summaryrefslogtreecommitdiff
path: root/kernel/workqueue.c (plain)
blob: 6a293cb09a917c8cf98467797ff1b9e37e60d813
1/*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
23 *
24 * Please read Documentation/workqueue.txt for details.
25 */
26
27#include <linux/export.h>
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
38#include <linux/hardirq.h>
39#include <linux/mempolicy.h>
40#include <linux/freezer.h>
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
43#include <linux/lockdep.h>
44#include <linux/idr.h>
45#include <linux/jhash.h>
46#include <linux/hashtable.h>
47#include <linux/rculist.h>
48#include <linux/nodemask.h>
49#include <linux/moduleparam.h>
50#include <linux/uaccess.h>
51#include <linux/nmi.h>
52
53#include "workqueue_internal.h"
54
55enum {
56 /*
57 * worker_pool flags
58 *
59 * A bound pool is either associated or disassociated with its CPU.
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
63 *
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 * be executing on any CPU. The pool behaves as an unbound one.
67 *
68 * Note that DISASSOCIATED should be flipped only while holding
69 * attach_mutex to avoid changing binding state while
70 * worker_attach_to_pool() is in progress.
71 */
72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
74
75 /* worker flags */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give MIN_NICE.
103 */
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
106
107 WQ_NAME_LEN = 24,
108};
109
110/*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * A: pool->attach_mutex protected.
127 *
128 * PL: wq_pool_mutex protected.
129 *
130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
131 *
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
133 *
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
136 *
137 * WQ: wq->mutex protected.
138 *
139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
140 *
141 * MD: wq_mayday_lock protected.
142 */
143
144/* struct worker is defined in workqueue_internal.h */
145
146struct worker_pool {
147 spinlock_t lock; /* the pool lock */
148 int cpu; /* I: the associated cpu */
149 int node; /* I: the associated node ID */
150 int id; /* I: pool ID */
151 unsigned int flags; /* X: flags */
152
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
154
155 struct list_head worklist; /* L: list of pending works */
156 int nr_workers; /* L: total number of workers */
157
158 /* nr_idle includes the ones off idle_list for rebinding */
159 int nr_idle; /* L: currently idle ones */
160
161 struct list_head idle_list; /* X: list of idle workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for workers */
164
165 /* a workers is either on busy_hash or idle_list, or the manager */
166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 /* L: hash of busy workers */
168
169 /* see manage_workers() for details on the two manager mutexes */
170 struct worker *manager; /* L: purely informational */
171 struct mutex attach_mutex; /* attach/detach exclusion */
172 struct list_head workers; /* A: attached workers */
173 struct completion *detach_completion; /* all workers detached */
174
175 struct ida worker_ida; /* worker IDs for task name */
176
177 struct workqueue_attrs *attrs; /* I: worker attributes */
178 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
179 int refcnt; /* PL: refcnt for unbound pools */
180
181 /*
182 * The current concurrency level. As it's likely to be accessed
183 * from other CPUs during try_to_wake_up(), put it in a separate
184 * cacheline.
185 */
186 atomic_t nr_running ____cacheline_aligned_in_smp;
187
188 /*
189 * Destruction of pool is sched-RCU protected to allow dereferences
190 * from get_work_pool().
191 */
192 struct rcu_head rcu;
193} ____cacheline_aligned_in_smp;
194
195/*
196 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
197 * of work_struct->data are used for flags and the remaining high bits
198 * point to the pwq; thus, pwqs need to be aligned at two's power of the
199 * number of flag bits.
200 */
201struct pool_workqueue {
202 struct worker_pool *pool; /* I: the associated pool */
203 struct workqueue_struct *wq; /* I: the owning workqueue */
204 int work_color; /* L: current color */
205 int flush_color; /* L: flushing color */
206 int refcnt; /* L: reference count */
207 int nr_in_flight[WORK_NR_COLORS];
208 /* L: nr of in_flight works */
209 int nr_active; /* L: nr of active works */
210 int max_active; /* L: max active works */
211 struct list_head delayed_works; /* L: delayed works */
212 struct list_head pwqs_node; /* WR: node on wq->pwqs */
213 struct list_head mayday_node; /* MD: node on wq->maydays */
214
215 /*
216 * Release of unbound pwq is punted to system_wq. See put_pwq()
217 * and pwq_unbound_release_workfn() for details. pool_workqueue
218 * itself is also sched-RCU protected so that the first pwq can be
219 * determined without grabbing wq->mutex.
220 */
221 struct work_struct unbound_release_work;
222 struct rcu_head rcu;
223} __aligned(1 << WORK_STRUCT_FLAG_BITS);
224
225/*
226 * Structure used to wait for workqueue flush.
227 */
228struct wq_flusher {
229 struct list_head list; /* WQ: list of flushers */
230 int flush_color; /* WQ: flush color waiting for */
231 struct completion done; /* flush completion */
232};
233
234struct wq_device;
235
236/*
237 * The externally visible workqueue. It relays the issued work items to
238 * the appropriate worker_pool through its pool_workqueues.
239 */
240struct workqueue_struct {
241 struct list_head pwqs; /* WR: all pwqs of this wq */
242 struct list_head list; /* PR: list of all workqueues */
243
244 struct mutex mutex; /* protects this wq */
245 int work_color; /* WQ: current work color */
246 int flush_color; /* WQ: current flush color */
247 atomic_t nr_pwqs_to_flush; /* flush in progress */
248 struct wq_flusher *first_flusher; /* WQ: first flusher */
249 struct list_head flusher_queue; /* WQ: flush waiters */
250 struct list_head flusher_overflow; /* WQ: flush overflow list */
251
252 struct list_head maydays; /* MD: pwqs requesting rescue */
253 struct worker *rescuer; /* I: rescue worker */
254
255 int nr_drainers; /* WQ: drain in progress */
256 int saved_max_active; /* WQ: saved pwq max_active */
257
258 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
259 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
260
261#ifdef CONFIG_SYSFS
262 struct wq_device *wq_dev; /* I: for sysfs interface */
263#endif
264#ifdef CONFIG_LOCKDEP
265 struct lockdep_map lockdep_map;
266#endif
267 char name[WQ_NAME_LEN]; /* I: workqueue name */
268
269 /*
270 * Destruction of workqueue_struct is sched-RCU protected to allow
271 * walking the workqueues list without grabbing wq_pool_mutex.
272 * This is used to dump all workqueues from sysrq.
273 */
274 struct rcu_head rcu;
275
276 /* hot fields used during command issue, aligned to cacheline */
277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280};
281
282static struct kmem_cache *pwq_cache;
283
284static cpumask_var_t *wq_numa_possible_cpumask;
285 /* possible CPUs of each node */
286
287static bool wq_disable_numa;
288module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289
290/* see the comment above the definition of WQ_POWER_EFFICIENT */
291static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293
294bool wq_online; /* can kworkers be created yet? */
295
296static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
297
298/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300
301static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
302static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
303static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
304
305static LIST_HEAD(workqueues); /* PR: list of all workqueues */
306static bool workqueue_freezing; /* PL: have wqs started freezing? */
307
308/* PL: allowable cpus for unbound wqs and work items */
309static cpumask_var_t wq_unbound_cpumask;
310
311/* CPU where unbound work was last round robin scheduled from this CPU */
312static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313
314/*
315 * Local execution of unbound work items is no longer guaranteed. The
316 * following always forces round-robin CPU selection on unbound work items
317 * to uncover usages which depend on it.
318 */
319#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320static bool wq_debug_force_rr_cpu = true;
321#else
322static bool wq_debug_force_rr_cpu = false;
323#endif
324module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325
326/* the per-cpu worker pools */
327static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
328
329static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
330
331/* PL: hash of all unbound pools keyed by pool->attrs */
332static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333
334/* I: attributes used when instantiating standard unbound pools on demand */
335static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336
337/* I: attributes used when instantiating ordered pools on demand */
338static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339
340struct workqueue_struct *system_wq __read_mostly;
341EXPORT_SYMBOL(system_wq);
342struct workqueue_struct *system_highpri_wq __read_mostly;
343EXPORT_SYMBOL_GPL(system_highpri_wq);
344struct workqueue_struct *system_long_wq __read_mostly;
345EXPORT_SYMBOL_GPL(system_long_wq);
346struct workqueue_struct *system_unbound_wq __read_mostly;
347EXPORT_SYMBOL_GPL(system_unbound_wq);
348struct workqueue_struct *system_freezable_wq __read_mostly;
349EXPORT_SYMBOL_GPL(system_freezable_wq);
350struct workqueue_struct *system_power_efficient_wq __read_mostly;
351EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
354
355static int worker_thread(void *__worker);
356static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
357
358#define CREATE_TRACE_POINTS
359#include <trace/events/workqueue.h>
360
361#define assert_rcu_or_pool_mutex() \
362 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
363 !lockdep_is_held(&wq_pool_mutex), \
364 "sched RCU or wq_pool_mutex should be held")
365
366#define assert_rcu_or_wq_mutex(wq) \
367 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
368 !lockdep_is_held(&wq->mutex), \
369 "sched RCU or wq->mutex should be held")
370
371#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
372 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
373 !lockdep_is_held(&wq->mutex) && \
374 !lockdep_is_held(&wq_pool_mutex), \
375 "sched RCU, wq->mutex or wq_pool_mutex should be held")
376
377#define for_each_cpu_worker_pool(pool, cpu) \
378 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
379 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
380 (pool)++)
381
382/**
383 * for_each_pool - iterate through all worker_pools in the system
384 * @pool: iteration cursor
385 * @pi: integer used for iteration
386 *
387 * This must be called either with wq_pool_mutex held or sched RCU read
388 * locked. If the pool needs to be used beyond the locking in effect, the
389 * caller is responsible for guaranteeing that the pool stays online.
390 *
391 * The if/else clause exists only for the lockdep assertion and can be
392 * ignored.
393 */
394#define for_each_pool(pool, pi) \
395 idr_for_each_entry(&worker_pool_idr, pool, pi) \
396 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
397 else
398
399/**
400 * for_each_pool_worker - iterate through all workers of a worker_pool
401 * @worker: iteration cursor
402 * @pool: worker_pool to iterate workers of
403 *
404 * This must be called with @pool->attach_mutex.
405 *
406 * The if/else clause exists only for the lockdep assertion and can be
407 * ignored.
408 */
409#define for_each_pool_worker(worker, pool) \
410 list_for_each_entry((worker), &(pool)->workers, node) \
411 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
412 else
413
414/**
415 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416 * @pwq: iteration cursor
417 * @wq: the target workqueue
418 *
419 * This must be called either with wq->mutex held or sched RCU read locked.
420 * If the pwq needs to be used beyond the locking in effect, the caller is
421 * responsible for guaranteeing that the pwq stays online.
422 *
423 * The if/else clause exists only for the lockdep assertion and can be
424 * ignored.
425 */
426#define for_each_pwq(pwq, wq) \
427 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
428 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
429 else
430
431#ifdef CONFIG_DEBUG_OBJECTS_WORK
432
433static struct debug_obj_descr work_debug_descr;
434
435static void *work_debug_hint(void *addr)
436{
437 return ((struct work_struct *) addr)->func;
438}
439
440static bool work_is_static_object(void *addr)
441{
442 struct work_struct *work = addr;
443
444 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445}
446
447/*
448 * fixup_init is called when:
449 * - an active object is initialized
450 */
451static bool work_fixup_init(void *addr, enum debug_obj_state state)
452{
453 struct work_struct *work = addr;
454
455 switch (state) {
456 case ODEBUG_STATE_ACTIVE:
457 cancel_work_sync(work);
458 debug_object_init(work, &work_debug_descr);
459 return true;
460 default:
461 return false;
462 }
463}
464
465/*
466 * fixup_free is called when:
467 * - an active object is freed
468 */
469static bool work_fixup_free(void *addr, enum debug_obj_state state)
470{
471 struct work_struct *work = addr;
472
473 switch (state) {
474 case ODEBUG_STATE_ACTIVE:
475 cancel_work_sync(work);
476 debug_object_free(work, &work_debug_descr);
477 return true;
478 default:
479 return false;
480 }
481}
482
483static struct debug_obj_descr work_debug_descr = {
484 .name = "work_struct",
485 .debug_hint = work_debug_hint,
486 .is_static_object = work_is_static_object,
487 .fixup_init = work_fixup_init,
488 .fixup_free = work_fixup_free,
489};
490
491static inline void debug_work_activate(struct work_struct *work)
492{
493 debug_object_activate(work, &work_debug_descr);
494}
495
496static inline void debug_work_deactivate(struct work_struct *work)
497{
498 debug_object_deactivate(work, &work_debug_descr);
499}
500
501void __init_work(struct work_struct *work, int onstack)
502{
503 if (onstack)
504 debug_object_init_on_stack(work, &work_debug_descr);
505 else
506 debug_object_init(work, &work_debug_descr);
507}
508EXPORT_SYMBOL_GPL(__init_work);
509
510void destroy_work_on_stack(struct work_struct *work)
511{
512 debug_object_free(work, &work_debug_descr);
513}
514EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515
516void destroy_delayed_work_on_stack(struct delayed_work *work)
517{
518 destroy_timer_on_stack(&work->timer);
519 debug_object_free(&work->work, &work_debug_descr);
520}
521EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522
523#else
524static inline void debug_work_activate(struct work_struct *work) { }
525static inline void debug_work_deactivate(struct work_struct *work) { }
526#endif
527
528/**
529 * worker_pool_assign_id - allocate ID and assing it to @pool
530 * @pool: the pool pointer of interest
531 *
532 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533 * successfully, -errno on failure.
534 */
535static int worker_pool_assign_id(struct worker_pool *pool)
536{
537 int ret;
538
539 lockdep_assert_held(&wq_pool_mutex);
540
541 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 GFP_KERNEL);
543 if (ret >= 0) {
544 pool->id = ret;
545 return 0;
546 }
547 return ret;
548}
549
550/**
551 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552 * @wq: the target workqueue
553 * @node: the node ID
554 *
555 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
556 * read locked.
557 * If the pwq needs to be used beyond the locking in effect, the caller is
558 * responsible for guaranteeing that the pwq stays online.
559 *
560 * Return: The unbound pool_workqueue for @node.
561 */
562static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 int node)
564{
565 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566
567 /*
568 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 * delayed item is pending. The plan is to keep CPU -> NODE
570 * mapping valid and stable across CPU on/offlines. Once that
571 * happens, this workaround can be removed.
572 */
573 if (unlikely(node == NUMA_NO_NODE))
574 return wq->dfl_pwq;
575
576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577}
578
579static unsigned int work_color_to_flags(int color)
580{
581 return color << WORK_STRUCT_COLOR_SHIFT;
582}
583
584static int get_work_color(struct work_struct *work)
585{
586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
588}
589
590static int work_next_color(int color)
591{
592 return (color + 1) % WORK_NR_COLORS;
593}
594
595/*
596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597 * contain the pointer to the queued pwq. Once execution starts, the flag
598 * is cleared and the high bits contain OFFQ flags and pool ID.
599 *
600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601 * and clear_work_data() can be used to set the pwq, pool or clear
602 * work->data. These functions should only be called while the work is
603 * owned - ie. while the PENDING bit is set.
604 *
605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606 * corresponding to a work. Pool is available once the work has been
607 * queued anywhere after initialization until it is sync canceled. pwq is
608 * available only while the work item is queued.
609 *
610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611 * canceled. While being canceled, a work item may have its PENDING set
612 * but stay off timer and worklist for arbitrarily long and nobody should
613 * try to steal the PENDING bit.
614 */
615static inline void set_work_data(struct work_struct *work, unsigned long data,
616 unsigned long flags)
617{
618 WARN_ON_ONCE(!work_pending(work));
619 atomic_long_set(&work->data, data | flags | work_static(work));
620}
621
622static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 unsigned long extra_flags)
624{
625 set_work_data(work, (unsigned long)pwq,
626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627}
628
629static void set_work_pool_and_keep_pending(struct work_struct *work,
630 int pool_id)
631{
632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 WORK_STRUCT_PENDING);
634}
635
636static void set_work_pool_and_clear_pending(struct work_struct *work,
637 int pool_id)
638{
639 /*
640 * The following wmb is paired with the implied mb in
641 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 * here are visible to and precede any updates by the next PENDING
643 * owner.
644 */
645 smp_wmb();
646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647 /*
648 * The following mb guarantees that previous clear of a PENDING bit
649 * will not be reordered with any speculative LOADS or STORES from
650 * work->current_func, which is executed afterwards. This possible
651 * reordering can lead to a missed execution on attempt to qeueue
652 * the same @work. E.g. consider this case:
653 *
654 * CPU#0 CPU#1
655 * ---------------------------- --------------------------------
656 *
657 * 1 STORE event_indicated
658 * 2 queue_work_on() {
659 * 3 test_and_set_bit(PENDING)
660 * 4 } set_..._and_clear_pending() {
661 * 5 set_work_data() # clear bit
662 * 6 smp_mb()
663 * 7 work->current_func() {
664 * 8 LOAD event_indicated
665 * }
666 *
667 * Without an explicit full barrier speculative LOAD on line 8 can
668 * be executed before CPU#0 does STORE on line 1. If that happens,
669 * CPU#0 observes the PENDING bit is still set and new execution of
670 * a @work is not queued in a hope, that CPU#1 will eventually
671 * finish the queued @work. Meanwhile CPU#1 does not see
672 * event_indicated is set, because speculative LOAD was executed
673 * before actual STORE.
674 */
675 smp_mb();
676}
677
678static void clear_work_data(struct work_struct *work)
679{
680 smp_wmb(); /* see set_work_pool_and_clear_pending() */
681 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
682}
683
684static struct pool_workqueue *get_work_pwq(struct work_struct *work)
685{
686 unsigned long data = atomic_long_read(&work->data);
687
688 if (data & WORK_STRUCT_PWQ)
689 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 else
691 return NULL;
692}
693
694/**
695 * get_work_pool - return the worker_pool a given work was associated with
696 * @work: the work item of interest
697 *
698 * Pools are created and destroyed under wq_pool_mutex, and allows read
699 * access under sched-RCU read lock. As such, this function should be
700 * called under wq_pool_mutex or with preemption disabled.
701 *
702 * All fields of the returned pool are accessible as long as the above
703 * mentioned locking is in effect. If the returned pool needs to be used
704 * beyond the critical section, the caller is responsible for ensuring the
705 * returned pool is and stays online.
706 *
707 * Return: The worker_pool @work was last associated with. %NULL if none.
708 */
709static struct worker_pool *get_work_pool(struct work_struct *work)
710{
711 unsigned long data = atomic_long_read(&work->data);
712 int pool_id;
713
714 assert_rcu_or_pool_mutex();
715
716 if (data & WORK_STRUCT_PWQ)
717 return ((struct pool_workqueue *)
718 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
719
720 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 if (pool_id == WORK_OFFQ_POOL_NONE)
722 return NULL;
723
724 return idr_find(&worker_pool_idr, pool_id);
725}
726
727/**
728 * get_work_pool_id - return the worker pool ID a given work is associated with
729 * @work: the work item of interest
730 *
731 * Return: The worker_pool ID @work was last associated with.
732 * %WORK_OFFQ_POOL_NONE if none.
733 */
734static int get_work_pool_id(struct work_struct *work)
735{
736 unsigned long data = atomic_long_read(&work->data);
737
738 if (data & WORK_STRUCT_PWQ)
739 return ((struct pool_workqueue *)
740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
741
742 return data >> WORK_OFFQ_POOL_SHIFT;
743}
744
745static void mark_work_canceling(struct work_struct *work)
746{
747 unsigned long pool_id = get_work_pool_id(work);
748
749 pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751}
752
753static bool work_is_canceling(struct work_struct *work)
754{
755 unsigned long data = atomic_long_read(&work->data);
756
757 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
758}
759
760/*
761 * Policy functions. These define the policies on how the global worker
762 * pools are managed. Unless noted otherwise, these functions assume that
763 * they're being called with pool->lock held.
764 */
765
766static bool __need_more_worker(struct worker_pool *pool)
767{
768 return !atomic_read(&pool->nr_running);
769}
770
771/*
772 * Need to wake up a worker? Called from anything but currently
773 * running workers.
774 *
775 * Note that, because unbound workers never contribute to nr_running, this
776 * function will always return %true for unbound pools as long as the
777 * worklist isn't empty.
778 */
779static bool need_more_worker(struct worker_pool *pool)
780{
781 return !list_empty(&pool->worklist) && __need_more_worker(pool);
782}
783
784/* Can I start working? Called from busy but !running workers. */
785static bool may_start_working(struct worker_pool *pool)
786{
787 return pool->nr_idle;
788}
789
790/* Do I need to keep working? Called from currently running workers. */
791static bool keep_working(struct worker_pool *pool)
792{
793 return !list_empty(&pool->worklist) &&
794 atomic_read(&pool->nr_running) <= 1;
795}
796
797/* Do we need a new worker? Called from manager. */
798static bool need_to_create_worker(struct worker_pool *pool)
799{
800 return need_more_worker(pool) && !may_start_working(pool);
801}
802
803/* Do we have too many workers and should some go away? */
804static bool too_many_workers(struct worker_pool *pool)
805{
806 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
807 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 int nr_busy = pool->nr_workers - nr_idle;
809
810 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
811}
812
813/*
814 * Wake up functions.
815 */
816
817/* Return the first idle worker. Safe with preemption disabled */
818static struct worker *first_idle_worker(struct worker_pool *pool)
819{
820 if (unlikely(list_empty(&pool->idle_list)))
821 return NULL;
822
823 return list_first_entry(&pool->idle_list, struct worker, entry);
824}
825
826/**
827 * wake_up_worker - wake up an idle worker
828 * @pool: worker pool to wake worker from
829 *
830 * Wake up the first idle worker of @pool.
831 *
832 * CONTEXT:
833 * spin_lock_irq(pool->lock).
834 */
835static void wake_up_worker(struct worker_pool *pool)
836{
837 struct worker *worker = first_idle_worker(pool);
838
839 if (likely(worker))
840 wake_up_process(worker->task);
841}
842
843/**
844 * wq_worker_waking_up - a worker is waking up
845 * @task: task waking up
846 * @cpu: CPU @task is waking up to
847 *
848 * This function is called during try_to_wake_up() when a worker is
849 * being awoken.
850 *
851 * CONTEXT:
852 * spin_lock_irq(rq->lock)
853 */
854void wq_worker_waking_up(struct task_struct *task, int cpu)
855{
856 struct worker *worker = kthread_data(task);
857
858 if (!(worker->flags & WORKER_NOT_RUNNING)) {
859 WARN_ON_ONCE(worker->pool->cpu != cpu);
860 atomic_inc(&worker->pool->nr_running);
861 }
862}
863
864/**
865 * wq_worker_sleeping - a worker is going to sleep
866 * @task: task going to sleep
867 *
868 * This function is called during schedule() when a busy worker is
869 * going to sleep. Worker on the same cpu can be woken up by
870 * returning pointer to its task.
871 *
872 * CONTEXT:
873 * spin_lock_irq(rq->lock)
874 *
875 * Return:
876 * Worker task on @cpu to wake up, %NULL if none.
877 */
878struct task_struct *wq_worker_sleeping(struct task_struct *task)
879{
880 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
881 struct worker_pool *pool;
882
883 /*
884 * Rescuers, which may not have all the fields set up like normal
885 * workers, also reach here, let's not access anything before
886 * checking NOT_RUNNING.
887 */
888 if (worker->flags & WORKER_NOT_RUNNING)
889 return NULL;
890
891 pool = worker->pool;
892
893 /* this can only happen on the local cpu */
894 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
895 return NULL;
896
897 /*
898 * The counterpart of the following dec_and_test, implied mb,
899 * worklist not empty test sequence is in insert_work().
900 * Please read comment there.
901 *
902 * NOT_RUNNING is clear. This means that we're bound to and
903 * running on the local cpu w/ rq lock held and preemption
904 * disabled, which in turn means that none else could be
905 * manipulating idle_list, so dereferencing idle_list without pool
906 * lock is safe.
907 */
908 if (atomic_dec_and_test(&pool->nr_running) &&
909 !list_empty(&pool->worklist))
910 to_wakeup = first_idle_worker(pool);
911 return to_wakeup ? to_wakeup->task : NULL;
912}
913
914/**
915 * wq_worker_last_func - retrieve worker's last work function
916 *
917 * Determine the last function a worker executed. This is called from
918 * the scheduler to get a worker's last known identity.
919 *
920 * CONTEXT:
921 * spin_lock_irq(rq->lock)
922 *
923 * Return:
924 * The last work function %current executed as a worker, NULL if it
925 * hasn't executed any work yet.
926 */
927work_func_t wq_worker_last_func(struct task_struct *task)
928{
929 struct worker *worker = kthread_data(task);
930
931 return worker->last_func;
932}
933
934/**
935 * worker_set_flags - set worker flags and adjust nr_running accordingly
936 * @worker: self
937 * @flags: flags to set
938 *
939 * Set @flags in @worker->flags and adjust nr_running accordingly.
940 *
941 * CONTEXT:
942 * spin_lock_irq(pool->lock)
943 */
944static inline void worker_set_flags(struct worker *worker, unsigned int flags)
945{
946 struct worker_pool *pool = worker->pool;
947
948 WARN_ON_ONCE(worker->task != current);
949
950 /* If transitioning into NOT_RUNNING, adjust nr_running. */
951 if ((flags & WORKER_NOT_RUNNING) &&
952 !(worker->flags & WORKER_NOT_RUNNING)) {
953 atomic_dec(&pool->nr_running);
954 }
955
956 worker->flags |= flags;
957}
958
959/**
960 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
961 * @worker: self
962 * @flags: flags to clear
963 *
964 * Clear @flags in @worker->flags and adjust nr_running accordingly.
965 *
966 * CONTEXT:
967 * spin_lock_irq(pool->lock)
968 */
969static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
970{
971 struct worker_pool *pool = worker->pool;
972 unsigned int oflags = worker->flags;
973
974 WARN_ON_ONCE(worker->task != current);
975
976 worker->flags &= ~flags;
977
978 /*
979 * If transitioning out of NOT_RUNNING, increment nr_running. Note
980 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
981 * of multiple flags, not a single flag.
982 */
983 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
984 if (!(worker->flags & WORKER_NOT_RUNNING))
985 atomic_inc(&pool->nr_running);
986}
987
988/**
989 * find_worker_executing_work - find worker which is executing a work
990 * @pool: pool of interest
991 * @work: work to find worker for
992 *
993 * Find a worker which is executing @work on @pool by searching
994 * @pool->busy_hash which is keyed by the address of @work. For a worker
995 * to match, its current execution should match the address of @work and
996 * its work function. This is to avoid unwanted dependency between
997 * unrelated work executions through a work item being recycled while still
998 * being executed.
999 *
1000 * This is a bit tricky. A work item may be freed once its execution
1001 * starts and nothing prevents the freed area from being recycled for
1002 * another work item. If the same work item address ends up being reused
1003 * before the original execution finishes, workqueue will identify the
1004 * recycled work item as currently executing and make it wait until the
1005 * current execution finishes, introducing an unwanted dependency.
1006 *
1007 * This function checks the work item address and work function to avoid
1008 * false positives. Note that this isn't complete as one may construct a
1009 * work function which can introduce dependency onto itself through a
1010 * recycled work item. Well, if somebody wants to shoot oneself in the
1011 * foot that badly, there's only so much we can do, and if such deadlock
1012 * actually occurs, it should be easy to locate the culprit work function.
1013 *
1014 * CONTEXT:
1015 * spin_lock_irq(pool->lock).
1016 *
1017 * Return:
1018 * Pointer to worker which is executing @work if found, %NULL
1019 * otherwise.
1020 */
1021static struct worker *find_worker_executing_work(struct worker_pool *pool,
1022 struct work_struct *work)
1023{
1024 struct worker *worker;
1025
1026 hash_for_each_possible(pool->busy_hash, worker, hentry,
1027 (unsigned long)work)
1028 if (worker->current_work == work &&
1029 worker->current_func == work->func)
1030 return worker;
1031
1032 return NULL;
1033}
1034
1035/**
1036 * move_linked_works - move linked works to a list
1037 * @work: start of series of works to be scheduled
1038 * @head: target list to append @work to
1039 * @nextp: out parameter for nested worklist walking
1040 *
1041 * Schedule linked works starting from @work to @head. Work series to
1042 * be scheduled starts at @work and includes any consecutive work with
1043 * WORK_STRUCT_LINKED set in its predecessor.
1044 *
1045 * If @nextp is not NULL, it's updated to point to the next work of
1046 * the last scheduled work. This allows move_linked_works() to be
1047 * nested inside outer list_for_each_entry_safe().
1048 *
1049 * CONTEXT:
1050 * spin_lock_irq(pool->lock).
1051 */
1052static void move_linked_works(struct work_struct *work, struct list_head *head,
1053 struct work_struct **nextp)
1054{
1055 struct work_struct *n;
1056
1057 /*
1058 * Linked worklist will always end before the end of the list,
1059 * use NULL for list head.
1060 */
1061 list_for_each_entry_safe_from(work, n, NULL, entry) {
1062 list_move_tail(&work->entry, head);
1063 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1064 break;
1065 }
1066
1067 /*
1068 * If we're already inside safe list traversal and have moved
1069 * multiple works to the scheduled queue, the next position
1070 * needs to be updated.
1071 */
1072 if (nextp)
1073 *nextp = n;
1074}
1075
1076/**
1077 * get_pwq - get an extra reference on the specified pool_workqueue
1078 * @pwq: pool_workqueue to get
1079 *
1080 * Obtain an extra reference on @pwq. The caller should guarantee that
1081 * @pwq has positive refcnt and be holding the matching pool->lock.
1082 */
1083static void get_pwq(struct pool_workqueue *pwq)
1084{
1085 lockdep_assert_held(&pwq->pool->lock);
1086 WARN_ON_ONCE(pwq->refcnt <= 0);
1087 pwq->refcnt++;
1088}
1089
1090/**
1091 * put_pwq - put a pool_workqueue reference
1092 * @pwq: pool_workqueue to put
1093 *
1094 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1095 * destruction. The caller should be holding the matching pool->lock.
1096 */
1097static void put_pwq(struct pool_workqueue *pwq)
1098{
1099 lockdep_assert_held(&pwq->pool->lock);
1100 if (likely(--pwq->refcnt))
1101 return;
1102 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1103 return;
1104 /*
1105 * @pwq can't be released under pool->lock, bounce to
1106 * pwq_unbound_release_workfn(). This never recurses on the same
1107 * pool->lock as this path is taken only for unbound workqueues and
1108 * the release work item is scheduled on a per-cpu workqueue. To
1109 * avoid lockdep warning, unbound pool->locks are given lockdep
1110 * subclass of 1 in get_unbound_pool().
1111 */
1112 schedule_work(&pwq->unbound_release_work);
1113}
1114
1115/**
1116 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1117 * @pwq: pool_workqueue to put (can be %NULL)
1118 *
1119 * put_pwq() with locking. This function also allows %NULL @pwq.
1120 */
1121static void put_pwq_unlocked(struct pool_workqueue *pwq)
1122{
1123 if (pwq) {
1124 /*
1125 * As both pwqs and pools are sched-RCU protected, the
1126 * following lock operations are safe.
1127 */
1128 spin_lock_irq(&pwq->pool->lock);
1129 put_pwq(pwq);
1130 spin_unlock_irq(&pwq->pool->lock);
1131 }
1132}
1133
1134static void pwq_activate_delayed_work(struct work_struct *work)
1135{
1136 struct pool_workqueue *pwq = get_work_pwq(work);
1137
1138 trace_workqueue_activate_work(work);
1139 if (list_empty(&pwq->pool->worklist))
1140 pwq->pool->watchdog_ts = jiffies;
1141 move_linked_works(work, &pwq->pool->worklist, NULL);
1142 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1143 pwq->nr_active++;
1144}
1145
1146static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1147{
1148 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1149 struct work_struct, entry);
1150
1151 pwq_activate_delayed_work(work);
1152}
1153
1154/**
1155 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1156 * @pwq: pwq of interest
1157 * @color: color of work which left the queue
1158 *
1159 * A work either has completed or is removed from pending queue,
1160 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1161 *
1162 * CONTEXT:
1163 * spin_lock_irq(pool->lock).
1164 */
1165static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1166{
1167 /* uncolored work items don't participate in flushing or nr_active */
1168 if (color == WORK_NO_COLOR)
1169 goto out_put;
1170
1171 pwq->nr_in_flight[color]--;
1172
1173 pwq->nr_active--;
1174 if (!list_empty(&pwq->delayed_works)) {
1175 /* one down, submit a delayed one */
1176 if (pwq->nr_active < pwq->max_active)
1177 pwq_activate_first_delayed(pwq);
1178 }
1179
1180 /* is flush in progress and are we at the flushing tip? */
1181 if (likely(pwq->flush_color != color))
1182 goto out_put;
1183
1184 /* are there still in-flight works? */
1185 if (pwq->nr_in_flight[color])
1186 goto out_put;
1187
1188 /* this pwq is done, clear flush_color */
1189 pwq->flush_color = -1;
1190
1191 /*
1192 * If this was the last pwq, wake up the first flusher. It
1193 * will handle the rest.
1194 */
1195 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1196 complete(&pwq->wq->first_flusher->done);
1197out_put:
1198 put_pwq(pwq);
1199}
1200
1201/**
1202 * try_to_grab_pending - steal work item from worklist and disable irq
1203 * @work: work item to steal
1204 * @is_dwork: @work is a delayed_work
1205 * @flags: place to store irq state
1206 *
1207 * Try to grab PENDING bit of @work. This function can handle @work in any
1208 * stable state - idle, on timer or on worklist.
1209 *
1210 * Return:
1211 * 1 if @work was pending and we successfully stole PENDING
1212 * 0 if @work was idle and we claimed PENDING
1213 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1214 * -ENOENT if someone else is canceling @work, this state may persist
1215 * for arbitrarily long
1216 *
1217 * Note:
1218 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1219 * interrupted while holding PENDING and @work off queue, irq must be
1220 * disabled on entry. This, combined with delayed_work->timer being
1221 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1222 *
1223 * On successful return, >= 0, irq is disabled and the caller is
1224 * responsible for releasing it using local_irq_restore(*@flags).
1225 *
1226 * This function is safe to call from any context including IRQ handler.
1227 */
1228static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1229 unsigned long *flags)
1230{
1231 struct worker_pool *pool;
1232 struct pool_workqueue *pwq;
1233
1234 local_irq_save(*flags);
1235
1236 /* try to steal the timer if it exists */
1237 if (is_dwork) {
1238 struct delayed_work *dwork = to_delayed_work(work);
1239
1240 /*
1241 * dwork->timer is irqsafe. If del_timer() fails, it's
1242 * guaranteed that the timer is not queued anywhere and not
1243 * running on the local CPU.
1244 */
1245 if (likely(del_timer(&dwork->timer)))
1246 return 1;
1247 }
1248
1249 /* try to claim PENDING the normal way */
1250 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1251 return 0;
1252
1253 /*
1254 * The queueing is in progress, or it is already queued. Try to
1255 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1256 */
1257 pool = get_work_pool(work);
1258 if (!pool)
1259 goto fail;
1260
1261 spin_lock(&pool->lock);
1262 /*
1263 * work->data is guaranteed to point to pwq only while the work
1264 * item is queued on pwq->wq, and both updating work->data to point
1265 * to pwq on queueing and to pool on dequeueing are done under
1266 * pwq->pool->lock. This in turn guarantees that, if work->data
1267 * points to pwq which is associated with a locked pool, the work
1268 * item is currently queued on that pool.
1269 */
1270 pwq = get_work_pwq(work);
1271 if (pwq && pwq->pool == pool) {
1272 debug_work_deactivate(work);
1273
1274 /*
1275 * A delayed work item cannot be grabbed directly because
1276 * it might have linked NO_COLOR work items which, if left
1277 * on the delayed_list, will confuse pwq->nr_active
1278 * management later on and cause stall. Make sure the work
1279 * item is activated before grabbing.
1280 */
1281 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1282 pwq_activate_delayed_work(work);
1283
1284 list_del_init(&work->entry);
1285 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1286
1287 /* work->data points to pwq iff queued, point to pool */
1288 set_work_pool_and_keep_pending(work, pool->id);
1289
1290 spin_unlock(&pool->lock);
1291 return 1;
1292 }
1293 spin_unlock(&pool->lock);
1294fail:
1295 local_irq_restore(*flags);
1296 if (work_is_canceling(work))
1297 return -ENOENT;
1298 cpu_relax();
1299 return -EAGAIN;
1300}
1301
1302/**
1303 * insert_work - insert a work into a pool
1304 * @pwq: pwq @work belongs to
1305 * @work: work to insert
1306 * @head: insertion point
1307 * @extra_flags: extra WORK_STRUCT_* flags to set
1308 *
1309 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1310 * work_struct flags.
1311 *
1312 * CONTEXT:
1313 * spin_lock_irq(pool->lock).
1314 */
1315static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1316 struct list_head *head, unsigned int extra_flags)
1317{
1318 struct worker_pool *pool = pwq->pool;
1319
1320 /* we own @work, set data and link */
1321 set_work_pwq(work, pwq, extra_flags);
1322 list_add_tail(&work->entry, head);
1323 get_pwq(pwq);
1324
1325 /*
1326 * Ensure either wq_worker_sleeping() sees the above
1327 * list_add_tail() or we see zero nr_running to avoid workers lying
1328 * around lazily while there are works to be processed.
1329 */
1330 smp_mb();
1331
1332 if (__need_more_worker(pool))
1333 wake_up_worker(pool);
1334}
1335
1336/*
1337 * Test whether @work is being queued from another work executing on the
1338 * same workqueue.
1339 */
1340static bool is_chained_work(struct workqueue_struct *wq)
1341{
1342 struct worker *worker;
1343
1344 worker = current_wq_worker();
1345 /*
1346 * Return %true iff I'm a worker execuing a work item on @wq. If
1347 * I'm @worker, it's safe to dereference it without locking.
1348 */
1349 return worker && worker->current_pwq->wq == wq;
1350}
1351
1352/*
1353 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1354 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1355 * avoid perturbing sensitive tasks.
1356 */
1357static int wq_select_unbound_cpu(int cpu)
1358{
1359 static bool printed_dbg_warning;
1360 int new_cpu;
1361
1362 if (likely(!wq_debug_force_rr_cpu)) {
1363 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1364 return cpu;
1365 } else if (!printed_dbg_warning) {
1366 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1367 printed_dbg_warning = true;
1368 }
1369
1370 if (cpumask_empty(wq_unbound_cpumask))
1371 return cpu;
1372
1373 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1374 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1375 if (unlikely(new_cpu >= nr_cpu_ids)) {
1376 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1377 if (unlikely(new_cpu >= nr_cpu_ids))
1378 return cpu;
1379 }
1380 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1381
1382 return new_cpu;
1383}
1384
1385static void __queue_work(int cpu, struct workqueue_struct *wq,
1386 struct work_struct *work)
1387{
1388 struct pool_workqueue *pwq;
1389 struct worker_pool *last_pool;
1390 struct list_head *worklist;
1391 unsigned int work_flags;
1392 unsigned int req_cpu = cpu;
1393
1394 /*
1395 * While a work item is PENDING && off queue, a task trying to
1396 * steal the PENDING will busy-loop waiting for it to either get
1397 * queued or lose PENDING. Grabbing PENDING and queueing should
1398 * happen with IRQ disabled.
1399 */
1400 WARN_ON_ONCE(!irqs_disabled());
1401
1402 debug_work_activate(work);
1403
1404 /* if draining, only works from the same workqueue are allowed */
1405 if (unlikely(wq->flags & __WQ_DRAINING) &&
1406 WARN_ON_ONCE(!is_chained_work(wq)))
1407 return;
1408retry:
1409 if (req_cpu == WORK_CPU_UNBOUND)
1410 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1411
1412 /* pwq which will be used unless @work is executing elsewhere */
1413 if (!(wq->flags & WQ_UNBOUND))
1414 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1415 else
1416 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1417
1418 /*
1419 * If @work was previously on a different pool, it might still be
1420 * running there, in which case the work needs to be queued on that
1421 * pool to guarantee non-reentrancy.
1422 */
1423 last_pool = get_work_pool(work);
1424 if (last_pool && last_pool != pwq->pool) {
1425 struct worker *worker;
1426
1427 spin_lock(&last_pool->lock);
1428
1429 worker = find_worker_executing_work(last_pool, work);
1430
1431 if (worker && worker->current_pwq->wq == wq) {
1432 pwq = worker->current_pwq;
1433 } else {
1434 /* meh... not running there, queue here */
1435 spin_unlock(&last_pool->lock);
1436 spin_lock(&pwq->pool->lock);
1437 }
1438 } else {
1439 spin_lock(&pwq->pool->lock);
1440 }
1441
1442 /*
1443 * pwq is determined and locked. For unbound pools, we could have
1444 * raced with pwq release and it could already be dead. If its
1445 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1446 * without another pwq replacing it in the numa_pwq_tbl or while
1447 * work items are executing on it, so the retrying is guaranteed to
1448 * make forward-progress.
1449 */
1450 if (unlikely(!pwq->refcnt)) {
1451 if (wq->flags & WQ_UNBOUND) {
1452 spin_unlock(&pwq->pool->lock);
1453 cpu_relax();
1454 goto retry;
1455 }
1456 /* oops */
1457 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1458 wq->name, cpu);
1459 }
1460
1461 /* pwq determined, queue */
1462 trace_workqueue_queue_work(req_cpu, pwq, work);
1463
1464 if (WARN_ON(!list_empty(&work->entry))) {
1465 spin_unlock(&pwq->pool->lock);
1466 return;
1467 }
1468
1469 pwq->nr_in_flight[pwq->work_color]++;
1470 work_flags = work_color_to_flags(pwq->work_color);
1471
1472 if (likely(pwq->nr_active < pwq->max_active)) {
1473 trace_workqueue_activate_work(work);
1474 pwq->nr_active++;
1475 worklist = &pwq->pool->worklist;
1476 if (list_empty(worklist))
1477 pwq->pool->watchdog_ts = jiffies;
1478 } else {
1479 work_flags |= WORK_STRUCT_DELAYED;
1480 worklist = &pwq->delayed_works;
1481 }
1482
1483 insert_work(pwq, work, worklist, work_flags);
1484
1485 spin_unlock(&pwq->pool->lock);
1486}
1487
1488/**
1489 * queue_work_on - queue work on specific cpu
1490 * @cpu: CPU number to execute work on
1491 * @wq: workqueue to use
1492 * @work: work to queue
1493 *
1494 * We queue the work to a specific CPU, the caller must ensure it
1495 * can't go away.
1496 *
1497 * Return: %false if @work was already on a queue, %true otherwise.
1498 */
1499bool queue_work_on(int cpu, struct workqueue_struct *wq,
1500 struct work_struct *work)
1501{
1502 bool ret = false;
1503 unsigned long flags;
1504
1505 local_irq_save(flags);
1506
1507 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1508 __queue_work(cpu, wq, work);
1509 ret = true;
1510 }
1511
1512 local_irq_restore(flags);
1513 return ret;
1514}
1515EXPORT_SYMBOL(queue_work_on);
1516
1517void delayed_work_timer_fn(unsigned long __data)
1518{
1519 struct delayed_work *dwork = (struct delayed_work *)__data;
1520
1521 /* should have been called from irqsafe timer with irq already off */
1522 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1523}
1524EXPORT_SYMBOL(delayed_work_timer_fn);
1525
1526static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1527 struct delayed_work *dwork, unsigned long delay)
1528{
1529 struct timer_list *timer = &dwork->timer;
1530 struct work_struct *work = &dwork->work;
1531
1532 WARN_ON_ONCE(!wq);
1533 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1534 timer->data != (unsigned long)dwork);
1535 WARN_ON_ONCE(timer_pending(timer));
1536 WARN_ON_ONCE(!list_empty(&work->entry));
1537
1538 /*
1539 * If @delay is 0, queue @dwork->work immediately. This is for
1540 * both optimization and correctness. The earliest @timer can
1541 * expire is on the closest next tick and delayed_work users depend
1542 * on that there's no such delay when @delay is 0.
1543 */
1544 if (!delay) {
1545 __queue_work(cpu, wq, &dwork->work);
1546 return;
1547 }
1548
1549 timer_stats_timer_set_start_info(&dwork->timer);
1550
1551 dwork->wq = wq;
1552 dwork->cpu = cpu;
1553 timer->expires = jiffies + delay;
1554
1555 if (unlikely(cpu != WORK_CPU_UNBOUND))
1556 add_timer_on(timer, cpu);
1557 else
1558 add_timer(timer);
1559}
1560
1561/**
1562 * queue_delayed_work_on - queue work on specific CPU after delay
1563 * @cpu: CPU number to execute work on
1564 * @wq: workqueue to use
1565 * @dwork: work to queue
1566 * @delay: number of jiffies to wait before queueing
1567 *
1568 * Return: %false if @work was already on a queue, %true otherwise. If
1569 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1570 * execution.
1571 */
1572bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1573 struct delayed_work *dwork, unsigned long delay)
1574{
1575 struct work_struct *work = &dwork->work;
1576 bool ret = false;
1577 unsigned long flags;
1578
1579 /* read the comment in __queue_work() */
1580 local_irq_save(flags);
1581
1582 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1583 __queue_delayed_work(cpu, wq, dwork, delay);
1584 ret = true;
1585 }
1586
1587 local_irq_restore(flags);
1588 return ret;
1589}
1590EXPORT_SYMBOL(queue_delayed_work_on);
1591
1592/**
1593 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1594 * @cpu: CPU number to execute work on
1595 * @wq: workqueue to use
1596 * @dwork: work to queue
1597 * @delay: number of jiffies to wait before queueing
1598 *
1599 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1600 * modify @dwork's timer so that it expires after @delay. If @delay is
1601 * zero, @work is guaranteed to be scheduled immediately regardless of its
1602 * current state.
1603 *
1604 * Return: %false if @dwork was idle and queued, %true if @dwork was
1605 * pending and its timer was modified.
1606 *
1607 * This function is safe to call from any context including IRQ handler.
1608 * See try_to_grab_pending() for details.
1609 */
1610bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1611 struct delayed_work *dwork, unsigned long delay)
1612{
1613 unsigned long flags;
1614 int ret;
1615
1616 do {
1617 ret = try_to_grab_pending(&dwork->work, true, &flags);
1618 } while (unlikely(ret == -EAGAIN));
1619
1620 if (likely(ret >= 0)) {
1621 __queue_delayed_work(cpu, wq, dwork, delay);
1622 local_irq_restore(flags);
1623 }
1624
1625 /* -ENOENT from try_to_grab_pending() becomes %true */
1626 return ret;
1627}
1628EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1629
1630/**
1631 * worker_enter_idle - enter idle state
1632 * @worker: worker which is entering idle state
1633 *
1634 * @worker is entering idle state. Update stats and idle timer if
1635 * necessary.
1636 *
1637 * LOCKING:
1638 * spin_lock_irq(pool->lock).
1639 */
1640static void worker_enter_idle(struct worker *worker)
1641{
1642 struct worker_pool *pool = worker->pool;
1643
1644 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1645 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1646 (worker->hentry.next || worker->hentry.pprev)))
1647 return;
1648
1649 /* can't use worker_set_flags(), also called from create_worker() */
1650 worker->flags |= WORKER_IDLE;
1651 pool->nr_idle++;
1652 worker->last_active = jiffies;
1653
1654 /* idle_list is LIFO */
1655 list_add(&worker->entry, &pool->idle_list);
1656
1657 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1658 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1659
1660 /*
1661 * Sanity check nr_running. Because wq_unbind_fn() releases
1662 * pool->lock between setting %WORKER_UNBOUND and zapping
1663 * nr_running, the warning may trigger spuriously. Check iff
1664 * unbind is not in progress.
1665 */
1666 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1667 pool->nr_workers == pool->nr_idle &&
1668 atomic_read(&pool->nr_running));
1669}
1670
1671/**
1672 * worker_leave_idle - leave idle state
1673 * @worker: worker which is leaving idle state
1674 *
1675 * @worker is leaving idle state. Update stats.
1676 *
1677 * LOCKING:
1678 * spin_lock_irq(pool->lock).
1679 */
1680static void worker_leave_idle(struct worker *worker)
1681{
1682 struct worker_pool *pool = worker->pool;
1683
1684 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1685 return;
1686 worker_clr_flags(worker, WORKER_IDLE);
1687 pool->nr_idle--;
1688 list_del_init(&worker->entry);
1689}
1690
1691static struct worker *alloc_worker(int node)
1692{
1693 struct worker *worker;
1694
1695 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1696 if (worker) {
1697 INIT_LIST_HEAD(&worker->entry);
1698 INIT_LIST_HEAD(&worker->scheduled);
1699 INIT_LIST_HEAD(&worker->node);
1700 /* on creation a worker is in !idle && prep state */
1701 worker->flags = WORKER_PREP;
1702 }
1703 return worker;
1704}
1705
1706/**
1707 * worker_attach_to_pool() - attach a worker to a pool
1708 * @worker: worker to be attached
1709 * @pool: the target pool
1710 *
1711 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1712 * cpu-binding of @worker are kept coordinated with the pool across
1713 * cpu-[un]hotplugs.
1714 */
1715static void worker_attach_to_pool(struct worker *worker,
1716 struct worker_pool *pool)
1717{
1718 mutex_lock(&pool->attach_mutex);
1719
1720 /*
1721 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1722 * online CPUs. It'll be re-applied when any of the CPUs come up.
1723 */
1724 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1725
1726 /*
1727 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1728 * stable across this function. See the comments above the
1729 * flag definition for details.
1730 */
1731 if (pool->flags & POOL_DISASSOCIATED)
1732 worker->flags |= WORKER_UNBOUND;
1733
1734 list_add_tail(&worker->node, &pool->workers);
1735
1736 mutex_unlock(&pool->attach_mutex);
1737}
1738
1739/**
1740 * worker_detach_from_pool() - detach a worker from its pool
1741 * @worker: worker which is attached to its pool
1742 * @pool: the pool @worker is attached to
1743 *
1744 * Undo the attaching which had been done in worker_attach_to_pool(). The
1745 * caller worker shouldn't access to the pool after detached except it has
1746 * other reference to the pool.
1747 */
1748static void worker_detach_from_pool(struct worker *worker,
1749 struct worker_pool *pool)
1750{
1751 struct completion *detach_completion = NULL;
1752
1753 mutex_lock(&pool->attach_mutex);
1754 list_del(&worker->node);
1755 if (list_empty(&pool->workers))
1756 detach_completion = pool->detach_completion;
1757 mutex_unlock(&pool->attach_mutex);
1758
1759 /* clear leftover flags without pool->lock after it is detached */
1760 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1761
1762 if (detach_completion)
1763 complete(detach_completion);
1764}
1765
1766/**
1767 * create_worker - create a new workqueue worker
1768 * @pool: pool the new worker will belong to
1769 *
1770 * Create and start a new worker which is attached to @pool.
1771 *
1772 * CONTEXT:
1773 * Might sleep. Does GFP_KERNEL allocations.
1774 *
1775 * Return:
1776 * Pointer to the newly created worker.
1777 */
1778static struct worker *create_worker(struct worker_pool *pool)
1779{
1780 struct worker *worker = NULL;
1781 int id = -1;
1782 char id_buf[16];
1783
1784 /* ID is needed to determine kthread name */
1785 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1786 if (id < 0)
1787 goto fail;
1788
1789 worker = alloc_worker(pool->node);
1790 if (!worker)
1791 goto fail;
1792
1793 worker->pool = pool;
1794 worker->id = id;
1795
1796 if (pool->cpu >= 0)
1797 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1798 pool->attrs->nice < 0 ? "H" : "");
1799 else
1800 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1801
1802 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1803 "kworker/%s", id_buf);
1804 if (IS_ERR(worker->task))
1805 goto fail;
1806
1807 set_user_nice(worker->task, pool->attrs->nice);
1808 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1809
1810 /* successful, attach the worker to the pool */
1811 worker_attach_to_pool(worker, pool);
1812
1813 /* start the newly created worker */
1814 spin_lock_irq(&pool->lock);
1815 worker->pool->nr_workers++;
1816 worker_enter_idle(worker);
1817 wake_up_process(worker->task);
1818 spin_unlock_irq(&pool->lock);
1819
1820 return worker;
1821
1822fail:
1823 if (id >= 0)
1824 ida_simple_remove(&pool->worker_ida, id);
1825 kfree(worker);
1826 return NULL;
1827}
1828
1829/**
1830 * destroy_worker - destroy a workqueue worker
1831 * @worker: worker to be destroyed
1832 *
1833 * Destroy @worker and adjust @pool stats accordingly. The worker should
1834 * be idle.
1835 *
1836 * CONTEXT:
1837 * spin_lock_irq(pool->lock).
1838 */
1839static void destroy_worker(struct worker *worker)
1840{
1841 struct worker_pool *pool = worker->pool;
1842
1843 lockdep_assert_held(&pool->lock);
1844
1845 /* sanity check frenzy */
1846 if (WARN_ON(worker->current_work) ||
1847 WARN_ON(!list_empty(&worker->scheduled)) ||
1848 WARN_ON(!(worker->flags & WORKER_IDLE)))
1849 return;
1850
1851 pool->nr_workers--;
1852 pool->nr_idle--;
1853
1854 list_del_init(&worker->entry);
1855 worker->flags |= WORKER_DIE;
1856 wake_up_process(worker->task);
1857}
1858
1859static void idle_worker_timeout(unsigned long __pool)
1860{
1861 struct worker_pool *pool = (void *)__pool;
1862
1863 spin_lock_irq(&pool->lock);
1864
1865 while (too_many_workers(pool)) {
1866 struct worker *worker;
1867 unsigned long expires;
1868
1869 /* idle_list is kept in LIFO order, check the last one */
1870 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1871 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1872
1873 if (time_before(jiffies, expires)) {
1874 mod_timer(&pool->idle_timer, expires);
1875 break;
1876 }
1877
1878 destroy_worker(worker);
1879 }
1880
1881 spin_unlock_irq(&pool->lock);
1882}
1883
1884static void send_mayday(struct work_struct *work)
1885{
1886 struct pool_workqueue *pwq = get_work_pwq(work);
1887 struct workqueue_struct *wq = pwq->wq;
1888
1889 lockdep_assert_held(&wq_mayday_lock);
1890
1891 if (!wq->rescuer)
1892 return;
1893
1894 /* mayday mayday mayday */
1895 if (list_empty(&pwq->mayday_node)) {
1896 /*
1897 * If @pwq is for an unbound wq, its base ref may be put at
1898 * any time due to an attribute change. Pin @pwq until the
1899 * rescuer is done with it.
1900 */
1901 get_pwq(pwq);
1902 list_add_tail(&pwq->mayday_node, &wq->maydays);
1903 wake_up_process(wq->rescuer->task);
1904 }
1905}
1906
1907static void pool_mayday_timeout(unsigned long __pool)
1908{
1909 struct worker_pool *pool = (void *)__pool;
1910 struct work_struct *work;
1911
1912 spin_lock_irq(&pool->lock);
1913 spin_lock(&wq_mayday_lock); /* for wq->maydays */
1914
1915 if (need_to_create_worker(pool)) {
1916 /*
1917 * We've been trying to create a new worker but
1918 * haven't been successful. We might be hitting an
1919 * allocation deadlock. Send distress signals to
1920 * rescuers.
1921 */
1922 list_for_each_entry(work, &pool->worklist, entry)
1923 send_mayday(work);
1924 }
1925
1926 spin_unlock(&wq_mayday_lock);
1927 spin_unlock_irq(&pool->lock);
1928
1929 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1930}
1931
1932/**
1933 * maybe_create_worker - create a new worker if necessary
1934 * @pool: pool to create a new worker for
1935 *
1936 * Create a new worker for @pool if necessary. @pool is guaranteed to
1937 * have at least one idle worker on return from this function. If
1938 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1939 * sent to all rescuers with works scheduled on @pool to resolve
1940 * possible allocation deadlock.
1941 *
1942 * On return, need_to_create_worker() is guaranteed to be %false and
1943 * may_start_working() %true.
1944 *
1945 * LOCKING:
1946 * spin_lock_irq(pool->lock) which may be released and regrabbed
1947 * multiple times. Does GFP_KERNEL allocations. Called only from
1948 * manager.
1949 */
1950static void maybe_create_worker(struct worker_pool *pool)
1951__releases(&pool->lock)
1952__acquires(&pool->lock)
1953{
1954restart:
1955 spin_unlock_irq(&pool->lock);
1956
1957 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1958 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1959
1960 while (true) {
1961 if (create_worker(pool) || !need_to_create_worker(pool))
1962 break;
1963
1964 schedule_timeout_interruptible(CREATE_COOLDOWN);
1965
1966 if (!need_to_create_worker(pool))
1967 break;
1968 }
1969
1970 del_timer_sync(&pool->mayday_timer);
1971 spin_lock_irq(&pool->lock);
1972 /*
1973 * This is necessary even after a new worker was just successfully
1974 * created as @pool->lock was dropped and the new worker might have
1975 * already become busy.
1976 */
1977 if (need_to_create_worker(pool))
1978 goto restart;
1979}
1980
1981/**
1982 * manage_workers - manage worker pool
1983 * @worker: self
1984 *
1985 * Assume the manager role and manage the worker pool @worker belongs
1986 * to. At any given time, there can be only zero or one manager per
1987 * pool. The exclusion is handled automatically by this function.
1988 *
1989 * The caller can safely start processing works on false return. On
1990 * true return, it's guaranteed that need_to_create_worker() is false
1991 * and may_start_working() is true.
1992 *
1993 * CONTEXT:
1994 * spin_lock_irq(pool->lock) which may be released and regrabbed
1995 * multiple times. Does GFP_KERNEL allocations.
1996 *
1997 * Return:
1998 * %false if the pool doesn't need management and the caller can safely
1999 * start processing works, %true if management function was performed and
2000 * the conditions that the caller verified before calling the function may
2001 * no longer be true.
2002 */
2003static bool manage_workers(struct worker *worker)
2004{
2005 struct worker_pool *pool = worker->pool;
2006
2007 if (pool->flags & POOL_MANAGER_ACTIVE)
2008 return false;
2009
2010 pool->flags |= POOL_MANAGER_ACTIVE;
2011 pool->manager = worker;
2012
2013 maybe_create_worker(pool);
2014
2015 pool->manager = NULL;
2016 pool->flags &= ~POOL_MANAGER_ACTIVE;
2017 wake_up(&wq_manager_wait);
2018 return true;
2019}
2020
2021/**
2022 * process_one_work - process single work
2023 * @worker: self
2024 * @work: work to process
2025 *
2026 * Process @work. This function contains all the logics necessary to
2027 * process a single work including synchronization against and
2028 * interaction with other workers on the same cpu, queueing and
2029 * flushing. As long as context requirement is met, any worker can
2030 * call this function to process a work.
2031 *
2032 * CONTEXT:
2033 * spin_lock_irq(pool->lock) which is released and regrabbed.
2034 */
2035static void process_one_work(struct worker *worker, struct work_struct *work)
2036__releases(&pool->lock)
2037__acquires(&pool->lock)
2038{
2039#ifdef CONFIG_AMLOGIC_MODIFY
2040 int work_color;
2041 struct worker *collision;
2042 bool cpu_intensive;
2043 struct pool_workqueue *pwq = get_work_pwq(work);
2044 struct worker_pool *pool = worker->pool;
2045#else
2046 struct pool_workqueue *pwq = get_work_pwq(work);
2047 struct worker_pool *pool = worker->pool;
2048 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2049 int work_color;
2050 struct worker *collision;
2051#endif
2052
2053#ifdef CONFIG_LOCKDEP
2054 /*
2055 * It is permissible to free the struct work_struct from
2056 * inside the function that is called from it, this we need to
2057 * take into account for lockdep too. To avoid bogus "held
2058 * lock freed" warnings as well as problems when looking into
2059 * work->lockdep_map, make a copy and use that here.
2060 */
2061 struct lockdep_map lockdep_map;
2062
2063 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2064#endif
2065#ifdef CONFIG_AMLOGIC_MODIFY
2066 if (!pwq) {
2067 WARN_ONCE(1, "<%s> pwq_NULL <%lx> <%pf>, <%pf> %s\n",
2068 __func__, atomic_long_read(&work->data),
2069 work->func, worker->current_func, worker->desc);
2070 return;
2071 }
2072
2073 cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2074#endif
2075 /* ensure we're on the correct CPU */
2076 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2077 raw_smp_processor_id() != pool->cpu);
2078
2079 /*
2080 * A single work shouldn't be executed concurrently by
2081 * multiple workers on a single cpu. Check whether anyone is
2082 * already processing the work. If so, defer the work to the
2083 * currently executing one.
2084 */
2085 collision = find_worker_executing_work(pool, work);
2086 if (unlikely(collision)) {
2087 move_linked_works(work, &collision->scheduled, NULL);
2088 return;
2089 }
2090
2091 /* claim and dequeue */
2092 debug_work_deactivate(work);
2093 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2094 worker->current_work = work;
2095 worker->current_func = work->func;
2096 worker->current_pwq = pwq;
2097 work_color = get_work_color(work);
2098
2099 list_del_init(&work->entry);
2100
2101 /*
2102 * CPU intensive works don't participate in concurrency management.
2103 * They're the scheduler's responsibility. This takes @worker out
2104 * of concurrency management and the next code block will chain
2105 * execution of the pending work items.
2106 */
2107 if (unlikely(cpu_intensive))
2108 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2109
2110 /*
2111 * Wake up another worker if necessary. The condition is always
2112 * false for normal per-cpu workers since nr_running would always
2113 * be >= 1 at this point. This is used to chain execution of the
2114 * pending work items for WORKER_NOT_RUNNING workers such as the
2115 * UNBOUND and CPU_INTENSIVE ones.
2116 */
2117 if (need_more_worker(pool))
2118 wake_up_worker(pool);
2119
2120 /*
2121 * Record the last pool and clear PENDING which should be the last
2122 * update to @work. Also, do this inside @pool->lock so that
2123 * PENDING and queued state changes happen together while IRQ is
2124 * disabled.
2125 */
2126 set_work_pool_and_clear_pending(work, pool->id);
2127
2128 spin_unlock_irq(&pool->lock);
2129
2130 lock_map_acquire_read(&pwq->wq->lockdep_map);
2131 lock_map_acquire(&lockdep_map);
2132 trace_workqueue_execute_start(work);
2133 worker->current_func(work);
2134 /*
2135 * While we must be careful to not use "work" after this, the trace
2136 * point will only record its address.
2137 */
2138 trace_workqueue_execute_end(work);
2139 lock_map_release(&lockdep_map);
2140 lock_map_release(&pwq->wq->lockdep_map);
2141
2142 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2143 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2144 " last function: %pf\n",
2145 current->comm, preempt_count(), task_pid_nr(current),
2146 worker->current_func);
2147 debug_show_held_locks(current);
2148 dump_stack();
2149 }
2150
2151 /*
2152 * The following prevents a kworker from hogging CPU on !PREEMPT
2153 * kernels, where a requeueing work item waiting for something to
2154 * happen could deadlock with stop_machine as such work item could
2155 * indefinitely requeue itself while all other CPUs are trapped in
2156 * stop_machine. At the same time, report a quiescent RCU state so
2157 * the same condition doesn't freeze RCU.
2158 */
2159 cond_resched_rcu_qs();
2160
2161 spin_lock_irq(&pool->lock);
2162
2163 /* clear cpu intensive status */
2164 if (unlikely(cpu_intensive))
2165 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2166
2167 /* tag the worker for identification in schedule() */
2168 worker->last_func = worker->current_func;
2169
2170 /* we're done with it, release */
2171 hash_del(&worker->hentry);
2172 worker->current_work = NULL;
2173 worker->current_func = NULL;
2174 worker->current_pwq = NULL;
2175 worker->desc_valid = false;
2176 pwq_dec_nr_in_flight(pwq, work_color);
2177}
2178
2179/**
2180 * process_scheduled_works - process scheduled works
2181 * @worker: self
2182 *
2183 * Process all scheduled works. Please note that the scheduled list
2184 * may change while processing a work, so this function repeatedly
2185 * fetches a work from the top and executes it.
2186 *
2187 * CONTEXT:
2188 * spin_lock_irq(pool->lock) which may be released and regrabbed
2189 * multiple times.
2190 */
2191static void process_scheduled_works(struct worker *worker)
2192{
2193 while (!list_empty(&worker->scheduled)) {
2194 struct work_struct *work = list_first_entry(&worker->scheduled,
2195 struct work_struct, entry);
2196 process_one_work(worker, work);
2197 }
2198}
2199
2200/**
2201 * worker_thread - the worker thread function
2202 * @__worker: self
2203 *
2204 * The worker thread function. All workers belong to a worker_pool -
2205 * either a per-cpu one or dynamic unbound one. These workers process all
2206 * work items regardless of their specific target workqueue. The only
2207 * exception is work items which belong to workqueues with a rescuer which
2208 * will be explained in rescuer_thread().
2209 *
2210 * Return: 0
2211 */
2212static int worker_thread(void *__worker)
2213{
2214 struct worker *worker = __worker;
2215 struct worker_pool *pool = worker->pool;
2216
2217 /* tell the scheduler that this is a workqueue worker */
2218 worker->task->flags |= PF_WQ_WORKER;
2219woke_up:
2220 spin_lock_irq(&pool->lock);
2221
2222 /* am I supposed to die? */
2223 if (unlikely(worker->flags & WORKER_DIE)) {
2224 spin_unlock_irq(&pool->lock);
2225 WARN_ON_ONCE(!list_empty(&worker->entry));
2226 worker->task->flags &= ~PF_WQ_WORKER;
2227
2228 set_task_comm(worker->task, "kworker/dying");
2229 ida_simple_remove(&pool->worker_ida, worker->id);
2230 worker_detach_from_pool(worker, pool);
2231 kfree(worker);
2232 return 0;
2233 }
2234
2235 worker_leave_idle(worker);
2236recheck:
2237 /* no more worker necessary? */
2238 if (!need_more_worker(pool))
2239 goto sleep;
2240
2241 /* do we need to manage? */
2242 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2243 goto recheck;
2244
2245 /*
2246 * ->scheduled list can only be filled while a worker is
2247 * preparing to process a work or actually processing it.
2248 * Make sure nobody diddled with it while I was sleeping.
2249 */
2250 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2251
2252 /*
2253 * Finish PREP stage. We're guaranteed to have at least one idle
2254 * worker or that someone else has already assumed the manager
2255 * role. This is where @worker starts participating in concurrency
2256 * management if applicable and concurrency management is restored
2257 * after being rebound. See rebind_workers() for details.
2258 */
2259 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2260
2261 do {
2262 struct work_struct *work =
2263 list_first_entry(&pool->worklist,
2264 struct work_struct, entry);
2265
2266 pool->watchdog_ts = jiffies;
2267
2268 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2269 /* optimization path, not strictly necessary */
2270 process_one_work(worker, work);
2271 if (unlikely(!list_empty(&worker->scheduled)))
2272 process_scheduled_works(worker);
2273 } else {
2274 move_linked_works(work, &worker->scheduled, NULL);
2275 process_scheduled_works(worker);
2276 }
2277 } while (keep_working(pool));
2278
2279 worker_set_flags(worker, WORKER_PREP);
2280sleep:
2281 /*
2282 * pool->lock is held and there's no work to process and no need to
2283 * manage, sleep. Workers are woken up only while holding
2284 * pool->lock or from local cpu, so setting the current state
2285 * before releasing pool->lock is enough to prevent losing any
2286 * event.
2287 */
2288 worker_enter_idle(worker);
2289 __set_current_state(TASK_INTERRUPTIBLE);
2290 spin_unlock_irq(&pool->lock);
2291 schedule();
2292 goto woke_up;
2293}
2294
2295/**
2296 * rescuer_thread - the rescuer thread function
2297 * @__rescuer: self
2298 *
2299 * Workqueue rescuer thread function. There's one rescuer for each
2300 * workqueue which has WQ_MEM_RECLAIM set.
2301 *
2302 * Regular work processing on a pool may block trying to create a new
2303 * worker which uses GFP_KERNEL allocation which has slight chance of
2304 * developing into deadlock if some works currently on the same queue
2305 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2306 * the problem rescuer solves.
2307 *
2308 * When such condition is possible, the pool summons rescuers of all
2309 * workqueues which have works queued on the pool and let them process
2310 * those works so that forward progress can be guaranteed.
2311 *
2312 * This should happen rarely.
2313 *
2314 * Return: 0
2315 */
2316static int rescuer_thread(void *__rescuer)
2317{
2318 struct worker *rescuer = __rescuer;
2319 struct workqueue_struct *wq = rescuer->rescue_wq;
2320 struct list_head *scheduled = &rescuer->scheduled;
2321 bool should_stop;
2322
2323 set_user_nice(current, RESCUER_NICE_LEVEL);
2324
2325 /*
2326 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2327 * doesn't participate in concurrency management.
2328 */
2329 rescuer->task->flags |= PF_WQ_WORKER;
2330repeat:
2331 set_current_state(TASK_INTERRUPTIBLE);
2332
2333 /*
2334 * By the time the rescuer is requested to stop, the workqueue
2335 * shouldn't have any work pending, but @wq->maydays may still have
2336 * pwq(s) queued. This can happen by non-rescuer workers consuming
2337 * all the work items before the rescuer got to them. Go through
2338 * @wq->maydays processing before acting on should_stop so that the
2339 * list is always empty on exit.
2340 */
2341 should_stop = kthread_should_stop();
2342
2343 /* see whether any pwq is asking for help */
2344 spin_lock_irq(&wq_mayday_lock);
2345
2346 while (!list_empty(&wq->maydays)) {
2347 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2348 struct pool_workqueue, mayday_node);
2349 struct worker_pool *pool = pwq->pool;
2350 struct work_struct *work, *n;
2351 bool first = true;
2352
2353 __set_current_state(TASK_RUNNING);
2354 list_del_init(&pwq->mayday_node);
2355
2356 spin_unlock_irq(&wq_mayday_lock);
2357
2358 worker_attach_to_pool(rescuer, pool);
2359
2360 spin_lock_irq(&pool->lock);
2361 rescuer->pool = pool;
2362
2363 /*
2364 * Slurp in all works issued via this workqueue and
2365 * process'em.
2366 */
2367 WARN_ON_ONCE(!list_empty(scheduled));
2368 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2369 if (get_work_pwq(work) == pwq) {
2370 if (first)
2371 pool->watchdog_ts = jiffies;
2372 move_linked_works(work, scheduled, &n);
2373 }
2374 first = false;
2375 }
2376
2377 if (!list_empty(scheduled)) {
2378 process_scheduled_works(rescuer);
2379
2380 /*
2381 * The above execution of rescued work items could
2382 * have created more to rescue through
2383 * pwq_activate_first_delayed() or chained
2384 * queueing. Let's put @pwq back on mayday list so
2385 * that such back-to-back work items, which may be
2386 * being used to relieve memory pressure, don't
2387 * incur MAYDAY_INTERVAL delay inbetween.
2388 */
2389 if (need_to_create_worker(pool)) {
2390 spin_lock(&wq_mayday_lock);
2391 get_pwq(pwq);
2392 list_move_tail(&pwq->mayday_node, &wq->maydays);
2393 spin_unlock(&wq_mayday_lock);
2394 }
2395 }
2396
2397 /*
2398 * Put the reference grabbed by send_mayday(). @pool won't
2399 * go away while we're still attached to it.
2400 */
2401 put_pwq(pwq);
2402
2403 /*
2404 * Leave this pool. If need_more_worker() is %true, notify a
2405 * regular worker; otherwise, we end up with 0 concurrency
2406 * and stalling the execution.
2407 */
2408 if (need_more_worker(pool))
2409 wake_up_worker(pool);
2410
2411 rescuer->pool = NULL;
2412 spin_unlock_irq(&pool->lock);
2413
2414 worker_detach_from_pool(rescuer, pool);
2415
2416 spin_lock_irq(&wq_mayday_lock);
2417 }
2418
2419 spin_unlock_irq(&wq_mayday_lock);
2420
2421 if (should_stop) {
2422 __set_current_state(TASK_RUNNING);
2423 rescuer->task->flags &= ~PF_WQ_WORKER;
2424 return 0;
2425 }
2426
2427 /* rescuers should never participate in concurrency management */
2428 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2429 schedule();
2430 goto repeat;
2431}
2432
2433/**
2434 * check_flush_dependency - check for flush dependency sanity
2435 * @target_wq: workqueue being flushed
2436 * @target_work: work item being flushed (NULL for workqueue flushes)
2437 *
2438 * %current is trying to flush the whole @target_wq or @target_work on it.
2439 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2440 * reclaiming memory or running on a workqueue which doesn't have
2441 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2442 * a deadlock.
2443 */
2444static void check_flush_dependency(struct workqueue_struct *target_wq,
2445 struct work_struct *target_work)
2446{
2447 work_func_t target_func = target_work ? target_work->func : NULL;
2448 struct worker *worker;
2449
2450 if (target_wq->flags & WQ_MEM_RECLAIM)
2451 return;
2452
2453 worker = current_wq_worker();
2454
2455 WARN_ONCE(current->flags & PF_MEMALLOC,
2456 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2457 current->pid, current->comm, target_wq->name, target_func);
2458 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2459 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2460 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2461 worker->current_pwq->wq->name, worker->current_func,
2462 target_wq->name, target_func);
2463}
2464
2465struct wq_barrier {
2466 struct work_struct work;
2467 struct completion done;
2468 struct task_struct *task; /* purely informational */
2469};
2470
2471static void wq_barrier_func(struct work_struct *work)
2472{
2473 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2474 complete(&barr->done);
2475}
2476
2477/**
2478 * insert_wq_barrier - insert a barrier work
2479 * @pwq: pwq to insert barrier into
2480 * @barr: wq_barrier to insert
2481 * @target: target work to attach @barr to
2482 * @worker: worker currently executing @target, NULL if @target is not executing
2483 *
2484 * @barr is linked to @target such that @barr is completed only after
2485 * @target finishes execution. Please note that the ordering
2486 * guarantee is observed only with respect to @target and on the local
2487 * cpu.
2488 *
2489 * Currently, a queued barrier can't be canceled. This is because
2490 * try_to_grab_pending() can't determine whether the work to be
2491 * grabbed is at the head of the queue and thus can't clear LINKED
2492 * flag of the previous work while there must be a valid next work
2493 * after a work with LINKED flag set.
2494 *
2495 * Note that when @worker is non-NULL, @target may be modified
2496 * underneath us, so we can't reliably determine pwq from @target.
2497 *
2498 * CONTEXT:
2499 * spin_lock_irq(pool->lock).
2500 */
2501static void insert_wq_barrier(struct pool_workqueue *pwq,
2502 struct wq_barrier *barr,
2503 struct work_struct *target, struct worker *worker)
2504{
2505 struct list_head *head;
2506 unsigned int linked = 0;
2507
2508 /*
2509 * debugobject calls are safe here even with pool->lock locked
2510 * as we know for sure that this will not trigger any of the
2511 * checks and call back into the fixup functions where we
2512 * might deadlock.
2513 */
2514 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2515 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2516 init_completion(&barr->done);
2517 barr->task = current;
2518
2519 /*
2520 * If @target is currently being executed, schedule the
2521 * barrier to the worker; otherwise, put it after @target.
2522 */
2523 if (worker)
2524 head = worker->scheduled.next;
2525 else {
2526 unsigned long *bits = work_data_bits(target);
2527
2528 head = target->entry.next;
2529 /* there can already be other linked works, inherit and set */
2530 linked = *bits & WORK_STRUCT_LINKED;
2531 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2532 }
2533
2534 debug_work_activate(&barr->work);
2535 insert_work(pwq, &barr->work, head,
2536 work_color_to_flags(WORK_NO_COLOR) | linked);
2537}
2538
2539/**
2540 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2541 * @wq: workqueue being flushed
2542 * @flush_color: new flush color, < 0 for no-op
2543 * @work_color: new work color, < 0 for no-op
2544 *
2545 * Prepare pwqs for workqueue flushing.
2546 *
2547 * If @flush_color is non-negative, flush_color on all pwqs should be
2548 * -1. If no pwq has in-flight commands at the specified color, all
2549 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2550 * has in flight commands, its pwq->flush_color is set to
2551 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2552 * wakeup logic is armed and %true is returned.
2553 *
2554 * The caller should have initialized @wq->first_flusher prior to
2555 * calling this function with non-negative @flush_color. If
2556 * @flush_color is negative, no flush color update is done and %false
2557 * is returned.
2558 *
2559 * If @work_color is non-negative, all pwqs should have the same
2560 * work_color which is previous to @work_color and all will be
2561 * advanced to @work_color.
2562 *
2563 * CONTEXT:
2564 * mutex_lock(wq->mutex).
2565 *
2566 * Return:
2567 * %true if @flush_color >= 0 and there's something to flush. %false
2568 * otherwise.
2569 */
2570static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2571 int flush_color, int work_color)
2572{
2573 bool wait = false;
2574 struct pool_workqueue *pwq;
2575
2576 if (flush_color >= 0) {
2577 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2578 atomic_set(&wq->nr_pwqs_to_flush, 1);
2579 }
2580
2581 for_each_pwq(pwq, wq) {
2582 struct worker_pool *pool = pwq->pool;
2583
2584 spin_lock_irq(&pool->lock);
2585
2586 if (flush_color >= 0) {
2587 WARN_ON_ONCE(pwq->flush_color != -1);
2588
2589 if (pwq->nr_in_flight[flush_color]) {
2590 pwq->flush_color = flush_color;
2591 atomic_inc(&wq->nr_pwqs_to_flush);
2592 wait = true;
2593 }
2594 }
2595
2596 if (work_color >= 0) {
2597 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2598 pwq->work_color = work_color;
2599 }
2600
2601 spin_unlock_irq(&pool->lock);
2602 }
2603
2604 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2605 complete(&wq->first_flusher->done);
2606
2607 return wait;
2608}
2609
2610/**
2611 * flush_workqueue - ensure that any scheduled work has run to completion.
2612 * @wq: workqueue to flush
2613 *
2614 * This function sleeps until all work items which were queued on entry
2615 * have finished execution, but it is not livelocked by new incoming ones.
2616 */
2617void flush_workqueue(struct workqueue_struct *wq)
2618{
2619 struct wq_flusher this_flusher = {
2620 .list = LIST_HEAD_INIT(this_flusher.list),
2621 .flush_color = -1,
2622 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2623 };
2624 int next_color;
2625
2626 if (WARN_ON(!wq_online))
2627 return;
2628
2629 lock_map_acquire(&wq->lockdep_map);
2630 lock_map_release(&wq->lockdep_map);
2631
2632 mutex_lock(&wq->mutex);
2633
2634 /*
2635 * Start-to-wait phase
2636 */
2637 next_color = work_next_color(wq->work_color);
2638
2639 if (next_color != wq->flush_color) {
2640 /*
2641 * Color space is not full. The current work_color
2642 * becomes our flush_color and work_color is advanced
2643 * by one.
2644 */
2645 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2646 this_flusher.flush_color = wq->work_color;
2647 wq->work_color = next_color;
2648
2649 if (!wq->first_flusher) {
2650 /* no flush in progress, become the first flusher */
2651 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2652
2653 wq->first_flusher = &this_flusher;
2654
2655 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2656 wq->work_color)) {
2657 /* nothing to flush, done */
2658 wq->flush_color = next_color;
2659 wq->first_flusher = NULL;
2660 goto out_unlock;
2661 }
2662 } else {
2663 /* wait in queue */
2664 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2665 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2666 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2667 }
2668 } else {
2669 /*
2670 * Oops, color space is full, wait on overflow queue.
2671 * The next flush completion will assign us
2672 * flush_color and transfer to flusher_queue.
2673 */
2674 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2675 }
2676
2677 check_flush_dependency(wq, NULL);
2678
2679 mutex_unlock(&wq->mutex);
2680
2681 wait_for_completion(&this_flusher.done);
2682
2683 /*
2684 * Wake-up-and-cascade phase
2685 *
2686 * First flushers are responsible for cascading flushes and
2687 * handling overflow. Non-first flushers can simply return.
2688 */
2689 if (wq->first_flusher != &this_flusher)
2690 return;
2691
2692 mutex_lock(&wq->mutex);
2693
2694 /* we might have raced, check again with mutex held */
2695 if (wq->first_flusher != &this_flusher)
2696 goto out_unlock;
2697
2698 wq->first_flusher = NULL;
2699
2700 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2701 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2702
2703 while (true) {
2704 struct wq_flusher *next, *tmp;
2705
2706 /* complete all the flushers sharing the current flush color */
2707 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2708 if (next->flush_color != wq->flush_color)
2709 break;
2710 list_del_init(&next->list);
2711 complete(&next->done);
2712 }
2713
2714 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2715 wq->flush_color != work_next_color(wq->work_color));
2716
2717 /* this flush_color is finished, advance by one */
2718 wq->flush_color = work_next_color(wq->flush_color);
2719
2720 /* one color has been freed, handle overflow queue */
2721 if (!list_empty(&wq->flusher_overflow)) {
2722 /*
2723 * Assign the same color to all overflowed
2724 * flushers, advance work_color and append to
2725 * flusher_queue. This is the start-to-wait
2726 * phase for these overflowed flushers.
2727 */
2728 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2729 tmp->flush_color = wq->work_color;
2730
2731 wq->work_color = work_next_color(wq->work_color);
2732
2733 list_splice_tail_init(&wq->flusher_overflow,
2734 &wq->flusher_queue);
2735 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2736 }
2737
2738 if (list_empty(&wq->flusher_queue)) {
2739 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2740 break;
2741 }
2742
2743 /*
2744 * Need to flush more colors. Make the next flusher
2745 * the new first flusher and arm pwqs.
2746 */
2747 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2748 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2749
2750 list_del_init(&next->list);
2751 wq->first_flusher = next;
2752
2753 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2754 break;
2755
2756 /*
2757 * Meh... this color is already done, clear first
2758 * flusher and repeat cascading.
2759 */
2760 wq->first_flusher = NULL;
2761 }
2762
2763out_unlock:
2764 mutex_unlock(&wq->mutex);
2765}
2766EXPORT_SYMBOL(flush_workqueue);
2767
2768/**
2769 * drain_workqueue - drain a workqueue
2770 * @wq: workqueue to drain
2771 *
2772 * Wait until the workqueue becomes empty. While draining is in progress,
2773 * only chain queueing is allowed. IOW, only currently pending or running
2774 * work items on @wq can queue further work items on it. @wq is flushed
2775 * repeatedly until it becomes empty. The number of flushing is determined
2776 * by the depth of chaining and should be relatively short. Whine if it
2777 * takes too long.
2778 */
2779void drain_workqueue(struct workqueue_struct *wq)
2780{
2781 unsigned int flush_cnt = 0;
2782 struct pool_workqueue *pwq;
2783
2784 /*
2785 * __queue_work() needs to test whether there are drainers, is much
2786 * hotter than drain_workqueue() and already looks at @wq->flags.
2787 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2788 */
2789 mutex_lock(&wq->mutex);
2790 if (!wq->nr_drainers++)
2791 wq->flags |= __WQ_DRAINING;
2792 mutex_unlock(&wq->mutex);
2793reflush:
2794 flush_workqueue(wq);
2795
2796 mutex_lock(&wq->mutex);
2797
2798 for_each_pwq(pwq, wq) {
2799 bool drained;
2800
2801 spin_lock_irq(&pwq->pool->lock);
2802 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2803 spin_unlock_irq(&pwq->pool->lock);
2804
2805 if (drained)
2806 continue;
2807
2808 if (++flush_cnt == 10 ||
2809 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2810 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2811 wq->name, flush_cnt);
2812
2813 mutex_unlock(&wq->mutex);
2814 goto reflush;
2815 }
2816
2817 if (!--wq->nr_drainers)
2818 wq->flags &= ~__WQ_DRAINING;
2819 mutex_unlock(&wq->mutex);
2820}
2821EXPORT_SYMBOL_GPL(drain_workqueue);
2822
2823static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2824{
2825 struct worker *worker = NULL;
2826 struct worker_pool *pool;
2827 struct pool_workqueue *pwq;
2828
2829 might_sleep();
2830
2831 local_irq_disable();
2832 pool = get_work_pool(work);
2833 if (!pool) {
2834 local_irq_enable();
2835 return false;
2836 }
2837
2838 spin_lock(&pool->lock);
2839 /* see the comment in try_to_grab_pending() with the same code */
2840 pwq = get_work_pwq(work);
2841 if (pwq) {
2842 if (unlikely(pwq->pool != pool))
2843 goto already_gone;
2844 } else {
2845 worker = find_worker_executing_work(pool, work);
2846 if (!worker)
2847 goto already_gone;
2848 pwq = worker->current_pwq;
2849 }
2850
2851 check_flush_dependency(pwq->wq, work);
2852
2853 insert_wq_barrier(pwq, barr, work, worker);
2854 spin_unlock_irq(&pool->lock);
2855
2856 /*
2857 * If @max_active is 1 or rescuer is in use, flushing another work
2858 * item on the same workqueue may lead to deadlock. Make sure the
2859 * flusher is not running on the same workqueue by verifying write
2860 * access.
2861 */
2862 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2863 lock_map_acquire(&pwq->wq->lockdep_map);
2864 else
2865 lock_map_acquire_read(&pwq->wq->lockdep_map);
2866 lock_map_release(&pwq->wq->lockdep_map);
2867
2868 return true;
2869already_gone:
2870 spin_unlock_irq(&pool->lock);
2871 return false;
2872}
2873
2874/**
2875 * flush_work - wait for a work to finish executing the last queueing instance
2876 * @work: the work to flush
2877 *
2878 * Wait until @work has finished execution. @work is guaranteed to be idle
2879 * on return if it hasn't been requeued since flush started.
2880 *
2881 * Return:
2882 * %true if flush_work() waited for the work to finish execution,
2883 * %false if it was already idle.
2884 */
2885bool flush_work(struct work_struct *work)
2886{
2887 struct wq_barrier barr;
2888
2889 if (WARN_ON(!wq_online))
2890 return false;
2891
2892 lock_map_acquire(&work->lockdep_map);
2893 lock_map_release(&work->lockdep_map);
2894
2895 if (start_flush_work(work, &barr)) {
2896 wait_for_completion(&barr.done);
2897 destroy_work_on_stack(&barr.work);
2898 return true;
2899 } else {
2900 return false;
2901 }
2902}
2903EXPORT_SYMBOL_GPL(flush_work);
2904
2905struct cwt_wait {
2906 wait_queue_t wait;
2907 struct work_struct *work;
2908};
2909
2910static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2911{
2912 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2913
2914 if (cwait->work != key)
2915 return 0;
2916 return autoremove_wake_function(wait, mode, sync, key);
2917}
2918
2919static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2920{
2921 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2922 unsigned long flags;
2923 int ret;
2924
2925 do {
2926 ret = try_to_grab_pending(work, is_dwork, &flags);
2927 /*
2928 * If someone else is already canceling, wait for it to
2929 * finish. flush_work() doesn't work for PREEMPT_NONE
2930 * because we may get scheduled between @work's completion
2931 * and the other canceling task resuming and clearing
2932 * CANCELING - flush_work() will return false immediately
2933 * as @work is no longer busy, try_to_grab_pending() will
2934 * return -ENOENT as @work is still being canceled and the
2935 * other canceling task won't be able to clear CANCELING as
2936 * we're hogging the CPU.
2937 *
2938 * Let's wait for completion using a waitqueue. As this
2939 * may lead to the thundering herd problem, use a custom
2940 * wake function which matches @work along with exclusive
2941 * wait and wakeup.
2942 */
2943 if (unlikely(ret == -ENOENT)) {
2944 struct cwt_wait cwait;
2945
2946 init_wait(&cwait.wait);
2947 cwait.wait.func = cwt_wakefn;
2948 cwait.work = work;
2949
2950 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2951 TASK_UNINTERRUPTIBLE);
2952 if (work_is_canceling(work))
2953 schedule();
2954 finish_wait(&cancel_waitq, &cwait.wait);
2955 }
2956 } while (unlikely(ret < 0));
2957
2958 /* tell other tasks trying to grab @work to back off */
2959 mark_work_canceling(work);
2960 local_irq_restore(flags);
2961
2962 /*
2963 * This allows canceling during early boot. We know that @work
2964 * isn't executing.
2965 */
2966 if (wq_online)
2967 flush_work(work);
2968
2969 clear_work_data(work);
2970
2971 /*
2972 * Paired with prepare_to_wait() above so that either
2973 * waitqueue_active() is visible here or !work_is_canceling() is
2974 * visible there.
2975 */
2976 smp_mb();
2977 if (waitqueue_active(&cancel_waitq))
2978 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2979
2980 return ret;
2981}
2982
2983/**
2984 * cancel_work_sync - cancel a work and wait for it to finish
2985 * @work: the work to cancel
2986 *
2987 * Cancel @work and wait for its execution to finish. This function
2988 * can be used even if the work re-queues itself or migrates to
2989 * another workqueue. On return from this function, @work is
2990 * guaranteed to be not pending or executing on any CPU.
2991 *
2992 * cancel_work_sync(&delayed_work->work) must not be used for
2993 * delayed_work's. Use cancel_delayed_work_sync() instead.
2994 *
2995 * The caller must ensure that the workqueue on which @work was last
2996 * queued can't be destroyed before this function returns.
2997 *
2998 * Return:
2999 * %true if @work was pending, %false otherwise.
3000 */
3001bool cancel_work_sync(struct work_struct *work)
3002{
3003 return __cancel_work_timer(work, false);
3004}
3005EXPORT_SYMBOL_GPL(cancel_work_sync);
3006
3007/**
3008 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3009 * @dwork: the delayed work to flush
3010 *
3011 * Delayed timer is cancelled and the pending work is queued for
3012 * immediate execution. Like flush_work(), this function only
3013 * considers the last queueing instance of @dwork.
3014 *
3015 * Return:
3016 * %true if flush_work() waited for the work to finish execution,
3017 * %false if it was already idle.
3018 */
3019bool flush_delayed_work(struct delayed_work *dwork)
3020{
3021 local_irq_disable();
3022 if (del_timer_sync(&dwork->timer))
3023 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3024 local_irq_enable();
3025 return flush_work(&dwork->work);
3026}
3027EXPORT_SYMBOL(flush_delayed_work);
3028
3029static bool __cancel_work(struct work_struct *work, bool is_dwork)
3030{
3031 unsigned long flags;
3032 int ret;
3033
3034 do {
3035 ret = try_to_grab_pending(work, is_dwork, &flags);
3036 } while (unlikely(ret == -EAGAIN));
3037
3038 if (unlikely(ret < 0))
3039 return false;
3040
3041 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3042 local_irq_restore(flags);
3043 return ret;
3044}
3045
3046/*
3047 * See cancel_delayed_work()
3048 */
3049bool cancel_work(struct work_struct *work)
3050{
3051 return __cancel_work(work, false);
3052}
3053
3054/**
3055 * cancel_delayed_work - cancel a delayed work
3056 * @dwork: delayed_work to cancel
3057 *
3058 * Kill off a pending delayed_work.
3059 *
3060 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3061 * pending.
3062 *
3063 * Note:
3064 * The work callback function may still be running on return, unless
3065 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3066 * use cancel_delayed_work_sync() to wait on it.
3067 *
3068 * This function is safe to call from any context including IRQ handler.
3069 */
3070bool cancel_delayed_work(struct delayed_work *dwork)
3071{
3072 return __cancel_work(&dwork->work, true);
3073}
3074EXPORT_SYMBOL(cancel_delayed_work);
3075
3076/**
3077 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3078 * @dwork: the delayed work cancel
3079 *
3080 * This is cancel_work_sync() for delayed works.
3081 *
3082 * Return:
3083 * %true if @dwork was pending, %false otherwise.
3084 */
3085bool cancel_delayed_work_sync(struct delayed_work *dwork)
3086{
3087 return __cancel_work_timer(&dwork->work, true);
3088}
3089EXPORT_SYMBOL(cancel_delayed_work_sync);
3090
3091/**
3092 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3093 * @func: the function to call
3094 *
3095 * schedule_on_each_cpu() executes @func on each online CPU using the
3096 * system workqueue and blocks until all CPUs have completed.
3097 * schedule_on_each_cpu() is very slow.
3098 *
3099 * Return:
3100 * 0 on success, -errno on failure.
3101 */
3102int schedule_on_each_cpu(work_func_t func)
3103{
3104 int cpu;
3105 struct work_struct __percpu *works;
3106
3107 works = alloc_percpu(struct work_struct);
3108 if (!works)
3109 return -ENOMEM;
3110
3111 get_online_cpus();
3112
3113 for_each_online_cpu(cpu) {
3114 struct work_struct *work = per_cpu_ptr(works, cpu);
3115
3116 INIT_WORK(work, func);
3117 schedule_work_on(cpu, work);
3118 }
3119
3120 for_each_online_cpu(cpu)
3121 flush_work(per_cpu_ptr(works, cpu));
3122
3123 put_online_cpus();
3124 free_percpu(works);
3125 return 0;
3126}
3127
3128/**
3129 * execute_in_process_context - reliably execute the routine with user context
3130 * @fn: the function to execute
3131 * @ew: guaranteed storage for the execute work structure (must
3132 * be available when the work executes)
3133 *
3134 * Executes the function immediately if process context is available,
3135 * otherwise schedules the function for delayed execution.
3136 *
3137 * Return: 0 - function was executed
3138 * 1 - function was scheduled for execution
3139 */
3140int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3141{
3142 if (!in_interrupt()) {
3143 fn(&ew->work);
3144 return 0;
3145 }
3146
3147 INIT_WORK(&ew->work, fn);
3148 schedule_work(&ew->work);
3149
3150 return 1;
3151}
3152EXPORT_SYMBOL_GPL(execute_in_process_context);
3153
3154/**
3155 * free_workqueue_attrs - free a workqueue_attrs
3156 * @attrs: workqueue_attrs to free
3157 *
3158 * Undo alloc_workqueue_attrs().
3159 */
3160void free_workqueue_attrs(struct workqueue_attrs *attrs)
3161{
3162 if (attrs) {
3163 free_cpumask_var(attrs->cpumask);
3164 kfree(attrs);
3165 }
3166}
3167
3168/**
3169 * alloc_workqueue_attrs - allocate a workqueue_attrs
3170 * @gfp_mask: allocation mask to use
3171 *
3172 * Allocate a new workqueue_attrs, initialize with default settings and
3173 * return it.
3174 *
3175 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3176 */
3177struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3178{
3179 struct workqueue_attrs *attrs;
3180
3181 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3182 if (!attrs)
3183 goto fail;
3184 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3185 goto fail;
3186
3187 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3188 return attrs;
3189fail:
3190 free_workqueue_attrs(attrs);
3191 return NULL;
3192}
3193
3194static void copy_workqueue_attrs(struct workqueue_attrs *to,
3195 const struct workqueue_attrs *from)
3196{
3197 to->nice = from->nice;
3198 cpumask_copy(to->cpumask, from->cpumask);
3199 /*
3200 * Unlike hash and equality test, this function doesn't ignore
3201 * ->no_numa as it is used for both pool and wq attrs. Instead,
3202 * get_unbound_pool() explicitly clears ->no_numa after copying.
3203 */
3204 to->no_numa = from->no_numa;
3205}
3206
3207/* hash value of the content of @attr */
3208static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3209{
3210 u32 hash = 0;
3211
3212 hash = jhash_1word(attrs->nice, hash);
3213 hash = jhash(cpumask_bits(attrs->cpumask),
3214 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3215 return hash;
3216}
3217
3218/* content equality test */
3219static bool wqattrs_equal(const struct workqueue_attrs *a,
3220 const struct workqueue_attrs *b)
3221{
3222 if (a->nice != b->nice)
3223 return false;
3224 if (!cpumask_equal(a->cpumask, b->cpumask))
3225 return false;
3226 return true;
3227}
3228
3229/**
3230 * init_worker_pool - initialize a newly zalloc'd worker_pool
3231 * @pool: worker_pool to initialize
3232 *
3233 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3234 *
3235 * Return: 0 on success, -errno on failure. Even on failure, all fields
3236 * inside @pool proper are initialized and put_unbound_pool() can be called
3237 * on @pool safely to release it.
3238 */
3239static int init_worker_pool(struct worker_pool *pool)
3240{
3241 spin_lock_init(&pool->lock);
3242 pool->id = -1;
3243 pool->cpu = -1;
3244 pool->node = NUMA_NO_NODE;
3245 pool->flags |= POOL_DISASSOCIATED;
3246 pool->watchdog_ts = jiffies;
3247 INIT_LIST_HEAD(&pool->worklist);
3248 INIT_LIST_HEAD(&pool->idle_list);
3249 hash_init(pool->busy_hash);
3250
3251 init_timer_deferrable(&pool->idle_timer);
3252 pool->idle_timer.function = idle_worker_timeout;
3253 pool->idle_timer.data = (unsigned long)pool;
3254
3255 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3256 (unsigned long)pool);
3257
3258 mutex_init(&pool->attach_mutex);
3259 INIT_LIST_HEAD(&pool->workers);
3260
3261 ida_init(&pool->worker_ida);
3262 INIT_HLIST_NODE(&pool->hash_node);
3263 pool->refcnt = 1;
3264
3265 /* shouldn't fail above this point */
3266 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3267 if (!pool->attrs)
3268 return -ENOMEM;
3269 return 0;
3270}
3271
3272static void rcu_free_wq(struct rcu_head *rcu)
3273{
3274 struct workqueue_struct *wq =
3275 container_of(rcu, struct workqueue_struct, rcu);
3276
3277 if (!(wq->flags & WQ_UNBOUND))
3278 free_percpu(wq->cpu_pwqs);
3279 else
3280 free_workqueue_attrs(wq->unbound_attrs);
3281
3282 kfree(wq->rescuer);
3283 kfree(wq);
3284}
3285
3286static void rcu_free_pool(struct rcu_head *rcu)
3287{
3288 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3289
3290 ida_destroy(&pool->worker_ida);
3291 free_workqueue_attrs(pool->attrs);
3292 kfree(pool);
3293}
3294
3295/**
3296 * put_unbound_pool - put a worker_pool
3297 * @pool: worker_pool to put
3298 *
3299 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3300 * safe manner. get_unbound_pool() calls this function on its failure path
3301 * and this function should be able to release pools which went through,
3302 * successfully or not, init_worker_pool().
3303 *
3304 * Should be called with wq_pool_mutex held.
3305 */
3306static void put_unbound_pool(struct worker_pool *pool)
3307{
3308 DECLARE_COMPLETION_ONSTACK(detach_completion);
3309 struct worker *worker;
3310
3311 lockdep_assert_held(&wq_pool_mutex);
3312
3313 if (--pool->refcnt)
3314 return;
3315
3316 /* sanity checks */
3317 if (WARN_ON(!(pool->cpu < 0)) ||
3318 WARN_ON(!list_empty(&pool->worklist)))
3319 return;
3320
3321 /* release id and unhash */
3322 if (pool->id >= 0)
3323 idr_remove(&worker_pool_idr, pool->id);
3324 hash_del(&pool->hash_node);
3325
3326 /*
3327 * Become the manager and destroy all workers. This prevents
3328 * @pool's workers from blocking on attach_mutex. We're the last
3329 * manager and @pool gets freed with the flag set.
3330 */
3331 spin_lock_irq(&pool->lock);
3332 wait_event_lock_irq(wq_manager_wait,
3333 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3334 pool->flags |= POOL_MANAGER_ACTIVE;
3335
3336 while ((worker = first_idle_worker(pool)))
3337 destroy_worker(worker);
3338 WARN_ON(pool->nr_workers || pool->nr_idle);
3339 spin_unlock_irq(&pool->lock);
3340
3341 mutex_lock(&pool->attach_mutex);
3342 if (!list_empty(&pool->workers))
3343 pool->detach_completion = &detach_completion;
3344 mutex_unlock(&pool->attach_mutex);
3345
3346 if (pool->detach_completion)
3347 wait_for_completion(pool->detach_completion);
3348
3349 /* shut down the timers */
3350 del_timer_sync(&pool->idle_timer);
3351 del_timer_sync(&pool->mayday_timer);
3352
3353 /* sched-RCU protected to allow dereferences from get_work_pool() */
3354 call_rcu_sched(&pool->rcu, rcu_free_pool);
3355}
3356
3357/**
3358 * get_unbound_pool - get a worker_pool with the specified attributes
3359 * @attrs: the attributes of the worker_pool to get
3360 *
3361 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3362 * reference count and return it. If there already is a matching
3363 * worker_pool, it will be used; otherwise, this function attempts to
3364 * create a new one.
3365 *
3366 * Should be called with wq_pool_mutex held.
3367 *
3368 * Return: On success, a worker_pool with the same attributes as @attrs.
3369 * On failure, %NULL.
3370 */
3371static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3372{
3373 u32 hash = wqattrs_hash(attrs);
3374 struct worker_pool *pool;
3375 int node;
3376 int target_node = NUMA_NO_NODE;
3377
3378 lockdep_assert_held(&wq_pool_mutex);
3379
3380 /* do we already have a matching pool? */
3381 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3382 if (wqattrs_equal(pool->attrs, attrs)) {
3383 pool->refcnt++;
3384 return pool;
3385 }
3386 }
3387
3388 /* if cpumask is contained inside a NUMA node, we belong to that node */
3389 if (wq_numa_enabled) {
3390 for_each_node(node) {
3391 if (cpumask_subset(attrs->cpumask,
3392 wq_numa_possible_cpumask[node])) {
3393 target_node = node;
3394 break;
3395 }
3396 }
3397 }
3398
3399 /* nope, create a new one */
3400 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3401 if (!pool || init_worker_pool(pool) < 0)
3402 goto fail;
3403
3404 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3405 copy_workqueue_attrs(pool->attrs, attrs);
3406 pool->node = target_node;
3407
3408 /*
3409 * no_numa isn't a worker_pool attribute, always clear it. See
3410 * 'struct workqueue_attrs' comments for detail.
3411 */
3412 pool->attrs->no_numa = false;
3413
3414 if (worker_pool_assign_id(pool) < 0)
3415 goto fail;
3416
3417 /* create and start the initial worker */
3418 if (wq_online && !create_worker(pool))
3419 goto fail;
3420
3421 /* install */
3422 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3423
3424 return pool;
3425fail:
3426 if (pool)
3427 put_unbound_pool(pool);
3428 return NULL;
3429}
3430
3431static void rcu_free_pwq(struct rcu_head *rcu)
3432{
3433 kmem_cache_free(pwq_cache,
3434 container_of(rcu, struct pool_workqueue, rcu));
3435}
3436
3437/*
3438 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3439 * and needs to be destroyed.
3440 */
3441static void pwq_unbound_release_workfn(struct work_struct *work)
3442{
3443 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3444 unbound_release_work);
3445 struct workqueue_struct *wq = pwq->wq;
3446 struct worker_pool *pool = pwq->pool;
3447 bool is_last;
3448
3449 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3450 return;
3451
3452 mutex_lock(&wq->mutex);
3453 list_del_rcu(&pwq->pwqs_node);
3454 is_last = list_empty(&wq->pwqs);
3455 mutex_unlock(&wq->mutex);
3456
3457 mutex_lock(&wq_pool_mutex);
3458 put_unbound_pool(pool);
3459 mutex_unlock(&wq_pool_mutex);
3460
3461 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3462
3463 /*
3464 * If we're the last pwq going away, @wq is already dead and no one
3465 * is gonna access it anymore. Schedule RCU free.
3466 */
3467 if (is_last)
3468 call_rcu_sched(&wq->rcu, rcu_free_wq);
3469}
3470
3471/**
3472 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3473 * @pwq: target pool_workqueue
3474 *
3475 * If @pwq isn't freezing, set @pwq->max_active to the associated
3476 * workqueue's saved_max_active and activate delayed work items
3477 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3478 */
3479static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3480{
3481 struct workqueue_struct *wq = pwq->wq;
3482 bool freezable = wq->flags & WQ_FREEZABLE;
3483 unsigned long flags;
3484
3485 /* for @wq->saved_max_active */
3486 lockdep_assert_held(&wq->mutex);
3487
3488 /* fast exit for non-freezable wqs */
3489 if (!freezable && pwq->max_active == wq->saved_max_active)
3490 return;
3491
3492 /* this function can be called during early boot w/ irq disabled */
3493 spin_lock_irqsave(&pwq->pool->lock, flags);
3494
3495 /*
3496 * During [un]freezing, the caller is responsible for ensuring that
3497 * this function is called at least once after @workqueue_freezing
3498 * is updated and visible.
3499 */
3500 if (!freezable || !workqueue_freezing) {
3501 pwq->max_active = wq->saved_max_active;
3502
3503 while (!list_empty(&pwq->delayed_works) &&
3504 pwq->nr_active < pwq->max_active)
3505 pwq_activate_first_delayed(pwq);
3506
3507 /*
3508 * Need to kick a worker after thawed or an unbound wq's
3509 * max_active is bumped. It's a slow path. Do it always.
3510 */
3511 wake_up_worker(pwq->pool);
3512 } else {
3513 pwq->max_active = 0;
3514 }
3515
3516 spin_unlock_irqrestore(&pwq->pool->lock, flags);
3517}
3518
3519/* initialize newly alloced @pwq which is associated with @wq and @pool */
3520static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3521 struct worker_pool *pool)
3522{
3523 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3524
3525 memset(pwq, 0, sizeof(*pwq));
3526
3527 pwq->pool = pool;
3528 pwq->wq = wq;
3529 pwq->flush_color = -1;
3530 pwq->refcnt = 1;
3531 INIT_LIST_HEAD(&pwq->delayed_works);
3532 INIT_LIST_HEAD(&pwq->pwqs_node);
3533 INIT_LIST_HEAD(&pwq->mayday_node);
3534 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3535}
3536
3537/* sync @pwq with the current state of its associated wq and link it */
3538static void link_pwq(struct pool_workqueue *pwq)
3539{
3540 struct workqueue_struct *wq = pwq->wq;
3541
3542 lockdep_assert_held(&wq->mutex);
3543
3544 /* may be called multiple times, ignore if already linked */
3545 if (!list_empty(&pwq->pwqs_node))
3546 return;
3547
3548 /* set the matching work_color */
3549 pwq->work_color = wq->work_color;
3550
3551 /* sync max_active to the current setting */
3552 pwq_adjust_max_active(pwq);
3553
3554 /* link in @pwq */
3555 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3556}
3557
3558/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3559static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3560 const struct workqueue_attrs *attrs)
3561{
3562 struct worker_pool *pool;
3563 struct pool_workqueue *pwq;
3564
3565 lockdep_assert_held(&wq_pool_mutex);
3566
3567 pool = get_unbound_pool(attrs);
3568 if (!pool)
3569 return NULL;
3570
3571 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3572 if (!pwq) {
3573 put_unbound_pool(pool);
3574 return NULL;
3575 }
3576
3577 init_pwq(pwq, wq, pool);
3578 return pwq;
3579}
3580
3581/**
3582 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3583 * @attrs: the wq_attrs of the default pwq of the target workqueue
3584 * @node: the target NUMA node
3585 * @cpu_going_down: if >= 0, the CPU to consider as offline
3586 * @cpumask: outarg, the resulting cpumask
3587 *
3588 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3589 * @cpu_going_down is >= 0, that cpu is considered offline during
3590 * calculation. The result is stored in @cpumask.
3591 *
3592 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3593 * enabled and @node has online CPUs requested by @attrs, the returned
3594 * cpumask is the intersection of the possible CPUs of @node and
3595 * @attrs->cpumask.
3596 *
3597 * The caller is responsible for ensuring that the cpumask of @node stays
3598 * stable.
3599 *
3600 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3601 * %false if equal.
3602 */
3603static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3604 int cpu_going_down, cpumask_t *cpumask)
3605{
3606 if (!wq_numa_enabled || attrs->no_numa)
3607 goto use_dfl;
3608
3609 /* does @node have any online CPUs @attrs wants? */
3610 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3611 if (cpu_going_down >= 0)
3612 cpumask_clear_cpu(cpu_going_down, cpumask);
3613
3614 if (cpumask_empty(cpumask))
3615 goto use_dfl;
3616
3617 /* yeap, return possible CPUs in @node that @attrs wants */
3618 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3619 return !cpumask_equal(cpumask, attrs->cpumask);
3620
3621use_dfl:
3622 cpumask_copy(cpumask, attrs->cpumask);
3623 return false;
3624}
3625
3626/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3627static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3628 int node,
3629 struct pool_workqueue *pwq)
3630{
3631 struct pool_workqueue *old_pwq;
3632
3633 lockdep_assert_held(&wq_pool_mutex);
3634 lockdep_assert_held(&wq->mutex);
3635
3636 /* link_pwq() can handle duplicate calls */
3637 link_pwq(pwq);
3638
3639 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3640 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3641 return old_pwq;
3642}
3643
3644/* context to store the prepared attrs & pwqs before applying */
3645struct apply_wqattrs_ctx {
3646 struct workqueue_struct *wq; /* target workqueue */
3647 struct workqueue_attrs *attrs; /* attrs to apply */
3648 struct list_head list; /* queued for batching commit */
3649 struct pool_workqueue *dfl_pwq;
3650 struct pool_workqueue *pwq_tbl[];
3651};
3652
3653/* free the resources after success or abort */
3654static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3655{
3656 if (ctx) {
3657 int node;
3658
3659 for_each_node(node)
3660 put_pwq_unlocked(ctx->pwq_tbl[node]);
3661 put_pwq_unlocked(ctx->dfl_pwq);
3662
3663 free_workqueue_attrs(ctx->attrs);
3664
3665 kfree(ctx);
3666 }
3667}
3668
3669/* allocate the attrs and pwqs for later installation */
3670static struct apply_wqattrs_ctx *
3671apply_wqattrs_prepare(struct workqueue_struct *wq,
3672 const struct workqueue_attrs *attrs)
3673{
3674 struct apply_wqattrs_ctx *ctx;
3675 struct workqueue_attrs *new_attrs, *tmp_attrs;
3676 int node;
3677
3678 lockdep_assert_held(&wq_pool_mutex);
3679
3680 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3681 GFP_KERNEL);
3682
3683 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3684 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3685 if (!ctx || !new_attrs || !tmp_attrs)
3686 goto out_free;
3687
3688 /*
3689 * Calculate the attrs of the default pwq.
3690 * If the user configured cpumask doesn't overlap with the
3691 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3692 */
3693 copy_workqueue_attrs(new_attrs, attrs);
3694 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3695 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3696 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3697
3698 /*
3699 * We may create multiple pwqs with differing cpumasks. Make a
3700 * copy of @new_attrs which will be modified and used to obtain
3701 * pools.
3702 */
3703 copy_workqueue_attrs(tmp_attrs, new_attrs);
3704
3705 /*
3706 * If something goes wrong during CPU up/down, we'll fall back to
3707 * the default pwq covering whole @attrs->cpumask. Always create
3708 * it even if we don't use it immediately.
3709 */
3710 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3711 if (!ctx->dfl_pwq)
3712 goto out_free;
3713
3714 for_each_node(node) {
3715 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3716 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3717 if (!ctx->pwq_tbl[node])
3718 goto out_free;
3719 } else {
3720 ctx->dfl_pwq->refcnt++;
3721 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3722 }
3723 }
3724
3725 /* save the user configured attrs and sanitize it. */
3726 copy_workqueue_attrs(new_attrs, attrs);
3727 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3728 ctx->attrs = new_attrs;
3729
3730 ctx->wq = wq;
3731 free_workqueue_attrs(tmp_attrs);
3732 return ctx;
3733
3734out_free:
3735 free_workqueue_attrs(tmp_attrs);
3736 free_workqueue_attrs(new_attrs);
3737 apply_wqattrs_cleanup(ctx);
3738 return NULL;
3739}
3740
3741/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3742static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3743{
3744 int node;
3745
3746 /* all pwqs have been created successfully, let's install'em */
3747 mutex_lock(&ctx->wq->mutex);
3748
3749 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3750
3751 /* save the previous pwq and install the new one */
3752 for_each_node(node)
3753 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3754 ctx->pwq_tbl[node]);
3755
3756 /* @dfl_pwq might not have been used, ensure it's linked */
3757 link_pwq(ctx->dfl_pwq);
3758 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3759
3760 mutex_unlock(&ctx->wq->mutex);
3761}
3762
3763static void apply_wqattrs_lock(void)
3764{
3765 /* CPUs should stay stable across pwq creations and installations */
3766 get_online_cpus();
3767 mutex_lock(&wq_pool_mutex);
3768}
3769
3770static void apply_wqattrs_unlock(void)
3771{
3772 mutex_unlock(&wq_pool_mutex);
3773 put_online_cpus();
3774}
3775
3776static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3777 const struct workqueue_attrs *attrs)
3778{
3779 struct apply_wqattrs_ctx *ctx;
3780
3781 /* only unbound workqueues can change attributes */
3782 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3783 return -EINVAL;
3784
3785 /* creating multiple pwqs breaks ordering guarantee */
3786 if (!list_empty(&wq->pwqs)) {
3787 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3788 return -EINVAL;
3789
3790 wq->flags &= ~__WQ_ORDERED;
3791 }
3792
3793 ctx = apply_wqattrs_prepare(wq, attrs);
3794 if (!ctx)
3795 return -ENOMEM;
3796
3797 /* the ctx has been prepared successfully, let's commit it */
3798 apply_wqattrs_commit(ctx);
3799 apply_wqattrs_cleanup(ctx);
3800
3801 return 0;
3802}
3803
3804/**
3805 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3806 * @wq: the target workqueue
3807 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3808 *
3809 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3810 * machines, this function maps a separate pwq to each NUMA node with
3811 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3812 * NUMA node it was issued on. Older pwqs are released as in-flight work
3813 * items finish. Note that a work item which repeatedly requeues itself
3814 * back-to-back will stay on its current pwq.
3815 *
3816 * Performs GFP_KERNEL allocations.
3817 *
3818 * Return: 0 on success and -errno on failure.
3819 */
3820int apply_workqueue_attrs(struct workqueue_struct *wq,
3821 const struct workqueue_attrs *attrs)
3822{
3823 int ret;
3824
3825 apply_wqattrs_lock();
3826 ret = apply_workqueue_attrs_locked(wq, attrs);
3827 apply_wqattrs_unlock();
3828
3829 return ret;
3830}
3831
3832/**
3833 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3834 * @wq: the target workqueue
3835 * @cpu: the CPU coming up or going down
3836 * @online: whether @cpu is coming up or going down
3837 *
3838 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3839 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3840 * @wq accordingly.
3841 *
3842 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3843 * falls back to @wq->dfl_pwq which may not be optimal but is always
3844 * correct.
3845 *
3846 * Note that when the last allowed CPU of a NUMA node goes offline for a
3847 * workqueue with a cpumask spanning multiple nodes, the workers which were
3848 * already executing the work items for the workqueue will lose their CPU
3849 * affinity and may execute on any CPU. This is similar to how per-cpu
3850 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3851 * affinity, it's the user's responsibility to flush the work item from
3852 * CPU_DOWN_PREPARE.
3853 */
3854static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3855 bool online)
3856{
3857 int node = cpu_to_node(cpu);
3858 int cpu_off = online ? -1 : cpu;
3859 struct pool_workqueue *old_pwq = NULL, *pwq;
3860 struct workqueue_attrs *target_attrs;
3861 cpumask_t *cpumask;
3862
3863 lockdep_assert_held(&wq_pool_mutex);
3864
3865 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3866 wq->unbound_attrs->no_numa)
3867 return;
3868
3869 /*
3870 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3871 * Let's use a preallocated one. The following buf is protected by
3872 * CPU hotplug exclusion.
3873 */
3874 target_attrs = wq_update_unbound_numa_attrs_buf;
3875 cpumask = target_attrs->cpumask;
3876
3877 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3878 pwq = unbound_pwq_by_node(wq, node);
3879
3880 /*
3881 * Let's determine what needs to be done. If the target cpumask is
3882 * different from the default pwq's, we need to compare it to @pwq's
3883 * and create a new one if they don't match. If the target cpumask
3884 * equals the default pwq's, the default pwq should be used.
3885 */
3886 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3887 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3888 return;
3889 } else {
3890 goto use_dfl_pwq;
3891 }
3892
3893 /* create a new pwq */
3894 pwq = alloc_unbound_pwq(wq, target_attrs);
3895 if (!pwq) {
3896 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3897 wq->name);
3898 goto use_dfl_pwq;
3899 }
3900
3901 /* Install the new pwq. */
3902 mutex_lock(&wq->mutex);
3903 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3904 goto out_unlock;
3905
3906use_dfl_pwq:
3907 mutex_lock(&wq->mutex);
3908 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3909 get_pwq(wq->dfl_pwq);
3910 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3911 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3912out_unlock:
3913 mutex_unlock(&wq->mutex);
3914 put_pwq_unlocked(old_pwq);
3915}
3916
3917static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3918{
3919 bool highpri = wq->flags & WQ_HIGHPRI;
3920 int cpu, ret;
3921
3922 if (!(wq->flags & WQ_UNBOUND)) {
3923 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3924 if (!wq->cpu_pwqs)
3925 return -ENOMEM;
3926
3927 for_each_possible_cpu(cpu) {
3928 struct pool_workqueue *pwq =
3929 per_cpu_ptr(wq->cpu_pwqs, cpu);
3930 struct worker_pool *cpu_pools =
3931 per_cpu(cpu_worker_pools, cpu);
3932
3933 init_pwq(pwq, wq, &cpu_pools[highpri]);
3934
3935 mutex_lock(&wq->mutex);
3936 link_pwq(pwq);
3937 mutex_unlock(&wq->mutex);
3938 }
3939 return 0;
3940 } else if (wq->flags & __WQ_ORDERED) {
3941 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3942 /* there should only be single pwq for ordering guarantee */
3943 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3944 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3945 "ordering guarantee broken for workqueue %s\n", wq->name);
3946 return ret;
3947 } else {
3948 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3949 }
3950}
3951
3952static int wq_clamp_max_active(int max_active, unsigned int flags,
3953 const char *name)
3954{
3955 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3956
3957 if (max_active < 1 || max_active > lim)
3958 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3959 max_active, name, 1, lim);
3960
3961 return clamp_val(max_active, 1, lim);
3962}
3963
3964struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3965 unsigned int flags,
3966 int max_active,
3967 struct lock_class_key *key,
3968 const char *lock_name, ...)
3969{
3970 size_t tbl_size = 0;
3971 va_list args;
3972 struct workqueue_struct *wq;
3973 struct pool_workqueue *pwq;
3974
3975 /*
3976 * Unbound && max_active == 1 used to imply ordered, which is no
3977 * longer the case on NUMA machines due to per-node pools. While
3978 * alloc_ordered_workqueue() is the right way to create an ordered
3979 * workqueue, keep the previous behavior to avoid subtle breakages
3980 * on NUMA.
3981 */
3982 if ((flags & WQ_UNBOUND) && max_active == 1)
3983 flags |= __WQ_ORDERED;
3984
3985 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3986 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3987 flags |= WQ_UNBOUND;
3988
3989 /* allocate wq and format name */
3990 if (flags & WQ_UNBOUND)
3991 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3992
3993 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3994 if (!wq)
3995 return NULL;
3996
3997 if (flags & WQ_UNBOUND) {
3998 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3999 if (!wq->unbound_attrs)
4000 goto err_free_wq;
4001 }
4002
4003 va_start(args, lock_name);
4004 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4005 va_end(args);
4006
4007 max_active = max_active ?: WQ_DFL_ACTIVE;
4008 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4009
4010 /* init wq */
4011 wq->flags = flags;
4012 wq->saved_max_active = max_active;
4013 mutex_init(&wq->mutex);
4014 atomic_set(&wq->nr_pwqs_to_flush, 0);
4015 INIT_LIST_HEAD(&wq->pwqs);
4016 INIT_LIST_HEAD(&wq->flusher_queue);
4017 INIT_LIST_HEAD(&wq->flusher_overflow);
4018 INIT_LIST_HEAD(&wq->maydays);
4019
4020 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4021 INIT_LIST_HEAD(&wq->list);
4022
4023 if (alloc_and_link_pwqs(wq) < 0)
4024 goto err_free_wq;
4025
4026 /*
4027 * Workqueues which may be used during memory reclaim should
4028 * have a rescuer to guarantee forward progress.
4029 */
4030 if (flags & WQ_MEM_RECLAIM) {
4031 struct worker *rescuer;
4032
4033 rescuer = alloc_worker(NUMA_NO_NODE);
4034 if (!rescuer)
4035 goto err_destroy;
4036
4037 rescuer->rescue_wq = wq;
4038 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4039 wq->name);
4040 if (IS_ERR(rescuer->task)) {
4041 kfree(rescuer);
4042 goto err_destroy;
4043 }
4044
4045 wq->rescuer = rescuer;
4046 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4047 wake_up_process(rescuer->task);
4048 }
4049
4050 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4051 goto err_destroy;
4052
4053 /*
4054 * wq_pool_mutex protects global freeze state and workqueues list.
4055 * Grab it, adjust max_active and add the new @wq to workqueues
4056 * list.
4057 */
4058 mutex_lock(&wq_pool_mutex);
4059
4060 mutex_lock(&wq->mutex);
4061 for_each_pwq(pwq, wq)
4062 pwq_adjust_max_active(pwq);
4063 mutex_unlock(&wq->mutex);
4064
4065 list_add_tail_rcu(&wq->list, &workqueues);
4066
4067 mutex_unlock(&wq_pool_mutex);
4068
4069 return wq;
4070
4071err_free_wq:
4072 free_workqueue_attrs(wq->unbound_attrs);
4073 kfree(wq);
4074 return NULL;
4075err_destroy:
4076 destroy_workqueue(wq);
4077 return NULL;
4078}
4079EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4080
4081/**
4082 * destroy_workqueue - safely terminate a workqueue
4083 * @wq: target workqueue
4084 *
4085 * Safely destroy a workqueue. All work currently pending will be done first.
4086 */
4087void destroy_workqueue(struct workqueue_struct *wq)
4088{
4089 struct pool_workqueue *pwq;
4090 int node;
4091
4092 /* drain it before proceeding with destruction */
4093 drain_workqueue(wq);
4094
4095 /* sanity checks */
4096 mutex_lock(&wq->mutex);
4097 for_each_pwq(pwq, wq) {
4098 int i;
4099
4100 for (i = 0; i < WORK_NR_COLORS; i++) {
4101 if (WARN_ON(pwq->nr_in_flight[i])) {
4102 mutex_unlock(&wq->mutex);
4103 return;
4104 }
4105 }
4106
4107 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4108 WARN_ON(pwq->nr_active) ||
4109 WARN_ON(!list_empty(&pwq->delayed_works))) {
4110 mutex_unlock(&wq->mutex);
4111 return;
4112 }
4113 }
4114 mutex_unlock(&wq->mutex);
4115
4116 /*
4117 * wq list is used to freeze wq, remove from list after
4118 * flushing is complete in case freeze races us.
4119 */
4120 mutex_lock(&wq_pool_mutex);
4121 list_del_rcu(&wq->list);
4122 mutex_unlock(&wq_pool_mutex);
4123
4124 workqueue_sysfs_unregister(wq);
4125
4126 if (wq->rescuer)
4127 kthread_stop(wq->rescuer->task);
4128
4129 if (!(wq->flags & WQ_UNBOUND)) {
4130 /*
4131 * The base ref is never dropped on per-cpu pwqs. Directly
4132 * schedule RCU free.
4133 */
4134 call_rcu_sched(&wq->rcu, rcu_free_wq);
4135 } else {
4136 /*
4137 * We're the sole accessor of @wq at this point. Directly
4138 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4139 * @wq will be freed when the last pwq is released.
4140 */
4141 for_each_node(node) {
4142 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4143 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4144 put_pwq_unlocked(pwq);
4145 }
4146
4147 /*
4148 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4149 * put. Don't access it afterwards.
4150 */
4151 pwq = wq->dfl_pwq;
4152 wq->dfl_pwq = NULL;
4153 put_pwq_unlocked(pwq);
4154 }
4155}
4156EXPORT_SYMBOL_GPL(destroy_workqueue);
4157
4158/**
4159 * workqueue_set_max_active - adjust max_active of a workqueue
4160 * @wq: target workqueue
4161 * @max_active: new max_active value.
4162 *
4163 * Set max_active of @wq to @max_active.
4164 *
4165 * CONTEXT:
4166 * Don't call from IRQ context.
4167 */
4168void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4169{
4170 struct pool_workqueue *pwq;
4171
4172 /* disallow meddling with max_active for ordered workqueues */
4173 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4174 return;
4175
4176 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4177
4178 mutex_lock(&wq->mutex);
4179
4180 wq->flags &= ~__WQ_ORDERED;
4181 wq->saved_max_active = max_active;
4182
4183 for_each_pwq(pwq, wq)
4184 pwq_adjust_max_active(pwq);
4185
4186 mutex_unlock(&wq->mutex);
4187}
4188EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4189
4190/**
4191 * current_work - retrieve %current task's work struct
4192 *
4193 * Determine if %current task is a workqueue worker and what it's working on.
4194 * Useful to find out the context that the %current task is running in.
4195 *
4196 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4197 */
4198struct work_struct *current_work(void)
4199{
4200 struct worker *worker = current_wq_worker();
4201
4202 return worker ? worker->current_work : NULL;
4203}
4204EXPORT_SYMBOL(current_work);
4205
4206/**
4207 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4208 *
4209 * Determine whether %current is a workqueue rescuer. Can be used from
4210 * work functions to determine whether it's being run off the rescuer task.
4211 *
4212 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4213 */
4214bool current_is_workqueue_rescuer(void)
4215{
4216 struct worker *worker = current_wq_worker();
4217
4218 return worker && worker->rescue_wq;
4219}
4220
4221/**
4222 * workqueue_congested - test whether a workqueue is congested
4223 * @cpu: CPU in question
4224 * @wq: target workqueue
4225 *
4226 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4227 * no synchronization around this function and the test result is
4228 * unreliable and only useful as advisory hints or for debugging.
4229 *
4230 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4231 * Note that both per-cpu and unbound workqueues may be associated with
4232 * multiple pool_workqueues which have separate congested states. A
4233 * workqueue being congested on one CPU doesn't mean the workqueue is also
4234 * contested on other CPUs / NUMA nodes.
4235 *
4236 * Return:
4237 * %true if congested, %false otherwise.
4238 */
4239bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4240{
4241 struct pool_workqueue *pwq;
4242 bool ret;
4243
4244 rcu_read_lock_sched();
4245
4246 if (cpu == WORK_CPU_UNBOUND)
4247 cpu = smp_processor_id();
4248
4249 if (!(wq->flags & WQ_UNBOUND))
4250 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4251 else
4252 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4253
4254 ret = !list_empty(&pwq->delayed_works);
4255 rcu_read_unlock_sched();
4256
4257 return ret;
4258}
4259EXPORT_SYMBOL_GPL(workqueue_congested);
4260
4261/**
4262 * work_busy - test whether a work is currently pending or running
4263 * @work: the work to be tested
4264 *
4265 * Test whether @work is currently pending or running. There is no
4266 * synchronization around this function and the test result is
4267 * unreliable and only useful as advisory hints or for debugging.
4268 *
4269 * Return:
4270 * OR'd bitmask of WORK_BUSY_* bits.
4271 */
4272unsigned int work_busy(struct work_struct *work)
4273{
4274 struct worker_pool *pool;
4275 unsigned long flags;
4276 unsigned int ret = 0;
4277
4278 if (work_pending(work))
4279 ret |= WORK_BUSY_PENDING;
4280
4281 local_irq_save(flags);
4282 pool = get_work_pool(work);
4283 if (pool) {
4284 spin_lock(&pool->lock);
4285 if (find_worker_executing_work(pool, work))
4286 ret |= WORK_BUSY_RUNNING;
4287 spin_unlock(&pool->lock);
4288 }
4289 local_irq_restore(flags);
4290
4291 return ret;
4292}
4293EXPORT_SYMBOL_GPL(work_busy);
4294
4295/**
4296 * set_worker_desc - set description for the current work item
4297 * @fmt: printf-style format string
4298 * @...: arguments for the format string
4299 *
4300 * This function can be called by a running work function to describe what
4301 * the work item is about. If the worker task gets dumped, this
4302 * information will be printed out together to help debugging. The
4303 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4304 */
4305void set_worker_desc(const char *fmt, ...)
4306{
4307 struct worker *worker = current_wq_worker();
4308 va_list args;
4309
4310 if (worker) {
4311 va_start(args, fmt);
4312 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4313 va_end(args);
4314 worker->desc_valid = true;
4315 }
4316}
4317
4318/**
4319 * print_worker_info - print out worker information and description
4320 * @log_lvl: the log level to use when printing
4321 * @task: target task
4322 *
4323 * If @task is a worker and currently executing a work item, print out the
4324 * name of the workqueue being serviced and worker description set with
4325 * set_worker_desc() by the currently executing work item.
4326 *
4327 * This function can be safely called on any task as long as the
4328 * task_struct itself is accessible. While safe, this function isn't
4329 * synchronized and may print out mixups or garbages of limited length.
4330 */
4331void print_worker_info(const char *log_lvl, struct task_struct *task)
4332{
4333 work_func_t *fn = NULL;
4334 char name[WQ_NAME_LEN] = { };
4335 char desc[WORKER_DESC_LEN] = { };
4336 struct pool_workqueue *pwq = NULL;
4337 struct workqueue_struct *wq = NULL;
4338 bool desc_valid = false;
4339 struct worker *worker;
4340
4341 if (!(task->flags & PF_WQ_WORKER))
4342 return;
4343
4344 /*
4345 * This function is called without any synchronization and @task
4346 * could be in any state. Be careful with dereferences.
4347 */
4348 worker = kthread_probe_data(task);
4349
4350 /*
4351 * Carefully copy the associated workqueue's workfn and name. Keep
4352 * the original last '\0' in case the original contains garbage.
4353 */
4354 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4355 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4356 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4357 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4358
4359 /* copy worker description */
4360 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4361 if (desc_valid)
4362 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4363
4364 if (fn || name[0] || desc[0]) {
4365 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4366 if (desc[0])
4367 pr_cont(" (%s)", desc);
4368 pr_cont("\n");
4369 }
4370}
4371
4372static void pr_cont_pool_info(struct worker_pool *pool)
4373{
4374 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4375 if (pool->node != NUMA_NO_NODE)
4376 pr_cont(" node=%d", pool->node);
4377 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4378}
4379
4380static void pr_cont_work(bool comma, struct work_struct *work)
4381{
4382 if (work->func == wq_barrier_func) {
4383 struct wq_barrier *barr;
4384
4385 barr = container_of(work, struct wq_barrier, work);
4386
4387 pr_cont("%s BAR(%d)", comma ? "," : "",
4388 task_pid_nr(barr->task));
4389 } else {
4390 pr_cont("%s %pf", comma ? "," : "", work->func);
4391 }
4392}
4393
4394static void show_pwq(struct pool_workqueue *pwq)
4395{
4396 struct worker_pool *pool = pwq->pool;
4397 struct work_struct *work;
4398 struct worker *worker;
4399 bool has_in_flight = false, has_pending = false;
4400 int bkt;
4401
4402 pr_info(" pwq %d:", pool->id);
4403 pr_cont_pool_info(pool);
4404
4405 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4406 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4407
4408 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4409 if (worker->current_pwq == pwq) {
4410 has_in_flight = true;
4411 break;
4412 }
4413 }
4414 if (has_in_flight) {
4415 bool comma = false;
4416
4417 pr_info(" in-flight:");
4418 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4419 if (worker->current_pwq != pwq)
4420 continue;
4421
4422 pr_cont("%s %d%s:%pf", comma ? "," : "",
4423 task_pid_nr(worker->task),
4424 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4425 worker->current_func);
4426 list_for_each_entry(work, &worker->scheduled, entry)
4427 pr_cont_work(false, work);
4428 comma = true;
4429 }
4430 pr_cont("\n");
4431 }
4432
4433 list_for_each_entry(work, &pool->worklist, entry) {
4434 if (get_work_pwq(work) == pwq) {
4435 has_pending = true;
4436 break;
4437 }
4438 }
4439 if (has_pending) {
4440 bool comma = false;
4441
4442 pr_info(" pending:");
4443 list_for_each_entry(work, &pool->worklist, entry) {
4444 if (get_work_pwq(work) != pwq)
4445 continue;
4446
4447 pr_cont_work(comma, work);
4448 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4449 }
4450 pr_cont("\n");
4451 }
4452
4453 if (!list_empty(&pwq->delayed_works)) {
4454 bool comma = false;
4455
4456 pr_info(" delayed:");
4457 list_for_each_entry(work, &pwq->delayed_works, entry) {
4458 pr_cont_work(comma, work);
4459 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4460 }
4461 pr_cont("\n");
4462 }
4463}
4464
4465/**
4466 * show_workqueue_state - dump workqueue state
4467 *
4468 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4469 * all busy workqueues and pools.
4470 */
4471void show_workqueue_state(void)
4472{
4473 struct workqueue_struct *wq;
4474 struct worker_pool *pool;
4475 unsigned long flags;
4476 int pi;
4477
4478 rcu_read_lock_sched();
4479
4480 pr_info("Showing busy workqueues and worker pools:\n");
4481
4482 list_for_each_entry_rcu(wq, &workqueues, list) {
4483 struct pool_workqueue *pwq;
4484 bool idle = true;
4485
4486 for_each_pwq(pwq, wq) {
4487 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4488 idle = false;
4489 break;
4490 }
4491 }
4492 if (idle)
4493 continue;
4494
4495 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4496
4497 for_each_pwq(pwq, wq) {
4498 spin_lock_irqsave(&pwq->pool->lock, flags);
4499 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4500 show_pwq(pwq);
4501 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4502 /*
4503 * We could be printing a lot from atomic context, e.g.
4504 * sysrq-t -> show_workqueue_state(). Avoid triggering
4505 * hard lockup.
4506 */
4507 touch_nmi_watchdog();
4508 }
4509 }
4510
4511 for_each_pool(pool, pi) {
4512 struct worker *worker;
4513 bool first = true;
4514
4515 spin_lock_irqsave(&pool->lock, flags);
4516 if (pool->nr_workers == pool->nr_idle)
4517 goto next_pool;
4518
4519 pr_info("pool %d:", pool->id);
4520 pr_cont_pool_info(pool);
4521 pr_cont(" hung=%us workers=%d",
4522 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4523 pool->nr_workers);
4524 if (pool->manager)
4525 pr_cont(" manager: %d",
4526 task_pid_nr(pool->manager->task));
4527 list_for_each_entry(worker, &pool->idle_list, entry) {
4528 pr_cont(" %s%d", first ? "idle: " : "",
4529 task_pid_nr(worker->task));
4530 first = false;
4531 }
4532 pr_cont("\n");
4533 next_pool:
4534 spin_unlock_irqrestore(&pool->lock, flags);
4535 /*
4536 * We could be printing a lot from atomic context, e.g.
4537 * sysrq-t -> show_workqueue_state(). Avoid triggering
4538 * hard lockup.
4539 */
4540 touch_nmi_watchdog();
4541 }
4542
4543 rcu_read_unlock_sched();
4544}
4545
4546/*
4547 * CPU hotplug.
4548 *
4549 * There are two challenges in supporting CPU hotplug. Firstly, there
4550 * are a lot of assumptions on strong associations among work, pwq and
4551 * pool which make migrating pending and scheduled works very
4552 * difficult to implement without impacting hot paths. Secondly,
4553 * worker pools serve mix of short, long and very long running works making
4554 * blocked draining impractical.
4555 *
4556 * This is solved by allowing the pools to be disassociated from the CPU
4557 * running as an unbound one and allowing it to be reattached later if the
4558 * cpu comes back online.
4559 */
4560
4561static void wq_unbind_fn(struct work_struct *work)
4562{
4563 int cpu = smp_processor_id();
4564 struct worker_pool *pool;
4565 struct worker *worker;
4566
4567 for_each_cpu_worker_pool(pool, cpu) {
4568 mutex_lock(&pool->attach_mutex);
4569 spin_lock_irq(&pool->lock);
4570
4571 /*
4572 * We've blocked all attach/detach operations. Make all workers
4573 * unbound and set DISASSOCIATED. Before this, all workers
4574 * except for the ones which are still executing works from
4575 * before the last CPU down must be on the cpu. After
4576 * this, they may become diasporas.
4577 */
4578 for_each_pool_worker(worker, pool)
4579 worker->flags |= WORKER_UNBOUND;
4580
4581 pool->flags |= POOL_DISASSOCIATED;
4582
4583 spin_unlock_irq(&pool->lock);
4584 mutex_unlock(&pool->attach_mutex);
4585
4586 /*
4587 * Call schedule() so that we cross rq->lock and thus can
4588 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4589 * This is necessary as scheduler callbacks may be invoked
4590 * from other cpus.
4591 */
4592 schedule();
4593
4594 /*
4595 * Sched callbacks are disabled now. Zap nr_running.
4596 * After this, nr_running stays zero and need_more_worker()
4597 * and keep_working() are always true as long as the
4598 * worklist is not empty. This pool now behaves as an
4599 * unbound (in terms of concurrency management) pool which
4600 * are served by workers tied to the pool.
4601 */
4602 atomic_set(&pool->nr_running, 0);
4603
4604 /*
4605 * With concurrency management just turned off, a busy
4606 * worker blocking could lead to lengthy stalls. Kick off
4607 * unbound chain execution of currently pending work items.
4608 */
4609 spin_lock_irq(&pool->lock);
4610 wake_up_worker(pool);
4611 spin_unlock_irq(&pool->lock);
4612 }
4613}
4614
4615/**
4616 * rebind_workers - rebind all workers of a pool to the associated CPU
4617 * @pool: pool of interest
4618 *
4619 * @pool->cpu is coming online. Rebind all workers to the CPU.
4620 */
4621static void rebind_workers(struct worker_pool *pool)
4622{
4623 struct worker *worker;
4624
4625 lockdep_assert_held(&pool->attach_mutex);
4626
4627 /*
4628 * Restore CPU affinity of all workers. As all idle workers should
4629 * be on the run-queue of the associated CPU before any local
4630 * wake-ups for concurrency management happen, restore CPU affinity
4631 * of all workers first and then clear UNBOUND. As we're called
4632 * from CPU_ONLINE, the following shouldn't fail.
4633 */
4634 for_each_pool_worker(worker, pool)
4635 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4636 pool->attrs->cpumask) < 0);
4637
4638 spin_lock_irq(&pool->lock);
4639
4640 /*
4641 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4642 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4643 * being reworked and this can go away in time.
4644 */
4645 if (!(pool->flags & POOL_DISASSOCIATED)) {
4646 spin_unlock_irq(&pool->lock);
4647 return;
4648 }
4649
4650 pool->flags &= ~POOL_DISASSOCIATED;
4651
4652 for_each_pool_worker(worker, pool) {
4653 unsigned int worker_flags = worker->flags;
4654
4655 /*
4656 * A bound idle worker should actually be on the runqueue
4657 * of the associated CPU for local wake-ups targeting it to
4658 * work. Kick all idle workers so that they migrate to the
4659 * associated CPU. Doing this in the same loop as
4660 * replacing UNBOUND with REBOUND is safe as no worker will
4661 * be bound before @pool->lock is released.
4662 */
4663 if (worker_flags & WORKER_IDLE)
4664 wake_up_process(worker->task);
4665
4666 /*
4667 * We want to clear UNBOUND but can't directly call
4668 * worker_clr_flags() or adjust nr_running. Atomically
4669 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4670 * @worker will clear REBOUND using worker_clr_flags() when
4671 * it initiates the next execution cycle thus restoring
4672 * concurrency management. Note that when or whether
4673 * @worker clears REBOUND doesn't affect correctness.
4674 *
4675 * ACCESS_ONCE() is necessary because @worker->flags may be
4676 * tested without holding any lock in
4677 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4678 * fail incorrectly leading to premature concurrency
4679 * management operations.
4680 */
4681 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4682 worker_flags |= WORKER_REBOUND;
4683 worker_flags &= ~WORKER_UNBOUND;
4684 ACCESS_ONCE(worker->flags) = worker_flags;
4685 }
4686
4687 spin_unlock_irq(&pool->lock);
4688}
4689
4690/**
4691 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4692 * @pool: unbound pool of interest
4693 * @cpu: the CPU which is coming up
4694 *
4695 * An unbound pool may end up with a cpumask which doesn't have any online
4696 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4697 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4698 * online CPU before, cpus_allowed of all its workers should be restored.
4699 */
4700static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4701{
4702 static cpumask_t cpumask;
4703 struct worker *worker;
4704
4705 lockdep_assert_held(&pool->attach_mutex);
4706
4707 /* is @cpu allowed for @pool? */
4708 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4709 return;
4710
4711 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4712
4713 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4714 for_each_pool_worker(worker, pool)
4715 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4716}
4717
4718int workqueue_prepare_cpu(unsigned int cpu)
4719{
4720 struct worker_pool *pool;
4721
4722 for_each_cpu_worker_pool(pool, cpu) {
4723 if (pool->nr_workers)
4724 continue;
4725 if (!create_worker(pool))
4726 return -ENOMEM;
4727 }
4728 return 0;
4729}
4730
4731int workqueue_online_cpu(unsigned int cpu)
4732{
4733 struct worker_pool *pool;
4734 struct workqueue_struct *wq;
4735 int pi;
4736
4737 mutex_lock(&wq_pool_mutex);
4738
4739 for_each_pool(pool, pi) {
4740 mutex_lock(&pool->attach_mutex);
4741
4742 if (pool->cpu == cpu)
4743 rebind_workers(pool);
4744 else if (pool->cpu < 0)
4745 restore_unbound_workers_cpumask(pool, cpu);
4746
4747 mutex_unlock(&pool->attach_mutex);
4748 }
4749
4750 /* update NUMA affinity of unbound workqueues */
4751 list_for_each_entry(wq, &workqueues, list)
4752 wq_update_unbound_numa(wq, cpu, true);
4753
4754 mutex_unlock(&wq_pool_mutex);
4755 return 0;
4756}
4757
4758int workqueue_offline_cpu(unsigned int cpu)
4759{
4760 struct work_struct unbind_work;
4761 struct workqueue_struct *wq;
4762
4763 /* unbinding per-cpu workers should happen on the local CPU */
4764 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4765 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4766
4767 /* update NUMA affinity of unbound workqueues */
4768 mutex_lock(&wq_pool_mutex);
4769 list_for_each_entry(wq, &workqueues, list)
4770 wq_update_unbound_numa(wq, cpu, false);
4771 mutex_unlock(&wq_pool_mutex);
4772
4773 /* wait for per-cpu unbinding to finish */
4774 flush_work(&unbind_work);
4775 destroy_work_on_stack(&unbind_work);
4776 return 0;
4777}
4778
4779#ifdef CONFIG_SMP
4780
4781struct work_for_cpu {
4782 struct work_struct work;
4783 long (*fn)(void *);
4784 void *arg;
4785 long ret;
4786};
4787
4788static void work_for_cpu_fn(struct work_struct *work)
4789{
4790 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4791
4792 wfc->ret = wfc->fn(wfc->arg);
4793}
4794
4795/**
4796 * work_on_cpu - run a function in thread context on a particular cpu
4797 * @cpu: the cpu to run on
4798 * @fn: the function to run
4799 * @arg: the function arg
4800 *
4801 * It is up to the caller to ensure that the cpu doesn't go offline.
4802 * The caller must not hold any locks which would prevent @fn from completing.
4803 *
4804 * Return: The value @fn returns.
4805 */
4806long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4807{
4808 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4809
4810 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4811 schedule_work_on(cpu, &wfc.work);
4812 flush_work(&wfc.work);
4813 destroy_work_on_stack(&wfc.work);
4814 return wfc.ret;
4815}
4816EXPORT_SYMBOL_GPL(work_on_cpu);
4817#endif /* CONFIG_SMP */
4818
4819#ifdef CONFIG_FREEZER
4820
4821/**
4822 * freeze_workqueues_begin - begin freezing workqueues
4823 *
4824 * Start freezing workqueues. After this function returns, all freezable
4825 * workqueues will queue new works to their delayed_works list instead of
4826 * pool->worklist.
4827 *
4828 * CONTEXT:
4829 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4830 */
4831void freeze_workqueues_begin(void)
4832{
4833 struct workqueue_struct *wq;
4834 struct pool_workqueue *pwq;
4835
4836 mutex_lock(&wq_pool_mutex);
4837
4838 WARN_ON_ONCE(workqueue_freezing);
4839 workqueue_freezing = true;
4840
4841 list_for_each_entry(wq, &workqueues, list) {
4842 mutex_lock(&wq->mutex);
4843 for_each_pwq(pwq, wq)
4844 pwq_adjust_max_active(pwq);
4845 mutex_unlock(&wq->mutex);
4846 }
4847
4848 mutex_unlock(&wq_pool_mutex);
4849}
4850
4851/**
4852 * freeze_workqueues_busy - are freezable workqueues still busy?
4853 *
4854 * Check whether freezing is complete. This function must be called
4855 * between freeze_workqueues_begin() and thaw_workqueues().
4856 *
4857 * CONTEXT:
4858 * Grabs and releases wq_pool_mutex.
4859 *
4860 * Return:
4861 * %true if some freezable workqueues are still busy. %false if freezing
4862 * is complete.
4863 */
4864bool freeze_workqueues_busy(void)
4865{
4866 bool busy = false;
4867 struct workqueue_struct *wq;
4868 struct pool_workqueue *pwq;
4869
4870 mutex_lock(&wq_pool_mutex);
4871
4872 WARN_ON_ONCE(!workqueue_freezing);
4873
4874 list_for_each_entry(wq, &workqueues, list) {
4875 if (!(wq->flags & WQ_FREEZABLE))
4876 continue;
4877 /*
4878 * nr_active is monotonically decreasing. It's safe
4879 * to peek without lock.
4880 */
4881 rcu_read_lock_sched();
4882 for_each_pwq(pwq, wq) {
4883 WARN_ON_ONCE(pwq->nr_active < 0);
4884 if (pwq->nr_active) {
4885 busy = true;
4886 rcu_read_unlock_sched();
4887 goto out_unlock;
4888 }
4889 }
4890 rcu_read_unlock_sched();
4891 }
4892out_unlock:
4893 mutex_unlock(&wq_pool_mutex);
4894 return busy;
4895}
4896
4897/**
4898 * thaw_workqueues - thaw workqueues
4899 *
4900 * Thaw workqueues. Normal queueing is restored and all collected
4901 * frozen works are transferred to their respective pool worklists.
4902 *
4903 * CONTEXT:
4904 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4905 */
4906void thaw_workqueues(void)
4907{
4908 struct workqueue_struct *wq;
4909 struct pool_workqueue *pwq;
4910
4911 mutex_lock(&wq_pool_mutex);
4912
4913 if (!workqueue_freezing)
4914 goto out_unlock;
4915
4916 workqueue_freezing = false;
4917
4918 /* restore max_active and repopulate worklist */
4919 list_for_each_entry(wq, &workqueues, list) {
4920 mutex_lock(&wq->mutex);
4921 for_each_pwq(pwq, wq)
4922 pwq_adjust_max_active(pwq);
4923 mutex_unlock(&wq->mutex);
4924 }
4925
4926out_unlock:
4927 mutex_unlock(&wq_pool_mutex);
4928}
4929#endif /* CONFIG_FREEZER */
4930
4931static int workqueue_apply_unbound_cpumask(void)
4932{
4933 LIST_HEAD(ctxs);
4934 int ret = 0;
4935 struct workqueue_struct *wq;
4936 struct apply_wqattrs_ctx *ctx, *n;
4937
4938 lockdep_assert_held(&wq_pool_mutex);
4939
4940 list_for_each_entry(wq, &workqueues, list) {
4941 if (!(wq->flags & WQ_UNBOUND))
4942 continue;
4943 /* creating multiple pwqs breaks ordering guarantee */
4944 if (wq->flags & __WQ_ORDERED)
4945 continue;
4946
4947 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4948 if (!ctx) {
4949 ret = -ENOMEM;
4950 break;
4951 }
4952
4953 list_add_tail(&ctx->list, &ctxs);
4954 }
4955
4956 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4957 if (!ret)
4958 apply_wqattrs_commit(ctx);
4959 apply_wqattrs_cleanup(ctx);
4960 }
4961
4962 return ret;
4963}
4964
4965/**
4966 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4967 * @cpumask: the cpumask to set
4968 *
4969 * The low-level workqueues cpumask is a global cpumask that limits
4970 * the affinity of all unbound workqueues. This function check the @cpumask
4971 * and apply it to all unbound workqueues and updates all pwqs of them.
4972 *
4973 * Retun: 0 - Success
4974 * -EINVAL - Invalid @cpumask
4975 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4976 */
4977int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4978{
4979 int ret = -EINVAL;
4980 cpumask_var_t saved_cpumask;
4981
4982 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4983 return -ENOMEM;
4984
4985 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4986 if (!cpumask_empty(cpumask)) {
4987 apply_wqattrs_lock();
4988
4989 /* save the old wq_unbound_cpumask. */
4990 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4991
4992 /* update wq_unbound_cpumask at first and apply it to wqs. */
4993 cpumask_copy(wq_unbound_cpumask, cpumask);
4994 ret = workqueue_apply_unbound_cpumask();
4995
4996 /* restore the wq_unbound_cpumask when failed. */
4997 if (ret < 0)
4998 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4999
5000 apply_wqattrs_unlock();
5001 }
5002
5003 free_cpumask_var(saved_cpumask);
5004 return ret;
5005}
5006
5007#ifdef CONFIG_SYSFS
5008/*
5009 * Workqueues with WQ_SYSFS flag set is visible to userland via
5010 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5011 * following attributes.
5012 *
5013 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5014 * max_active RW int : maximum number of in-flight work items
5015 *
5016 * Unbound workqueues have the following extra attributes.
5017 *
5018 * id RO int : the associated pool ID
5019 * nice RW int : nice value of the workers
5020 * cpumask RW mask : bitmask of allowed CPUs for the workers
5021 */
5022struct wq_device {
5023 struct workqueue_struct *wq;
5024 struct device dev;
5025};
5026
5027static struct workqueue_struct *dev_to_wq(struct device *dev)
5028{
5029 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5030
5031 return wq_dev->wq;
5032}
5033
5034static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5035 char *buf)
5036{
5037 struct workqueue_struct *wq = dev_to_wq(dev);
5038
5039 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5040}
5041static DEVICE_ATTR_RO(per_cpu);
5042
5043static ssize_t max_active_show(struct device *dev,
5044 struct device_attribute *attr, char *buf)
5045{
5046 struct workqueue_struct *wq = dev_to_wq(dev);
5047
5048 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5049}
5050
5051static ssize_t max_active_store(struct device *dev,
5052 struct device_attribute *attr, const char *buf,
5053 size_t count)
5054{
5055 struct workqueue_struct *wq = dev_to_wq(dev);
5056 int val;
5057
5058 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5059 return -EINVAL;
5060
5061 workqueue_set_max_active(wq, val);
5062 return count;
5063}
5064static DEVICE_ATTR_RW(max_active);
5065
5066static struct attribute *wq_sysfs_attrs[] = {
5067 &dev_attr_per_cpu.attr,
5068 &dev_attr_max_active.attr,
5069 NULL,
5070};
5071ATTRIBUTE_GROUPS(wq_sysfs);
5072
5073static ssize_t wq_pool_ids_show(struct device *dev,
5074 struct device_attribute *attr, char *buf)
5075{
5076 struct workqueue_struct *wq = dev_to_wq(dev);
5077 const char *delim = "";
5078 int node, written = 0;
5079
5080 rcu_read_lock_sched();
5081 for_each_node(node) {
5082 written += scnprintf(buf + written, PAGE_SIZE - written,
5083 "%s%d:%d", delim, node,
5084 unbound_pwq_by_node(wq, node)->pool->id);
5085 delim = " ";
5086 }
5087 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5088 rcu_read_unlock_sched();
5089
5090 return written;
5091}
5092
5093static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5094 char *buf)
5095{
5096 struct workqueue_struct *wq = dev_to_wq(dev);
5097 int written;
5098
5099 mutex_lock(&wq->mutex);
5100 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5101 mutex_unlock(&wq->mutex);
5102
5103 return written;
5104}
5105
5106/* prepare workqueue_attrs for sysfs store operations */
5107static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5108{
5109 struct workqueue_attrs *attrs;
5110
5111 lockdep_assert_held(&wq_pool_mutex);
5112
5113 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5114 if (!attrs)
5115 return NULL;
5116
5117 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5118 return attrs;
5119}
5120
5121static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5122 const char *buf, size_t count)
5123{
5124 struct workqueue_struct *wq = dev_to_wq(dev);
5125 struct workqueue_attrs *attrs;
5126 int ret = -ENOMEM;
5127
5128 apply_wqattrs_lock();
5129
5130 attrs = wq_sysfs_prep_attrs(wq);
5131 if (!attrs)
5132 goto out_unlock;
5133
5134 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5135 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5136 ret = apply_workqueue_attrs_locked(wq, attrs);
5137 else
5138 ret = -EINVAL;
5139
5140out_unlock:
5141 apply_wqattrs_unlock();
5142 free_workqueue_attrs(attrs);
5143 return ret ?: count;
5144}
5145
5146static ssize_t wq_cpumask_show(struct device *dev,
5147 struct device_attribute *attr, char *buf)
5148{
5149 struct workqueue_struct *wq = dev_to_wq(dev);
5150 int written;
5151
5152 mutex_lock(&wq->mutex);
5153 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5154 cpumask_pr_args(wq->unbound_attrs->cpumask));
5155 mutex_unlock(&wq->mutex);
5156 return written;
5157}
5158
5159static ssize_t wq_cpumask_store(struct device *dev,
5160 struct device_attribute *attr,
5161 const char *buf, size_t count)
5162{
5163 struct workqueue_struct *wq = dev_to_wq(dev);
5164 struct workqueue_attrs *attrs;
5165 int ret = -ENOMEM;
5166
5167 apply_wqattrs_lock();
5168
5169 attrs = wq_sysfs_prep_attrs(wq);
5170 if (!attrs)
5171 goto out_unlock;
5172
5173 ret = cpumask_parse(buf, attrs->cpumask);
5174 if (!ret)
5175 ret = apply_workqueue_attrs_locked(wq, attrs);
5176
5177out_unlock:
5178 apply_wqattrs_unlock();
5179 free_workqueue_attrs(attrs);
5180 return ret ?: count;
5181}
5182
5183static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5184 char *buf)
5185{
5186 struct workqueue_struct *wq = dev_to_wq(dev);
5187 int written;
5188
5189 mutex_lock(&wq->mutex);
5190 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5191 !wq->unbound_attrs->no_numa);
5192 mutex_unlock(&wq->mutex);
5193
5194 return written;
5195}
5196
5197static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5198 const char *buf, size_t count)
5199{
5200 struct workqueue_struct *wq = dev_to_wq(dev);
5201 struct workqueue_attrs *attrs;
5202 int v, ret = -ENOMEM;
5203
5204 apply_wqattrs_lock();
5205
5206 attrs = wq_sysfs_prep_attrs(wq);
5207 if (!attrs)
5208 goto out_unlock;
5209
5210 ret = -EINVAL;
5211 if (sscanf(buf, "%d", &v) == 1) {
5212 attrs->no_numa = !v;
5213 ret = apply_workqueue_attrs_locked(wq, attrs);
5214 }
5215
5216out_unlock:
5217 apply_wqattrs_unlock();
5218 free_workqueue_attrs(attrs);
5219 return ret ?: count;
5220}
5221
5222static struct device_attribute wq_sysfs_unbound_attrs[] = {
5223 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5224 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5225 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5226 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5227 __ATTR_NULL,
5228};
5229
5230static struct bus_type wq_subsys = {
5231 .name = "workqueue",
5232 .dev_groups = wq_sysfs_groups,
5233};
5234
5235static ssize_t wq_unbound_cpumask_show(struct device *dev,
5236 struct device_attribute *attr, char *buf)
5237{
5238 int written;
5239
5240 mutex_lock(&wq_pool_mutex);
5241 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5242 cpumask_pr_args(wq_unbound_cpumask));
5243 mutex_unlock(&wq_pool_mutex);
5244
5245 return written;
5246}
5247
5248static ssize_t wq_unbound_cpumask_store(struct device *dev,
5249 struct device_attribute *attr, const char *buf, size_t count)
5250{
5251 cpumask_var_t cpumask;
5252 int ret;
5253
5254 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5255 return -ENOMEM;
5256
5257 ret = cpumask_parse(buf, cpumask);
5258 if (!ret)
5259 ret = workqueue_set_unbound_cpumask(cpumask);
5260
5261 free_cpumask_var(cpumask);
5262 return ret ? ret : count;
5263}
5264
5265static struct device_attribute wq_sysfs_cpumask_attr =
5266 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5267 wq_unbound_cpumask_store);
5268
5269static int __init wq_sysfs_init(void)
5270{
5271 int err;
5272
5273 err = subsys_virtual_register(&wq_subsys, NULL);
5274 if (err)
5275 return err;
5276
5277 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5278}
5279core_initcall(wq_sysfs_init);
5280
5281static void wq_device_release(struct device *dev)
5282{
5283 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5284
5285 kfree(wq_dev);
5286}
5287
5288/**
5289 * workqueue_sysfs_register - make a workqueue visible in sysfs
5290 * @wq: the workqueue to register
5291 *
5292 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5293 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5294 * which is the preferred method.
5295 *
5296 * Workqueue user should use this function directly iff it wants to apply
5297 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5298 * apply_workqueue_attrs() may race against userland updating the
5299 * attributes.
5300 *
5301 * Return: 0 on success, -errno on failure.
5302 */
5303int workqueue_sysfs_register(struct workqueue_struct *wq)
5304{
5305 struct wq_device *wq_dev;
5306 int ret;
5307
5308 /*
5309 * Adjusting max_active or creating new pwqs by applying
5310 * attributes breaks ordering guarantee. Disallow exposing ordered
5311 * workqueues.
5312 */
5313 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5314 return -EINVAL;
5315
5316 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5317 if (!wq_dev)
5318 return -ENOMEM;
5319
5320 wq_dev->wq = wq;
5321 wq_dev->dev.bus = &wq_subsys;
5322 wq_dev->dev.release = wq_device_release;
5323 dev_set_name(&wq_dev->dev, "%s", wq->name);
5324
5325 /*
5326 * unbound_attrs are created separately. Suppress uevent until
5327 * everything is ready.
5328 */
5329 dev_set_uevent_suppress(&wq_dev->dev, true);
5330
5331 ret = device_register(&wq_dev->dev);
5332 if (ret) {
5333 put_device(&wq_dev->dev);
5334 wq->wq_dev = NULL;
5335 return ret;
5336 }
5337
5338 if (wq->flags & WQ_UNBOUND) {
5339 struct device_attribute *attr;
5340
5341 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5342 ret = device_create_file(&wq_dev->dev, attr);
5343 if (ret) {
5344 device_unregister(&wq_dev->dev);
5345 wq->wq_dev = NULL;
5346 return ret;
5347 }
5348 }
5349 }
5350
5351 dev_set_uevent_suppress(&wq_dev->dev, false);
5352 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5353 return 0;
5354}
5355
5356/**
5357 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5358 * @wq: the workqueue to unregister
5359 *
5360 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5361 */
5362static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5363{
5364 struct wq_device *wq_dev = wq->wq_dev;
5365
5366 if (!wq->wq_dev)
5367 return;
5368
5369 wq->wq_dev = NULL;
5370 device_unregister(&wq_dev->dev);
5371}
5372#else /* CONFIG_SYSFS */
5373static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5374#endif /* CONFIG_SYSFS */
5375
5376/*
5377 * Workqueue watchdog.
5378 *
5379 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5380 * flush dependency, a concurrency managed work item which stays RUNNING
5381 * indefinitely. Workqueue stalls can be very difficult to debug as the
5382 * usual warning mechanisms don't trigger and internal workqueue state is
5383 * largely opaque.
5384 *
5385 * Workqueue watchdog monitors all worker pools periodically and dumps
5386 * state if some pools failed to make forward progress for a while where
5387 * forward progress is defined as the first item on ->worklist changing.
5388 *
5389 * This mechanism is controlled through the kernel parameter
5390 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5391 * corresponding sysfs parameter file.
5392 */
5393#ifdef CONFIG_WQ_WATCHDOG
5394
5395static void wq_watchdog_timer_fn(unsigned long data);
5396
5397static unsigned long wq_watchdog_thresh = 30;
5398static struct timer_list wq_watchdog_timer =
5399 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5400
5401static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5402static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5403
5404static void wq_watchdog_reset_touched(void)
5405{
5406 int cpu;
5407
5408 wq_watchdog_touched = jiffies;
5409 for_each_possible_cpu(cpu)
5410 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5411}
5412
5413static void wq_watchdog_timer_fn(unsigned long data)
5414{
5415 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5416 bool lockup_detected = false;
5417 struct worker_pool *pool;
5418 int pi;
5419
5420 if (!thresh)
5421 return;
5422
5423 rcu_read_lock();
5424
5425 for_each_pool(pool, pi) {
5426 unsigned long pool_ts, touched, ts;
5427
5428 if (list_empty(&pool->worklist))
5429 continue;
5430
5431 /* get the latest of pool and touched timestamps */
5432 pool_ts = READ_ONCE(pool->watchdog_ts);
5433 touched = READ_ONCE(wq_watchdog_touched);
5434
5435 if (time_after(pool_ts, touched))
5436 ts = pool_ts;
5437 else
5438 ts = touched;
5439
5440 if (pool->cpu >= 0) {
5441 unsigned long cpu_touched =
5442 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5443 pool->cpu));
5444 if (time_after(cpu_touched, ts))
5445 ts = cpu_touched;
5446 }
5447
5448 /* did we stall? */
5449 if (time_after(jiffies, ts + thresh)) {
5450 lockup_detected = true;
5451 pr_emerg("BUG: workqueue lockup - pool");
5452 pr_cont_pool_info(pool);
5453 pr_cont(" stuck for %us!\n",
5454 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5455 }
5456 }
5457
5458 rcu_read_unlock();
5459
5460 if (lockup_detected)
5461 show_workqueue_state();
5462
5463 wq_watchdog_reset_touched();
5464 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5465}
5466
5467void wq_watchdog_touch(int cpu)
5468{
5469 if (cpu >= 0)
5470 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5471 else
5472 wq_watchdog_touched = jiffies;
5473}
5474
5475static void wq_watchdog_set_thresh(unsigned long thresh)
5476{
5477 wq_watchdog_thresh = 0;
5478 del_timer_sync(&wq_watchdog_timer);
5479
5480 if (thresh) {
5481 wq_watchdog_thresh = thresh;
5482 wq_watchdog_reset_touched();
5483 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5484 }
5485}
5486
5487static int wq_watchdog_param_set_thresh(const char *val,
5488 const struct kernel_param *kp)
5489{
5490 unsigned long thresh;
5491 int ret;
5492
5493 ret = kstrtoul(val, 0, &thresh);
5494 if (ret)
5495 return ret;
5496
5497 if (system_wq)
5498 wq_watchdog_set_thresh(thresh);
5499 else
5500 wq_watchdog_thresh = thresh;
5501
5502 return 0;
5503}
5504
5505static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5506 .set = wq_watchdog_param_set_thresh,
5507 .get = param_get_ulong,
5508};
5509
5510module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5511 0644);
5512
5513static void wq_watchdog_init(void)
5514{
5515 wq_watchdog_set_thresh(wq_watchdog_thresh);
5516}
5517
5518#else /* CONFIG_WQ_WATCHDOG */
5519
5520static inline void wq_watchdog_init(void) { }
5521
5522#endif /* CONFIG_WQ_WATCHDOG */
5523
5524static void __init wq_numa_init(void)
5525{
5526 cpumask_var_t *tbl;
5527 int node, cpu;
5528
5529 if (num_possible_nodes() <= 1)
5530 return;
5531
5532 if (wq_disable_numa) {
5533 pr_info("workqueue: NUMA affinity support disabled\n");
5534 return;
5535 }
5536
5537 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5538 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5539
5540 /*
5541 * We want masks of possible CPUs of each node which isn't readily
5542 * available. Build one from cpu_to_node() which should have been
5543 * fully initialized by now.
5544 */
5545 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5546 BUG_ON(!tbl);
5547
5548 for_each_node(node)
5549 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5550 node_online(node) ? node : NUMA_NO_NODE));
5551
5552 for_each_possible_cpu(cpu) {
5553 node = cpu_to_node(cpu);
5554 if (WARN_ON(node == NUMA_NO_NODE)) {
5555 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5556 /* happens iff arch is bonkers, let's just proceed */
5557 return;
5558 }
5559 cpumask_set_cpu(cpu, tbl[node]);
5560 }
5561
5562 wq_numa_possible_cpumask = tbl;
5563 wq_numa_enabled = true;
5564}
5565
5566/**
5567 * workqueue_init_early - early init for workqueue subsystem
5568 *
5569 * This is the first half of two-staged workqueue subsystem initialization
5570 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5571 * idr are up. It sets up all the data structures and system workqueues
5572 * and allows early boot code to create workqueues and queue/cancel work
5573 * items. Actual work item execution starts only after kthreads can be
5574 * created and scheduled right before early initcalls.
5575 */
5576int __init workqueue_init_early(void)
5577{
5578 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5579 int i, cpu;
5580
5581 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5582
5583 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5584 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5585
5586 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5587
5588 wq_numa_init();
5589
5590 /* initialize CPU pools */
5591 for_each_possible_cpu(cpu) {
5592 struct worker_pool *pool;
5593
5594 i = 0;
5595 for_each_cpu_worker_pool(pool, cpu) {
5596 BUG_ON(init_worker_pool(pool));
5597 pool->cpu = cpu;
5598 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5599 pool->attrs->nice = std_nice[i++];
5600 pool->node = cpu_to_node(cpu);
5601
5602 /* alloc pool ID */
5603 mutex_lock(&wq_pool_mutex);
5604 BUG_ON(worker_pool_assign_id(pool));
5605 mutex_unlock(&wq_pool_mutex);
5606 }
5607 }
5608
5609 /* create default unbound and ordered wq attrs */
5610 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5611 struct workqueue_attrs *attrs;
5612
5613 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5614 attrs->nice = std_nice[i];
5615 unbound_std_wq_attrs[i] = attrs;
5616
5617 /*
5618 * An ordered wq should have only one pwq as ordering is
5619 * guaranteed by max_active which is enforced by pwqs.
5620 * Turn off NUMA so that dfl_pwq is used for all nodes.
5621 */
5622 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5623 attrs->nice = std_nice[i];
5624 attrs->no_numa = true;
5625 ordered_wq_attrs[i] = attrs;
5626 }
5627
5628 system_wq = alloc_workqueue("events", 0, 0);
5629 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5630 system_long_wq = alloc_workqueue("events_long", 0, 0);
5631 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5632 WQ_UNBOUND_MAX_ACTIVE);
5633 system_freezable_wq = alloc_workqueue("events_freezable",
5634 WQ_FREEZABLE, 0);
5635 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5636 WQ_POWER_EFFICIENT, 0);
5637 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5638 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5639 0);
5640 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5641 !system_unbound_wq || !system_freezable_wq ||
5642 !system_power_efficient_wq ||
5643 !system_freezable_power_efficient_wq);
5644
5645 return 0;
5646}
5647
5648/**
5649 * workqueue_init - bring workqueue subsystem fully online
5650 *
5651 * This is the latter half of two-staged workqueue subsystem initialization
5652 * and invoked as soon as kthreads can be created and scheduled.
5653 * Workqueues have been created and work items queued on them, but there
5654 * are no kworkers executing the work items yet. Populate the worker pools
5655 * with the initial workers and enable future kworker creations.
5656 */
5657int __init workqueue_init(void)
5658{
5659 struct worker_pool *pool;
5660 int cpu, bkt;
5661
5662 /* create the initial workers */
5663 for_each_online_cpu(cpu) {
5664 for_each_cpu_worker_pool(pool, cpu) {
5665 pool->flags &= ~POOL_DISASSOCIATED;
5666 BUG_ON(!create_worker(pool));
5667 }
5668 }
5669
5670 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5671 BUG_ON(!create_worker(pool));
5672
5673 wq_online = true;
5674 wq_watchdog_init();
5675
5676 return 0;
5677}
5678