summaryrefslogtreecommitdiff
path: root/lib/swiotlb.c (plain)
blob: 7ff9dc36c2f803d9829e51a7669db15853920276
1/*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20#define pr_fmt(fmt) "software IO TLB: " fmt
21
22#include <linux/cache.h>
23#include <linux/dma-mapping.h>
24#include <linux/mm.h>
25#include <linux/export.h>
26#include <linux/spinlock.h>
27#include <linux/string.h>
28#include <linux/swiotlb.h>
29#include <linux/pfn.h>
30#include <linux/types.h>
31#include <linux/ctype.h>
32#include <linux/highmem.h>
33#include <linux/gfp.h>
34#include <linux/scatterlist.h>
35
36#include <asm/io.h>
37#include <asm/dma.h>
38
39#include <linux/init.h>
40#include <linux/bootmem.h>
41#include <linux/iommu-helper.h>
42
43#define CREATE_TRACE_POINTS
44#include <trace/events/swiotlb.h>
45
46#define OFFSET(val,align) ((unsigned long) \
47 ( (val) & ( (align) - 1)))
48
49#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
50
51/*
52 * Minimum IO TLB size to bother booting with. Systems with mainly
53 * 64bit capable cards will only lightly use the swiotlb. If we can't
54 * allocate a contiguous 1MB, we're probably in trouble anyway.
55 */
56#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
57
58enum swiotlb_force swiotlb_force;
59
60/*
61 * Used to do a quick range check in swiotlb_tbl_unmap_single and
62 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
63 * API.
64 */
65static phys_addr_t io_tlb_start, io_tlb_end;
66
67/*
68 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
69 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
70 */
71static unsigned long io_tlb_nslabs;
72
73/*
74 * When the IOMMU overflows we return a fallback buffer. This sets the size.
75 */
76static unsigned long io_tlb_overflow = 32*1024;
77
78static phys_addr_t io_tlb_overflow_buffer;
79
80/*
81 * This is a free list describing the number of free entries available from
82 * each index
83 */
84static unsigned int *io_tlb_list;
85static unsigned int io_tlb_index;
86
87/*
88 * We need to save away the original address corresponding to a mapped entry
89 * for the sync operations.
90 */
91#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
92static phys_addr_t *io_tlb_orig_addr;
93
94/*
95 * Protect the above data structures in the map and unmap calls
96 */
97static DEFINE_SPINLOCK(io_tlb_lock);
98
99static int late_alloc;
100
101static int __init
102setup_io_tlb_npages(char *str)
103{
104 if (isdigit(*str)) {
105 io_tlb_nslabs = simple_strtoul(str, &str, 0);
106 /* avoid tail segment of size < IO_TLB_SEGSIZE */
107 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
108 }
109 if (*str == ',')
110 ++str;
111 if (!strcmp(str, "force")) {
112 swiotlb_force = SWIOTLB_FORCE;
113 } else if (!strcmp(str, "noforce")) {
114 swiotlb_force = SWIOTLB_NO_FORCE;
115 io_tlb_nslabs = 1;
116 }
117
118 return 0;
119}
120early_param("swiotlb", setup_io_tlb_npages);
121/* make io_tlb_overflow tunable too? */
122
123unsigned long swiotlb_nr_tbl(void)
124{
125 return io_tlb_nslabs;
126}
127EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
128
129/* default to 64MB */
130#define IO_TLB_DEFAULT_SIZE (64UL<<20)
131unsigned long swiotlb_size_or_default(void)
132{
133 unsigned long size;
134
135 size = io_tlb_nslabs << IO_TLB_SHIFT;
136
137 return size ? size : (IO_TLB_DEFAULT_SIZE);
138}
139
140/* Note that this doesn't work with highmem page */
141static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
142 volatile void *address)
143{
144 return phys_to_dma(hwdev, virt_to_phys(address));
145}
146
147static bool no_iotlb_memory;
148
149void swiotlb_print_info(void)
150{
151 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
152
153 if (no_iotlb_memory) {
154 pr_warn("No low mem\n");
155 return;
156 }
157
158 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
159 (unsigned long long)io_tlb_start,
160 (unsigned long long)io_tlb_end,
161 bytes >> 20);
162}
163
164int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
165{
166 void *v_overflow_buffer;
167 unsigned long i, bytes;
168
169 bytes = nslabs << IO_TLB_SHIFT;
170
171 io_tlb_nslabs = nslabs;
172 io_tlb_start = __pa(tlb);
173 io_tlb_end = io_tlb_start + bytes;
174
175 /*
176 * Get the overflow emergency buffer
177 */
178 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
179 PAGE_ALIGN(io_tlb_overflow),
180 PAGE_SIZE);
181 if (!v_overflow_buffer)
182 return -ENOMEM;
183
184 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
185
186 /*
187 * Allocate and initialize the free list array. This array is used
188 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
189 * between io_tlb_start and io_tlb_end.
190 */
191 io_tlb_list = memblock_virt_alloc(
192 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
193 PAGE_SIZE);
194 io_tlb_orig_addr = memblock_virt_alloc(
195 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
196 PAGE_SIZE);
197 for (i = 0; i < io_tlb_nslabs; i++) {
198 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
199 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
200 }
201 io_tlb_index = 0;
202
203 if (verbose)
204 swiotlb_print_info();
205
206 return 0;
207}
208
209/*
210 * Statically reserve bounce buffer space and initialize bounce buffer data
211 * structures for the software IO TLB used to implement the DMA API.
212 */
213void __init
214swiotlb_init(int verbose)
215{
216 size_t default_size = IO_TLB_DEFAULT_SIZE;
217 unsigned char *vstart;
218 unsigned long bytes;
219
220 if (!io_tlb_nslabs) {
221 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
222 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
223 }
224
225 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
226
227 /* Get IO TLB memory from the low pages */
228 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
229 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
230 return;
231
232 if (io_tlb_start)
233 memblock_free_early(io_tlb_start,
234 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
235 pr_warn("Cannot allocate buffer");
236 no_iotlb_memory = true;
237}
238
239/*
240 * Systems with larger DMA zones (those that don't support ISA) can
241 * initialize the swiotlb later using the slab allocator if needed.
242 * This should be just like above, but with some error catching.
243 */
244int
245swiotlb_late_init_with_default_size(size_t default_size)
246{
247 unsigned long bytes, req_nslabs = io_tlb_nslabs;
248 unsigned char *vstart = NULL;
249 unsigned int order;
250 int rc = 0;
251
252 if (!io_tlb_nslabs) {
253 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
254 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
255 }
256
257 /*
258 * Get IO TLB memory from the low pages
259 */
260 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
261 io_tlb_nslabs = SLABS_PER_PAGE << order;
262 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
263
264 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
265 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
266 order);
267 if (vstart)
268 break;
269 order--;
270 }
271
272 if (!vstart) {
273 io_tlb_nslabs = req_nslabs;
274 return -ENOMEM;
275 }
276 if (order != get_order(bytes)) {
277 pr_warn("only able to allocate %ld MB\n",
278 (PAGE_SIZE << order) >> 20);
279 io_tlb_nslabs = SLABS_PER_PAGE << order;
280 }
281 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
282 if (rc)
283 free_pages((unsigned long)vstart, order);
284 return rc;
285}
286
287int
288swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
289{
290 unsigned long i, bytes;
291 unsigned char *v_overflow_buffer;
292
293 bytes = nslabs << IO_TLB_SHIFT;
294
295 io_tlb_nslabs = nslabs;
296 io_tlb_start = virt_to_phys(tlb);
297 io_tlb_end = io_tlb_start + bytes;
298
299 memset(tlb, 0, bytes);
300
301 /*
302 * Get the overflow emergency buffer
303 */
304 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
305 get_order(io_tlb_overflow));
306 if (!v_overflow_buffer)
307 goto cleanup2;
308
309 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
310
311 /*
312 * Allocate and initialize the free list array. This array is used
313 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
314 * between io_tlb_start and io_tlb_end.
315 */
316 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
317 get_order(io_tlb_nslabs * sizeof(int)));
318 if (!io_tlb_list)
319 goto cleanup3;
320
321 io_tlb_orig_addr = (phys_addr_t *)
322 __get_free_pages(GFP_KERNEL,
323 get_order(io_tlb_nslabs *
324 sizeof(phys_addr_t)));
325 if (!io_tlb_orig_addr)
326 goto cleanup4;
327
328 for (i = 0; i < io_tlb_nslabs; i++) {
329 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
330 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
331 }
332 io_tlb_index = 0;
333
334 swiotlb_print_info();
335
336 late_alloc = 1;
337
338 return 0;
339
340cleanup4:
341 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
342 sizeof(int)));
343 io_tlb_list = NULL;
344cleanup3:
345 free_pages((unsigned long)v_overflow_buffer,
346 get_order(io_tlb_overflow));
347 io_tlb_overflow_buffer = 0;
348cleanup2:
349 io_tlb_end = 0;
350 io_tlb_start = 0;
351 io_tlb_nslabs = 0;
352 return -ENOMEM;
353}
354
355void __init swiotlb_free(void)
356{
357 if (!io_tlb_orig_addr)
358 return;
359
360 if (late_alloc) {
361 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
362 get_order(io_tlb_overflow));
363 free_pages((unsigned long)io_tlb_orig_addr,
364 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
365 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
366 sizeof(int)));
367 free_pages((unsigned long)phys_to_virt(io_tlb_start),
368 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
369 } else {
370 memblock_free_late(io_tlb_overflow_buffer,
371 PAGE_ALIGN(io_tlb_overflow));
372 memblock_free_late(__pa(io_tlb_orig_addr),
373 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
374 memblock_free_late(__pa(io_tlb_list),
375 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
376 memblock_free_late(io_tlb_start,
377 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
378 }
379 io_tlb_nslabs = 0;
380}
381
382int is_swiotlb_buffer(phys_addr_t paddr)
383{
384 return paddr >= io_tlb_start && paddr < io_tlb_end;
385}
386
387/*
388 * Bounce: copy the swiotlb buffer back to the original dma location
389 */
390static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
391 size_t size, enum dma_data_direction dir)
392{
393 unsigned long pfn = PFN_DOWN(orig_addr);
394 unsigned char *vaddr = phys_to_virt(tlb_addr);
395
396 if (PageHighMem(pfn_to_page(pfn))) {
397 /* The buffer does not have a mapping. Map it in and copy */
398 unsigned int offset = orig_addr & ~PAGE_MASK;
399 char *buffer;
400 unsigned int sz = 0;
401 unsigned long flags;
402
403 while (size) {
404 sz = min_t(size_t, PAGE_SIZE - offset, size);
405
406 local_irq_save(flags);
407 buffer = kmap_atomic(pfn_to_page(pfn));
408 if (dir == DMA_TO_DEVICE)
409 memcpy(vaddr, buffer + offset, sz);
410 else
411 memcpy(buffer + offset, vaddr, sz);
412 kunmap_atomic(buffer);
413 local_irq_restore(flags);
414
415 size -= sz;
416 pfn++;
417 vaddr += sz;
418 offset = 0;
419 }
420 } else if (dir == DMA_TO_DEVICE) {
421 memcpy(vaddr, phys_to_virt(orig_addr), size);
422 } else {
423 memcpy(phys_to_virt(orig_addr), vaddr, size);
424 }
425}
426
427phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
428 dma_addr_t tbl_dma_addr,
429 phys_addr_t orig_addr, size_t size,
430 enum dma_data_direction dir)
431{
432 unsigned long flags;
433 phys_addr_t tlb_addr;
434 unsigned int nslots, stride, index, wrap;
435 int i;
436 unsigned long mask;
437 unsigned long offset_slots;
438 unsigned long max_slots;
439
440 if (no_iotlb_memory)
441 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
442
443 mask = dma_get_seg_boundary(hwdev);
444
445 tbl_dma_addr &= mask;
446
447 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
448
449 /*
450 * Carefully handle integer overflow which can occur when mask == ~0UL.
451 */
452 max_slots = mask + 1
453 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
454 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
455
456 /*
457 * For mappings greater than or equal to a page, we limit the stride
458 * (and hence alignment) to a page size.
459 */
460 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
461 if (size >= PAGE_SIZE)
462 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
463 else
464 stride = 1;
465
466 BUG_ON(!nslots);
467
468 /*
469 * Find suitable number of IO TLB entries size that will fit this
470 * request and allocate a buffer from that IO TLB pool.
471 */
472 spin_lock_irqsave(&io_tlb_lock, flags);
473 index = ALIGN(io_tlb_index, stride);
474 if (index >= io_tlb_nslabs)
475 index = 0;
476 wrap = index;
477
478 do {
479 while (iommu_is_span_boundary(index, nslots, offset_slots,
480 max_slots)) {
481 index += stride;
482 if (index >= io_tlb_nslabs)
483 index = 0;
484 if (index == wrap)
485 goto not_found;
486 }
487
488 /*
489 * If we find a slot that indicates we have 'nslots' number of
490 * contiguous buffers, we allocate the buffers from that slot
491 * and mark the entries as '0' indicating unavailable.
492 */
493 if (io_tlb_list[index] >= nslots) {
494 int count = 0;
495
496 for (i = index; i < (int) (index + nslots); i++)
497 io_tlb_list[i] = 0;
498 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
499 io_tlb_list[i] = ++count;
500 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
501
502 /*
503 * Update the indices to avoid searching in the next
504 * round.
505 */
506 io_tlb_index = ((index + nslots) < io_tlb_nslabs
507 ? (index + nslots) : 0);
508
509 goto found;
510 }
511 index += stride;
512 if (index >= io_tlb_nslabs)
513 index = 0;
514 } while (index != wrap);
515
516not_found:
517 spin_unlock_irqrestore(&io_tlb_lock, flags);
518 if (printk_ratelimit())
519 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
520 return SWIOTLB_MAP_ERROR;
521found:
522 spin_unlock_irqrestore(&io_tlb_lock, flags);
523
524 /*
525 * Save away the mapping from the original address to the DMA address.
526 * This is needed when we sync the memory. Then we sync the buffer if
527 * needed.
528 */
529 for (i = 0; i < nslots; i++)
530 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
531 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
532 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
533
534 return tlb_addr;
535}
536EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
537
538/*
539 * Allocates bounce buffer and returns its kernel virtual address.
540 */
541
542static phys_addr_t
543map_single(struct device *hwdev, phys_addr_t phys, size_t size,
544 enum dma_data_direction dir)
545{
546 dma_addr_t start_dma_addr;
547
548 if (swiotlb_force == SWIOTLB_NO_FORCE) {
549 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
550 &phys);
551 return SWIOTLB_MAP_ERROR;
552 }
553
554 start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
555 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
556}
557
558/*
559 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
560 */
561void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
562 size_t size, enum dma_data_direction dir)
563{
564 unsigned long flags;
565 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
566 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
567 phys_addr_t orig_addr = io_tlb_orig_addr[index];
568
569 /*
570 * First, sync the memory before unmapping the entry
571 */
572 if (orig_addr != INVALID_PHYS_ADDR &&
573 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
574 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
575
576 /*
577 * Return the buffer to the free list by setting the corresponding
578 * entries to indicate the number of contiguous entries available.
579 * While returning the entries to the free list, we merge the entries
580 * with slots below and above the pool being returned.
581 */
582 spin_lock_irqsave(&io_tlb_lock, flags);
583 {
584 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
585 io_tlb_list[index + nslots] : 0);
586 /*
587 * Step 1: return the slots to the free list, merging the
588 * slots with superceeding slots
589 */
590 for (i = index + nslots - 1; i >= index; i--) {
591 io_tlb_list[i] = ++count;
592 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
593 }
594 /*
595 * Step 2: merge the returned slots with the preceding slots,
596 * if available (non zero)
597 */
598 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
599 io_tlb_list[i] = ++count;
600 }
601 spin_unlock_irqrestore(&io_tlb_lock, flags);
602}
603EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
604
605void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
606 size_t size, enum dma_data_direction dir,
607 enum dma_sync_target target)
608{
609 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
610 phys_addr_t orig_addr = io_tlb_orig_addr[index];
611
612 if (orig_addr == INVALID_PHYS_ADDR)
613 return;
614 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
615
616 switch (target) {
617 case SYNC_FOR_CPU:
618 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
619 swiotlb_bounce(orig_addr, tlb_addr,
620 size, DMA_FROM_DEVICE);
621 else
622 BUG_ON(dir != DMA_TO_DEVICE);
623 break;
624 case SYNC_FOR_DEVICE:
625 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
626 swiotlb_bounce(orig_addr, tlb_addr,
627 size, DMA_TO_DEVICE);
628 else
629 BUG_ON(dir != DMA_FROM_DEVICE);
630 break;
631 default:
632 BUG();
633 }
634}
635EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
636
637void *
638swiotlb_alloc_coherent(struct device *hwdev, size_t size,
639 dma_addr_t *dma_handle, gfp_t flags)
640{
641 dma_addr_t dev_addr;
642 void *ret;
643 int order = get_order(size);
644 u64 dma_mask = DMA_BIT_MASK(32);
645
646 if (hwdev && hwdev->coherent_dma_mask)
647 dma_mask = hwdev->coherent_dma_mask;
648
649 ret = (void *)__get_free_pages(flags, order);
650 if (ret) {
651 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
652 if (dev_addr + size - 1 > dma_mask) {
653 /*
654 * The allocated memory isn't reachable by the device.
655 */
656 free_pages((unsigned long) ret, order);
657 ret = NULL;
658 }
659 }
660 if (!ret) {
661 /*
662 * We are either out of memory or the device can't DMA to
663 * GFP_DMA memory; fall back on map_single(), which
664 * will grab memory from the lowest available address range.
665 */
666 phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
667 if (paddr == SWIOTLB_MAP_ERROR)
668 goto err_warn;
669
670 ret = phys_to_virt(paddr);
671 dev_addr = phys_to_dma(hwdev, paddr);
672
673 /* Confirm address can be DMA'd by device */
674 if (dev_addr + size - 1 > dma_mask) {
675 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
676 (unsigned long long)dma_mask,
677 (unsigned long long)dev_addr);
678
679 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
680 swiotlb_tbl_unmap_single(hwdev, paddr,
681 size, DMA_TO_DEVICE);
682 goto err_warn;
683 }
684 }
685
686 *dma_handle = dev_addr;
687 memset(ret, 0, size);
688
689 return ret;
690
691err_warn:
692 pr_warn("coherent allocation failed for device %s size=%zu\n",
693 dev_name(hwdev), size);
694 dump_stack();
695
696 return NULL;
697}
698EXPORT_SYMBOL(swiotlb_alloc_coherent);
699
700void
701swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
702 dma_addr_t dev_addr)
703{
704 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
705
706 WARN_ON(irqs_disabled());
707 if (!is_swiotlb_buffer(paddr))
708 free_pages((unsigned long)vaddr, get_order(size));
709 else
710 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
711 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
712}
713EXPORT_SYMBOL(swiotlb_free_coherent);
714
715static void
716swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
717 int do_panic)
718{
719 if (swiotlb_force == SWIOTLB_NO_FORCE)
720 return;
721
722 /*
723 * Ran out of IOMMU space for this operation. This is very bad.
724 * Unfortunately the drivers cannot handle this operation properly.
725 * unless they check for dma_mapping_error (most don't)
726 * When the mapping is small enough return a static buffer to limit
727 * the damage, or panic when the transfer is too big.
728 */
729 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
730 "device %s\n", size, dev ? dev_name(dev) : "?");
731
732 if (size <= io_tlb_overflow || !do_panic)
733 return;
734
735 if (dir == DMA_BIDIRECTIONAL)
736 panic("DMA: Random memory could be DMA accessed\n");
737 if (dir == DMA_FROM_DEVICE)
738 panic("DMA: Random memory could be DMA written\n");
739 if (dir == DMA_TO_DEVICE)
740 panic("DMA: Random memory could be DMA read\n");
741}
742
743/*
744 * Map a single buffer of the indicated size for DMA in streaming mode. The
745 * physical address to use is returned.
746 *
747 * Once the device is given the dma address, the device owns this memory until
748 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
749 */
750dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
751 unsigned long offset, size_t size,
752 enum dma_data_direction dir,
753 unsigned long attrs)
754{
755 phys_addr_t map, phys = page_to_phys(page) + offset;
756 dma_addr_t dev_addr = phys_to_dma(dev, phys);
757
758 BUG_ON(dir == DMA_NONE);
759 /*
760 * If the address happens to be in the device's DMA window,
761 * we can safely return the device addr and not worry about bounce
762 * buffering it.
763 */
764 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
765 return dev_addr;
766
767 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
768
769 /* Oh well, have to allocate and map a bounce buffer. */
770 map = map_single(dev, phys, size, dir);
771 if (map == SWIOTLB_MAP_ERROR) {
772 swiotlb_full(dev, size, dir, 1);
773 return phys_to_dma(dev, io_tlb_overflow_buffer);
774 }
775
776 dev_addr = phys_to_dma(dev, map);
777
778 /* Ensure that the address returned is DMA'ble */
779 if (!dma_capable(dev, dev_addr, size)) {
780 swiotlb_tbl_unmap_single(dev, map, size, dir);
781 return phys_to_dma(dev, io_tlb_overflow_buffer);
782 }
783
784 return dev_addr;
785}
786EXPORT_SYMBOL_GPL(swiotlb_map_page);
787
788/*
789 * Unmap a single streaming mode DMA translation. The dma_addr and size must
790 * match what was provided for in a previous swiotlb_map_page call. All
791 * other usages are undefined.
792 *
793 * After this call, reads by the cpu to the buffer are guaranteed to see
794 * whatever the device wrote there.
795 */
796static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
797 size_t size, enum dma_data_direction dir)
798{
799 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
800
801 BUG_ON(dir == DMA_NONE);
802
803 if (is_swiotlb_buffer(paddr)) {
804 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
805 return;
806 }
807
808 if (dir != DMA_FROM_DEVICE)
809 return;
810
811 /*
812 * phys_to_virt doesn't work with hihgmem page but we could
813 * call dma_mark_clean() with hihgmem page here. However, we
814 * are fine since dma_mark_clean() is null on POWERPC. We can
815 * make dma_mark_clean() take a physical address if necessary.
816 */
817 dma_mark_clean(phys_to_virt(paddr), size);
818}
819
820void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
821 size_t size, enum dma_data_direction dir,
822 unsigned long attrs)
823{
824 unmap_single(hwdev, dev_addr, size, dir);
825}
826EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
827
828/*
829 * Make physical memory consistent for a single streaming mode DMA translation
830 * after a transfer.
831 *
832 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
833 * using the cpu, yet do not wish to teardown the dma mapping, you must
834 * call this function before doing so. At the next point you give the dma
835 * address back to the card, you must first perform a
836 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
837 */
838static void
839swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
840 size_t size, enum dma_data_direction dir,
841 enum dma_sync_target target)
842{
843 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
844
845 BUG_ON(dir == DMA_NONE);
846
847 if (is_swiotlb_buffer(paddr)) {
848 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
849 return;
850 }
851
852 if (dir != DMA_FROM_DEVICE)
853 return;
854
855 dma_mark_clean(phys_to_virt(paddr), size);
856}
857
858void
859swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
860 size_t size, enum dma_data_direction dir)
861{
862 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
863}
864EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
865
866void
867swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
868 size_t size, enum dma_data_direction dir)
869{
870 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
871}
872EXPORT_SYMBOL(swiotlb_sync_single_for_device);
873
874/*
875 * Map a set of buffers described by scatterlist in streaming mode for DMA.
876 * This is the scatter-gather version of the above swiotlb_map_page
877 * interface. Here the scatter gather list elements are each tagged with the
878 * appropriate dma address and length. They are obtained via
879 * sg_dma_{address,length}(SG).
880 *
881 * NOTE: An implementation may be able to use a smaller number of
882 * DMA address/length pairs than there are SG table elements.
883 * (for example via virtual mapping capabilities)
884 * The routine returns the number of addr/length pairs actually
885 * used, at most nents.
886 *
887 * Device ownership issues as mentioned above for swiotlb_map_page are the
888 * same here.
889 */
890int
891swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
892 enum dma_data_direction dir, unsigned long attrs)
893{
894 struct scatterlist *sg;
895 int i;
896
897 BUG_ON(dir == DMA_NONE);
898
899 for_each_sg(sgl, sg, nelems, i) {
900 phys_addr_t paddr = sg_phys(sg);
901 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
902
903 if (swiotlb_force == SWIOTLB_FORCE ||
904 !dma_capable(hwdev, dev_addr, sg->length)) {
905 phys_addr_t map = map_single(hwdev, sg_phys(sg),
906 sg->length, dir);
907 if (map == SWIOTLB_MAP_ERROR) {
908 /* Don't panic here, we expect map_sg users
909 to do proper error handling. */
910 swiotlb_full(hwdev, sg->length, dir, 0);
911 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
912 attrs);
913 sg_dma_len(sgl) = 0;
914 return 0;
915 }
916 sg->dma_address = phys_to_dma(hwdev, map);
917 } else
918 sg->dma_address = dev_addr;
919 sg_dma_len(sg) = sg->length;
920 }
921 return nelems;
922}
923EXPORT_SYMBOL(swiotlb_map_sg_attrs);
924
925int
926swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
927 enum dma_data_direction dir)
928{
929 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, 0);
930}
931EXPORT_SYMBOL(swiotlb_map_sg);
932
933/*
934 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
935 * concerning calls here are the same as for swiotlb_unmap_page() above.
936 */
937void
938swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
939 int nelems, enum dma_data_direction dir,
940 unsigned long attrs)
941{
942 struct scatterlist *sg;
943 int i;
944
945 BUG_ON(dir == DMA_NONE);
946
947 for_each_sg(sgl, sg, nelems, i)
948 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
949
950}
951EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
952
953void
954swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
955 enum dma_data_direction dir)
956{
957 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, 0);
958}
959EXPORT_SYMBOL(swiotlb_unmap_sg);
960
961/*
962 * Make physical memory consistent for a set of streaming mode DMA translations
963 * after a transfer.
964 *
965 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
966 * and usage.
967 */
968static void
969swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
970 int nelems, enum dma_data_direction dir,
971 enum dma_sync_target target)
972{
973 struct scatterlist *sg;
974 int i;
975
976 for_each_sg(sgl, sg, nelems, i)
977 swiotlb_sync_single(hwdev, sg->dma_address,
978 sg_dma_len(sg), dir, target);
979}
980
981void
982swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
983 int nelems, enum dma_data_direction dir)
984{
985 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
986}
987EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
988
989void
990swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
991 int nelems, enum dma_data_direction dir)
992{
993 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
994}
995EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
996
997int
998swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
999{
1000 return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
1001}
1002EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1003
1004/*
1005 * Return whether the given device DMA address mask can be supported
1006 * properly. For example, if your device can only drive the low 24-bits
1007 * during bus mastering, then you would pass 0x00ffffff as the mask to
1008 * this function.
1009 */
1010int
1011swiotlb_dma_supported(struct device *hwdev, u64 mask)
1012{
1013 return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1014}
1015EXPORT_SYMBOL(swiotlb_dma_supported);
1016