summaryrefslogtreecommitdiff
path: root/kernel/sys.c (plain)
blob: 0420d0e3943e4584252946c4550b0c137eb709e5
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/export.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
11#include <linux/reboot.h>
12#include <linux/prctl.h>
13#include <linux/highuid.h>
14#include <linux/fs.h>
15#include <linux/kmod.h>
16#include <linux/perf_event.h>
17#include <linux/resource.h>
18#include <linux/kernel.h>
19#include <linux/workqueue.h>
20#include <linux/capability.h>
21#include <linux/device.h>
22#include <linux/key.h>
23#include <linux/times.h>
24#include <linux/posix-timers.h>
25#include <linux/security.h>
26#include <linux/dcookies.h>
27#include <linux/suspend.h>
28#include <linux/tty.h>
29#include <linux/signal.h>
30#include <linux/cn_proc.h>
31#include <linux/getcpu.h>
32#include <linux/task_io_accounting_ops.h>
33#include <linux/seccomp.h>
34#include <linux/cpu.h>
35#include <linux/personality.h>
36#include <linux/ptrace.h>
37#include <linux/fs_struct.h>
38#include <linux/file.h>
39#include <linux/mount.h>
40#include <linux/gfp.h>
41#include <linux/syscore_ops.h>
42#include <linux/version.h>
43#include <linux/ctype.h>
44#include <linux/mm.h>
45#include <linux/mempolicy.h>
46
47#include <linux/compat.h>
48#include <linux/syscalls.h>
49#include <linux/kprobes.h>
50#include <linux/user_namespace.h>
51#include <linux/binfmts.h>
52
53#include <linux/sched.h>
54#include <linux/sched/loadavg.h>
55#include <linux/rcupdate.h>
56#include <linux/uidgid.h>
57#include <linux/cred.h>
58
59#include <linux/nospec.h>
60
61#include <linux/kmsg_dump.h>
62/* Move somewhere else to avoid recompiling? */
63#include <generated/utsrelease.h>
64
65#include <asm/uaccess.h>
66#include <asm/io.h>
67#include <asm/unistd.h>
68
69#ifndef SET_UNALIGN_CTL
70# define SET_UNALIGN_CTL(a, b) (-EINVAL)
71#endif
72#ifndef GET_UNALIGN_CTL
73# define GET_UNALIGN_CTL(a, b) (-EINVAL)
74#endif
75#ifndef SET_FPEMU_CTL
76# define SET_FPEMU_CTL(a, b) (-EINVAL)
77#endif
78#ifndef GET_FPEMU_CTL
79# define GET_FPEMU_CTL(a, b) (-EINVAL)
80#endif
81#ifndef SET_FPEXC_CTL
82# define SET_FPEXC_CTL(a, b) (-EINVAL)
83#endif
84#ifndef GET_FPEXC_CTL
85# define GET_FPEXC_CTL(a, b) (-EINVAL)
86#endif
87#ifndef GET_ENDIAN
88# define GET_ENDIAN(a, b) (-EINVAL)
89#endif
90#ifndef SET_ENDIAN
91# define SET_ENDIAN(a, b) (-EINVAL)
92#endif
93#ifndef GET_TSC_CTL
94# define GET_TSC_CTL(a) (-EINVAL)
95#endif
96#ifndef SET_TSC_CTL
97# define SET_TSC_CTL(a) (-EINVAL)
98#endif
99#ifndef MPX_ENABLE_MANAGEMENT
100# define MPX_ENABLE_MANAGEMENT() (-EINVAL)
101#endif
102#ifndef MPX_DISABLE_MANAGEMENT
103# define MPX_DISABLE_MANAGEMENT() (-EINVAL)
104#endif
105#ifndef GET_FP_MODE
106# define GET_FP_MODE(a) (-EINVAL)
107#endif
108#ifndef SET_FP_MODE
109# define SET_FP_MODE(a,b) (-EINVAL)
110#endif
111
112/*
113 * this is where the system-wide overflow UID and GID are defined, for
114 * architectures that now have 32-bit UID/GID but didn't in the past
115 */
116
117int overflowuid = DEFAULT_OVERFLOWUID;
118int overflowgid = DEFAULT_OVERFLOWGID;
119
120EXPORT_SYMBOL(overflowuid);
121EXPORT_SYMBOL(overflowgid);
122
123/*
124 * the same as above, but for filesystems which can only store a 16-bit
125 * UID and GID. as such, this is needed on all architectures
126 */
127
128int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
129int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
130
131EXPORT_SYMBOL(fs_overflowuid);
132EXPORT_SYMBOL(fs_overflowgid);
133
134/*
135 * Returns true if current's euid is same as p's uid or euid,
136 * or has CAP_SYS_NICE to p's user_ns.
137 *
138 * Called with rcu_read_lock, creds are safe
139 */
140static bool set_one_prio_perm(struct task_struct *p)
141{
142 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
143
144 if (uid_eq(pcred->uid, cred->euid) ||
145 uid_eq(pcred->euid, cred->euid))
146 return true;
147 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
148 return true;
149 return false;
150}
151
152/*
153 * set the priority of a task
154 * - the caller must hold the RCU read lock
155 */
156static int set_one_prio(struct task_struct *p, int niceval, int error)
157{
158 int no_nice;
159
160 if (!set_one_prio_perm(p)) {
161 error = -EPERM;
162 goto out;
163 }
164 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
165 error = -EACCES;
166 goto out;
167 }
168 no_nice = security_task_setnice(p, niceval);
169 if (no_nice) {
170 error = no_nice;
171 goto out;
172 }
173 if (error == -ESRCH)
174 error = 0;
175 set_user_nice(p, niceval);
176out:
177 return error;
178}
179
180SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
181{
182 struct task_struct *g, *p;
183 struct user_struct *user;
184 const struct cred *cred = current_cred();
185 int error = -EINVAL;
186 struct pid *pgrp;
187 kuid_t uid;
188
189 if (which > PRIO_USER || which < PRIO_PROCESS)
190 goto out;
191
192 /* normalize: avoid signed division (rounding problems) */
193 error = -ESRCH;
194 if (niceval < MIN_NICE)
195 niceval = MIN_NICE;
196 if (niceval > MAX_NICE)
197 niceval = MAX_NICE;
198
199 rcu_read_lock();
200 read_lock(&tasklist_lock);
201 switch (which) {
202 case PRIO_PROCESS:
203 if (who)
204 p = find_task_by_vpid(who);
205 else
206 p = current;
207 if (p)
208 error = set_one_prio(p, niceval, error);
209 break;
210 case PRIO_PGRP:
211 if (who)
212 pgrp = find_vpid(who);
213 else
214 pgrp = task_pgrp(current);
215 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
216 error = set_one_prio(p, niceval, error);
217 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
218 break;
219 case PRIO_USER:
220 uid = make_kuid(cred->user_ns, who);
221 user = cred->user;
222 if (!who)
223 uid = cred->uid;
224 else if (!uid_eq(uid, cred->uid)) {
225 user = find_user(uid);
226 if (!user)
227 goto out_unlock; /* No processes for this user */
228 }
229 do_each_thread(g, p) {
230 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
231 error = set_one_prio(p, niceval, error);
232 } while_each_thread(g, p);
233 if (!uid_eq(uid, cred->uid))
234 free_uid(user); /* For find_user() */
235 break;
236 }
237out_unlock:
238 read_unlock(&tasklist_lock);
239 rcu_read_unlock();
240out:
241 return error;
242}
243
244/*
245 * Ugh. To avoid negative return values, "getpriority()" will
246 * not return the normal nice-value, but a negated value that
247 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
248 * to stay compatible.
249 */
250SYSCALL_DEFINE2(getpriority, int, which, int, who)
251{
252 struct task_struct *g, *p;
253 struct user_struct *user;
254 const struct cred *cred = current_cred();
255 long niceval, retval = -ESRCH;
256 struct pid *pgrp;
257 kuid_t uid;
258
259 if (which > PRIO_USER || which < PRIO_PROCESS)
260 return -EINVAL;
261
262 rcu_read_lock();
263 read_lock(&tasklist_lock);
264 switch (which) {
265 case PRIO_PROCESS:
266 if (who)
267 p = find_task_by_vpid(who);
268 else
269 p = current;
270 if (p) {
271 niceval = nice_to_rlimit(task_nice(p));
272 if (niceval > retval)
273 retval = niceval;
274 }
275 break;
276 case PRIO_PGRP:
277 if (who)
278 pgrp = find_vpid(who);
279 else
280 pgrp = task_pgrp(current);
281 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
282 niceval = nice_to_rlimit(task_nice(p));
283 if (niceval > retval)
284 retval = niceval;
285 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
286 break;
287 case PRIO_USER:
288 uid = make_kuid(cred->user_ns, who);
289 user = cred->user;
290 if (!who)
291 uid = cred->uid;
292 else if (!uid_eq(uid, cred->uid)) {
293 user = find_user(uid);
294 if (!user)
295 goto out_unlock; /* No processes for this user */
296 }
297 do_each_thread(g, p) {
298 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
299 niceval = nice_to_rlimit(task_nice(p));
300 if (niceval > retval)
301 retval = niceval;
302 }
303 } while_each_thread(g, p);
304 if (!uid_eq(uid, cred->uid))
305 free_uid(user); /* for find_user() */
306 break;
307 }
308out_unlock:
309 read_unlock(&tasklist_lock);
310 rcu_read_unlock();
311
312 return retval;
313}
314
315/*
316 * Unprivileged users may change the real gid to the effective gid
317 * or vice versa. (BSD-style)
318 *
319 * If you set the real gid at all, or set the effective gid to a value not
320 * equal to the real gid, then the saved gid is set to the new effective gid.
321 *
322 * This makes it possible for a setgid program to completely drop its
323 * privileges, which is often a useful assertion to make when you are doing
324 * a security audit over a program.
325 *
326 * The general idea is that a program which uses just setregid() will be
327 * 100% compatible with BSD. A program which uses just setgid() will be
328 * 100% compatible with POSIX with saved IDs.
329 *
330 * SMP: There are not races, the GIDs are checked only by filesystem
331 * operations (as far as semantic preservation is concerned).
332 */
333#ifdef CONFIG_MULTIUSER
334SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
335{
336 struct user_namespace *ns = current_user_ns();
337 const struct cred *old;
338 struct cred *new;
339 int retval;
340 kgid_t krgid, kegid;
341
342 krgid = make_kgid(ns, rgid);
343 kegid = make_kgid(ns, egid);
344
345 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
346 return -EINVAL;
347 if ((egid != (gid_t) -1) && !gid_valid(kegid))
348 return -EINVAL;
349
350 new = prepare_creds();
351 if (!new)
352 return -ENOMEM;
353 old = current_cred();
354
355 retval = -EPERM;
356 if (rgid != (gid_t) -1) {
357 if (gid_eq(old->gid, krgid) ||
358 gid_eq(old->egid, krgid) ||
359 ns_capable(old->user_ns, CAP_SETGID))
360 new->gid = krgid;
361 else
362 goto error;
363 }
364 if (egid != (gid_t) -1) {
365 if (gid_eq(old->gid, kegid) ||
366 gid_eq(old->egid, kegid) ||
367 gid_eq(old->sgid, kegid) ||
368 ns_capable(old->user_ns, CAP_SETGID))
369 new->egid = kegid;
370 else
371 goto error;
372 }
373
374 if (rgid != (gid_t) -1 ||
375 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
376 new->sgid = new->egid;
377 new->fsgid = new->egid;
378
379 return commit_creds(new);
380
381error:
382 abort_creds(new);
383 return retval;
384}
385
386/*
387 * setgid() is implemented like SysV w/ SAVED_IDS
388 *
389 * SMP: Same implicit races as above.
390 */
391SYSCALL_DEFINE1(setgid, gid_t, gid)
392{
393 struct user_namespace *ns = current_user_ns();
394 const struct cred *old;
395 struct cred *new;
396 int retval;
397 kgid_t kgid;
398
399 kgid = make_kgid(ns, gid);
400 if (!gid_valid(kgid))
401 return -EINVAL;
402
403 new = prepare_creds();
404 if (!new)
405 return -ENOMEM;
406 old = current_cred();
407
408 retval = -EPERM;
409 if (ns_capable(old->user_ns, CAP_SETGID))
410 new->gid = new->egid = new->sgid = new->fsgid = kgid;
411 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
412 new->egid = new->fsgid = kgid;
413 else
414 goto error;
415
416 return commit_creds(new);
417
418error:
419 abort_creds(new);
420 return retval;
421}
422
423/*
424 * change the user struct in a credentials set to match the new UID
425 */
426static int set_user(struct cred *new)
427{
428 struct user_struct *new_user;
429
430 new_user = alloc_uid(new->uid);
431 if (!new_user)
432 return -EAGAIN;
433
434 /*
435 * We don't fail in case of NPROC limit excess here because too many
436 * poorly written programs don't check set*uid() return code, assuming
437 * it never fails if called by root. We may still enforce NPROC limit
438 * for programs doing set*uid()+execve() by harmlessly deferring the
439 * failure to the execve() stage.
440 */
441 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
442 new_user != INIT_USER)
443 current->flags |= PF_NPROC_EXCEEDED;
444 else
445 current->flags &= ~PF_NPROC_EXCEEDED;
446
447 free_uid(new->user);
448 new->user = new_user;
449 return 0;
450}
451
452/*
453 * Unprivileged users may change the real uid to the effective uid
454 * or vice versa. (BSD-style)
455 *
456 * If you set the real uid at all, or set the effective uid to a value not
457 * equal to the real uid, then the saved uid is set to the new effective uid.
458 *
459 * This makes it possible for a setuid program to completely drop its
460 * privileges, which is often a useful assertion to make when you are doing
461 * a security audit over a program.
462 *
463 * The general idea is that a program which uses just setreuid() will be
464 * 100% compatible with BSD. A program which uses just setuid() will be
465 * 100% compatible with POSIX with saved IDs.
466 */
467SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
468{
469 struct user_namespace *ns = current_user_ns();
470 const struct cred *old;
471 struct cred *new;
472 int retval;
473 kuid_t kruid, keuid;
474
475 kruid = make_kuid(ns, ruid);
476 keuid = make_kuid(ns, euid);
477
478 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
479 return -EINVAL;
480 if ((euid != (uid_t) -1) && !uid_valid(keuid))
481 return -EINVAL;
482
483 new = prepare_creds();
484 if (!new)
485 return -ENOMEM;
486 old = current_cred();
487
488 retval = -EPERM;
489 if (ruid != (uid_t) -1) {
490 new->uid = kruid;
491 if (!uid_eq(old->uid, kruid) &&
492 !uid_eq(old->euid, kruid) &&
493 !ns_capable(old->user_ns, CAP_SETUID))
494 goto error;
495 }
496
497 if (euid != (uid_t) -1) {
498 new->euid = keuid;
499 if (!uid_eq(old->uid, keuid) &&
500 !uid_eq(old->euid, keuid) &&
501 !uid_eq(old->suid, keuid) &&
502 !ns_capable(old->user_ns, CAP_SETUID))
503 goto error;
504 }
505
506 if (!uid_eq(new->uid, old->uid)) {
507 retval = set_user(new);
508 if (retval < 0)
509 goto error;
510 }
511 if (ruid != (uid_t) -1 ||
512 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
513 new->suid = new->euid;
514 new->fsuid = new->euid;
515
516 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
517 if (retval < 0)
518 goto error;
519
520 return commit_creds(new);
521
522error:
523 abort_creds(new);
524 return retval;
525}
526
527/*
528 * setuid() is implemented like SysV with SAVED_IDS
529 *
530 * Note that SAVED_ID's is deficient in that a setuid root program
531 * like sendmail, for example, cannot set its uid to be a normal
532 * user and then switch back, because if you're root, setuid() sets
533 * the saved uid too. If you don't like this, blame the bright people
534 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
535 * will allow a root program to temporarily drop privileges and be able to
536 * regain them by swapping the real and effective uid.
537 */
538SYSCALL_DEFINE1(setuid, uid_t, uid)
539{
540 struct user_namespace *ns = current_user_ns();
541 const struct cred *old;
542 struct cred *new;
543 int retval;
544 kuid_t kuid;
545
546 kuid = make_kuid(ns, uid);
547 if (!uid_valid(kuid))
548 return -EINVAL;
549
550 new = prepare_creds();
551 if (!new)
552 return -ENOMEM;
553 old = current_cred();
554
555 retval = -EPERM;
556 if (ns_capable(old->user_ns, CAP_SETUID)) {
557 new->suid = new->uid = kuid;
558 if (!uid_eq(kuid, old->uid)) {
559 retval = set_user(new);
560 if (retval < 0)
561 goto error;
562 }
563 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
564 goto error;
565 }
566
567 new->fsuid = new->euid = kuid;
568
569 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
570 if (retval < 0)
571 goto error;
572
573 return commit_creds(new);
574
575error:
576 abort_creds(new);
577 return retval;
578}
579
580
581/*
582 * This function implements a generic ability to update ruid, euid,
583 * and suid. This allows you to implement the 4.4 compatible seteuid().
584 */
585SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
586{
587 struct user_namespace *ns = current_user_ns();
588 const struct cred *old;
589 struct cred *new;
590 int retval;
591 kuid_t kruid, keuid, ksuid;
592
593 kruid = make_kuid(ns, ruid);
594 keuid = make_kuid(ns, euid);
595 ksuid = make_kuid(ns, suid);
596
597 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
598 return -EINVAL;
599
600 if ((euid != (uid_t) -1) && !uid_valid(keuid))
601 return -EINVAL;
602
603 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
604 return -EINVAL;
605
606 new = prepare_creds();
607 if (!new)
608 return -ENOMEM;
609
610 old = current_cred();
611
612 retval = -EPERM;
613 if (!ns_capable(old->user_ns, CAP_SETUID)) {
614 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
615 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
616 goto error;
617 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
618 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
619 goto error;
620 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
621 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
622 goto error;
623 }
624
625 if (ruid != (uid_t) -1) {
626 new->uid = kruid;
627 if (!uid_eq(kruid, old->uid)) {
628 retval = set_user(new);
629 if (retval < 0)
630 goto error;
631 }
632 }
633 if (euid != (uid_t) -1)
634 new->euid = keuid;
635 if (suid != (uid_t) -1)
636 new->suid = ksuid;
637 new->fsuid = new->euid;
638
639 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
640 if (retval < 0)
641 goto error;
642
643 return commit_creds(new);
644
645error:
646 abort_creds(new);
647 return retval;
648}
649
650SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
651{
652 const struct cred *cred = current_cred();
653 int retval;
654 uid_t ruid, euid, suid;
655
656 ruid = from_kuid_munged(cred->user_ns, cred->uid);
657 euid = from_kuid_munged(cred->user_ns, cred->euid);
658 suid = from_kuid_munged(cred->user_ns, cred->suid);
659
660 retval = put_user(ruid, ruidp);
661 if (!retval) {
662 retval = put_user(euid, euidp);
663 if (!retval)
664 return put_user(suid, suidp);
665 }
666 return retval;
667}
668
669/*
670 * Same as above, but for rgid, egid, sgid.
671 */
672SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
673{
674 struct user_namespace *ns = current_user_ns();
675 const struct cred *old;
676 struct cred *new;
677 int retval;
678 kgid_t krgid, kegid, ksgid;
679
680 krgid = make_kgid(ns, rgid);
681 kegid = make_kgid(ns, egid);
682 ksgid = make_kgid(ns, sgid);
683
684 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
685 return -EINVAL;
686 if ((egid != (gid_t) -1) && !gid_valid(kegid))
687 return -EINVAL;
688 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
689 return -EINVAL;
690
691 new = prepare_creds();
692 if (!new)
693 return -ENOMEM;
694 old = current_cred();
695
696 retval = -EPERM;
697 if (!ns_capable(old->user_ns, CAP_SETGID)) {
698 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
699 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
700 goto error;
701 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
702 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
703 goto error;
704 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
705 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
706 goto error;
707 }
708
709 if (rgid != (gid_t) -1)
710 new->gid = krgid;
711 if (egid != (gid_t) -1)
712 new->egid = kegid;
713 if (sgid != (gid_t) -1)
714 new->sgid = ksgid;
715 new->fsgid = new->egid;
716
717 return commit_creds(new);
718
719error:
720 abort_creds(new);
721 return retval;
722}
723
724SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
725{
726 const struct cred *cred = current_cred();
727 int retval;
728 gid_t rgid, egid, sgid;
729
730 rgid = from_kgid_munged(cred->user_ns, cred->gid);
731 egid = from_kgid_munged(cred->user_ns, cred->egid);
732 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
733
734 retval = put_user(rgid, rgidp);
735 if (!retval) {
736 retval = put_user(egid, egidp);
737 if (!retval)
738 retval = put_user(sgid, sgidp);
739 }
740
741 return retval;
742}
743
744
745/*
746 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
747 * is used for "access()" and for the NFS daemon (letting nfsd stay at
748 * whatever uid it wants to). It normally shadows "euid", except when
749 * explicitly set by setfsuid() or for access..
750 */
751SYSCALL_DEFINE1(setfsuid, uid_t, uid)
752{
753 const struct cred *old;
754 struct cred *new;
755 uid_t old_fsuid;
756 kuid_t kuid;
757
758 old = current_cred();
759 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
760
761 kuid = make_kuid(old->user_ns, uid);
762 if (!uid_valid(kuid))
763 return old_fsuid;
764
765 new = prepare_creds();
766 if (!new)
767 return old_fsuid;
768
769 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
770 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
771 ns_capable(old->user_ns, CAP_SETUID)) {
772 if (!uid_eq(kuid, old->fsuid)) {
773 new->fsuid = kuid;
774 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
775 goto change_okay;
776 }
777 }
778
779 abort_creds(new);
780 return old_fsuid;
781
782change_okay:
783 commit_creds(new);
784 return old_fsuid;
785}
786
787/*
788 * Samma på svenska..
789 */
790SYSCALL_DEFINE1(setfsgid, gid_t, gid)
791{
792 const struct cred *old;
793 struct cred *new;
794 gid_t old_fsgid;
795 kgid_t kgid;
796
797 old = current_cred();
798 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
799
800 kgid = make_kgid(old->user_ns, gid);
801 if (!gid_valid(kgid))
802 return old_fsgid;
803
804 new = prepare_creds();
805 if (!new)
806 return old_fsgid;
807
808 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
809 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
810 ns_capable(old->user_ns, CAP_SETGID)) {
811 if (!gid_eq(kgid, old->fsgid)) {
812 new->fsgid = kgid;
813 goto change_okay;
814 }
815 }
816
817 abort_creds(new);
818 return old_fsgid;
819
820change_okay:
821 commit_creds(new);
822 return old_fsgid;
823}
824#endif /* CONFIG_MULTIUSER */
825
826/**
827 * sys_getpid - return the thread group id of the current process
828 *
829 * Note, despite the name, this returns the tgid not the pid. The tgid and
830 * the pid are identical unless CLONE_THREAD was specified on clone() in
831 * which case the tgid is the same in all threads of the same group.
832 *
833 * This is SMP safe as current->tgid does not change.
834 */
835SYSCALL_DEFINE0(getpid)
836{
837 return task_tgid_vnr(current);
838}
839
840/* Thread ID - the internal kernel "pid" */
841SYSCALL_DEFINE0(gettid)
842{
843 return task_pid_vnr(current);
844}
845
846/*
847 * Accessing ->real_parent is not SMP-safe, it could
848 * change from under us. However, we can use a stale
849 * value of ->real_parent under rcu_read_lock(), see
850 * release_task()->call_rcu(delayed_put_task_struct).
851 */
852SYSCALL_DEFINE0(getppid)
853{
854 int pid;
855
856 rcu_read_lock();
857 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
858 rcu_read_unlock();
859
860 return pid;
861}
862
863SYSCALL_DEFINE0(getuid)
864{
865 /* Only we change this so SMP safe */
866 return from_kuid_munged(current_user_ns(), current_uid());
867}
868
869SYSCALL_DEFINE0(geteuid)
870{
871 /* Only we change this so SMP safe */
872 return from_kuid_munged(current_user_ns(), current_euid());
873}
874
875SYSCALL_DEFINE0(getgid)
876{
877 /* Only we change this so SMP safe */
878 return from_kgid_munged(current_user_ns(), current_gid());
879}
880
881SYSCALL_DEFINE0(getegid)
882{
883 /* Only we change this so SMP safe */
884 return from_kgid_munged(current_user_ns(), current_egid());
885}
886
887void do_sys_times(struct tms *tms)
888{
889 cputime_t tgutime, tgstime, cutime, cstime;
890
891 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
892 cutime = current->signal->cutime;
893 cstime = current->signal->cstime;
894 tms->tms_utime = cputime_to_clock_t(tgutime);
895 tms->tms_stime = cputime_to_clock_t(tgstime);
896 tms->tms_cutime = cputime_to_clock_t(cutime);
897 tms->tms_cstime = cputime_to_clock_t(cstime);
898}
899
900SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
901{
902 if (tbuf) {
903 struct tms tmp;
904
905 do_sys_times(&tmp);
906 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
907 return -EFAULT;
908 }
909 force_successful_syscall_return();
910 return (long) jiffies_64_to_clock_t(get_jiffies_64());
911}
912
913/*
914 * This needs some heavy checking ...
915 * I just haven't the stomach for it. I also don't fully
916 * understand sessions/pgrp etc. Let somebody who does explain it.
917 *
918 * OK, I think I have the protection semantics right.... this is really
919 * only important on a multi-user system anyway, to make sure one user
920 * can't send a signal to a process owned by another. -TYT, 12/12/91
921 *
922 * !PF_FORKNOEXEC check to conform completely to POSIX.
923 */
924SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
925{
926 struct task_struct *p;
927 struct task_struct *group_leader = current->group_leader;
928 struct pid *pgrp;
929 int err;
930
931 if (!pid)
932 pid = task_pid_vnr(group_leader);
933 if (!pgid)
934 pgid = pid;
935 if (pgid < 0)
936 return -EINVAL;
937 rcu_read_lock();
938
939 /* From this point forward we keep holding onto the tasklist lock
940 * so that our parent does not change from under us. -DaveM
941 */
942 write_lock_irq(&tasklist_lock);
943
944 err = -ESRCH;
945 p = find_task_by_vpid(pid);
946 if (!p)
947 goto out;
948
949 err = -EINVAL;
950 if (!thread_group_leader(p))
951 goto out;
952
953 if (same_thread_group(p->real_parent, group_leader)) {
954 err = -EPERM;
955 if (task_session(p) != task_session(group_leader))
956 goto out;
957 err = -EACCES;
958 if (!(p->flags & PF_FORKNOEXEC))
959 goto out;
960 } else {
961 err = -ESRCH;
962 if (p != group_leader)
963 goto out;
964 }
965
966 err = -EPERM;
967 if (p->signal->leader)
968 goto out;
969
970 pgrp = task_pid(p);
971 if (pgid != pid) {
972 struct task_struct *g;
973
974 pgrp = find_vpid(pgid);
975 g = pid_task(pgrp, PIDTYPE_PGID);
976 if (!g || task_session(g) != task_session(group_leader))
977 goto out;
978 }
979
980 err = security_task_setpgid(p, pgid);
981 if (err)
982 goto out;
983
984 if (task_pgrp(p) != pgrp)
985 change_pid(p, PIDTYPE_PGID, pgrp);
986
987 err = 0;
988out:
989 /* All paths lead to here, thus we are safe. -DaveM */
990 write_unlock_irq(&tasklist_lock);
991 rcu_read_unlock();
992 return err;
993}
994
995SYSCALL_DEFINE1(getpgid, pid_t, pid)
996{
997 struct task_struct *p;
998 struct pid *grp;
999 int retval;
1000
1001 rcu_read_lock();
1002 if (!pid)
1003 grp = task_pgrp(current);
1004 else {
1005 retval = -ESRCH;
1006 p = find_task_by_vpid(pid);
1007 if (!p)
1008 goto out;
1009 grp = task_pgrp(p);
1010 if (!grp)
1011 goto out;
1012
1013 retval = security_task_getpgid(p);
1014 if (retval)
1015 goto out;
1016 }
1017 retval = pid_vnr(grp);
1018out:
1019 rcu_read_unlock();
1020 return retval;
1021}
1022
1023#ifdef __ARCH_WANT_SYS_GETPGRP
1024
1025SYSCALL_DEFINE0(getpgrp)
1026{
1027 return sys_getpgid(0);
1028}
1029
1030#endif
1031
1032SYSCALL_DEFINE1(getsid, pid_t, pid)
1033{
1034 struct task_struct *p;
1035 struct pid *sid;
1036 int retval;
1037
1038 rcu_read_lock();
1039 if (!pid)
1040 sid = task_session(current);
1041 else {
1042 retval = -ESRCH;
1043 p = find_task_by_vpid(pid);
1044 if (!p)
1045 goto out;
1046 sid = task_session(p);
1047 if (!sid)
1048 goto out;
1049
1050 retval = security_task_getsid(p);
1051 if (retval)
1052 goto out;
1053 }
1054 retval = pid_vnr(sid);
1055out:
1056 rcu_read_unlock();
1057 return retval;
1058}
1059
1060static void set_special_pids(struct pid *pid)
1061{
1062 struct task_struct *curr = current->group_leader;
1063
1064 if (task_session(curr) != pid)
1065 change_pid(curr, PIDTYPE_SID, pid);
1066
1067 if (task_pgrp(curr) != pid)
1068 change_pid(curr, PIDTYPE_PGID, pid);
1069}
1070
1071SYSCALL_DEFINE0(setsid)
1072{
1073 struct task_struct *group_leader = current->group_leader;
1074 struct pid *sid = task_pid(group_leader);
1075 pid_t session = pid_vnr(sid);
1076 int err = -EPERM;
1077
1078 write_lock_irq(&tasklist_lock);
1079 /* Fail if I am already a session leader */
1080 if (group_leader->signal->leader)
1081 goto out;
1082
1083 /* Fail if a process group id already exists that equals the
1084 * proposed session id.
1085 */
1086 if (pid_task(sid, PIDTYPE_PGID))
1087 goto out;
1088
1089 group_leader->signal->leader = 1;
1090 set_special_pids(sid);
1091
1092 proc_clear_tty(group_leader);
1093
1094 err = session;
1095out:
1096 write_unlock_irq(&tasklist_lock);
1097 if (err > 0) {
1098 proc_sid_connector(group_leader);
1099 sched_autogroup_create_attach(group_leader);
1100 }
1101 return err;
1102}
1103
1104DECLARE_RWSEM(uts_sem);
1105
1106#ifdef COMPAT_UTS_MACHINE
1107#define override_architecture(name) \
1108 (personality(current->personality) == PER_LINUX32 && \
1109 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1110 sizeof(COMPAT_UTS_MACHINE)))
1111#else
1112#define override_architecture(name) 0
1113#endif
1114
1115/*
1116 * Work around broken programs that cannot handle "Linux 3.0".
1117 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1118 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1119 */
1120static int override_release(char __user *release, size_t len)
1121{
1122 int ret = 0;
1123
1124 if (current->personality & UNAME26) {
1125 const char *rest = UTS_RELEASE;
1126 char buf[65] = { 0 };
1127 int ndots = 0;
1128 unsigned v;
1129 size_t copy;
1130
1131 while (*rest) {
1132 if (*rest == '.' && ++ndots >= 3)
1133 break;
1134 if (!isdigit(*rest) && *rest != '.')
1135 break;
1136 rest++;
1137 }
1138 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1139 copy = clamp_t(size_t, len, 1, sizeof(buf));
1140 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1141 ret = copy_to_user(release, buf, copy + 1);
1142 }
1143 return ret;
1144}
1145
1146SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1147{
1148 struct new_utsname tmp;
1149
1150 down_read(&uts_sem);
1151 memcpy(&tmp, utsname(), sizeof(tmp));
1152 up_read(&uts_sem);
1153 if (copy_to_user(name, &tmp, sizeof(tmp)))
1154 return -EFAULT;
1155
1156 if (override_release(name->release, sizeof(name->release)))
1157 return -EFAULT;
1158 if (override_architecture(name))
1159 return -EFAULT;
1160 return 0;
1161}
1162
1163#ifdef __ARCH_WANT_SYS_OLD_UNAME
1164/*
1165 * Old cruft
1166 */
1167SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1168{
1169 struct old_utsname tmp;
1170
1171 if (!name)
1172 return -EFAULT;
1173
1174 down_read(&uts_sem);
1175 memcpy(&tmp, utsname(), sizeof(tmp));
1176 up_read(&uts_sem);
1177 if (copy_to_user(name, &tmp, sizeof(tmp)))
1178 return -EFAULT;
1179
1180 if (override_release(name->release, sizeof(name->release)))
1181 return -EFAULT;
1182 if (override_architecture(name))
1183 return -EFAULT;
1184 return 0;
1185}
1186
1187SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1188{
1189 struct oldold_utsname tmp = {};
1190
1191 if (!name)
1192 return -EFAULT;
1193
1194 down_read(&uts_sem);
1195 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1196 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1197 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1198 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1199 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1200 up_read(&uts_sem);
1201 if (copy_to_user(name, &tmp, sizeof(tmp)))
1202 return -EFAULT;
1203
1204 if (override_architecture(name))
1205 return -EFAULT;
1206 if (override_release(name->release, sizeof(name->release)))
1207 return -EFAULT;
1208 return 0;
1209}
1210#endif
1211
1212SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1213{
1214 int errno;
1215 char tmp[__NEW_UTS_LEN];
1216
1217 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1218 return -EPERM;
1219
1220 if (len < 0 || len > __NEW_UTS_LEN)
1221 return -EINVAL;
1222 errno = -EFAULT;
1223 if (!copy_from_user(tmp, name, len)) {
1224 struct new_utsname *u;
1225
1226 down_write(&uts_sem);
1227 u = utsname();
1228 memcpy(u->nodename, tmp, len);
1229 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1230 errno = 0;
1231 uts_proc_notify(UTS_PROC_HOSTNAME);
1232 up_write(&uts_sem);
1233 }
1234 return errno;
1235}
1236
1237#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1238
1239SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1240{
1241 int i;
1242 struct new_utsname *u;
1243 char tmp[__NEW_UTS_LEN + 1];
1244
1245 if (len < 0)
1246 return -EINVAL;
1247 down_read(&uts_sem);
1248 u = utsname();
1249 i = 1 + strlen(u->nodename);
1250 if (i > len)
1251 i = len;
1252 memcpy(tmp, u->nodename, i);
1253 up_read(&uts_sem);
1254 if (copy_to_user(name, tmp, i))
1255 return -EFAULT;
1256 return 0;
1257}
1258
1259#endif
1260
1261/*
1262 * Only setdomainname; getdomainname can be implemented by calling
1263 * uname()
1264 */
1265SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1266{
1267 int errno;
1268 char tmp[__NEW_UTS_LEN];
1269
1270 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1271 return -EPERM;
1272 if (len < 0 || len > __NEW_UTS_LEN)
1273 return -EINVAL;
1274
1275 errno = -EFAULT;
1276 if (!copy_from_user(tmp, name, len)) {
1277 struct new_utsname *u;
1278
1279 down_write(&uts_sem);
1280 u = utsname();
1281 memcpy(u->domainname, tmp, len);
1282 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1283 errno = 0;
1284 uts_proc_notify(UTS_PROC_DOMAINNAME);
1285 up_write(&uts_sem);
1286 }
1287 return errno;
1288}
1289
1290SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1291{
1292 struct rlimit value;
1293 int ret;
1294
1295 ret = do_prlimit(current, resource, NULL, &value);
1296 if (!ret)
1297 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1298
1299 return ret;
1300}
1301
1302#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1303
1304/*
1305 * Back compatibility for getrlimit. Needed for some apps.
1306 */
1307SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1308 struct rlimit __user *, rlim)
1309{
1310 struct rlimit x;
1311 if (resource >= RLIM_NLIMITS)
1312 return -EINVAL;
1313
1314 resource = array_index_nospec(resource, RLIM_NLIMITS);
1315 task_lock(current->group_leader);
1316 x = current->signal->rlim[resource];
1317 task_unlock(current->group_leader);
1318 if (x.rlim_cur > 0x7FFFFFFF)
1319 x.rlim_cur = 0x7FFFFFFF;
1320 if (x.rlim_max > 0x7FFFFFFF)
1321 x.rlim_max = 0x7FFFFFFF;
1322 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1323}
1324
1325#endif
1326
1327static inline bool rlim64_is_infinity(__u64 rlim64)
1328{
1329#if BITS_PER_LONG < 64
1330 return rlim64 >= ULONG_MAX;
1331#else
1332 return rlim64 == RLIM64_INFINITY;
1333#endif
1334}
1335
1336static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1337{
1338 if (rlim->rlim_cur == RLIM_INFINITY)
1339 rlim64->rlim_cur = RLIM64_INFINITY;
1340 else
1341 rlim64->rlim_cur = rlim->rlim_cur;
1342 if (rlim->rlim_max == RLIM_INFINITY)
1343 rlim64->rlim_max = RLIM64_INFINITY;
1344 else
1345 rlim64->rlim_max = rlim->rlim_max;
1346}
1347
1348static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1349{
1350 if (rlim64_is_infinity(rlim64->rlim_cur))
1351 rlim->rlim_cur = RLIM_INFINITY;
1352 else
1353 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1354 if (rlim64_is_infinity(rlim64->rlim_max))
1355 rlim->rlim_max = RLIM_INFINITY;
1356 else
1357 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1358}
1359
1360/* make sure you are allowed to change @tsk limits before calling this */
1361int do_prlimit(struct task_struct *tsk, unsigned int resource,
1362 struct rlimit *new_rlim, struct rlimit *old_rlim)
1363{
1364 struct rlimit *rlim;
1365 int retval = 0;
1366
1367 if (resource >= RLIM_NLIMITS)
1368 return -EINVAL;
1369 if (new_rlim) {
1370 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1371 return -EINVAL;
1372 if (resource == RLIMIT_NOFILE &&
1373 new_rlim->rlim_max > sysctl_nr_open)
1374 return -EPERM;
1375 }
1376
1377 /* protect tsk->signal and tsk->sighand from disappearing */
1378 read_lock(&tasklist_lock);
1379 if (!tsk->sighand) {
1380 retval = -ESRCH;
1381 goto out;
1382 }
1383
1384 rlim = tsk->signal->rlim + resource;
1385 task_lock(tsk->group_leader);
1386 if (new_rlim) {
1387 /* Keep the capable check against init_user_ns until
1388 cgroups can contain all limits */
1389 if (new_rlim->rlim_max > rlim->rlim_max &&
1390 !capable(CAP_SYS_RESOURCE))
1391 retval = -EPERM;
1392 if (!retval)
1393 retval = security_task_setrlimit(tsk->group_leader,
1394 resource, new_rlim);
1395 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1396 /*
1397 * The caller is asking for an immediate RLIMIT_CPU
1398 * expiry. But we use the zero value to mean "it was
1399 * never set". So let's cheat and make it one second
1400 * instead
1401 */
1402 new_rlim->rlim_cur = 1;
1403 }
1404 }
1405 if (!retval) {
1406 if (old_rlim)
1407 *old_rlim = *rlim;
1408 if (new_rlim)
1409 *rlim = *new_rlim;
1410 }
1411 task_unlock(tsk->group_leader);
1412
1413 /*
1414 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1415 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1416 * very long-standing error, and fixing it now risks breakage of
1417 * applications, so we live with it
1418 */
1419 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1420 new_rlim->rlim_cur != RLIM_INFINITY)
1421 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1422out:
1423 read_unlock(&tasklist_lock);
1424 return retval;
1425}
1426
1427/* rcu lock must be held */
1428static int check_prlimit_permission(struct task_struct *task)
1429{
1430 const struct cred *cred = current_cred(), *tcred;
1431
1432 if (current == task)
1433 return 0;
1434
1435 tcred = __task_cred(task);
1436 if (uid_eq(cred->uid, tcred->euid) &&
1437 uid_eq(cred->uid, tcred->suid) &&
1438 uid_eq(cred->uid, tcred->uid) &&
1439 gid_eq(cred->gid, tcred->egid) &&
1440 gid_eq(cred->gid, tcred->sgid) &&
1441 gid_eq(cred->gid, tcred->gid))
1442 return 0;
1443 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1444 return 0;
1445
1446 return -EPERM;
1447}
1448
1449SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1450 const struct rlimit64 __user *, new_rlim,
1451 struct rlimit64 __user *, old_rlim)
1452{
1453 struct rlimit64 old64, new64;
1454 struct rlimit old, new;
1455 struct task_struct *tsk;
1456 int ret;
1457
1458 if (new_rlim) {
1459 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1460 return -EFAULT;
1461 rlim64_to_rlim(&new64, &new);
1462 }
1463
1464 rcu_read_lock();
1465 tsk = pid ? find_task_by_vpid(pid) : current;
1466 if (!tsk) {
1467 rcu_read_unlock();
1468 return -ESRCH;
1469 }
1470 ret = check_prlimit_permission(tsk);
1471 if (ret) {
1472 rcu_read_unlock();
1473 return ret;
1474 }
1475 get_task_struct(tsk);
1476 rcu_read_unlock();
1477
1478 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1479 old_rlim ? &old : NULL);
1480
1481 if (!ret && old_rlim) {
1482 rlim_to_rlim64(&old, &old64);
1483 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1484 ret = -EFAULT;
1485 }
1486
1487 put_task_struct(tsk);
1488 return ret;
1489}
1490
1491SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1492{
1493 struct rlimit new_rlim;
1494
1495 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1496 return -EFAULT;
1497 return do_prlimit(current, resource, &new_rlim, NULL);
1498}
1499
1500/*
1501 * It would make sense to put struct rusage in the task_struct,
1502 * except that would make the task_struct be *really big*. After
1503 * task_struct gets moved into malloc'ed memory, it would
1504 * make sense to do this. It will make moving the rest of the information
1505 * a lot simpler! (Which we're not doing right now because we're not
1506 * measuring them yet).
1507 *
1508 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1509 * races with threads incrementing their own counters. But since word
1510 * reads are atomic, we either get new values or old values and we don't
1511 * care which for the sums. We always take the siglock to protect reading
1512 * the c* fields from p->signal from races with exit.c updating those
1513 * fields when reaping, so a sample either gets all the additions of a
1514 * given child after it's reaped, or none so this sample is before reaping.
1515 *
1516 * Locking:
1517 * We need to take the siglock for CHILDEREN, SELF and BOTH
1518 * for the cases current multithreaded, non-current single threaded
1519 * non-current multithreaded. Thread traversal is now safe with
1520 * the siglock held.
1521 * Strictly speaking, we donot need to take the siglock if we are current and
1522 * single threaded, as no one else can take our signal_struct away, no one
1523 * else can reap the children to update signal->c* counters, and no one else
1524 * can race with the signal-> fields. If we do not take any lock, the
1525 * signal-> fields could be read out of order while another thread was just
1526 * exiting. So we should place a read memory barrier when we avoid the lock.
1527 * On the writer side, write memory barrier is implied in __exit_signal
1528 * as __exit_signal releases the siglock spinlock after updating the signal->
1529 * fields. But we don't do this yet to keep things simple.
1530 *
1531 */
1532
1533static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1534{
1535 r->ru_nvcsw += t->nvcsw;
1536 r->ru_nivcsw += t->nivcsw;
1537 r->ru_minflt += t->min_flt;
1538 r->ru_majflt += t->maj_flt;
1539 r->ru_inblock += task_io_get_inblock(t);
1540 r->ru_oublock += task_io_get_oublock(t);
1541}
1542
1543static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1544{
1545 struct task_struct *t;
1546 unsigned long flags;
1547 cputime_t tgutime, tgstime, utime, stime;
1548 unsigned long maxrss = 0;
1549
1550 memset((char *)r, 0, sizeof (*r));
1551 utime = stime = 0;
1552
1553 if (who == RUSAGE_THREAD) {
1554 task_cputime_adjusted(current, &utime, &stime);
1555 accumulate_thread_rusage(p, r);
1556 maxrss = p->signal->maxrss;
1557 goto out;
1558 }
1559
1560 if (!lock_task_sighand(p, &flags))
1561 return;
1562
1563 switch (who) {
1564 case RUSAGE_BOTH:
1565 case RUSAGE_CHILDREN:
1566 utime = p->signal->cutime;
1567 stime = p->signal->cstime;
1568 r->ru_nvcsw = p->signal->cnvcsw;
1569 r->ru_nivcsw = p->signal->cnivcsw;
1570 r->ru_minflt = p->signal->cmin_flt;
1571 r->ru_majflt = p->signal->cmaj_flt;
1572 r->ru_inblock = p->signal->cinblock;
1573 r->ru_oublock = p->signal->coublock;
1574 maxrss = p->signal->cmaxrss;
1575
1576 if (who == RUSAGE_CHILDREN)
1577 break;
1578
1579 case RUSAGE_SELF:
1580 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1581 utime += tgutime;
1582 stime += tgstime;
1583 r->ru_nvcsw += p->signal->nvcsw;
1584 r->ru_nivcsw += p->signal->nivcsw;
1585 r->ru_minflt += p->signal->min_flt;
1586 r->ru_majflt += p->signal->maj_flt;
1587 r->ru_inblock += p->signal->inblock;
1588 r->ru_oublock += p->signal->oublock;
1589 if (maxrss < p->signal->maxrss)
1590 maxrss = p->signal->maxrss;
1591 t = p;
1592 do {
1593 accumulate_thread_rusage(t, r);
1594 } while_each_thread(p, t);
1595 break;
1596
1597 default:
1598 BUG();
1599 }
1600 unlock_task_sighand(p, &flags);
1601
1602out:
1603 cputime_to_timeval(utime, &r->ru_utime);
1604 cputime_to_timeval(stime, &r->ru_stime);
1605
1606 if (who != RUSAGE_CHILDREN) {
1607 struct mm_struct *mm = get_task_mm(p);
1608
1609 if (mm) {
1610 setmax_mm_hiwater_rss(&maxrss, mm);
1611 mmput(mm);
1612 }
1613 }
1614 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1615}
1616
1617int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1618{
1619 struct rusage r;
1620
1621 k_getrusage(p, who, &r);
1622 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1623}
1624
1625SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1626{
1627 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1628 who != RUSAGE_THREAD)
1629 return -EINVAL;
1630 return getrusage(current, who, ru);
1631}
1632
1633#ifdef CONFIG_COMPAT
1634COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1635{
1636 struct rusage r;
1637
1638 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1639 who != RUSAGE_THREAD)
1640 return -EINVAL;
1641
1642 k_getrusage(current, who, &r);
1643 return put_compat_rusage(&r, ru);
1644}
1645#endif
1646
1647SYSCALL_DEFINE1(umask, int, mask)
1648{
1649 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1650 return mask;
1651}
1652
1653static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1654{
1655 struct fd exe;
1656 struct file *old_exe, *exe_file;
1657 struct inode *inode;
1658 int err;
1659
1660 exe = fdget(fd);
1661 if (!exe.file)
1662 return -EBADF;
1663
1664 inode = file_inode(exe.file);
1665
1666 /*
1667 * Because the original mm->exe_file points to executable file, make
1668 * sure that this one is executable as well, to avoid breaking an
1669 * overall picture.
1670 */
1671 err = -EACCES;
1672 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1673 goto exit;
1674
1675 err = inode_permission(inode, MAY_EXEC);
1676 if (err)
1677 goto exit;
1678
1679 /*
1680 * Forbid mm->exe_file change if old file still mapped.
1681 */
1682 exe_file = get_mm_exe_file(mm);
1683 err = -EBUSY;
1684 if (exe_file) {
1685 struct vm_area_struct *vma;
1686
1687 down_read(&mm->mmap_sem);
1688 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1689 if (!vma->vm_file)
1690 continue;
1691 if (path_equal(&vma->vm_file->f_path,
1692 &exe_file->f_path))
1693 goto exit_err;
1694 }
1695
1696 up_read(&mm->mmap_sem);
1697 fput(exe_file);
1698 }
1699
1700 /*
1701 * The symlink can be changed only once, just to disallow arbitrary
1702 * transitions malicious software might bring in. This means one
1703 * could make a snapshot over all processes running and monitor
1704 * /proc/pid/exe changes to notice unusual activity if needed.
1705 */
1706 err = -EPERM;
1707 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1708 goto exit;
1709
1710 err = 0;
1711 /* set the new file, lockless */
1712 get_file(exe.file);
1713 old_exe = xchg(&mm->exe_file, exe.file);
1714 if (old_exe)
1715 fput(old_exe);
1716exit:
1717 fdput(exe);
1718 return err;
1719exit_err:
1720 up_read(&mm->mmap_sem);
1721 fput(exe_file);
1722 goto exit;
1723}
1724
1725/*
1726 * WARNING: we don't require any capability here so be very careful
1727 * in what is allowed for modification from userspace.
1728 */
1729static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1730{
1731 unsigned long mmap_max_addr = TASK_SIZE;
1732 struct mm_struct *mm = current->mm;
1733 int error = -EINVAL, i;
1734
1735 static const unsigned char offsets[] = {
1736 offsetof(struct prctl_mm_map, start_code),
1737 offsetof(struct prctl_mm_map, end_code),
1738 offsetof(struct prctl_mm_map, start_data),
1739 offsetof(struct prctl_mm_map, end_data),
1740 offsetof(struct prctl_mm_map, start_brk),
1741 offsetof(struct prctl_mm_map, brk),
1742 offsetof(struct prctl_mm_map, start_stack),
1743 offsetof(struct prctl_mm_map, arg_start),
1744 offsetof(struct prctl_mm_map, arg_end),
1745 offsetof(struct prctl_mm_map, env_start),
1746 offsetof(struct prctl_mm_map, env_end),
1747 };
1748
1749 /*
1750 * Make sure the members are not somewhere outside
1751 * of allowed address space.
1752 */
1753 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1754 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1755
1756 if ((unsigned long)val >= mmap_max_addr ||
1757 (unsigned long)val < mmap_min_addr)
1758 goto out;
1759 }
1760
1761 /*
1762 * Make sure the pairs are ordered.
1763 */
1764#define __prctl_check_order(__m1, __op, __m2) \
1765 ((unsigned long)prctl_map->__m1 __op \
1766 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1767 error = __prctl_check_order(start_code, <, end_code);
1768 error |= __prctl_check_order(start_data, <, end_data);
1769 error |= __prctl_check_order(start_brk, <=, brk);
1770 error |= __prctl_check_order(arg_start, <=, arg_end);
1771 error |= __prctl_check_order(env_start, <=, env_end);
1772 if (error)
1773 goto out;
1774#undef __prctl_check_order
1775
1776 error = -EINVAL;
1777
1778 /*
1779 * @brk should be after @end_data in traditional maps.
1780 */
1781 if (prctl_map->start_brk <= prctl_map->end_data ||
1782 prctl_map->brk <= prctl_map->end_data)
1783 goto out;
1784
1785 /*
1786 * Neither we should allow to override limits if they set.
1787 */
1788 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1789 prctl_map->start_brk, prctl_map->end_data,
1790 prctl_map->start_data))
1791 goto out;
1792
1793 /*
1794 * Someone is trying to cheat the auxv vector.
1795 */
1796 if (prctl_map->auxv_size) {
1797 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1798 goto out;
1799 }
1800
1801 /*
1802 * Finally, make sure the caller has the rights to
1803 * change /proc/pid/exe link: only local root should
1804 * be allowed to.
1805 */
1806 if (prctl_map->exe_fd != (u32)-1) {
1807 struct user_namespace *ns = current_user_ns();
1808 const struct cred *cred = current_cred();
1809
1810 if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1811 !gid_eq(cred->gid, make_kgid(ns, 0)))
1812 goto out;
1813 }
1814
1815 error = 0;
1816out:
1817 return error;
1818}
1819
1820#ifdef CONFIG_CHECKPOINT_RESTORE
1821static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1822{
1823 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1824 unsigned long user_auxv[AT_VECTOR_SIZE];
1825 struct mm_struct *mm = current->mm;
1826 int error;
1827
1828 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1829 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1830
1831 if (opt == PR_SET_MM_MAP_SIZE)
1832 return put_user((unsigned int)sizeof(prctl_map),
1833 (unsigned int __user *)addr);
1834
1835 if (data_size != sizeof(prctl_map))
1836 return -EINVAL;
1837
1838 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1839 return -EFAULT;
1840
1841 error = validate_prctl_map(&prctl_map);
1842 if (error)
1843 return error;
1844
1845 if (prctl_map.auxv_size) {
1846 memset(user_auxv, 0, sizeof(user_auxv));
1847 if (copy_from_user(user_auxv,
1848 (const void __user *)prctl_map.auxv,
1849 prctl_map.auxv_size))
1850 return -EFAULT;
1851
1852 /* Last entry must be AT_NULL as specification requires */
1853 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1854 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1855 }
1856
1857 if (prctl_map.exe_fd != (u32)-1) {
1858 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1859 if (error)
1860 return error;
1861 }
1862
1863 down_write(&mm->mmap_sem);
1864
1865 /*
1866 * We don't validate if these members are pointing to
1867 * real present VMAs because application may have correspond
1868 * VMAs already unmapped and kernel uses these members for statistics
1869 * output in procfs mostly, except
1870 *
1871 * - @start_brk/@brk which are used in do_brk but kernel lookups
1872 * for VMAs when updating these memvers so anything wrong written
1873 * here cause kernel to swear at userspace program but won't lead
1874 * to any problem in kernel itself
1875 */
1876
1877 mm->start_code = prctl_map.start_code;
1878 mm->end_code = prctl_map.end_code;
1879 mm->start_data = prctl_map.start_data;
1880 mm->end_data = prctl_map.end_data;
1881 mm->start_brk = prctl_map.start_brk;
1882 mm->brk = prctl_map.brk;
1883 mm->start_stack = prctl_map.start_stack;
1884 mm->arg_start = prctl_map.arg_start;
1885 mm->arg_end = prctl_map.arg_end;
1886 mm->env_start = prctl_map.env_start;
1887 mm->env_end = prctl_map.env_end;
1888
1889 /*
1890 * Note this update of @saved_auxv is lockless thus
1891 * if someone reads this member in procfs while we're
1892 * updating -- it may get partly updated results. It's
1893 * known and acceptable trade off: we leave it as is to
1894 * not introduce additional locks here making the kernel
1895 * more complex.
1896 */
1897 if (prctl_map.auxv_size)
1898 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1899
1900 up_write(&mm->mmap_sem);
1901 return 0;
1902}
1903#endif /* CONFIG_CHECKPOINT_RESTORE */
1904
1905static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
1906 unsigned long len)
1907{
1908 /*
1909 * This doesn't move the auxiliary vector itself since it's pinned to
1910 * mm_struct, but it permits filling the vector with new values. It's
1911 * up to the caller to provide sane values here, otherwise userspace
1912 * tools which use this vector might be unhappy.
1913 */
1914 unsigned long user_auxv[AT_VECTOR_SIZE];
1915
1916 if (len > sizeof(user_auxv))
1917 return -EINVAL;
1918
1919 if (copy_from_user(user_auxv, (const void __user *)addr, len))
1920 return -EFAULT;
1921
1922 /* Make sure the last entry is always AT_NULL */
1923 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1924 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1925
1926 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1927
1928 task_lock(current);
1929 memcpy(mm->saved_auxv, user_auxv, len);
1930 task_unlock(current);
1931
1932 return 0;
1933}
1934
1935static int prctl_set_mm(int opt, unsigned long addr,
1936 unsigned long arg4, unsigned long arg5)
1937{
1938 struct mm_struct *mm = current->mm;
1939 struct prctl_mm_map prctl_map;
1940 struct vm_area_struct *vma;
1941 int error;
1942
1943 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1944 opt != PR_SET_MM_MAP &&
1945 opt != PR_SET_MM_MAP_SIZE)))
1946 return -EINVAL;
1947
1948#ifdef CONFIG_CHECKPOINT_RESTORE
1949 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1950 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1951#endif
1952
1953 if (!capable(CAP_SYS_RESOURCE))
1954 return -EPERM;
1955
1956 if (opt == PR_SET_MM_EXE_FILE)
1957 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1958
1959 if (opt == PR_SET_MM_AUXV)
1960 return prctl_set_auxv(mm, addr, arg4);
1961
1962 if (addr >= TASK_SIZE || addr < mmap_min_addr)
1963 return -EINVAL;
1964
1965 error = -EINVAL;
1966
1967 down_write(&mm->mmap_sem);
1968 vma = find_vma(mm, addr);
1969
1970 prctl_map.start_code = mm->start_code;
1971 prctl_map.end_code = mm->end_code;
1972 prctl_map.start_data = mm->start_data;
1973 prctl_map.end_data = mm->end_data;
1974 prctl_map.start_brk = mm->start_brk;
1975 prctl_map.brk = mm->brk;
1976 prctl_map.start_stack = mm->start_stack;
1977 prctl_map.arg_start = mm->arg_start;
1978 prctl_map.arg_end = mm->arg_end;
1979 prctl_map.env_start = mm->env_start;
1980 prctl_map.env_end = mm->env_end;
1981 prctl_map.auxv = NULL;
1982 prctl_map.auxv_size = 0;
1983 prctl_map.exe_fd = -1;
1984
1985 switch (opt) {
1986 case PR_SET_MM_START_CODE:
1987 prctl_map.start_code = addr;
1988 break;
1989 case PR_SET_MM_END_CODE:
1990 prctl_map.end_code = addr;
1991 break;
1992 case PR_SET_MM_START_DATA:
1993 prctl_map.start_data = addr;
1994 break;
1995 case PR_SET_MM_END_DATA:
1996 prctl_map.end_data = addr;
1997 break;
1998 case PR_SET_MM_START_STACK:
1999 prctl_map.start_stack = addr;
2000 break;
2001 case PR_SET_MM_START_BRK:
2002 prctl_map.start_brk = addr;
2003 break;
2004 case PR_SET_MM_BRK:
2005 prctl_map.brk = addr;
2006 break;
2007 case PR_SET_MM_ARG_START:
2008 prctl_map.arg_start = addr;
2009 break;
2010 case PR_SET_MM_ARG_END:
2011 prctl_map.arg_end = addr;
2012 break;
2013 case PR_SET_MM_ENV_START:
2014 prctl_map.env_start = addr;
2015 break;
2016 case PR_SET_MM_ENV_END:
2017 prctl_map.env_end = addr;
2018 break;
2019 default:
2020 goto out;
2021 }
2022
2023 error = validate_prctl_map(&prctl_map);
2024 if (error)
2025 goto out;
2026
2027 switch (opt) {
2028 /*
2029 * If command line arguments and environment
2030 * are placed somewhere else on stack, we can
2031 * set them up here, ARG_START/END to setup
2032 * command line argumets and ENV_START/END
2033 * for environment.
2034 */
2035 case PR_SET_MM_START_STACK:
2036 case PR_SET_MM_ARG_START:
2037 case PR_SET_MM_ARG_END:
2038 case PR_SET_MM_ENV_START:
2039 case PR_SET_MM_ENV_END:
2040 if (!vma) {
2041 error = -EFAULT;
2042 goto out;
2043 }
2044 }
2045
2046 mm->start_code = prctl_map.start_code;
2047 mm->end_code = prctl_map.end_code;
2048 mm->start_data = prctl_map.start_data;
2049 mm->end_data = prctl_map.end_data;
2050 mm->start_brk = prctl_map.start_brk;
2051 mm->brk = prctl_map.brk;
2052 mm->start_stack = prctl_map.start_stack;
2053 mm->arg_start = prctl_map.arg_start;
2054 mm->arg_end = prctl_map.arg_end;
2055 mm->env_start = prctl_map.env_start;
2056 mm->env_end = prctl_map.env_end;
2057
2058 error = 0;
2059out:
2060 up_write(&mm->mmap_sem);
2061 return error;
2062}
2063
2064#ifdef CONFIG_CHECKPOINT_RESTORE
2065static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2066{
2067 return put_user(me->clear_child_tid, tid_addr);
2068}
2069#else
2070static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2071{
2072 return -EINVAL;
2073}
2074#endif
2075
2076#ifdef CONFIG_MMU
2077static int prctl_update_vma_anon_name(struct vm_area_struct *vma,
2078 struct vm_area_struct **prev,
2079 unsigned long start, unsigned long end,
2080 const char __user *name_addr)
2081{
2082 struct mm_struct *mm = vma->vm_mm;
2083 int error = 0;
2084 pgoff_t pgoff;
2085
2086 if (name_addr == vma_get_anon_name(vma)) {
2087 *prev = vma;
2088 goto out;
2089 }
2090
2091 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2092 *prev = vma_merge(mm, *prev, start, end, vma->vm_flags, vma->anon_vma,
2093 vma->vm_file, pgoff, vma_policy(vma),
2094 vma->vm_userfaultfd_ctx, name_addr);
2095 if (*prev) {
2096 vma = *prev;
2097 goto success;
2098 }
2099
2100 *prev = vma;
2101
2102 if (start != vma->vm_start) {
2103 error = split_vma(mm, vma, start, 1);
2104 if (error)
2105 goto out;
2106 }
2107
2108 if (end != vma->vm_end) {
2109 error = split_vma(mm, vma, end, 0);
2110 if (error)
2111 goto out;
2112 }
2113
2114success:
2115 if (!vma->vm_file)
2116 vma->anon_name = name_addr;
2117
2118out:
2119 if (error == -ENOMEM)
2120 error = -EAGAIN;
2121 return error;
2122}
2123
2124static int prctl_set_vma_anon_name(unsigned long start, unsigned long end,
2125 unsigned long arg)
2126{
2127 unsigned long tmp;
2128 struct vm_area_struct *vma, *prev;
2129 int unmapped_error = 0;
2130 int error = -EINVAL;
2131
2132 /*
2133 * If the interval [start,end) covers some unmapped address
2134 * ranges, just ignore them, but return -ENOMEM at the end.
2135 * - this matches the handling in madvise.
2136 */
2137 vma = find_vma_prev(current->mm, start, &prev);
2138 if (vma && start > vma->vm_start)
2139 prev = vma;
2140
2141 for (;;) {
2142 /* Still start < end. */
2143 error = -ENOMEM;
2144 if (!vma)
2145 return error;
2146
2147 /* Here start < (end|vma->vm_end). */
2148 if (start < vma->vm_start) {
2149 unmapped_error = -ENOMEM;
2150 start = vma->vm_start;
2151 if (start >= end)
2152 return error;
2153 }
2154
2155 /* Here vma->vm_start <= start < (end|vma->vm_end) */
2156 tmp = vma->vm_end;
2157 if (end < tmp)
2158 tmp = end;
2159
2160 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
2161 error = prctl_update_vma_anon_name(vma, &prev, start, tmp,
2162 (const char __user *)arg);
2163 if (error)
2164 return error;
2165 start = tmp;
2166 if (prev && start < prev->vm_end)
2167 start = prev->vm_end;
2168 error = unmapped_error;
2169 if (start >= end)
2170 return error;
2171 if (prev)
2172 vma = prev->vm_next;
2173 else /* madvise_remove dropped mmap_sem */
2174 vma = find_vma(current->mm, start);
2175 }
2176}
2177
2178static int prctl_set_vma(unsigned long opt, unsigned long start,
2179 unsigned long len_in, unsigned long arg)
2180{
2181 struct mm_struct *mm = current->mm;
2182 int error;
2183 unsigned long len;
2184 unsigned long end;
2185
2186 if (start & ~PAGE_MASK)
2187 return -EINVAL;
2188 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
2189
2190 /* Check to see whether len was rounded up from small -ve to zero */
2191 if (len_in && !len)
2192 return -EINVAL;
2193
2194 end = start + len;
2195 if (end < start)
2196 return -EINVAL;
2197
2198 if (end == start)
2199 return 0;
2200
2201 down_write(&mm->mmap_sem);
2202
2203 switch (opt) {
2204 case PR_SET_VMA_ANON_NAME:
2205 error = prctl_set_vma_anon_name(start, end, arg);
2206 break;
2207 default:
2208 error = -EINVAL;
2209 }
2210
2211 up_write(&mm->mmap_sem);
2212
2213 return error;
2214}
2215#else /* CONFIG_MMU */
2216static int prctl_set_vma(unsigned long opt, unsigned long start,
2217 unsigned long len_in, unsigned long arg)
2218{
2219 return -EINVAL;
2220}
2221#endif
2222
2223int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2224{
2225 return -EINVAL;
2226}
2227
2228int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2229 unsigned long ctrl)
2230{
2231 return -EINVAL;
2232}
2233
2234SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2235 unsigned long, arg4, unsigned long, arg5)
2236{
2237 struct task_struct *me = current;
2238 unsigned char comm[sizeof(me->comm)];
2239 long error;
2240
2241 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2242 if (error != -ENOSYS)
2243 return error;
2244
2245 error = 0;
2246 switch (option) {
2247 case PR_SET_PDEATHSIG:
2248 if (!valid_signal(arg2)) {
2249 error = -EINVAL;
2250 break;
2251 }
2252 me->pdeath_signal = arg2;
2253 break;
2254 case PR_GET_PDEATHSIG:
2255 error = put_user(me->pdeath_signal, (int __user *)arg2);
2256 break;
2257 case PR_GET_DUMPABLE:
2258 error = get_dumpable(me->mm);
2259 break;
2260 case PR_SET_DUMPABLE:
2261 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2262 error = -EINVAL;
2263 break;
2264 }
2265 set_dumpable(me->mm, arg2);
2266 break;
2267
2268 case PR_SET_UNALIGN:
2269 error = SET_UNALIGN_CTL(me, arg2);
2270 break;
2271 case PR_GET_UNALIGN:
2272 error = GET_UNALIGN_CTL(me, arg2);
2273 break;
2274 case PR_SET_FPEMU:
2275 error = SET_FPEMU_CTL(me, arg2);
2276 break;
2277 case PR_GET_FPEMU:
2278 error = GET_FPEMU_CTL(me, arg2);
2279 break;
2280 case PR_SET_FPEXC:
2281 error = SET_FPEXC_CTL(me, arg2);
2282 break;
2283 case PR_GET_FPEXC:
2284 error = GET_FPEXC_CTL(me, arg2);
2285 break;
2286 case PR_GET_TIMING:
2287 error = PR_TIMING_STATISTICAL;
2288 break;
2289 case PR_SET_TIMING:
2290 if (arg2 != PR_TIMING_STATISTICAL)
2291 error = -EINVAL;
2292 break;
2293 case PR_SET_NAME:
2294 comm[sizeof(me->comm) - 1] = 0;
2295 if (strncpy_from_user(comm, (char __user *)arg2,
2296 sizeof(me->comm) - 1) < 0)
2297 return -EFAULT;
2298 set_task_comm(me, comm);
2299 proc_comm_connector(me);
2300 break;
2301 case PR_GET_NAME:
2302 get_task_comm(comm, me);
2303 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2304 return -EFAULT;
2305 break;
2306 case PR_GET_ENDIAN:
2307 error = GET_ENDIAN(me, arg2);
2308 break;
2309 case PR_SET_ENDIAN:
2310 error = SET_ENDIAN(me, arg2);
2311 break;
2312 case PR_GET_SECCOMP:
2313 error = prctl_get_seccomp();
2314 break;
2315 case PR_SET_SECCOMP:
2316 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2317 break;
2318 case PR_GET_TSC:
2319 error = GET_TSC_CTL(arg2);
2320 break;
2321 case PR_SET_TSC:
2322 error = SET_TSC_CTL(arg2);
2323 break;
2324 case PR_TASK_PERF_EVENTS_DISABLE:
2325 error = perf_event_task_disable();
2326 break;
2327 case PR_TASK_PERF_EVENTS_ENABLE:
2328 error = perf_event_task_enable();
2329 break;
2330 case PR_GET_TIMERSLACK:
2331 if (current->timer_slack_ns > ULONG_MAX)
2332 error = ULONG_MAX;
2333 else
2334 error = current->timer_slack_ns;
2335 break;
2336 case PR_SET_TIMERSLACK:
2337 if (arg2 <= 0)
2338 current->timer_slack_ns =
2339 current->default_timer_slack_ns;
2340 else
2341 current->timer_slack_ns = arg2;
2342 break;
2343 case PR_MCE_KILL:
2344 if (arg4 | arg5)
2345 return -EINVAL;
2346 switch (arg2) {
2347 case PR_MCE_KILL_CLEAR:
2348 if (arg3 != 0)
2349 return -EINVAL;
2350 current->flags &= ~PF_MCE_PROCESS;
2351 break;
2352 case PR_MCE_KILL_SET:
2353 current->flags |= PF_MCE_PROCESS;
2354 if (arg3 == PR_MCE_KILL_EARLY)
2355 current->flags |= PF_MCE_EARLY;
2356 else if (arg3 == PR_MCE_KILL_LATE)
2357 current->flags &= ~PF_MCE_EARLY;
2358 else if (arg3 == PR_MCE_KILL_DEFAULT)
2359 current->flags &=
2360 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2361 else
2362 return -EINVAL;
2363 break;
2364 default:
2365 return -EINVAL;
2366 }
2367 break;
2368 case PR_MCE_KILL_GET:
2369 if (arg2 | arg3 | arg4 | arg5)
2370 return -EINVAL;
2371 if (current->flags & PF_MCE_PROCESS)
2372 error = (current->flags & PF_MCE_EARLY) ?
2373 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2374 else
2375 error = PR_MCE_KILL_DEFAULT;
2376 break;
2377 case PR_SET_MM:
2378 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2379 break;
2380 case PR_GET_TID_ADDRESS:
2381 error = prctl_get_tid_address(me, (int __user **)arg2);
2382 break;
2383 case PR_SET_CHILD_SUBREAPER:
2384 me->signal->is_child_subreaper = !!arg2;
2385 break;
2386 case PR_GET_CHILD_SUBREAPER:
2387 error = put_user(me->signal->is_child_subreaper,
2388 (int __user *)arg2);
2389 break;
2390 case PR_SET_NO_NEW_PRIVS:
2391 if (arg2 != 1 || arg3 || arg4 || arg5)
2392 return -EINVAL;
2393
2394 task_set_no_new_privs(current);
2395 break;
2396 case PR_GET_NO_NEW_PRIVS:
2397 if (arg2 || arg3 || arg4 || arg5)
2398 return -EINVAL;
2399 return task_no_new_privs(current) ? 1 : 0;
2400 case PR_GET_THP_DISABLE:
2401 if (arg2 || arg3 || arg4 || arg5)
2402 return -EINVAL;
2403 error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2404 break;
2405 case PR_SET_THP_DISABLE:
2406 if (arg3 || arg4 || arg5)
2407 return -EINVAL;
2408 if (down_write_killable(&me->mm->mmap_sem))
2409 return -EINTR;
2410 if (arg2)
2411 me->mm->def_flags |= VM_NOHUGEPAGE;
2412 else
2413 me->mm->def_flags &= ~VM_NOHUGEPAGE;
2414 up_write(&me->mm->mmap_sem);
2415 break;
2416 case PR_MPX_ENABLE_MANAGEMENT:
2417 if (arg2 || arg3 || arg4 || arg5)
2418 return -EINVAL;
2419 error = MPX_ENABLE_MANAGEMENT();
2420 break;
2421 case PR_MPX_DISABLE_MANAGEMENT:
2422 if (arg2 || arg3 || arg4 || arg5)
2423 return -EINVAL;
2424 error = MPX_DISABLE_MANAGEMENT();
2425 break;
2426 case PR_SET_FP_MODE:
2427 error = SET_FP_MODE(me, arg2);
2428 break;
2429 case PR_GET_FP_MODE:
2430 error = GET_FP_MODE(me);
2431 break;
2432 case PR_GET_SPECULATION_CTRL:
2433 if (arg3 || arg4 || arg5)
2434 return -EINVAL;
2435 error = arch_prctl_spec_ctrl_get(me, arg2);
2436 break;
2437 case PR_SET_SPECULATION_CTRL:
2438 if (arg4 || arg5)
2439 return -EINVAL;
2440 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2441 break;
2442 case PR_SET_VMA:
2443 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2444 break;
2445 default:
2446 error = -EINVAL;
2447 break;
2448 }
2449 return error;
2450}
2451
2452SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2453 struct getcpu_cache __user *, unused)
2454{
2455 int err = 0;
2456 int cpu = raw_smp_processor_id();
2457
2458 if (cpup)
2459 err |= put_user(cpu, cpup);
2460 if (nodep)
2461 err |= put_user(cpu_to_node(cpu), nodep);
2462 return err ? -EFAULT : 0;
2463}
2464
2465/**
2466 * do_sysinfo - fill in sysinfo struct
2467 * @info: pointer to buffer to fill
2468 */
2469static int do_sysinfo(struct sysinfo *info)
2470{
2471 unsigned long mem_total, sav_total;
2472 unsigned int mem_unit, bitcount;
2473 struct timespec tp;
2474
2475 memset(info, 0, sizeof(struct sysinfo));
2476
2477 get_monotonic_boottime(&tp);
2478 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2479
2480 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2481
2482 info->procs = nr_threads;
2483
2484 si_meminfo(info);
2485 si_swapinfo(info);
2486
2487 /*
2488 * If the sum of all the available memory (i.e. ram + swap)
2489 * is less than can be stored in a 32 bit unsigned long then
2490 * we can be binary compatible with 2.2.x kernels. If not,
2491 * well, in that case 2.2.x was broken anyways...
2492 *
2493 * -Erik Andersen <andersee@debian.org>
2494 */
2495
2496 mem_total = info->totalram + info->totalswap;
2497 if (mem_total < info->totalram || mem_total < info->totalswap)
2498 goto out;
2499 bitcount = 0;
2500 mem_unit = info->mem_unit;
2501 while (mem_unit > 1) {
2502 bitcount++;
2503 mem_unit >>= 1;
2504 sav_total = mem_total;
2505 mem_total <<= 1;
2506 if (mem_total < sav_total)
2507 goto out;
2508 }
2509
2510 /*
2511 * If mem_total did not overflow, multiply all memory values by
2512 * info->mem_unit and set it to 1. This leaves things compatible
2513 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2514 * kernels...
2515 */
2516
2517 info->mem_unit = 1;
2518 info->totalram <<= bitcount;
2519 info->freeram <<= bitcount;
2520 info->sharedram <<= bitcount;
2521 info->bufferram <<= bitcount;
2522 info->totalswap <<= bitcount;
2523 info->freeswap <<= bitcount;
2524 info->totalhigh <<= bitcount;
2525 info->freehigh <<= bitcount;
2526
2527out:
2528 return 0;
2529}
2530
2531SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2532{
2533 struct sysinfo val;
2534
2535 do_sysinfo(&val);
2536
2537 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2538 return -EFAULT;
2539
2540 return 0;
2541}
2542
2543#ifdef CONFIG_COMPAT
2544struct compat_sysinfo {
2545 s32 uptime;
2546 u32 loads[3];
2547 u32 totalram;
2548 u32 freeram;
2549 u32 sharedram;
2550 u32 bufferram;
2551 u32 totalswap;
2552 u32 freeswap;
2553 u16 procs;
2554 u16 pad;
2555 u32 totalhigh;
2556 u32 freehigh;
2557 u32 mem_unit;
2558 char _f[20-2*sizeof(u32)-sizeof(int)];
2559};
2560
2561COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2562{
2563 struct sysinfo s;
2564
2565 do_sysinfo(&s);
2566
2567 /* Check to see if any memory value is too large for 32-bit and scale
2568 * down if needed
2569 */
2570 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2571 int bitcount = 0;
2572
2573 while (s.mem_unit < PAGE_SIZE) {
2574 s.mem_unit <<= 1;
2575 bitcount++;
2576 }
2577
2578 s.totalram >>= bitcount;
2579 s.freeram >>= bitcount;
2580 s.sharedram >>= bitcount;
2581 s.bufferram >>= bitcount;
2582 s.totalswap >>= bitcount;
2583 s.freeswap >>= bitcount;
2584 s.totalhigh >>= bitcount;
2585 s.freehigh >>= bitcount;
2586 }
2587
2588 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2589 __put_user(s.uptime, &info->uptime) ||
2590 __put_user(s.loads[0], &info->loads[0]) ||
2591 __put_user(s.loads[1], &info->loads[1]) ||
2592 __put_user(s.loads[2], &info->loads[2]) ||
2593 __put_user(s.totalram, &info->totalram) ||
2594 __put_user(s.freeram, &info->freeram) ||
2595 __put_user(s.sharedram, &info->sharedram) ||
2596 __put_user(s.bufferram, &info->bufferram) ||
2597 __put_user(s.totalswap, &info->totalswap) ||
2598 __put_user(s.freeswap, &info->freeswap) ||
2599 __put_user(s.procs, &info->procs) ||
2600 __put_user(s.totalhigh, &info->totalhigh) ||
2601 __put_user(s.freehigh, &info->freehigh) ||
2602 __put_user(s.mem_unit, &info->mem_unit))
2603 return -EFAULT;
2604
2605 return 0;
2606}
2607#endif /* CONFIG_COMPAT */
2608