and we have a crash kernel loaded let it handle
191 * everything else.
192 * If we want to run this after calling panic_notifiers, pass
193 * the "crash_kexec_post_notifiers" option to the kernel.
194 *
195 * Bypass the panic_cpu check and call __crash_kexec directly.
196 */
197 if (!_crash_kexec_post_notifiers) {
198 printk_nmi_flush_on_panic();
199 __crash_kexec(NULL);
200
201 /*
202 * Note smp_send_stop is the usual smp shutdown function, which
203 * unfortunately means it may not be hardened to work in a
204 * panic situation.
205 */
206 smp_send_stop();
207 } else {
208 /*
209 * If we want to do crash dump after notifier calls and
210 * kmsg_dump, we will need architecture dependent extra
211 * works in addition to stopping other CPUs.
212 */
213 crash_smp_send_stop();
214 }
215
216 /*
217 * Run any panic handlers, including those that might need to
218 * add information to the kmsg dump output.
219 */
220 atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
221
222 /* Call flush even twice. It tries harder with a single online CPU */
223 printk_nmi_flush_on_panic();
224 kmsg_dump(KMSG_DUMP_PANIC);
225
226 /*
227 * If you doubt kdump always works fine in any situation,
228 * "crash_kexec_post_notifiers" offers you a chance to run
229 * panic_notifiers and dumping kmsg before kdump.
230 * Note: since some panic_notifiers can make crashed kernel
231 * more unstable, it can increase risks of the kdump failure too.
232 *
233 * Bypass the panic_cpu check and call __crash_kexec directly.
234 */
235 if (_crash_kexec_post_notifiers)
236 __crash_kexec(NULL);
237
238#ifdef CONFIG_VT
239 unblank_screen();
240#endif
241 console_unblank();
242
243 /*
244 * We may have ended up stopping the CPU holding the lock (in
245 * smp_send_stop()) while still having some valuable data in the console
246 * buffer. Try to acquire the lock then release it regardless of the
247 * result. The release will also print the buffers out. Locks debug
248 * should be disabled to avoid reporting bad unlock balance when
249 * panic() is not being callled from OOPS.
250 */
251 debug_locks_off();
252 console_flush_on_panic();
253
254 if (!panic_blink)
255 panic_blink = no_blink;
256
257 if (panic_timeout > 0) {
258 /*
259 * Delay timeout seconds before rebooting the machine.
260 * We can't use the "normal" timers since we just panicked.
261 */
262 pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
263
264 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
265 touch_nmi_watchdog();
266 if (i >= i_next) {
267 i += panic_blink(state ^= 1);
268 i_next = i + 3600 / PANIC_BLINK_SPD;
269 }
270 mdelay(PANIC_TIMER_STEP);
271 }
272 }
273 if (panic_timeout != 0) {
274 /*
275 * This will not be a clean reboot, with everything
276 * shutting down. But if there is a chance of
277 * rebooting the system it will be rebooted.
278 */
279 emergency_restart();
280 }
281#ifdef __sparc__
282 {
283 extern int stop_a_enabled;
284 /* Make sure the user can actually press Stop-A (L1-A) */
285 stop_a_enabled = 1;
286 pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
287 }
288#endif
289#if defined(CONFIG_S390)
290 {
291 unsigned long caller;
292
293 caller = (unsigned long)__builtin_return_address(0);
294 disabled_wait(caller);
295 }
296#endif
297 pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
298 local_irq_enable();
299 for (i = 0; ; i += PANIC_TIMER_STEP) {
300 touch_softlockup_watchdog();
301 if (i >= i_next) {
302 i += panic_blink(state ^= 1);
303 i_next = i + 3600 / PANIC_BLINK_SPD;
304 }
305 mdelay(PANIC_TIMER_STEP);
306 }
307}
308
309EXPORT_SYMBOL(panic);
310
311
312struct tnt {
313 u8 bit;
314 char true;
315 char false;
316};
317
318static const struct tnt tnts[] = {
319 { TAINT_PROPRIETARY_MODULE, 'P', 'G' },
320 { TAINT_FORCED_MODULE, 'F', ' ' },
321 { TAINT_CPU_OUT_OF_SPEC, 'S', ' ' },
322 { TAINT_FORCED_RMMOD, 'R', ' ' },
323 { TAINT_MACHINE_CHECK, 'M', ' ' },
324 { TAINT_BAD_PAGE, 'B', ' ' },
325 { TAINT_USER, 'U', ' ' },
326 { TAINT_DIE, 'D', ' ' },
327 { TAINT_OVERRIDDEN_ACPI_TABLE, 'A', ' ' },
328 { TAINT_WARN, 'W', ' ' },
329 { TAINT_CRAP, 'C', ' ' },
330 { TAINT_FIRMWARE_WORKAROUND, 'I', ' ' },
331 { TAINT_OOT_MODULE, 'O', ' ' },
332 { TAINT_UNSIGNED_MODULE, 'E', ' ' },
333 { TAINT_SOFTLOCKUP, 'L', ' ' },
334 { TAINT_LIVEPATCH, 'K', ' ' },
335};
336
337/**
338 * print_tainted - return a string to represent the kernel taint state.
339 *
340 * 'P' - Proprietary module has been loaded.
341 * 'F' - Module has been forcibly loaded.
342 * 'S' - SMP with CPUs not designed for SMP.
343 * 'R' - User forced a module unload.
344 * 'M' - System experienced a machine check exception.
345 * 'B' - System has hit bad_page.
346 * 'U' - Userspace-defined naughtiness.
347 * 'D' - Kernel has oopsed before
348 * 'A' - ACPI table overridden.
349 * 'W' - Taint on warning.
350 * 'C' - modules from drivers/staging are loaded.
351 * 'I' - Working around severe firmware bug.
352 * 'O' - Out-of-tree module has been loaded.
353 * 'E' - Unsigned module has been loaded.
354 * 'L' - A soft lockup has previously occurred.
355 * 'K' - Kernel has been live patched.
356 *
357 * The string is overwritten by the next call to print_tainted().
358 */
359const char *print_tainted(void)
360{
361 static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
362
363 if (tainted_mask) {
364 char *s;
365 int i;
366
367 s = buf + sprintf(buf, "Tainted: ");
368 for (i = 0; i < ARRAY_SIZE(tnts); i++) {
369 const struct tnt *t = &tnts[i];
370 *s++ = test_bit(t->bit, &tainted_mask) ?
371 t->true : t->false;
372 }
373 *s = 0;
374 } else
375 snprintf(buf, sizeof(buf), "Not tainted");
376
377 return buf;
378}
379
380int test_taint(unsigned flag)
381{
382 return test_bit(flag, &tainted_mask);
383}
384EXPORT_SYMBOL(test_taint);
385
386unsigned long get_taint(void)
387{
388 return tainted_mask;
389}
390
391/**
392 * add_taint: add a taint flag if not already set.
393 * @flag: one of the TAINT_* constants.
394 * @lockdep_ok: whether lock debugging is still OK.
395 *
396 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
397 * some notewortht-but-not-corrupting cases, it can be set to true.
398 */
399void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
400{
401 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
402 pr_warn("Disabling lock debugging due to kernel taint\n");
403
404 set_bit(flag, &tainted_mask);
405}
406EXPORT_SYMBOL(add_taint);
407
408static void spin_msec(int msecs)
409{
410 int i;
411
412 for (i = 0; i < msecs; i++) {
413 touch_nmi_watchdog();
414 mdelay(1);
415 }
416}
417
418/*
419 * It just happens that oops_enter() and oops_exit() are identically
420 * implemented...
421 */
422static void do_oops_enter_exit(void)
423{
424 unsigned long flags;
425 static int spin_counter;
426
427 if (!pause_on_oops)
428 return;
429
430 spin_lock_irqsave(&pause_on_oops_lock, flags);
431 if (pause_on_oops_flag == 0) {
432 /* This CPU may now print the oops message */
433 pause_on_oops_flag = 1;
434 } else {
435 /* We need to stall this CPU */
436 if (!spin_counter) {
437 /* This CPU gets to do the counting */
438 spin_counter = pause_on_oops;
439 do {
440 spin_unlock(&pause_on_oops_lock);
441 spin_msec(MSEC_PER_SEC);
442 spin_lock(&pause_on_oops_lock);
443 } while (--spin_counter);
444 pause_on_oops_flag = 0;
445 } else {
446 /* This CPU waits for a different one */
447 while (spin_counter) {
448 spin_unlock(&pause_on_oops_lock);
449 spin_msec(1);
450 spin_lock(&pause_on_oops_lock);
451 }
452 }
453 }
454 spin_unlock_irqrestore(&pause_on_oops_lock, flags);
455}
456
457/*
458 * Return true if the calling CPU is allowed to print oops-related info.
459 * This is a bit racy..
460 */
461int oops_may_print(void)
462{
463 return pause_on_oops_flag == 0;
464}
465
466/*
467 * Called when the architecture enters its oops handler, before it prints
468 * anything. If this is the first CPU to oops, and it's oopsing the first
469 * time then let it proceed.
470 *
471 * This is all enabled by the pause_on_oops kernel boot option. We do all
472 * this to ensure that oopses don't scroll off the screen. It has the
473 * side-effect of preventing later-oopsing CPUs from mucking up the display,
474 * too.
475 *
476 * It turns out that the CPU which is allowed to print ends up pausing for
477 * the right duration, whereas all the other CPUs pause for twice as long:
478 * once in oops_enter(), once in oops_exit().
479 */
480void oops_enter(void)
481{
482 tracing_off();
483 /* can't trust the integrity of the kernel anymore: */
484 debug_locks_off();
485 do_oops_enter_exit();
486}
487
488/*
489 * 64-bit random ID for oopses:
490 */
491static u64 oops_id;
492
493static int init_oops_id(void)
494{
495 if (!oops_id)
496 get_random_bytes(&oops_id, sizeof(oops_id));
497 else
498 oops_id++;
499
500 return 0;
501}
502late_initcall(init_oops_id);
503
504void print_oops_end_marker(void)
505{
506 init_oops_id();
507 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
508}
509
510/*
511 * Called when the architecture exits its oops handler, after printing
512 * everything.
513 */
514void oops_exit(void)
515{
516 do_oops_enter_exit();
517 print_oops_end_marker();
518 kmsg_dump(KMSG_DUMP_OOPS);
519}
520
521struct warn_args {
522 const char *fmt;
523 va_list args;
524};
525
526void __warn(const char *file, int line, void *caller, unsigned taint,
527 struct pt_regs *regs, struct warn_args *args)
528{
529 disable_trace_on_warning();
530
531 pr_warn("------------[ cut here ]------------\n");
532
533 if (file)
534 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
535 raw_smp_processor_id(), current->pid, file, line,
536 caller);
537 else
538 pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
539 raw_smp_processor_id(), current->pid, caller);
540
541 if (args)
542 vprintk(args->fmt, args->args);
543
544 if (panic_on_warn) {
545 /*
546 * This thread may hit another WARN() in the panic path.
547 * Resetting this prevents additional WARN() from panicking the
548 * system on this thread. Other threads are blocked by the
549 * panic_mutex in panic().
550 */
551 panic_on_warn = 0;
552 panic("panic_on_warn set ...\n");
553 }
554
555 print_modules();
556
557 if (regs)
558 show_regs(regs);
559 else
560 dump_stack();
561
562 print_oops_end_marker();
563
564 /* Just a warning, don't kill lockdep. */
565 add_taint(taint, LOCKDEP_STILL_OK);
566}
567
568#ifdef WANT_WARN_ON_SLOWPATH
569void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
570{
571 struct warn_args args;
572
573 args.fmt = fmt;
574 va_start(args.args, fmt);
575 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
576 &args);
577 va_end(args.args);
578}
579EXPORT_SYMBOL(warn_slowpath_fmt);
580
581void warn_slowpath_fmt_taint(const char *file, int line,
582 unsigned taint, const char *fmt, ...)
583{
584 struct warn_args args;
585
586 args.fmt = fmt;
587 va_start(args.args, fmt);
588 __warn(file, line, __builtin_return_address(0), taint, NULL, &args);
589 va_end(args.args);
590}
591EXPORT_SYMBOL(warn_slowpath_fmt_taint);
592
593void warn_slowpath_null(const char *file, int line)
594{
595 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
596}
597EXPORT_SYMBOL(warn_slowpath_null);
598#endif
599
600#ifdef CONFIG_CC_STACKPROTECTOR
601
602/*
603 * Called when gcc's -fstack-protector feature is used, and
604 * gcc detects corruption of the on-stack canary value
605 */
606__visible void __stack_chk_fail(void)
607{
608 panic("stack-protector: Kernel stack is corrupted in: %pB\n",
609 __builtin_return_address(0));
610}
611EXPORT_SYMBOL(__stack_chk_fail);
612
613#endif
614
615core_param(panic, panic_timeout, int, 0644);
616core_param(pause_on_oops, pause_on_oops, int, 0644);
617core_param(panic_on_warn, panic_on_warn, int, 0644);
618core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
619
620static int __init oops_setup(char *s)
621{
622 if (!s)
623 return -EINVAL;
624 if (!strcmp(s, "panic"))
625 panic_on_oops = 1;
626 return 0;
627}
628early_param("oops", oops_setup);
629