summaryrefslogtreecommitdiff
path: root/mm/hugetlb.c (plain)
blob: 75d8bd7e8798b5924b5bdce2002890e4525ffe66
1/*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/mm.h>
8#include <linux/seq_file.h>
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
11#include <linux/mmu_notifier.h>
12#include <linux/nodemask.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/compiler.h>
16#include <linux/cpuset.h>
17#include <linux/mutex.h>
18#include <linux/bootmem.h>
19#include <linux/sysfs.h>
20#include <linux/slab.h>
21#include <linux/rmap.h>
22#include <linux/swap.h>
23#include <linux/swapops.h>
24#include <linux/page-isolation.h>
25#include <linux/jhash.h>
26
27#include <asm/page.h>
28#include <asm/pgtable.h>
29#include <asm/tlb.h>
30
31#include <linux/io.h>
32#include <linux/hugetlb.h>
33#include <linux/hugetlb_cgroup.h>
34#include <linux/node.h>
35#include "internal.h"
36
37int hugepages_treat_as_movable;
38
39int hugetlb_max_hstate __read_mostly;
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
42/*
43 * Minimum page order among possible hugepage sizes, set to a proper value
44 * at boot time.
45 */
46static unsigned int minimum_order __read_mostly = UINT_MAX;
47
48__initdata LIST_HEAD(huge_boot_pages);
49
50/* for command line parsing */
51static struct hstate * __initdata parsed_hstate;
52static unsigned long __initdata default_hstate_max_huge_pages;
53static unsigned long __initdata default_hstate_size;
54static bool __initdata parsed_valid_hugepagesz = true;
55
56/*
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
59 */
60DEFINE_SPINLOCK(hugetlb_lock);
61
62/*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66static int num_fault_mutexes;
67struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69/* Forward declaration */
70static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73{
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
85 kfree(spool);
86 }
87}
88
89struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
91{
92 struct hugepage_subpool *spool;
93
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
109
110 return spool;
111}
112
113void hugepage_put_subpool(struct hugepage_subpool *spool)
114{
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119}
120
121/*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 long delta)
131{
132 long ret = delta;
133
134 if (!spool)
135 return ret;
136
137 spin_lock(&spool->lock);
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
146 }
147
148 /* minimum size accounting */
149 if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 if (delta > spool->rsv_hpages) {
151 /*
152 * Asking for more reserves than those already taken on
153 * behalf of subpool. Return difference.
154 */
155 ret = delta - spool->rsv_hpages;
156 spool->rsv_hpages = 0;
157 } else {
158 ret = 0; /* reserves already accounted for */
159 spool->rsv_hpages -= delta;
160 }
161 }
162
163unlock_ret:
164 spin_unlock(&spool->lock);
165 return ret;
166}
167
168/*
169 * Subpool accounting for freeing and unreserving pages.
170 * Return the number of global page reservations that must be dropped.
171 * The return value may only be different than the passed value (delta)
172 * in the case where a subpool minimum size must be maintained.
173 */
174static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 long delta)
176{
177 long ret = delta;
178
179 if (!spool)
180 return delta;
181
182 spin_lock(&spool->lock);
183
184 if (spool->max_hpages != -1) /* maximum size accounting */
185 spool->used_hpages -= delta;
186
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 if (spool->rsv_hpages + delta <= spool->min_hpages)
190 ret = 0;
191 else
192 ret = spool->rsv_hpages + delta - spool->min_hpages;
193
194 spool->rsv_hpages += delta;
195 if (spool->rsv_hpages > spool->min_hpages)
196 spool->rsv_hpages = spool->min_hpages;
197 }
198
199 /*
200 * If hugetlbfs_put_super couldn't free spool due to an outstanding
201 * quota reference, free it now.
202 */
203 unlock_or_release_subpool(spool);
204
205 return ret;
206}
207
208static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
209{
210 return HUGETLBFS_SB(inode->i_sb)->spool;
211}
212
213static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
214{
215 return subpool_inode(file_inode(vma->vm_file));
216}
217
218/*
219 * Region tracking -- allows tracking of reservations and instantiated pages
220 * across the pages in a mapping.
221 *
222 * The region data structures are embedded into a resv_map and protected
223 * by a resv_map's lock. The set of regions within the resv_map represent
224 * reservations for huge pages, or huge pages that have already been
225 * instantiated within the map. The from and to elements are huge page
226 * indicies into the associated mapping. from indicates the starting index
227 * of the region. to represents the first index past the end of the region.
228 *
229 * For example, a file region structure with from == 0 and to == 4 represents
230 * four huge pages in a mapping. It is important to note that the to element
231 * represents the first element past the end of the region. This is used in
232 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
233 *
234 * Interval notation of the form [from, to) will be used to indicate that
235 * the endpoint from is inclusive and to is exclusive.
236 */
237struct file_region {
238 struct list_head link;
239 long from;
240 long to;
241};
242
243/*
244 * Add the huge page range represented by [f, t) to the reserve
245 * map. In the normal case, existing regions will be expanded
246 * to accommodate the specified range. Sufficient regions should
247 * exist for expansion due to the previous call to region_chg
248 * with the same range. However, it is possible that region_del
249 * could have been called after region_chg and modifed the map
250 * in such a way that no region exists to be expanded. In this
251 * case, pull a region descriptor from the cache associated with
252 * the map and use that for the new range.
253 *
254 * Return the number of new huge pages added to the map. This
255 * number is greater than or equal to zero.
256 */
257static long region_add(struct resv_map *resv, long f, long t)
258{
259 struct list_head *head = &resv->regions;
260 struct file_region *rg, *nrg, *trg;
261 long add = 0;
262
263 spin_lock(&resv->lock);
264 /* Locate the region we are either in or before. */
265 list_for_each_entry(rg, head, link)
266 if (f <= rg->to)
267 break;
268
269 /*
270 * If no region exists which can be expanded to include the
271 * specified range, the list must have been modified by an
272 * interleving call to region_del(). Pull a region descriptor
273 * from the cache and use it for this range.
274 */
275 if (&rg->link == head || t < rg->from) {
276 VM_BUG_ON(resv->region_cache_count <= 0);
277
278 resv->region_cache_count--;
279 nrg = list_first_entry(&resv->region_cache, struct file_region,
280 link);
281 list_del(&nrg->link);
282
283 nrg->from = f;
284 nrg->to = t;
285 list_add(&nrg->link, rg->link.prev);
286
287 add += t - f;
288 goto out_locked;
289 }
290
291 /* Round our left edge to the current segment if it encloses us. */
292 if (f > rg->from)
293 f = rg->from;
294
295 /* Check for and consume any regions we now overlap with. */
296 nrg = rg;
297 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
298 if (&rg->link == head)
299 break;
300 if (rg->from > t)
301 break;
302
303 /* If this area reaches higher then extend our area to
304 * include it completely. If this is not the first area
305 * which we intend to reuse, free it. */
306 if (rg->to > t)
307 t = rg->to;
308 if (rg != nrg) {
309 /* Decrement return value by the deleted range.
310 * Another range will span this area so that by
311 * end of routine add will be >= zero
312 */
313 add -= (rg->to - rg->from);
314 list_del(&rg->link);
315 kfree(rg);
316 }
317 }
318
319 add += (nrg->from - f); /* Added to beginning of region */
320 nrg->from = f;
321 add += t - nrg->to; /* Added to end of region */
322 nrg->to = t;
323
324out_locked:
325 resv->adds_in_progress--;
326 spin_unlock(&resv->lock);
327 VM_BUG_ON(add < 0);
328 return add;
329}
330
331/*
332 * Examine the existing reserve map and determine how many
333 * huge pages in the specified range [f, t) are NOT currently
334 * represented. This routine is called before a subsequent
335 * call to region_add that will actually modify the reserve
336 * map to add the specified range [f, t). region_chg does
337 * not change the number of huge pages represented by the
338 * map. However, if the existing regions in the map can not
339 * be expanded to represent the new range, a new file_region
340 * structure is added to the map as a placeholder. This is
341 * so that the subsequent region_add call will have all the
342 * regions it needs and will not fail.
343 *
344 * Upon entry, region_chg will also examine the cache of region descriptors
345 * associated with the map. If there are not enough descriptors cached, one
346 * will be allocated for the in progress add operation.
347 *
348 * Returns the number of huge pages that need to be added to the existing
349 * reservation map for the range [f, t). This number is greater or equal to
350 * zero. -ENOMEM is returned if a new file_region structure or cache entry
351 * is needed and can not be allocated.
352 */
353static long region_chg(struct resv_map *resv, long f, long t)
354{
355 struct list_head *head = &resv->regions;
356 struct file_region *rg, *nrg = NULL;
357 long chg = 0;
358
359retry:
360 spin_lock(&resv->lock);
361retry_locked:
362 resv->adds_in_progress++;
363
364 /*
365 * Check for sufficient descriptors in the cache to accommodate
366 * the number of in progress add operations.
367 */
368 if (resv->adds_in_progress > resv->region_cache_count) {
369 struct file_region *trg;
370
371 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
372 /* Must drop lock to allocate a new descriptor. */
373 resv->adds_in_progress--;
374 spin_unlock(&resv->lock);
375
376 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 if (!trg) {
378 kfree(nrg);
379 return -ENOMEM;
380 }
381
382 spin_lock(&resv->lock);
383 list_add(&trg->link, &resv->region_cache);
384 resv->region_cache_count++;
385 goto retry_locked;
386 }
387
388 /* Locate the region we are before or in. */
389 list_for_each_entry(rg, head, link)
390 if (f <= rg->to)
391 break;
392
393 /* If we are below the current region then a new region is required.
394 * Subtle, allocate a new region at the position but make it zero
395 * size such that we can guarantee to record the reservation. */
396 if (&rg->link == head || t < rg->from) {
397 if (!nrg) {
398 resv->adds_in_progress--;
399 spin_unlock(&resv->lock);
400 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
401 if (!nrg)
402 return -ENOMEM;
403
404 nrg->from = f;
405 nrg->to = f;
406 INIT_LIST_HEAD(&nrg->link);
407 goto retry;
408 }
409
410 list_add(&nrg->link, rg->link.prev);
411 chg = t - f;
412 goto out_nrg;
413 }
414
415 /* Round our left edge to the current segment if it encloses us. */
416 if (f > rg->from)
417 f = rg->from;
418 chg = t - f;
419
420 /* Check for and consume any regions we now overlap with. */
421 list_for_each_entry(rg, rg->link.prev, link) {
422 if (&rg->link == head)
423 break;
424 if (rg->from > t)
425 goto out;
426
427 /* We overlap with this area, if it extends further than
428 * us then we must extend ourselves. Account for its
429 * existing reservation. */
430 if (rg->to > t) {
431 chg += rg->to - t;
432 t = rg->to;
433 }
434 chg -= rg->to - rg->from;
435 }
436
437out:
438 spin_unlock(&resv->lock);
439 /* We already know we raced and no longer need the new region */
440 kfree(nrg);
441 return chg;
442out_nrg:
443 spin_unlock(&resv->lock);
444 return chg;
445}
446
447/*
448 * Abort the in progress add operation. The adds_in_progress field
449 * of the resv_map keeps track of the operations in progress between
450 * calls to region_chg and region_add. Operations are sometimes
451 * aborted after the call to region_chg. In such cases, region_abort
452 * is called to decrement the adds_in_progress counter.
453 *
454 * NOTE: The range arguments [f, t) are not needed or used in this
455 * routine. They are kept to make reading the calling code easier as
456 * arguments will match the associated region_chg call.
457 */
458static void region_abort(struct resv_map *resv, long f, long t)
459{
460 spin_lock(&resv->lock);
461 VM_BUG_ON(!resv->region_cache_count);
462 resv->adds_in_progress--;
463 spin_unlock(&resv->lock);
464}
465
466/*
467 * Delete the specified range [f, t) from the reserve map. If the
468 * t parameter is LONG_MAX, this indicates that ALL regions after f
469 * should be deleted. Locate the regions which intersect [f, t)
470 * and either trim, delete or split the existing regions.
471 *
472 * Returns the number of huge pages deleted from the reserve map.
473 * In the normal case, the return value is zero or more. In the
474 * case where a region must be split, a new region descriptor must
475 * be allocated. If the allocation fails, -ENOMEM will be returned.
476 * NOTE: If the parameter t == LONG_MAX, then we will never split
477 * a region and possibly return -ENOMEM. Callers specifying
478 * t == LONG_MAX do not need to check for -ENOMEM error.
479 */
480static long region_del(struct resv_map *resv, long f, long t)
481{
482 struct list_head *head = &resv->regions;
483 struct file_region *rg, *trg;
484 struct file_region *nrg = NULL;
485 long del = 0;
486
487retry:
488 spin_lock(&resv->lock);
489 list_for_each_entry_safe(rg, trg, head, link) {
490 /*
491 * Skip regions before the range to be deleted. file_region
492 * ranges are normally of the form [from, to). However, there
493 * may be a "placeholder" entry in the map which is of the form
494 * (from, to) with from == to. Check for placeholder entries
495 * at the beginning of the range to be deleted.
496 */
497 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498 continue;
499
500 if (rg->from >= t)
501 break;
502
503 if (f > rg->from && t < rg->to) { /* Must split region */
504 /*
505 * Check for an entry in the cache before dropping
506 * lock and attempting allocation.
507 */
508 if (!nrg &&
509 resv->region_cache_count > resv->adds_in_progress) {
510 nrg = list_first_entry(&resv->region_cache,
511 struct file_region,
512 link);
513 list_del(&nrg->link);
514 resv->region_cache_count--;
515 }
516
517 if (!nrg) {
518 spin_unlock(&resv->lock);
519 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
520 if (!nrg)
521 return -ENOMEM;
522 goto retry;
523 }
524
525 del += t - f;
526
527 /* New entry for end of split region */
528 nrg->from = t;
529 nrg->to = rg->to;
530 INIT_LIST_HEAD(&nrg->link);
531
532 /* Original entry is trimmed */
533 rg->to = f;
534
535 list_add(&nrg->link, &rg->link);
536 nrg = NULL;
537 break;
538 }
539
540 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
541 del += rg->to - rg->from;
542 list_del(&rg->link);
543 kfree(rg);
544 continue;
545 }
546
547 if (f <= rg->from) { /* Trim beginning of region */
548 del += t - rg->from;
549 rg->from = t;
550 } else { /* Trim end of region */
551 del += rg->to - f;
552 rg->to = f;
553 }
554 }
555
556 spin_unlock(&resv->lock);
557 kfree(nrg);
558 return del;
559}
560
561/*
562 * A rare out of memory error was encountered which prevented removal of
563 * the reserve map region for a page. The huge page itself was free'ed
564 * and removed from the page cache. This routine will adjust the subpool
565 * usage count, and the global reserve count if needed. By incrementing
566 * these counts, the reserve map entry which could not be deleted will
567 * appear as a "reserved" entry instead of simply dangling with incorrect
568 * counts.
569 */
570void hugetlb_fix_reserve_counts(struct inode *inode)
571{
572 struct hugepage_subpool *spool = subpool_inode(inode);
573 long rsv_adjust;
574
575 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
576 if (rsv_adjust) {
577 struct hstate *h = hstate_inode(inode);
578
579 hugetlb_acct_memory(h, 1);
580 }
581}
582
583/*
584 * Count and return the number of huge pages in the reserve map
585 * that intersect with the range [f, t).
586 */
587static long region_count(struct resv_map *resv, long f, long t)
588{
589 struct list_head *head = &resv->regions;
590 struct file_region *rg;
591 long chg = 0;
592
593 spin_lock(&resv->lock);
594 /* Locate each segment we overlap with, and count that overlap. */
595 list_for_each_entry(rg, head, link) {
596 long seg_from;
597 long seg_to;
598
599 if (rg->to <= f)
600 continue;
601 if (rg->from >= t)
602 break;
603
604 seg_from = max(rg->from, f);
605 seg_to = min(rg->to, t);
606
607 chg += seg_to - seg_from;
608 }
609 spin_unlock(&resv->lock);
610
611 return chg;
612}
613
614/*
615 * Convert the address within this vma to the page offset within
616 * the mapping, in pagecache page units; huge pages here.
617 */
618static pgoff_t vma_hugecache_offset(struct hstate *h,
619 struct vm_area_struct *vma, unsigned long address)
620{
621 return ((address - vma->vm_start) >> huge_page_shift(h)) +
622 (vma->vm_pgoff >> huge_page_order(h));
623}
624
625pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
626 unsigned long address)
627{
628 return vma_hugecache_offset(hstate_vma(vma), vma, address);
629}
630EXPORT_SYMBOL_GPL(linear_hugepage_index);
631
632/*
633 * Return the size of the pages allocated when backing a VMA. In the majority
634 * cases this will be same size as used by the page table entries.
635 */
636unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
637{
638 struct hstate *hstate;
639
640 if (!is_vm_hugetlb_page(vma))
641 return PAGE_SIZE;
642
643 hstate = hstate_vma(vma);
644
645 return 1UL << huge_page_shift(hstate);
646}
647EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648
649/*
650 * Return the page size being used by the MMU to back a VMA. In the majority
651 * of cases, the page size used by the kernel matches the MMU size. On
652 * architectures where it differs, an architecture-specific version of this
653 * function is required.
654 */
655#ifndef vma_mmu_pagesize
656unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
657{
658 return vma_kernel_pagesize(vma);
659}
660#endif
661
662/*
663 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
664 * bits of the reservation map pointer, which are always clear due to
665 * alignment.
666 */
667#define HPAGE_RESV_OWNER (1UL << 0)
668#define HPAGE_RESV_UNMAPPED (1UL << 1)
669#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670
671/*
672 * These helpers are used to track how many pages are reserved for
673 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
674 * is guaranteed to have their future faults succeed.
675 *
676 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
677 * the reserve counters are updated with the hugetlb_lock held. It is safe
678 * to reset the VMA at fork() time as it is not in use yet and there is no
679 * chance of the global counters getting corrupted as a result of the values.
680 *
681 * The private mapping reservation is represented in a subtly different
682 * manner to a shared mapping. A shared mapping has a region map associated
683 * with the underlying file, this region map represents the backing file
684 * pages which have ever had a reservation assigned which this persists even
685 * after the page is instantiated. A private mapping has a region map
686 * associated with the original mmap which is attached to all VMAs which
687 * reference it, this region map represents those offsets which have consumed
688 * reservation ie. where pages have been instantiated.
689 */
690static unsigned long get_vma_private_data(struct vm_area_struct *vma)
691{
692 return (unsigned long)vma->vm_private_data;
693}
694
695static void set_vma_private_data(struct vm_area_struct *vma,
696 unsigned long value)
697{
698 vma->vm_private_data = (void *)value;
699}
700
701struct resv_map *resv_map_alloc(void)
702{
703 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
705
706 if (!resv_map || !rg) {
707 kfree(resv_map);
708 kfree(rg);
709 return NULL;
710 }
711
712 kref_init(&resv_map->refs);
713 spin_lock_init(&resv_map->lock);
714 INIT_LIST_HEAD(&resv_map->regions);
715
716 resv_map->adds_in_progress = 0;
717
718 INIT_LIST_HEAD(&resv_map->region_cache);
719 list_add(&rg->link, &resv_map->region_cache);
720 resv_map->region_cache_count = 1;
721
722 return resv_map;
723}
724
725void resv_map_release(struct kref *ref)
726{
727 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 struct list_head *head = &resv_map->region_cache;
729 struct file_region *rg, *trg;
730
731 /* Clear out any active regions before we release the map. */
732 region_del(resv_map, 0, LONG_MAX);
733
734 /* ... and any entries left in the cache */
735 list_for_each_entry_safe(rg, trg, head, link) {
736 list_del(&rg->link);
737 kfree(rg);
738 }
739
740 VM_BUG_ON(resv_map->adds_in_progress);
741
742 kfree(resv_map);
743}
744
745static inline struct resv_map *inode_resv_map(struct inode *inode)
746{
747 return inode->i_mapping->private_data;
748}
749
750static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751{
752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 if (vma->vm_flags & VM_MAYSHARE) {
754 struct address_space *mapping = vma->vm_file->f_mapping;
755 struct inode *inode = mapping->host;
756
757 return inode_resv_map(inode);
758
759 } else {
760 return (struct resv_map *)(get_vma_private_data(vma) &
761 ~HPAGE_RESV_MASK);
762 }
763}
764
765static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766{
767 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
768 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769
770 set_vma_private_data(vma, (get_vma_private_data(vma) &
771 HPAGE_RESV_MASK) | (unsigned long)map);
772}
773
774static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
775{
776 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
777 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778
779 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780}
781
782static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
783{
784 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785
786 return (get_vma_private_data(vma) & flag) != 0;
787}
788
789/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
791{
792 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793 if (!(vma->vm_flags & VM_MAYSHARE))
794 vma->vm_private_data = (void *)0;
795}
796
797/* Returns true if the VMA has associated reserve pages */
798static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799{
800 if (vma->vm_flags & VM_NORESERVE) {
801 /*
802 * This address is already reserved by other process(chg == 0),
803 * so, we should decrement reserved count. Without decrementing,
804 * reserve count remains after releasing inode, because this
805 * allocated page will go into page cache and is regarded as
806 * coming from reserved pool in releasing step. Currently, we
807 * don't have any other solution to deal with this situation
808 * properly, so add work-around here.
809 */
810 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811 return true;
812 else
813 return false;
814 }
815
816 /* Shared mappings always use reserves */
817 if (vma->vm_flags & VM_MAYSHARE) {
818 /*
819 * We know VM_NORESERVE is not set. Therefore, there SHOULD
820 * be a region map for all pages. The only situation where
821 * there is no region map is if a hole was punched via
822 * fallocate. In this case, there really are no reverves to
823 * use. This situation is indicated if chg != 0.
824 */
825 if (chg)
826 return false;
827 else
828 return true;
829 }
830
831 /*
832 * Only the process that called mmap() has reserves for
833 * private mappings.
834 */
835 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
836 /*
837 * Like the shared case above, a hole punch or truncate
838 * could have been performed on the private mapping.
839 * Examine the value of chg to determine if reserves
840 * actually exist or were previously consumed.
841 * Very Subtle - The value of chg comes from a previous
842 * call to vma_needs_reserves(). The reserve map for
843 * private mappings has different (opposite) semantics
844 * than that of shared mappings. vma_needs_reserves()
845 * has already taken this difference in semantics into
846 * account. Therefore, the meaning of chg is the same
847 * as in the shared case above. Code could easily be
848 * combined, but keeping it separate draws attention to
849 * subtle differences.
850 */
851 if (chg)
852 return false;
853 else
854 return true;
855 }
856
857 return false;
858}
859
860static void enqueue_huge_page(struct hstate *h, struct page *page)
861{
862 int nid = page_to_nid(page);
863 list_move(&page->lru, &h->hugepage_freelists[nid]);
864 h->free_huge_pages++;
865 h->free_huge_pages_node[nid]++;
866}
867
868static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
869{
870 struct page *page;
871
872 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
873 if (!is_migrate_isolate_page(page))
874 break;
875 /*
876 * if 'non-isolated free hugepage' not found on the list,
877 * the allocation fails.
878 */
879 if (&h->hugepage_freelists[nid] == &page->lru)
880 return NULL;
881 list_move(&page->lru, &h->hugepage_activelist);
882 set_page_refcounted(page);
883 h->free_huge_pages--;
884 h->free_huge_pages_node[nid]--;
885 return page;
886}
887
888/* Movability of hugepages depends on migration support. */
889static inline gfp_t htlb_alloc_mask(struct hstate *h)
890{
891 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892 return GFP_HIGHUSER_MOVABLE;
893 else
894 return GFP_HIGHUSER;
895}
896
897static struct page *dequeue_huge_page_vma(struct hstate *h,
898 struct vm_area_struct *vma,
899 unsigned long address, int avoid_reserve,
900 long chg)
901{
902 struct page *page = NULL;
903 struct mempolicy *mpol;
904 nodemask_t *nodemask;
905 struct zonelist *zonelist;
906 struct zone *zone;
907 struct zoneref *z;
908 unsigned int cpuset_mems_cookie;
909
910 /*
911 * A child process with MAP_PRIVATE mappings created by their parent
912 * have no page reserves. This check ensures that reservations are
913 * not "stolen". The child may still get SIGKILLed
914 */
915 if (!vma_has_reserves(vma, chg) &&
916 h->free_huge_pages - h->resv_huge_pages == 0)
917 goto err;
918
919 /* If reserves cannot be used, ensure enough pages are in the pool */
920 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921 goto err;
922
923retry_cpuset:
924 cpuset_mems_cookie = read_mems_allowed_begin();
925 zonelist = huge_zonelist(vma, address,
926 htlb_alloc_mask(h), &mpol, &nodemask);
927
928 for_each_zone_zonelist_nodemask(zone, z, zonelist,
929 MAX_NR_ZONES - 1, nodemask) {
930 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931 page = dequeue_huge_page_node(h, zone_to_nid(zone));
932 if (page) {
933 if (avoid_reserve)
934 break;
935 if (!vma_has_reserves(vma, chg))
936 break;
937
938 SetPagePrivate(page);
939 h->resv_huge_pages--;
940 break;
941 }
942 }
943 }
944
945 mpol_cond_put(mpol);
946 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947 goto retry_cpuset;
948 return page;
949
950err:
951 return NULL;
952}
953
954/*
955 * common helper functions for hstate_next_node_to_{alloc|free}.
956 * We may have allocated or freed a huge page based on a different
957 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
958 * be outside of *nodes_allowed. Ensure that we use an allowed
959 * node for alloc or free.
960 */
961static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
962{
963 nid = next_node_in(nid, *nodes_allowed);
964 VM_BUG_ON(nid >= MAX_NUMNODES);
965
966 return nid;
967}
968
969static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
970{
971 if (!node_isset(nid, *nodes_allowed))
972 nid = next_node_allowed(nid, nodes_allowed);
973 return nid;
974}
975
976/*
977 * returns the previously saved node ["this node"] from which to
978 * allocate a persistent huge page for the pool and advance the
979 * next node from which to allocate, handling wrap at end of node
980 * mask.
981 */
982static int hstate_next_node_to_alloc(struct hstate *h,
983 nodemask_t *nodes_allowed)
984{
985 int nid;
986
987 VM_BUG_ON(!nodes_allowed);
988
989 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
990 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
991
992 return nid;
993}
994
995/*
996 * helper for free_pool_huge_page() - return the previously saved
997 * node ["this node"] from which to free a huge page. Advance the
998 * next node id whether or not we find a free huge page to free so
999 * that the next attempt to free addresses the next node.
1000 */
1001static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1002{
1003 int nid;
1004
1005 VM_BUG_ON(!nodes_allowed);
1006
1007 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1008 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1009
1010 return nid;
1011}
1012
1013#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1014 for (nr_nodes = nodes_weight(*mask); \
1015 nr_nodes > 0 && \
1016 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1017 nr_nodes--)
1018
1019#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1020 for (nr_nodes = nodes_weight(*mask); \
1021 nr_nodes > 0 && \
1022 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1023 nr_nodes--)
1024
1025#if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1026 ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
1027 defined(CONFIG_CMA))
1028static void destroy_compound_gigantic_page(struct page *page,
1029 unsigned int order)
1030{
1031 int i;
1032 int nr_pages = 1 << order;
1033 struct page *p = page + 1;
1034
1035 atomic_set(compound_mapcount_ptr(page), 0);
1036 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037 clear_compound_head(p);
1038 set_page_refcounted(p);
1039 }
1040
1041 set_compound_order(page, 0);
1042 __ClearPageHead(page);
1043}
1044
1045static void free_gigantic_page(struct page *page, unsigned int order)
1046{
1047 free_contig_range(page_to_pfn(page), 1 << order);
1048}
1049
1050static int __alloc_gigantic_page(unsigned long start_pfn,
1051 unsigned long nr_pages)
1052{
1053 unsigned long end_pfn = start_pfn + nr_pages;
1054 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1055}
1056
1057static bool pfn_range_valid_gigantic(struct zone *z,
1058 unsigned long start_pfn, unsigned long nr_pages)
1059{
1060 unsigned long i, end_pfn = start_pfn + nr_pages;
1061 struct page *page;
1062
1063 for (i = start_pfn; i < end_pfn; i++) {
1064 if (!pfn_valid(i))
1065 return false;
1066
1067 page = pfn_to_page(i);
1068
1069 if (page_zone(page) != z)
1070 return false;
1071
1072 if (PageReserved(page))
1073 return false;
1074
1075 if (page_count(page) > 0)
1076 return false;
1077
1078 if (PageHuge(page))
1079 return false;
1080 }
1081
1082 return true;
1083}
1084
1085static bool zone_spans_last_pfn(const struct zone *zone,
1086 unsigned long start_pfn, unsigned long nr_pages)
1087{
1088 unsigned long last_pfn = start_pfn + nr_pages - 1;
1089 return zone_spans_pfn(zone, last_pfn);
1090}
1091
1092static struct page *alloc_gigantic_page(int nid, unsigned int order)
1093{
1094 unsigned long nr_pages = 1 << order;
1095 unsigned long ret, pfn, flags;
1096 struct zone *z;
1097
1098 z = NODE_DATA(nid)->node_zones;
1099 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1100 spin_lock_irqsave(&z->lock, flags);
1101
1102 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1103 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1105 /*
1106 * We release the zone lock here because
1107 * alloc_contig_range() will also lock the zone
1108 * at some point. If there's an allocation
1109 * spinning on this lock, it may win the race
1110 * and cause alloc_contig_range() to fail...
1111 */
1112 spin_unlock_irqrestore(&z->lock, flags);
1113 ret = __alloc_gigantic_page(pfn, nr_pages);
1114 if (!ret)
1115 return pfn_to_page(pfn);
1116 spin_lock_irqsave(&z->lock, flags);
1117 }
1118 pfn += nr_pages;
1119 }
1120
1121 spin_unlock_irqrestore(&z->lock, flags);
1122 }
1123
1124 return NULL;
1125}
1126
1127static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1129
1130static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1131{
1132 struct page *page;
1133
1134 page = alloc_gigantic_page(nid, huge_page_order(h));
1135 if (page) {
1136 prep_compound_gigantic_page(page, huge_page_order(h));
1137 prep_new_huge_page(h, page, nid);
1138 }
1139
1140 return page;
1141}
1142
1143static int alloc_fresh_gigantic_page(struct hstate *h,
1144 nodemask_t *nodes_allowed)
1145{
1146 struct page *page = NULL;
1147 int nr_nodes, node;
1148
1149 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1150 page = alloc_fresh_gigantic_page_node(h, node);
1151 if (page)
1152 return 1;
1153 }
1154
1155 return 0;
1156}
1157
1158static inline bool gigantic_page_supported(void) { return true; }
1159#else
1160static inline bool gigantic_page_supported(void) { return false; }
1161static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162static inline void destroy_compound_gigantic_page(struct page *page,
1163 unsigned int order) { }
1164static inline int alloc_fresh_gigantic_page(struct hstate *h,
1165 nodemask_t *nodes_allowed) { return 0; }
1166#endif
1167
1168static void update_and_free_page(struct hstate *h, struct page *page)
1169{
1170 int i;
1171
1172 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1173 return;
1174
1175 h->nr_huge_pages--;
1176 h->nr_huge_pages_node[page_to_nid(page)]--;
1177 for (i = 0; i < pages_per_huge_page(h); i++) {
1178 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1179 1 << PG_referenced | 1 << PG_dirty |
1180 1 << PG_active | 1 << PG_private |
1181 1 << PG_writeback);
1182 }
1183 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1185 set_page_refcounted(page);
1186 if (hstate_is_gigantic(h)) {
1187 destroy_compound_gigantic_page(page, huge_page_order(h));
1188 free_gigantic_page(page, huge_page_order(h));
1189 } else {
1190 __free_pages(page, huge_page_order(h));
1191 }
1192}
1193
1194struct hstate *size_to_hstate(unsigned long size)
1195{
1196 struct hstate *h;
1197
1198 for_each_hstate(h) {
1199 if (huge_page_size(h) == size)
1200 return h;
1201 }
1202 return NULL;
1203}
1204
1205/*
1206 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1207 * to hstate->hugepage_activelist.)
1208 *
1209 * This function can be called for tail pages, but never returns true for them.
1210 */
1211bool page_huge_active(struct page *page)
1212{
1213 VM_BUG_ON_PAGE(!PageHuge(page), page);
1214 return PageHead(page) && PagePrivate(&page[1]);
1215}
1216
1217/* never called for tail page */
1218static void set_page_huge_active(struct page *page)
1219{
1220 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1221 SetPagePrivate(&page[1]);
1222}
1223
1224static void clear_page_huge_active(struct page *page)
1225{
1226 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1227 ClearPagePrivate(&page[1]);
1228}
1229
1230void free_huge_page(struct page *page)
1231{
1232 /*
1233 * Can't pass hstate in here because it is called from the
1234 * compound page destructor.
1235 */
1236 struct hstate *h = page_hstate(page);
1237 int nid = page_to_nid(page);
1238 struct hugepage_subpool *spool =
1239 (struct hugepage_subpool *)page_private(page);
1240 bool restore_reserve;
1241
1242 set_page_private(page, 0);
1243 page->mapping = NULL;
1244 VM_BUG_ON_PAGE(page_count(page), page);
1245 VM_BUG_ON_PAGE(page_mapcount(page), page);
1246 restore_reserve = PagePrivate(page);
1247 ClearPagePrivate(page);
1248
1249 /*
1250 * A return code of zero implies that the subpool will be under its
1251 * minimum size if the reservation is not restored after page is free.
1252 * Therefore, force restore_reserve operation.
1253 */
1254 if (hugepage_subpool_put_pages(spool, 1) == 0)
1255 restore_reserve = true;
1256
1257 spin_lock(&hugetlb_lock);
1258 clear_page_huge_active(page);
1259 hugetlb_cgroup_uncharge_page(hstate_index(h),
1260 pages_per_huge_page(h), page);
1261 if (restore_reserve)
1262 h->resv_huge_pages++;
1263
1264 if (h->surplus_huge_pages_node[nid]) {
1265 /* remove the page from active list */
1266 list_del(&page->lru);
1267 update_and_free_page(h, page);
1268 h->surplus_huge_pages--;
1269 h->surplus_huge_pages_node[nid]--;
1270 } else {
1271 arch_clear_hugepage_flags(page);
1272 enqueue_huge_page(h, page);
1273 }
1274 spin_unlock(&hugetlb_lock);
1275}
1276
1277static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1278{
1279 INIT_LIST_HEAD(&page->lru);
1280 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1281 spin_lock(&hugetlb_lock);
1282 set_hugetlb_cgroup(page, NULL);
1283 h->nr_huge_pages++;
1284 h->nr_huge_pages_node[nid]++;
1285 spin_unlock(&hugetlb_lock);
1286 put_page(page); /* free it into the hugepage allocator */
1287}
1288
1289static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1290{
1291 int i;
1292 int nr_pages = 1 << order;
1293 struct page *p = page + 1;
1294
1295 /* we rely on prep_new_huge_page to set the destructor */
1296 set_compound_order(page, order);
1297 __ClearPageReserved(page);
1298 __SetPageHead(page);
1299 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1300 /*
1301 * For gigantic hugepages allocated through bootmem at
1302 * boot, it's safer to be consistent with the not-gigantic
1303 * hugepages and clear the PG_reserved bit from all tail pages
1304 * too. Otherwse drivers using get_user_pages() to access tail
1305 * pages may get the reference counting wrong if they see
1306 * PG_reserved set on a tail page (despite the head page not
1307 * having PG_reserved set). Enforcing this consistency between
1308 * head and tail pages allows drivers to optimize away a check
1309 * on the head page when they need know if put_page() is needed
1310 * after get_user_pages().
1311 */
1312 __ClearPageReserved(p);
1313 set_page_count(p, 0);
1314 set_compound_head(p, page);
1315 }
1316 atomic_set(compound_mapcount_ptr(page), -1);
1317}
1318
1319/*
1320 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1321 * transparent huge pages. See the PageTransHuge() documentation for more
1322 * details.
1323 */
1324int PageHuge(struct page *page)
1325{
1326 if (!PageCompound(page))
1327 return 0;
1328
1329 page = compound_head(page);
1330 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1331}
1332EXPORT_SYMBOL_GPL(PageHuge);
1333
1334/*
1335 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1336 * normal or transparent huge pages.
1337 */
1338int PageHeadHuge(struct page *page_head)
1339{
1340 if (!PageHead(page_head))
1341 return 0;
1342
1343 return get_compound_page_dtor(page_head) == free_huge_page;
1344}
1345
1346pgoff_t __basepage_index(struct page *page)
1347{
1348 struct page *page_head = compound_head(page);
1349 pgoff_t index = page_index(page_head);
1350 unsigned long compound_idx;
1351
1352 if (!PageHuge(page_head))
1353 return page_index(page);
1354
1355 if (compound_order(page_head) >= MAX_ORDER)
1356 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1357 else
1358 compound_idx = page - page_head;
1359
1360 return (index << compound_order(page_head)) + compound_idx;
1361}
1362
1363static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1364{
1365 struct page *page;
1366
1367 page = __alloc_pages_node(nid,
1368 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1369 __GFP_REPEAT|__GFP_NOWARN,
1370 huge_page_order(h));
1371 if (page) {
1372 prep_new_huge_page(h, page, nid);
1373 }
1374
1375 return page;
1376}
1377
1378static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1379{
1380 struct page *page;
1381 int nr_nodes, node;
1382 int ret = 0;
1383
1384 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1385 page = alloc_fresh_huge_page_node(h, node);
1386 if (page) {
1387 ret = 1;
1388 break;
1389 }
1390 }
1391
1392 if (ret)
1393 count_vm_event(HTLB_BUDDY_PGALLOC);
1394 else
1395 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1396
1397 return ret;
1398}
1399
1400/*
1401 * Free huge page from pool from next node to free.
1402 * Attempt to keep persistent huge pages more or less
1403 * balanced over allowed nodes.
1404 * Called with hugetlb_lock locked.
1405 */
1406static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1407 bool acct_surplus)
1408{
1409 int nr_nodes, node;
1410 int ret = 0;
1411
1412 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1413 /*
1414 * If we're returning unused surplus pages, only examine
1415 * nodes with surplus pages.
1416 */
1417 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1418 !list_empty(&h->hugepage_freelists[node])) {
1419 struct page *page =
1420 list_entry(h->hugepage_freelists[node].next,
1421 struct page, lru);
1422 list_del(&page->lru);
1423 h->free_huge_pages--;
1424 h->free_huge_pages_node[node]--;
1425 if (acct_surplus) {
1426 h->surplus_huge_pages--;
1427 h->surplus_huge_pages_node[node]--;
1428 }
1429 update_and_free_page(h, page);
1430 ret = 1;
1431 break;
1432 }
1433 }
1434
1435 return ret;
1436}
1437
1438/*
1439 * Dissolve a given free hugepage into free buddy pages. This function does
1440 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1441 * number of free hugepages would be reduced below the number of reserved
1442 * hugepages.
1443 */
1444static int dissolve_free_huge_page(struct page *page)
1445{
1446 int rc = 0;
1447
1448 spin_lock(&hugetlb_lock);
1449 if (PageHuge(page) && !page_count(page)) {
1450 struct page *head = compound_head(page);
1451 struct hstate *h = page_hstate(head);
1452 int nid = page_to_nid(head);
1453 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1454 rc = -EBUSY;
1455 goto out;
1456 }
1457 list_del(&head->lru);
1458 h->free_huge_pages--;
1459 h->free_huge_pages_node[nid]--;
1460 h->max_huge_pages--;
1461 update_and_free_page(h, head);
1462 }
1463out:
1464 spin_unlock(&hugetlb_lock);
1465 return rc;
1466}
1467
1468/*
1469 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1470 * make specified memory blocks removable from the system.
1471 * Note that this will dissolve a free gigantic hugepage completely, if any
1472 * part of it lies within the given range.
1473 * Also note that if dissolve_free_huge_page() returns with an error, all
1474 * free hugepages that were dissolved before that error are lost.
1475 */
1476int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1477{
1478 unsigned long pfn;
1479 struct page *page;
1480 int rc = 0;
1481
1482 if (!hugepages_supported())
1483 return rc;
1484
1485 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1486 page = pfn_to_page(pfn);
1487 if (PageHuge(page) && !page_count(page)) {
1488 rc = dissolve_free_huge_page(page);
1489 if (rc)
1490 break;
1491 }
1492 }
1493
1494 return rc;
1495}
1496
1497/*
1498 * There are 3 ways this can get called:
1499 * 1. With vma+addr: we use the VMA's memory policy
1500 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1501 * page from any node, and let the buddy allocator itself figure
1502 * it out.
1503 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1504 * strictly from 'nid'
1505 */
1506static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1507 struct vm_area_struct *vma, unsigned long addr, int nid)
1508{
1509 int order = huge_page_order(h);
1510 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1511 unsigned int cpuset_mems_cookie;
1512
1513 /*
1514 * We need a VMA to get a memory policy. If we do not
1515 * have one, we use the 'nid' argument.
1516 *
1517 * The mempolicy stuff below has some non-inlined bits
1518 * and calls ->vm_ops. That makes it hard to optimize at
1519 * compile-time, even when NUMA is off and it does
1520 * nothing. This helps the compiler optimize it out.
1521 */
1522 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1523 /*
1524 * If a specific node is requested, make sure to
1525 * get memory from there, but only when a node
1526 * is explicitly specified.
1527 */
1528 if (nid != NUMA_NO_NODE)
1529 gfp |= __GFP_THISNODE;
1530 /*
1531 * Make sure to call something that can handle
1532 * nid=NUMA_NO_NODE
1533 */
1534 return alloc_pages_node(nid, gfp, order);
1535 }
1536
1537 /*
1538 * OK, so we have a VMA. Fetch the mempolicy and try to
1539 * allocate a huge page with it. We will only reach this
1540 * when CONFIG_NUMA=y.
1541 */
1542 do {
1543 struct page *page;
1544 struct mempolicy *mpol;
1545 struct zonelist *zl;
1546 nodemask_t *nodemask;
1547
1548 cpuset_mems_cookie = read_mems_allowed_begin();
1549 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1550 mpol_cond_put(mpol);
1551 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1552 if (page)
1553 return page;
1554 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1555
1556 return NULL;
1557}
1558
1559/*
1560 * There are two ways to allocate a huge page:
1561 * 1. When you have a VMA and an address (like a fault)
1562 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1563 *
1564 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1565 * this case which signifies that the allocation should be done with
1566 * respect for the VMA's memory policy.
1567 *
1568 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1569 * implies that memory policies will not be taken in to account.
1570 */
1571static struct page *__alloc_buddy_huge_page(struct hstate *h,
1572 struct vm_area_struct *vma, unsigned long addr, int nid)
1573{
1574 struct page *page;
1575 unsigned int r_nid;
1576
1577 if (hstate_is_gigantic(h))
1578 return NULL;
1579
1580 /*
1581 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1582 * This makes sure the caller is picking _one_ of the modes with which
1583 * we can call this function, not both.
1584 */
1585 if (vma || (addr != -1)) {
1586 VM_WARN_ON_ONCE(addr == -1);
1587 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1588 }
1589 /*
1590 * Assume we will successfully allocate the surplus page to
1591 * prevent racing processes from causing the surplus to exceed
1592 * overcommit
1593 *
1594 * This however introduces a different race, where a process B
1595 * tries to grow the static hugepage pool while alloc_pages() is
1596 * called by process A. B will only examine the per-node
1597 * counters in determining if surplus huge pages can be
1598 * converted to normal huge pages in adjust_pool_surplus(). A
1599 * won't be able to increment the per-node counter, until the
1600 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1601 * no more huge pages can be converted from surplus to normal
1602 * state (and doesn't try to convert again). Thus, we have a
1603 * case where a surplus huge page exists, the pool is grown, and
1604 * the surplus huge page still exists after, even though it
1605 * should just have been converted to a normal huge page. This
1606 * does not leak memory, though, as the hugepage will be freed
1607 * once it is out of use. It also does not allow the counters to
1608 * go out of whack in adjust_pool_surplus() as we don't modify
1609 * the node values until we've gotten the hugepage and only the
1610 * per-node value is checked there.
1611 */
1612 spin_lock(&hugetlb_lock);
1613 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1614 spin_unlock(&hugetlb_lock);
1615 return NULL;
1616 } else {
1617 h->nr_huge_pages++;
1618 h->surplus_huge_pages++;
1619 }
1620 spin_unlock(&hugetlb_lock);
1621
1622 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1623
1624 spin_lock(&hugetlb_lock);
1625 if (page) {
1626 INIT_LIST_HEAD(&page->lru);
1627 r_nid = page_to_nid(page);
1628 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1629 set_hugetlb_cgroup(page, NULL);
1630 /*
1631 * We incremented the global counters already
1632 */
1633 h->nr_huge_pages_node[r_nid]++;
1634 h->surplus_huge_pages_node[r_nid]++;
1635 __count_vm_event(HTLB_BUDDY_PGALLOC);
1636 } else {
1637 h->nr_huge_pages--;
1638 h->surplus_huge_pages--;
1639 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1640 }
1641 spin_unlock(&hugetlb_lock);
1642
1643 return page;
1644}
1645
1646/*
1647 * Allocate a huge page from 'nid'. Note, 'nid' may be
1648 * NUMA_NO_NODE, which means that it may be allocated
1649 * anywhere.
1650 */
1651static
1652struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1653{
1654 unsigned long addr = -1;
1655
1656 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1657}
1658
1659/*
1660 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1661 */
1662static
1663struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1664 struct vm_area_struct *vma, unsigned long addr)
1665{
1666 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1667}
1668
1669/*
1670 * This allocation function is useful in the context where vma is irrelevant.
1671 * E.g. soft-offlining uses this function because it only cares physical
1672 * address of error page.
1673 */
1674struct page *alloc_huge_page_node(struct hstate *h, int nid)
1675{
1676 struct page *page = NULL;
1677
1678 spin_lock(&hugetlb_lock);
1679 if (h->free_huge_pages - h->resv_huge_pages > 0)
1680 page = dequeue_huge_page_node(h, nid);
1681 spin_unlock(&hugetlb_lock);
1682
1683 if (!page)
1684 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1685
1686 return page;
1687}
1688
1689/*
1690 * Increase the hugetlb pool such that it can accommodate a reservation
1691 * of size 'delta'.
1692 */
1693static int gather_surplus_pages(struct hstate *h, int delta)
1694{
1695 struct list_head surplus_list;
1696 struct page *page, *tmp;
1697 int ret, i;
1698 int needed, allocated;
1699 bool alloc_ok = true;
1700
1701 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1702 if (needed <= 0) {
1703 h->resv_huge_pages += delta;
1704 return 0;
1705 }
1706
1707 allocated = 0;
1708 INIT_LIST_HEAD(&surplus_list);
1709
1710 ret = -ENOMEM;
1711retry:
1712 spin_unlock(&hugetlb_lock);
1713 for (i = 0; i < needed; i++) {
1714 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1715 if (!page) {
1716 alloc_ok = false;
1717 break;
1718 }
1719 list_add(&page->lru, &surplus_list);
1720 }
1721 allocated += i;
1722
1723 /*
1724 * After retaking hugetlb_lock, we need to recalculate 'needed'
1725 * because either resv_huge_pages or free_huge_pages may have changed.
1726 */
1727 spin_lock(&hugetlb_lock);
1728 needed = (h->resv_huge_pages + delta) -
1729 (h->free_huge_pages + allocated);
1730 if (needed > 0) {
1731 if (alloc_ok)
1732 goto retry;
1733 /*
1734 * We were not able to allocate enough pages to
1735 * satisfy the entire reservation so we free what
1736 * we've allocated so far.
1737 */
1738 goto free;
1739 }
1740 /*
1741 * The surplus_list now contains _at_least_ the number of extra pages
1742 * needed to accommodate the reservation. Add the appropriate number
1743 * of pages to the hugetlb pool and free the extras back to the buddy
1744 * allocator. Commit the entire reservation here to prevent another
1745 * process from stealing the pages as they are added to the pool but
1746 * before they are reserved.
1747 */
1748 needed += allocated;
1749 h->resv_huge_pages += delta;
1750 ret = 0;
1751
1752 /* Free the needed pages to the hugetlb pool */
1753 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1754 if ((--needed) < 0)
1755 break;
1756 /*
1757 * This page is now managed by the hugetlb allocator and has
1758 * no users -- drop the buddy allocator's reference.
1759 */
1760 put_page_testzero(page);
1761 VM_BUG_ON_PAGE(page_count(page), page);
1762 enqueue_huge_page(h, page);
1763 }
1764free:
1765 spin_unlock(&hugetlb_lock);
1766
1767 /* Free unnecessary surplus pages to the buddy allocator */
1768 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1769 put_page(page);
1770 spin_lock(&hugetlb_lock);
1771
1772 return ret;
1773}
1774
1775/*
1776 * This routine has two main purposes:
1777 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1778 * in unused_resv_pages. This corresponds to the prior adjustments made
1779 * to the associated reservation map.
1780 * 2) Free any unused surplus pages that may have been allocated to satisfy
1781 * the reservation. As many as unused_resv_pages may be freed.
1782 *
1783 * Called with hugetlb_lock held. However, the lock could be dropped (and
1784 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1785 * we must make sure nobody else can claim pages we are in the process of
1786 * freeing. Do this by ensuring resv_huge_page always is greater than the
1787 * number of huge pages we plan to free when dropping the lock.
1788 */
1789static void return_unused_surplus_pages(struct hstate *h,
1790 unsigned long unused_resv_pages)
1791{
1792 unsigned long nr_pages;
1793
1794 /* Cannot return gigantic pages currently */
1795 if (hstate_is_gigantic(h))
1796 goto out;
1797
1798 /*
1799 * Part (or even all) of the reservation could have been backed
1800 * by pre-allocated pages. Only free surplus pages.
1801 */
1802 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1803
1804 /*
1805 * We want to release as many surplus pages as possible, spread
1806 * evenly across all nodes with memory. Iterate across these nodes
1807 * until we can no longer free unreserved surplus pages. This occurs
1808 * when the nodes with surplus pages have no free pages.
1809 * free_pool_huge_page() will balance the the freed pages across the
1810 * on-line nodes with memory and will handle the hstate accounting.
1811 *
1812 * Note that we decrement resv_huge_pages as we free the pages. If
1813 * we drop the lock, resv_huge_pages will still be sufficiently large
1814 * to cover subsequent pages we may free.
1815 */
1816 while (nr_pages--) {
1817 h->resv_huge_pages--;
1818 unused_resv_pages--;
1819 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1820 goto out;
1821 cond_resched_lock(&hugetlb_lock);
1822 }
1823
1824out:
1825 /* Fully uncommit the reservation */
1826 h->resv_huge_pages -= unused_resv_pages;
1827}
1828
1829
1830/*
1831 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1832 * are used by the huge page allocation routines to manage reservations.
1833 *
1834 * vma_needs_reservation is called to determine if the huge page at addr
1835 * within the vma has an associated reservation. If a reservation is
1836 * needed, the value 1 is returned. The caller is then responsible for
1837 * managing the global reservation and subpool usage counts. After
1838 * the huge page has been allocated, vma_commit_reservation is called
1839 * to add the page to the reservation map. If the page allocation fails,
1840 * the reservation must be ended instead of committed. vma_end_reservation
1841 * is called in such cases.
1842 *
1843 * In the normal case, vma_commit_reservation returns the same value
1844 * as the preceding vma_needs_reservation call. The only time this
1845 * is not the case is if a reserve map was changed between calls. It
1846 * is the responsibility of the caller to notice the difference and
1847 * take appropriate action.
1848 *
1849 * vma_add_reservation is used in error paths where a reservation must
1850 * be restored when a newly allocated huge page must be freed. It is
1851 * to be called after calling vma_needs_reservation to determine if a
1852 * reservation exists.
1853 */
1854enum vma_resv_mode {
1855 VMA_NEEDS_RESV,
1856 VMA_COMMIT_RESV,
1857 VMA_END_RESV,
1858 VMA_ADD_RESV,
1859};
1860static long __vma_reservation_common(struct hstate *h,
1861 struct vm_area_struct *vma, unsigned long addr,
1862 enum vma_resv_mode mode)
1863{
1864 struct resv_map *resv;
1865 pgoff_t idx;
1866 long ret;
1867
1868 resv = vma_resv_map(vma);
1869 if (!resv)
1870 return 1;
1871
1872 idx = vma_hugecache_offset(h, vma, addr);
1873 switch (mode) {
1874 case VMA_NEEDS_RESV:
1875 ret = region_chg(resv, idx, idx + 1);
1876 break;
1877 case VMA_COMMIT_RESV:
1878 ret = region_add(resv, idx, idx + 1);
1879 break;
1880 case VMA_END_RESV:
1881 region_abort(resv, idx, idx + 1);
1882 ret = 0;
1883 break;
1884 case VMA_ADD_RESV:
1885 if (vma->vm_flags & VM_MAYSHARE)
1886 ret = region_add(resv, idx, idx + 1);
1887 else {
1888 region_abort(resv, idx, idx + 1);
1889 ret = region_del(resv, idx, idx + 1);
1890 }
1891 break;
1892 default:
1893 BUG();
1894 }
1895
1896 if (vma->vm_flags & VM_MAYSHARE)
1897 return ret;
1898 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1899 /*
1900 * In most cases, reserves always exist for private mappings.
1901 * However, a file associated with mapping could have been
1902 * hole punched or truncated after reserves were consumed.
1903 * As subsequent fault on such a range will not use reserves.
1904 * Subtle - The reserve map for private mappings has the
1905 * opposite meaning than that of shared mappings. If NO
1906 * entry is in the reserve map, it means a reservation exists.
1907 * If an entry exists in the reserve map, it means the
1908 * reservation has already been consumed. As a result, the
1909 * return value of this routine is the opposite of the
1910 * value returned from reserve map manipulation routines above.
1911 */
1912 if (ret)
1913 return 0;
1914 else
1915 return 1;
1916 }
1917 else
1918 return ret < 0 ? ret : 0;
1919}
1920
1921static long vma_needs_reservation(struct hstate *h,
1922 struct vm_area_struct *vma, unsigned long addr)
1923{
1924 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1925}
1926
1927static long vma_commit_reservation(struct hstate *h,
1928 struct vm_area_struct *vma, unsigned long addr)
1929{
1930 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1931}
1932
1933static void vma_end_reservation(struct hstate *h,
1934 struct vm_area_struct *vma, unsigned long addr)
1935{
1936 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1937}
1938
1939static long vma_add_reservation(struct hstate *h,
1940 struct vm_area_struct *vma, unsigned long addr)
1941{
1942 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1943}
1944
1945/*
1946 * This routine is called to restore a reservation on error paths. In the
1947 * specific error paths, a huge page was allocated (via alloc_huge_page)
1948 * and is about to be freed. If a reservation for the page existed,
1949 * alloc_huge_page would have consumed the reservation and set PagePrivate
1950 * in the newly allocated page. When the page is freed via free_huge_page,
1951 * the global reservation count will be incremented if PagePrivate is set.
1952 * However, free_huge_page can not adjust the reserve map. Adjust the
1953 * reserve map here to be consistent with global reserve count adjustments
1954 * to be made by free_huge_page.
1955 */
1956static void restore_reserve_on_error(struct hstate *h,
1957 struct vm_area_struct *vma, unsigned long address,
1958 struct page *page)
1959{
1960 if (unlikely(PagePrivate(page))) {
1961 long rc = vma_needs_reservation(h, vma, address);
1962
1963 if (unlikely(rc < 0)) {
1964 /*
1965 * Rare out of memory condition in reserve map
1966 * manipulation. Clear PagePrivate so that
1967 * global reserve count will not be incremented
1968 * by free_huge_page. This will make it appear
1969 * as though the reservation for this page was
1970 * consumed. This may prevent the task from
1971 * faulting in the page at a later time. This
1972 * is better than inconsistent global huge page
1973 * accounting of reserve counts.
1974 */
1975 ClearPagePrivate(page);
1976 } else if (rc) {
1977 rc = vma_add_reservation(h, vma, address);
1978 if (unlikely(rc < 0))
1979 /*
1980 * See above comment about rare out of
1981 * memory condition.
1982 */
1983 ClearPagePrivate(page);
1984 } else
1985 vma_end_reservation(h, vma, address);
1986 }
1987}
1988
1989struct page *alloc_huge_page(struct vm_area_struct *vma,
1990 unsigned long addr, int avoid_reserve)
1991{
1992 struct hugepage_subpool *spool = subpool_vma(vma);
1993 struct hstate *h = hstate_vma(vma);
1994 struct page *page;
1995 long map_chg, map_commit;
1996 long gbl_chg;
1997 int ret, idx;
1998 struct hugetlb_cgroup *h_cg;
1999
2000 idx = hstate_index(h);
2001 /*
2002 * Examine the region/reserve map to determine if the process
2003 * has a reservation for the page to be allocated. A return
2004 * code of zero indicates a reservation exists (no change).
2005 */
2006 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2007 if (map_chg < 0)
2008 return ERR_PTR(-ENOMEM);
2009
2010 /*
2011 * Processes that did not create the mapping will have no
2012 * reserves as indicated by the region/reserve map. Check
2013 * that the allocation will not exceed the subpool limit.
2014 * Allocations for MAP_NORESERVE mappings also need to be
2015 * checked against any subpool limit.
2016 */
2017 if (map_chg || avoid_reserve) {
2018 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2019 if (gbl_chg < 0) {
2020 vma_end_reservation(h, vma, addr);
2021 return ERR_PTR(-ENOSPC);
2022 }
2023
2024 /*
2025 * Even though there was no reservation in the region/reserve
2026 * map, there could be reservations associated with the
2027 * subpool that can be used. This would be indicated if the
2028 * return value of hugepage_subpool_get_pages() is zero.
2029 * However, if avoid_reserve is specified we still avoid even
2030 * the subpool reservations.
2031 */
2032 if (avoid_reserve)
2033 gbl_chg = 1;
2034 }
2035
2036 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2037 if (ret)
2038 goto out_subpool_put;
2039
2040 spin_lock(&hugetlb_lock);
2041 /*
2042 * glb_chg is passed to indicate whether or not a page must be taken
2043 * from the global free pool (global change). gbl_chg == 0 indicates
2044 * a reservation exists for the allocation.
2045 */
2046 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2047 if (!page) {
2048 spin_unlock(&hugetlb_lock);
2049 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2050 if (!page)
2051 goto out_uncharge_cgroup;
2052 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2053 SetPagePrivate(page);
2054 h->resv_huge_pages--;
2055 }
2056 spin_lock(&hugetlb_lock);
2057 list_move(&page->lru, &h->hugepage_activelist);
2058 /* Fall through */
2059 }
2060 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2061 spin_unlock(&hugetlb_lock);
2062
2063 set_page_private(page, (unsigned long)spool);
2064
2065 map_commit = vma_commit_reservation(h, vma, addr);
2066 if (unlikely(map_chg > map_commit)) {
2067 /*
2068 * The page was added to the reservation map between
2069 * vma_needs_reservation and vma_commit_reservation.
2070 * This indicates a race with hugetlb_reserve_pages.
2071 * Adjust for the subpool count incremented above AND
2072 * in hugetlb_reserve_pages for the same page. Also,
2073 * the reservation count added in hugetlb_reserve_pages
2074 * no longer applies.
2075 */
2076 long rsv_adjust;
2077
2078 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2079 hugetlb_acct_memory(h, -rsv_adjust);
2080 }
2081 return page;
2082
2083out_uncharge_cgroup:
2084 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2085out_subpool_put:
2086 if (map_chg || avoid_reserve)
2087 hugepage_subpool_put_pages(spool, 1);
2088 vma_end_reservation(h, vma, addr);
2089 return ERR_PTR(-ENOSPC);
2090}
2091
2092/*
2093 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2094 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2095 * where no ERR_VALUE is expected to be returned.
2096 */
2097struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2098 unsigned long addr, int avoid_reserve)
2099{
2100 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2101 if (IS_ERR(page))
2102 page = NULL;
2103 return page;
2104}
2105
2106int __weak alloc_bootmem_huge_page(struct hstate *h)
2107{
2108 struct huge_bootmem_page *m;
2109 int nr_nodes, node;
2110
2111 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2112 void *addr;
2113
2114 addr = memblock_virt_alloc_try_nid_nopanic(
2115 huge_page_size(h), huge_page_size(h),
2116 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2117 if (addr) {
2118 /*
2119 * Use the beginning of the huge page to store the
2120 * huge_bootmem_page struct (until gather_bootmem
2121 * puts them into the mem_map).
2122 */
2123 m = addr;
2124 goto found;
2125 }
2126 }
2127 return 0;
2128
2129found:
2130 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2131 /* Put them into a private list first because mem_map is not up yet */
2132 list_add(&m->list, &huge_boot_pages);
2133 m->hstate = h;
2134 return 1;
2135}
2136
2137static void __init prep_compound_huge_page(struct page *page,
2138 unsigned int order)
2139{
2140 if (unlikely(order > (MAX_ORDER - 1)))
2141 prep_compound_gigantic_page(page, order);
2142 else
2143 prep_compound_page(page, order);
2144}
2145
2146/* Put bootmem huge pages into the standard lists after mem_map is up */
2147static void __init gather_bootmem_prealloc(void)
2148{
2149 struct huge_bootmem_page *m;
2150
2151 list_for_each_entry(m, &huge_boot_pages, list) {
2152 struct hstate *h = m->hstate;
2153 struct page *page;
2154
2155#ifdef CONFIG_HIGHMEM
2156 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2157 memblock_free_late(__pa(m),
2158 sizeof(struct huge_bootmem_page));
2159#else
2160 page = virt_to_page(m);
2161#endif
2162 WARN_ON(page_count(page) != 1);
2163 prep_compound_huge_page(page, h->order);
2164 WARN_ON(PageReserved(page));
2165 prep_new_huge_page(h, page, page_to_nid(page));
2166 /*
2167 * If we had gigantic hugepages allocated at boot time, we need
2168 * to restore the 'stolen' pages to totalram_pages in order to
2169 * fix confusing memory reports from free(1) and another
2170 * side-effects, like CommitLimit going negative.
2171 */
2172 if (hstate_is_gigantic(h))
2173 adjust_managed_page_count(page, 1 << h->order);
2174 cond_resched();
2175 }
2176}
2177
2178static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2179{
2180 unsigned long i;
2181
2182 for (i = 0; i < h->max_huge_pages; ++i) {
2183 if (hstate_is_gigantic(h)) {
2184 if (!alloc_bootmem_huge_page(h))
2185 break;
2186 } else if (!alloc_fresh_huge_page(h,
2187 &node_states[N_MEMORY]))
2188 break;
2189 }
2190 h->max_huge_pages = i;
2191}
2192
2193static void __init hugetlb_init_hstates(void)
2194{
2195 struct hstate *h;
2196
2197 for_each_hstate(h) {
2198 if (minimum_order > huge_page_order(h))
2199 minimum_order = huge_page_order(h);
2200
2201 /* oversize hugepages were init'ed in early boot */
2202 if (!hstate_is_gigantic(h))
2203 hugetlb_hstate_alloc_pages(h);
2204 }
2205 VM_BUG_ON(minimum_order == UINT_MAX);
2206}
2207
2208static char * __init memfmt(char *buf, unsigned long n)
2209{
2210 if (n >= (1UL << 30))
2211 sprintf(buf, "%lu GB", n >> 30);
2212 else if (n >= (1UL << 20))
2213 sprintf(buf, "%lu MB", n >> 20);
2214 else
2215 sprintf(buf, "%lu KB", n >> 10);
2216 return buf;
2217}
2218
2219static void __init report_hugepages(void)
2220{
2221 struct hstate *h;
2222
2223 for_each_hstate(h) {
2224 char buf[32];
2225 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2226 memfmt(buf, huge_page_size(h)),
2227 h->free_huge_pages);
2228 }
2229}
2230
2231#ifdef CONFIG_HIGHMEM
2232static void try_to_free_low(struct hstate *h, unsigned long count,
2233 nodemask_t *nodes_allowed)
2234{
2235 int i;
2236
2237 if (hstate_is_gigantic(h))
2238 return;
2239
2240 for_each_node_mask(i, *nodes_allowed) {
2241 struct page *page, *next;
2242 struct list_head *freel = &h->hugepage_freelists[i];
2243 list_for_each_entry_safe(page, next, freel, lru) {
2244 if (count >= h->nr_huge_pages)
2245 return;
2246 if (PageHighMem(page))
2247 continue;
2248 list_del(&page->lru);
2249 update_and_free_page(h, page);
2250 h->free_huge_pages--;
2251 h->free_huge_pages_node[page_to_nid(page)]--;
2252 }
2253 }
2254}
2255#else
2256static inline void try_to_free_low(struct hstate *h, unsigned long count,
2257 nodemask_t *nodes_allowed)
2258{
2259}
2260#endif
2261
2262/*
2263 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2264 * balanced by operating on them in a round-robin fashion.
2265 * Returns 1 if an adjustment was made.
2266 */
2267static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2268 int delta)
2269{
2270 int nr_nodes, node;
2271
2272 VM_BUG_ON(delta != -1 && delta != 1);
2273
2274 if (delta < 0) {
2275 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2276 if (h->surplus_huge_pages_node[node])
2277 goto found;
2278 }
2279 } else {
2280 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2281 if (h->surplus_huge_pages_node[node] <
2282 h->nr_huge_pages_node[node])
2283 goto found;
2284 }
2285 }
2286 return 0;
2287
2288found:
2289 h->surplus_huge_pages += delta;
2290 h->surplus_huge_pages_node[node] += delta;
2291 return 1;
2292}
2293
2294#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2295static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2296 nodemask_t *nodes_allowed)
2297{
2298 unsigned long min_count, ret;
2299
2300 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2301 return h->max_huge_pages;
2302
2303 /*
2304 * Increase the pool size
2305 * First take pages out of surplus state. Then make up the
2306 * remaining difference by allocating fresh huge pages.
2307 *
2308 * We might race with __alloc_buddy_huge_page() here and be unable
2309 * to convert a surplus huge page to a normal huge page. That is
2310 * not critical, though, it just means the overall size of the
2311 * pool might be one hugepage larger than it needs to be, but
2312 * within all the constraints specified by the sysctls.
2313 */
2314 spin_lock(&hugetlb_lock);
2315 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2316 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2317 break;
2318 }
2319
2320 while (count > persistent_huge_pages(h)) {
2321 /*
2322 * If this allocation races such that we no longer need the
2323 * page, free_huge_page will handle it by freeing the page
2324 * and reducing the surplus.
2325 */
2326 spin_unlock(&hugetlb_lock);
2327
2328 /* yield cpu to avoid soft lockup */
2329 cond_resched();
2330
2331 if (hstate_is_gigantic(h))
2332 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2333 else
2334 ret = alloc_fresh_huge_page(h, nodes_allowed);
2335 spin_lock(&hugetlb_lock);
2336 if (!ret)
2337 goto out;
2338
2339 /* Bail for signals. Probably ctrl-c from user */
2340 if (signal_pending(current))
2341 goto out;
2342 }
2343
2344 /*
2345 * Decrease the pool size
2346 * First return free pages to the buddy allocator (being careful
2347 * to keep enough around to satisfy reservations). Then place
2348 * pages into surplus state as needed so the pool will shrink
2349 * to the desired size as pages become free.
2350 *
2351 * By placing pages into the surplus state independent of the
2352 * overcommit value, we are allowing the surplus pool size to
2353 * exceed overcommit. There are few sane options here. Since
2354 * __alloc_buddy_huge_page() is checking the global counter,
2355 * though, we'll note that we're not allowed to exceed surplus
2356 * and won't grow the pool anywhere else. Not until one of the
2357 * sysctls are changed, or the surplus pages go out of use.
2358 */
2359 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2360 min_count = max(count, min_count);
2361 try_to_free_low(h, min_count, nodes_allowed);
2362 while (min_count < persistent_huge_pages(h)) {
2363 if (!free_pool_huge_page(h, nodes_allowed, 0))
2364 break;
2365 cond_resched_lock(&hugetlb_lock);
2366 }
2367 while (count < persistent_huge_pages(h)) {
2368 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2369 break;
2370 }
2371out:
2372 ret = persistent_huge_pages(h);
2373 spin_unlock(&hugetlb_lock);
2374 return ret;
2375}
2376
2377#define HSTATE_ATTR_RO(_name) \
2378 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2379
2380#define HSTATE_ATTR(_name) \
2381 static struct kobj_attribute _name##_attr = \
2382 __ATTR(_name, 0644, _name##_show, _name##_store)
2383
2384static struct kobject *hugepages_kobj;
2385static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2386
2387static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2388
2389static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2390{
2391 int i;
2392
2393 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2394 if (hstate_kobjs[i] == kobj) {
2395 if (nidp)
2396 *nidp = NUMA_NO_NODE;
2397 return &hstates[i];
2398 }
2399
2400 return kobj_to_node_hstate(kobj, nidp);
2401}
2402
2403static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2404 struct kobj_attribute *attr, char *buf)
2405{
2406 struct hstate *h;
2407 unsigned long nr_huge_pages;
2408 int nid;
2409
2410 h = kobj_to_hstate(kobj, &nid);
2411 if (nid == NUMA_NO_NODE)
2412 nr_huge_pages = h->nr_huge_pages;
2413 else
2414 nr_huge_pages = h->nr_huge_pages_node[nid];
2415
2416 return sprintf(buf, "%lu\n", nr_huge_pages);
2417}
2418
2419static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2420 struct hstate *h, int nid,
2421 unsigned long count, size_t len)
2422{
2423 int err;
2424 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2425
2426 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2427 err = -EINVAL;
2428 goto out;
2429 }
2430
2431 if (nid == NUMA_NO_NODE) {
2432 /*
2433 * global hstate attribute
2434 */
2435 if (!(obey_mempolicy &&
2436 init_nodemask_of_mempolicy(nodes_allowed))) {
2437 NODEMASK_FREE(nodes_allowed);
2438 nodes_allowed = &node_states[N_MEMORY];
2439 }
2440 } else if (nodes_allowed) {
2441 /*
2442 * per node hstate attribute: adjust count to global,
2443 * but restrict alloc/free to the specified node.
2444 */
2445 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2446 init_nodemask_of_node(nodes_allowed, nid);
2447 } else
2448 nodes_allowed = &node_states[N_MEMORY];
2449
2450 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2451
2452 if (nodes_allowed != &node_states[N_MEMORY])
2453 NODEMASK_FREE(nodes_allowed);
2454
2455 return len;
2456out:
2457 NODEMASK_FREE(nodes_allowed);
2458 return err;
2459}
2460
2461static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2462 struct kobject *kobj, const char *buf,
2463 size_t len)
2464{
2465 struct hstate *h;
2466 unsigned long count;
2467 int nid;
2468 int err;
2469
2470 err = kstrtoul(buf, 10, &count);
2471 if (err)
2472 return err;
2473
2474 h = kobj_to_hstate(kobj, &nid);
2475 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2476}
2477
2478static ssize_t nr_hugepages_show(struct kobject *kobj,
2479 struct kobj_attribute *attr, char *buf)
2480{
2481 return nr_hugepages_show_common(kobj, attr, buf);
2482}
2483
2484static ssize_t nr_hugepages_store(struct kobject *kobj,
2485 struct kobj_attribute *attr, const char *buf, size_t len)
2486{
2487 return nr_hugepages_store_common(false, kobj, buf, len);
2488}
2489HSTATE_ATTR(nr_hugepages);
2490
2491#ifdef CONFIG_NUMA
2492
2493/*
2494 * hstate attribute for optionally mempolicy-based constraint on persistent
2495 * huge page alloc/free.
2496 */
2497static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2498 struct kobj_attribute *attr, char *buf)
2499{
2500 return nr_hugepages_show_common(kobj, attr, buf);
2501}
2502
2503static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2504 struct kobj_attribute *attr, const char *buf, size_t len)
2505{
2506 return nr_hugepages_store_common(true, kobj, buf, len);
2507}
2508HSTATE_ATTR(nr_hugepages_mempolicy);
2509#endif
2510
2511
2512static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2513 struct kobj_attribute *attr, char *buf)
2514{
2515 struct hstate *h = kobj_to_hstate(kobj, NULL);
2516 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2517}
2518
2519static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2520 struct kobj_attribute *attr, const char *buf, size_t count)
2521{
2522 int err;
2523 unsigned long input;
2524 struct hstate *h = kobj_to_hstate(kobj, NULL);
2525
2526 if (hstate_is_gigantic(h))
2527 return -EINVAL;
2528
2529 err = kstrtoul(buf, 10, &input);
2530 if (err)
2531 return err;
2532
2533 spin_lock(&hugetlb_lock);
2534 h->nr_overcommit_huge_pages = input;
2535 spin_unlock(&hugetlb_lock);
2536
2537 return count;
2538}
2539HSTATE_ATTR(nr_overcommit_hugepages);
2540
2541static ssize_t free_hugepages_show(struct kobject *kobj,
2542 struct kobj_attribute *attr, char *buf)
2543{
2544 struct hstate *h;
2545 unsigned long free_huge_pages;
2546 int nid;
2547
2548 h = kobj_to_hstate(kobj, &nid);
2549 if (nid == NUMA_NO_NODE)
2550 free_huge_pages = h->free_huge_pages;
2551 else
2552 free_huge_pages = h->free_huge_pages_node[nid];
2553
2554 return sprintf(buf, "%lu\n", free_huge_pages);
2555}
2556HSTATE_ATTR_RO(free_hugepages);
2557
2558static ssize_t resv_hugepages_show(struct kobject *kobj,
2559 struct kobj_attribute *attr, char *buf)
2560{
2561 struct hstate *h = kobj_to_hstate(kobj, NULL);
2562 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2563}
2564HSTATE_ATTR_RO(resv_hugepages);
2565
2566static ssize_t surplus_hugepages_show(struct kobject *kobj,
2567 struct kobj_attribute *attr, char *buf)
2568{
2569 struct hstate *h;
2570 unsigned long surplus_huge_pages;
2571 int nid;
2572
2573 h = kobj_to_hstate(kobj, &nid);
2574 if (nid == NUMA_NO_NODE)
2575 surplus_huge_pages = h->surplus_huge_pages;
2576 else
2577 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2578
2579 return sprintf(buf, "%lu\n", surplus_huge_pages);
2580}
2581HSTATE_ATTR_RO(surplus_hugepages);
2582
2583static struct attribute *hstate_attrs[] = {
2584 &nr_hugepages_attr.attr,
2585 &nr_overcommit_hugepages_attr.attr,
2586 &free_hugepages_attr.attr,
2587 &resv_hugepages_attr.attr,
2588 &surplus_hugepages_attr.attr,
2589#ifdef CONFIG_NUMA
2590 &nr_hugepages_mempolicy_attr.attr,
2591#endif
2592 NULL,
2593};
2594
2595static struct attribute_group hstate_attr_group = {
2596 .attrs = hstate_attrs,
2597};
2598
2599static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2600 struct kobject **hstate_kobjs,
2601 struct attribute_group *hstate_attr_group)
2602{
2603 int retval;
2604 int hi = hstate_index(h);
2605
2606 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2607 if (!hstate_kobjs[hi])
2608 return -ENOMEM;
2609
2610 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2611 if (retval)
2612 kobject_put(hstate_kobjs[hi]);
2613
2614 return retval;
2615}
2616
2617static void __init hugetlb_sysfs_init(void)
2618{
2619 struct hstate *h;
2620 int err;
2621
2622 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2623 if (!hugepages_kobj)
2624 return;
2625
2626 for_each_hstate(h) {
2627 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2628 hstate_kobjs, &hstate_attr_group);
2629 if (err)
2630 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2631 }
2632}
2633
2634#ifdef CONFIG_NUMA
2635
2636/*
2637 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2638 * with node devices in node_devices[] using a parallel array. The array
2639 * index of a node device or _hstate == node id.
2640 * This is here to avoid any static dependency of the node device driver, in
2641 * the base kernel, on the hugetlb module.
2642 */
2643struct node_hstate {
2644 struct kobject *hugepages_kobj;
2645 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2646};
2647static struct node_hstate node_hstates[MAX_NUMNODES];
2648
2649/*
2650 * A subset of global hstate attributes for node devices
2651 */
2652static struct attribute *per_node_hstate_attrs[] = {
2653 &nr_hugepages_attr.attr,
2654 &free_hugepages_attr.attr,
2655 &surplus_hugepages_attr.attr,
2656 NULL,
2657};
2658
2659static struct attribute_group per_node_hstate_attr_group = {
2660 .attrs = per_node_hstate_attrs,
2661};
2662
2663/*
2664 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2665 * Returns node id via non-NULL nidp.
2666 */
2667static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2668{
2669 int nid;
2670
2671 for (nid = 0; nid < nr_node_ids; nid++) {
2672 struct node_hstate *nhs = &node_hstates[nid];
2673 int i;
2674 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2675 if (nhs->hstate_kobjs[i] == kobj) {
2676 if (nidp)
2677 *nidp = nid;
2678 return &hstates[i];
2679 }
2680 }
2681
2682 BUG();
2683 return NULL;
2684}
2685
2686/*
2687 * Unregister hstate attributes from a single node device.
2688 * No-op if no hstate attributes attached.
2689 */
2690static void hugetlb_unregister_node(struct node *node)
2691{
2692 struct hstate *h;
2693 struct node_hstate *nhs = &node_hstates[node->dev.id];
2694
2695 if (!nhs->hugepages_kobj)
2696 return; /* no hstate attributes */
2697
2698 for_each_hstate(h) {
2699 int idx = hstate_index(h);
2700 if (nhs->hstate_kobjs[idx]) {
2701 kobject_put(nhs->hstate_kobjs[idx]);
2702 nhs->hstate_kobjs[idx] = NULL;
2703 }
2704 }
2705
2706 kobject_put(nhs->hugepages_kobj);
2707 nhs->hugepages_kobj = NULL;
2708}
2709
2710
2711/*
2712 * Register hstate attributes for a single node device.
2713 * No-op if attributes already registered.
2714 */
2715static void hugetlb_register_node(struct node *node)
2716{
2717 struct hstate *h;
2718 struct node_hstate *nhs = &node_hstates[node->dev.id];
2719 int err;
2720
2721 if (nhs->hugepages_kobj)
2722 return; /* already allocated */
2723
2724 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2725 &node->dev.kobj);
2726 if (!nhs->hugepages_kobj)
2727 return;
2728
2729 for_each_hstate(h) {
2730 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2731 nhs->hstate_kobjs,
2732 &per_node_hstate_attr_group);
2733 if (err) {
2734 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2735 h->name, node->dev.id);
2736 hugetlb_unregister_node(node);
2737 break;
2738 }
2739 }
2740}
2741
2742/*
2743 * hugetlb init time: register hstate attributes for all registered node
2744 * devices of nodes that have memory. All on-line nodes should have
2745 * registered their associated device by this time.
2746 */
2747static void __init hugetlb_register_all_nodes(void)
2748{
2749 int nid;
2750
2751 for_each_node_state(nid, N_MEMORY) {
2752 struct node *node = node_devices[nid];
2753 if (node->dev.id == nid)
2754 hugetlb_register_node(node);
2755 }
2756
2757 /*
2758 * Let the node device driver know we're here so it can
2759 * [un]register hstate attributes on node hotplug.
2760 */
2761 register_hugetlbfs_with_node(hugetlb_register_node,
2762 hugetlb_unregister_node);
2763}
2764#else /* !CONFIG_NUMA */
2765
2766static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2767{
2768 BUG();
2769 if (nidp)
2770 *nidp = -1;
2771 return NULL;
2772}
2773
2774static void hugetlb_register_all_nodes(void) { }
2775
2776#endif
2777
2778static int __init hugetlb_init(void)
2779{
2780 int i;
2781
2782 if (!hugepages_supported())
2783 return 0;
2784
2785 if (!size_to_hstate(default_hstate_size)) {
2786 default_hstate_size = HPAGE_SIZE;
2787 if (!size_to_hstate(default_hstate_size))
2788 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2789 }
2790 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2791 if (default_hstate_max_huge_pages) {
2792 if (!default_hstate.max_huge_pages)
2793 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2794 }
2795
2796 hugetlb_init_hstates();
2797 gather_bootmem_prealloc();
2798 report_hugepages();
2799
2800 hugetlb_sysfs_init();
2801 hugetlb_register_all_nodes();
2802 hugetlb_cgroup_file_init();
2803
2804#ifdef CONFIG_SMP
2805 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2806#else
2807 num_fault_mutexes = 1;
2808#endif
2809 hugetlb_fault_mutex_table =
2810 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2811 BUG_ON(!hugetlb_fault_mutex_table);
2812
2813 for (i = 0; i < num_fault_mutexes; i++)
2814 mutex_init(&hugetlb_fault_mutex_table[i]);
2815 return 0;
2816}
2817subsys_initcall(hugetlb_init);
2818
2819/* Should be called on processing a hugepagesz=... option */
2820void __init hugetlb_bad_size(void)
2821{
2822 parsed_valid_hugepagesz = false;
2823}
2824
2825void __init hugetlb_add_hstate(unsigned int order)
2826{
2827 struct hstate *h;
2828 unsigned long i;
2829
2830 if (size_to_hstate(PAGE_SIZE << order)) {
2831 pr_warn("hugepagesz= specified twice, ignoring\n");
2832 return;
2833 }
2834 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2835 BUG_ON(order == 0);
2836 h = &hstates[hugetlb_max_hstate++];
2837 h->order = order;
2838 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2839 h->nr_huge_pages = 0;
2840 h->free_huge_pages = 0;
2841 for (i = 0; i < MAX_NUMNODES; ++i)
2842 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2843 INIT_LIST_HEAD(&h->hugepage_activelist);
2844 h->next_nid_to_alloc = first_memory_node;
2845 h->next_nid_to_free = first_memory_node;
2846 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2847 huge_page_size(h)/1024);
2848
2849 parsed_hstate = h;
2850}
2851
2852static int __init hugetlb_nrpages_setup(char *s)
2853{
2854 unsigned long *mhp;
2855 static unsigned long *last_mhp;
2856
2857 if (!parsed_valid_hugepagesz) {
2858 pr_warn("hugepages = %s preceded by "
2859 "an unsupported hugepagesz, ignoring\n", s);
2860 parsed_valid_hugepagesz = true;
2861 return 1;
2862 }
2863 /*
2864 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2865 * so this hugepages= parameter goes to the "default hstate".
2866 */
2867 else if (!hugetlb_max_hstate)
2868 mhp = &default_hstate_max_huge_pages;
2869 else
2870 mhp = &parsed_hstate->max_huge_pages;
2871
2872 if (mhp == last_mhp) {
2873 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2874 return 1;
2875 }
2876
2877 if (sscanf(s, "%lu", mhp) <= 0)
2878 *mhp = 0;
2879
2880 /*
2881 * Global state is always initialized later in hugetlb_init.
2882 * But we need to allocate >= MAX_ORDER hstates here early to still
2883 * use the bootmem allocator.
2884 */
2885 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2886 hugetlb_hstate_alloc_pages(parsed_hstate);
2887
2888 last_mhp = mhp;
2889
2890 return 1;
2891}
2892__setup("hugepages=", hugetlb_nrpages_setup);
2893
2894static int __init hugetlb_default_setup(char *s)
2895{
2896 default_hstate_size = memparse(s, &s);
2897 return 1;
2898}
2899__setup("default_hugepagesz=", hugetlb_default_setup);
2900
2901static unsigned int cpuset_mems_nr(unsigned int *array)
2902{
2903 int node;
2904 unsigned int nr = 0;
2905
2906 for_each_node_mask(node, cpuset_current_mems_allowed)
2907 nr += array[node];
2908
2909 return nr;
2910}
2911
2912#ifdef CONFIG_SYSCTL
2913static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2914 struct ctl_table *table, int write,
2915 void __user *buffer, size_t *length, loff_t *ppos)
2916{
2917 struct hstate *h = &default_hstate;
2918 unsigned long tmp = h->max_huge_pages;
2919 int ret;
2920
2921 if (!hugepages_supported())
2922 return -EOPNOTSUPP;
2923
2924 table->data = &tmp;
2925 table->maxlen = sizeof(unsigned long);
2926 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2927 if (ret)
2928 goto out;
2929
2930 if (write)
2931 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2932 NUMA_NO_NODE, tmp, *length);
2933out:
2934 return ret;
2935}
2936
2937int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2938 void __user *buffer, size_t *length, loff_t *ppos)
2939{
2940
2941 return hugetlb_sysctl_handler_common(false, table, write,
2942 buffer, length, ppos);
2943}
2944
2945#ifdef CONFIG_NUMA
2946int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2947 void __user *buffer, size_t *length, loff_t *ppos)
2948{
2949 return hugetlb_sysctl_handler_common(true, table, write,
2950 buffer, length, ppos);
2951}
2952#endif /* CONFIG_NUMA */
2953
2954int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2955 void __user *buffer,
2956 size_t *length, loff_t *ppos)
2957{
2958 struct hstate *h = &default_hstate;
2959 unsigned long tmp;
2960 int ret;
2961
2962 if (!hugepages_supported())
2963 return -EOPNOTSUPP;
2964
2965 tmp = h->nr_overcommit_huge_pages;
2966
2967 if (write && hstate_is_gigantic(h))
2968 return -EINVAL;
2969
2970 table->data = &tmp;
2971 table->maxlen = sizeof(unsigned long);
2972 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2973 if (ret)
2974 goto out;
2975
2976 if (write) {
2977 spin_lock(&hugetlb_lock);
2978 h->nr_overcommit_huge_pages = tmp;
2979 spin_unlock(&hugetlb_lock);
2980 }
2981out:
2982 return ret;
2983}
2984
2985#endif /* CONFIG_SYSCTL */
2986
2987void hugetlb_report_meminfo(struct seq_file *m)
2988{
2989 struct hstate *h = &default_hstate;
2990 if (!hugepages_supported())
2991 return;
2992 seq_printf(m,
2993 "HugePages_Total: %5lu\n"
2994 "HugePages_Free: %5lu\n"
2995 "HugePages_Rsvd: %5lu\n"
2996 "HugePages_Surp: %5lu\n"
2997 "Hugepagesize: %8lu kB\n",
2998 h->nr_huge_pages,
2999 h->free_huge_pages,
3000 h->resv_huge_pages,
3001 h->surplus_huge_pages,
3002 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3003}
3004
3005int hugetlb_report_node_meminfo(int nid, char *buf)
3006{
3007 struct hstate *h = &default_hstate;
3008 if (!hugepages_supported())
3009 return 0;
3010 return sprintf(buf,
3011 "Node %d HugePages_Total: %5u\n"
3012 "Node %d HugePages_Free: %5u\n"
3013 "Node %d HugePages_Surp: %5u\n",
3014 nid, h->nr_huge_pages_node[nid],
3015 nid, h->free_huge_pages_node[nid],
3016 nid, h->surplus_huge_pages_node[nid]);
3017}
3018
3019void hugetlb_show_meminfo(void)
3020{
3021 struct hstate *h;
3022 int nid;
3023
3024 if (!hugepages_supported())
3025 return;
3026
3027 for_each_node_state(nid, N_MEMORY)
3028 for_each_hstate(h)
3029 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3030 nid,
3031 h->nr_huge_pages_node[nid],
3032 h->free_huge_pages_node[nid],
3033 h->surplus_huge_pages_node[nid],
3034 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3035}
3036
3037void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3038{
3039 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3040 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3041}
3042
3043/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3044unsigned long hugetlb_total_pages(void)
3045{
3046 struct hstate *h;
3047 unsigned long nr_total_pages = 0;
3048
3049 for_each_hstate(h)
3050 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3051 return nr_total_pages;
3052}
3053
3054static int hugetlb_acct_memory(struct hstate *h, long delta)
3055{
3056 int ret = -ENOMEM;
3057
3058 spin_lock(&hugetlb_lock);
3059 /*
3060 * When cpuset is configured, it breaks the strict hugetlb page
3061 * reservation as the accounting is done on a global variable. Such
3062 * reservation is completely rubbish in the presence of cpuset because
3063 * the reservation is not checked against page availability for the
3064 * current cpuset. Application can still potentially OOM'ed by kernel
3065 * with lack of free htlb page in cpuset that the task is in.
3066 * Attempt to enforce strict accounting with cpuset is almost
3067 * impossible (or too ugly) because cpuset is too fluid that
3068 * task or memory node can be dynamically moved between cpusets.
3069 *
3070 * The change of semantics for shared hugetlb mapping with cpuset is
3071 * undesirable. However, in order to preserve some of the semantics,
3072 * we fall back to check against current free page availability as
3073 * a best attempt and hopefully to minimize the impact of changing
3074 * semantics that cpuset has.
3075 */
3076 if (delta > 0) {
3077 if (gather_surplus_pages(h, delta) < 0)
3078 goto out;
3079
3080 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3081 return_unused_surplus_pages(h, delta);
3082 goto out;
3083 }
3084 }
3085
3086 ret = 0;
3087 if (delta < 0)
3088 return_unused_surplus_pages(h, (unsigned long) -delta);
3089
3090out:
3091 spin_unlock(&hugetlb_lock);
3092 return ret;
3093}
3094
3095static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3096{
3097 struct resv_map *resv = vma_resv_map(vma);
3098
3099 /*
3100 * This new VMA should share its siblings reservation map if present.
3101 * The VMA will only ever have a valid reservation map pointer where
3102 * it is being copied for another still existing VMA. As that VMA
3103 * has a reference to the reservation map it cannot disappear until
3104 * after this open call completes. It is therefore safe to take a
3105 * new reference here without additional locking.
3106 */
3107 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3108 kref_get(&resv->refs);
3109}
3110
3111static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3112{
3113 struct hstate *h = hstate_vma(vma);
3114 struct resv_map *resv = vma_resv_map(vma);
3115 struct hugepage_subpool *spool = subpool_vma(vma);
3116 unsigned long reserve, start, end;
3117 long gbl_reserve;
3118
3119 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3120 return;
3121
3122 start = vma_hugecache_offset(h, vma, vma->vm_start);
3123 end = vma_hugecache_offset(h, vma, vma->vm_end);
3124
3125 reserve = (end - start) - region_count(resv, start, end);
3126
3127 kref_put(&resv->refs, resv_map_release);
3128
3129 if (reserve) {
3130 /*
3131 * Decrement reserve counts. The global reserve count may be
3132 * adjusted if the subpool has a minimum size.
3133 */
3134 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3135 hugetlb_acct_memory(h, -gbl_reserve);
3136 }
3137}
3138
3139static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3140{
3141 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3142 return -EINVAL;
3143 return 0;
3144}
3145
3146/*
3147 * We cannot handle pagefaults against hugetlb pages at all. They cause
3148 * handle_mm_fault() to try to instantiate regular-sized pages in the
3149 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3150 * this far.
3151 */
3152static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3153{
3154 BUG();
3155 return 0;
3156}
3157
3158const struct vm_operations_struct hugetlb_vm_ops = {
3159 .fault = hugetlb_vm_op_fault,
3160 .open = hugetlb_vm_op_open,
3161 .close = hugetlb_vm_op_close,
3162 .split = hugetlb_vm_op_split,
3163};
3164
3165static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3166 int writable)
3167{
3168 pte_t entry;
3169
3170 if (writable) {
3171 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3172 vma->vm_page_prot)));
3173 } else {
3174 entry = huge_pte_wrprotect(mk_huge_pte(page,
3175 vma->vm_page_prot));
3176 }
3177 entry = pte_mkyoung(entry);
3178 entry = pte_mkhuge(entry);
3179 entry = arch_make_huge_pte(entry, vma, page, writable);
3180
3181 return entry;
3182}
3183
3184static void set_huge_ptep_writable(struct vm_area_struct *vma,
3185 unsigned long address, pte_t *ptep)
3186{
3187 pte_t entry;
3188
3189 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3190 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3191 update_mmu_cache(vma, address, ptep);
3192}
3193
3194static int is_hugetlb_entry_migration(pte_t pte)
3195{
3196 swp_entry_t swp;
3197
3198 if (huge_pte_none(pte) || pte_present(pte))
3199 return 0;
3200 swp = pte_to_swp_entry(pte);
3201 if (non_swap_entry(swp) && is_migration_entry(swp))
3202 return 1;
3203 else
3204 return 0;
3205}
3206
3207static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3208{
3209 swp_entry_t swp;
3210
3211 if (huge_pte_none(pte) || pte_present(pte))
3212 return 0;
3213 swp = pte_to_swp_entry(pte);
3214 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3215 return 1;
3216 else
3217 return 0;
3218}
3219
3220int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3221 struct vm_area_struct *vma)
3222{
3223 pte_t *src_pte, *dst_pte, entry, dst_entry;
3224 struct page *ptepage;
3225 unsigned long addr;
3226 int cow;
3227 struct hstate *h = hstate_vma(vma);
3228 unsigned long sz = huge_page_size(h);
3229 unsigned long mmun_start; /* For mmu_notifiers */
3230 unsigned long mmun_end; /* For mmu_notifiers */
3231 int ret = 0;
3232
3233 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3234
3235 mmun_start = vma->vm_start;
3236 mmun_end = vma->vm_end;
3237 if (cow)
3238 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3239
3240 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3241 spinlock_t *src_ptl, *dst_ptl;
3242 src_pte = huge_pte_offset(src, addr);
3243 if (!src_pte)
3244 continue;
3245 dst_pte = huge_pte_alloc(dst, addr, sz);
3246 if (!dst_pte) {
3247 ret = -ENOMEM;
3248 break;
3249 }
3250
3251 /*
3252 * If the pagetables are shared don't copy or take references.
3253 * dst_pte == src_pte is the common case of src/dest sharing.
3254 *
3255 * However, src could have 'unshared' and dst shares with
3256 * another vma. If dst_pte !none, this implies sharing.
3257 * Check here before taking page table lock, and once again
3258 * after taking the lock below.
3259 */
3260 dst_entry = huge_ptep_get(dst_pte);
3261 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3262 continue;
3263
3264 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3265 src_ptl = huge_pte_lockptr(h, src, src_pte);
3266 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3267 entry = huge_ptep_get(src_pte);
3268 dst_entry = huge_ptep_get(dst_pte);
3269 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3270 /*
3271 * Skip if src entry none. Also, skip in the
3272 * unlikely case dst entry !none as this implies
3273 * sharing with another vma.
3274 */
3275 ;
3276 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3277 is_hugetlb_entry_hwpoisoned(entry))) {
3278 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3279
3280 if (is_write_migration_entry(swp_entry) && cow) {
3281 /*
3282 * COW mappings require pages in both
3283 * parent and child to be set to read.
3284 */
3285 make_migration_entry_read(&swp_entry);
3286 entry = swp_entry_to_pte(swp_entry);
3287 set_huge_pte_at(src, addr, src_pte, entry);
3288 }
3289 set_huge_pte_at(dst, addr, dst_pte, entry);
3290 } else {
3291 if (cow) {
3292 huge_ptep_set_wrprotect(src, addr, src_pte);
3293 mmu_notifier_invalidate_range(src, mmun_start,
3294 mmun_end);
3295 }
3296 entry = huge_ptep_get(src_pte);
3297 ptepage = pte_page(entry);
3298 get_page(ptepage);
3299 page_dup_rmap(ptepage, true);
3300 set_huge_pte_at(dst, addr, dst_pte, entry);
3301 hugetlb_count_add(pages_per_huge_page(h), dst);
3302 }
3303 spin_unlock(src_ptl);
3304 spin_unlock(dst_ptl);
3305 }
3306
3307 if (cow)
3308 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3309
3310 return ret;
3311}
3312
3313void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3314 unsigned long start, unsigned long end,
3315 struct page *ref_page)
3316{
3317 struct mm_struct *mm = vma->vm_mm;
3318 unsigned long address;
3319 pte_t *ptep;
3320 pte_t pte;
3321 spinlock_t *ptl;
3322 struct page *page;
3323 struct hstate *h = hstate_vma(vma);
3324 unsigned long sz = huge_page_size(h);
3325 const unsigned long mmun_start = start; /* For mmu_notifiers */
3326 const unsigned long mmun_end = end; /* For mmu_notifiers */
3327
3328 WARN_ON(!is_vm_hugetlb_page(vma));
3329 BUG_ON(start & ~huge_page_mask(h));
3330 BUG_ON(end & ~huge_page_mask(h));
3331
3332 tlb_start_vma(tlb, vma);
3333 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3334 address = start;
3335 for (; address < end; address += sz) {
3336 ptep = huge_pte_offset(mm, address);
3337 if (!ptep)
3338 continue;
3339
3340 ptl = huge_pte_lock(h, mm, ptep);
3341 if (huge_pmd_unshare(mm, &address, ptep)) {
3342 spin_unlock(ptl);
3343 continue;
3344 }
3345
3346 pte = huge_ptep_get(ptep);
3347 if (huge_pte_none(pte)) {
3348 spin_unlock(ptl);
3349 continue;
3350 }
3351
3352 /*
3353 * Migrating hugepage or HWPoisoned hugepage is already
3354 * unmapped and its refcount is dropped, so just clear pte here.
3355 */
3356 if (unlikely(!pte_present(pte))) {
3357 huge_pte_clear(mm, address, ptep);
3358 spin_unlock(ptl);
3359 continue;
3360 }
3361
3362 page = pte_page(pte);
3363 /*
3364 * If a reference page is supplied, it is because a specific
3365 * page is being unmapped, not a range. Ensure the page we
3366 * are about to unmap is the actual page of interest.
3367 */
3368 if (ref_page) {
3369 if (page != ref_page) {
3370 spin_unlock(ptl);
3371 continue;
3372 }
3373 /*
3374 * Mark the VMA as having unmapped its page so that
3375 * future faults in this VMA will fail rather than
3376 * looking like data was lost
3377 */
3378 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3379 }
3380
3381 pte = huge_ptep_get_and_clear(mm, address, ptep);
3382 tlb_remove_tlb_entry(tlb, ptep, address);
3383 if (huge_pte_dirty(pte))
3384 set_page_dirty(page);
3385
3386 hugetlb_count_sub(pages_per_huge_page(h), mm);
3387 page_remove_rmap(page, true);
3388
3389 spin_unlock(ptl);
3390 tlb_remove_page_size(tlb, page, huge_page_size(h));
3391 /*
3392 * Bail out after unmapping reference page if supplied
3393 */
3394 if (ref_page)
3395 break;
3396 }
3397 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3398 tlb_end_vma(tlb, vma);
3399}
3400
3401void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3402 struct vm_area_struct *vma, unsigned long start,
3403 unsigned long end, struct page *ref_page)
3404{
3405 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3406
3407 /*
3408 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3409 * test will fail on a vma being torn down, and not grab a page table
3410 * on its way out. We're lucky that the flag has such an appropriate
3411 * name, and can in fact be safely cleared here. We could clear it
3412 * before the __unmap_hugepage_range above, but all that's necessary
3413 * is to clear it before releasing the i_mmap_rwsem. This works
3414 * because in the context this is called, the VMA is about to be
3415 * destroyed and the i_mmap_rwsem is held.
3416 */
3417 vma->vm_flags &= ~VM_MAYSHARE;
3418}
3419
3420void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3421 unsigned long end, struct page *ref_page)
3422{
3423 struct mm_struct *mm;
3424 struct mmu_gather tlb;
3425
3426 mm = vma->vm_mm;
3427
3428 tlb_gather_mmu(&tlb, mm, start, end);
3429 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3430 tlb_finish_mmu(&tlb, start, end);
3431}
3432
3433/*
3434 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3435 * mappping it owns the reserve page for. The intention is to unmap the page
3436 * from other VMAs and let the children be SIGKILLed if they are faulting the
3437 * same region.
3438 */
3439static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3440 struct page *page, unsigned long address)
3441{
3442 struct hstate *h = hstate_vma(vma);
3443 struct vm_area_struct *iter_vma;
3444 struct address_space *mapping;
3445 pgoff_t pgoff;
3446
3447 /*
3448 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3449 * from page cache lookup which is in HPAGE_SIZE units.
3450 */
3451 address = address & huge_page_mask(h);
3452 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3453 vma->vm_pgoff;
3454 mapping = vma->vm_file->f_mapping;
3455
3456 /*
3457 * Take the mapping lock for the duration of the table walk. As
3458 * this mapping should be shared between all the VMAs,
3459 * __unmap_hugepage_range() is called as the lock is already held
3460 */
3461 i_mmap_lock_write(mapping);
3462 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3463 /* Do not unmap the current VMA */
3464 if (iter_vma == vma)
3465 continue;
3466
3467 /*
3468 * Shared VMAs have their own reserves and do not affect
3469 * MAP_PRIVATE accounting but it is possible that a shared
3470 * VMA is using the same page so check and skip such VMAs.
3471 */
3472 if (iter_vma->vm_flags & VM_MAYSHARE)
3473 continue;
3474
3475 /*
3476 * Unmap the page from other VMAs without their own reserves.
3477 * They get marked to be SIGKILLed if they fault in these
3478 * areas. This is because a future no-page fault on this VMA
3479 * could insert a zeroed page instead of the data existing
3480 * from the time of fork. This would look like data corruption
3481 */
3482 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3483 unmap_hugepage_range(iter_vma, address,
3484 address + huge_page_size(h), page);
3485 }
3486 i_mmap_unlock_write(mapping);
3487}
3488
3489/*
3490 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3491 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3492 * cannot race with other handlers or page migration.
3493 * Keep the pte_same checks anyway to make transition from the mutex easier.
3494 */
3495static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3496 unsigned long address, pte_t *ptep,
3497 struct page *pagecache_page, spinlock_t *ptl)
3498{
3499 pte_t pte;
3500 struct hstate *h = hstate_vma(vma);
3501 struct page *old_page, *new_page;
3502 int ret = 0, outside_reserve = 0;
3503 unsigned long mmun_start; /* For mmu_notifiers */
3504 unsigned long mmun_end; /* For mmu_notifiers */
3505
3506 pte = huge_ptep_get(ptep);
3507 old_page = pte_page(pte);
3508
3509retry_avoidcopy:
3510 /* If no-one else is actually using this page, avoid the copy
3511 * and just make the page writable */
3512 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3513 page_move_anon_rmap(old_page, vma);
3514 set_huge_ptep_writable(vma, address, ptep);
3515 return 0;
3516 }
3517
3518 /*
3519 * If the process that created a MAP_PRIVATE mapping is about to
3520 * perform a COW due to a shared page count, attempt to satisfy
3521 * the allocation without using the existing reserves. The pagecache
3522 * page is used to determine if the reserve at this address was
3523 * consumed or not. If reserves were used, a partial faulted mapping
3524 * at the time of fork() could consume its reserves on COW instead
3525 * of the full address range.
3526 */
3527 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3528 old_page != pagecache_page)
3529 outside_reserve = 1;
3530
3531 get_page(old_page);
3532
3533 /*
3534 * Drop page table lock as buddy allocator may be called. It will
3535 * be acquired again before returning to the caller, as expected.
3536 */
3537 spin_unlock(ptl);
3538 new_page = alloc_huge_page(vma, address, outside_reserve);
3539
3540 if (IS_ERR(new_page)) {
3541 /*
3542 * If a process owning a MAP_PRIVATE mapping fails to COW,
3543 * it is due to references held by a child and an insufficient
3544 * huge page pool. To guarantee the original mappers
3545 * reliability, unmap the page from child processes. The child
3546 * may get SIGKILLed if it later faults.
3547 */
3548 if (outside_reserve) {
3549 put_page(old_page);
3550 BUG_ON(huge_pte_none(pte));
3551 unmap_ref_private(mm, vma, old_page, address);
3552 BUG_ON(huge_pte_none(pte));
3553 spin_lock(ptl);
3554 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3555 if (likely(ptep &&
3556 pte_same(huge_ptep_get(ptep), pte)))
3557 goto retry_avoidcopy;
3558 /*
3559 * race occurs while re-acquiring page table
3560 * lock, and our job is done.
3561 */
3562 return 0;
3563 }
3564
3565 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3566 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3567 goto out_release_old;
3568 }
3569
3570 /*
3571 * When the original hugepage is shared one, it does not have
3572 * anon_vma prepared.
3573 */
3574 if (unlikely(anon_vma_prepare(vma))) {
3575 ret = VM_FAULT_OOM;
3576 goto out_release_all;
3577 }
3578
3579 copy_user_huge_page(new_page, old_page, address, vma,
3580 pages_per_huge_page(h));
3581 __SetPageUptodate(new_page);
3582
3583 mmun_start = address & huge_page_mask(h);
3584 mmun_end = mmun_start + huge_page_size(h);
3585 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3586
3587 /*
3588 * Retake the page table lock to check for racing updates
3589 * before the page tables are altered
3590 */
3591 spin_lock(ptl);
3592 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3593 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3594 ClearPagePrivate(new_page);
3595
3596 /* Break COW */
3597 huge_ptep_clear_flush(vma, address, ptep);
3598 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3599 set_huge_pte_at(mm, address, ptep,
3600 make_huge_pte(vma, new_page, 1));
3601 page_remove_rmap(old_page, true);
3602 hugepage_add_new_anon_rmap(new_page, vma, address);
3603 set_page_huge_active(new_page);
3604 /* Make the old page be freed below */
3605 new_page = old_page;
3606 }
3607 spin_unlock(ptl);
3608 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3609out_release_all:
3610 restore_reserve_on_error(h, vma, address, new_page);
3611 put_page(new_page);
3612out_release_old:
3613 put_page(old_page);
3614
3615 spin_lock(ptl); /* Caller expects lock to be held */
3616 return ret;
3617}
3618
3619/* Return the pagecache page at a given address within a VMA */
3620static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3621 struct vm_area_struct *vma, unsigned long address)
3622{
3623 struct address_space *mapping;
3624 pgoff_t idx;
3625
3626 mapping = vma->vm_file->f_mapping;
3627 idx = vma_hugecache_offset(h, vma, address);
3628
3629 return find_lock_page(mapping, idx);
3630}
3631
3632/*
3633 * Return whether there is a pagecache page to back given address within VMA.
3634 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3635 */
3636static bool hugetlbfs_pagecache_present(struct hstate *h,
3637 struct vm_area_struct *vma, unsigned long address)
3638{
3639 struct address_space *mapping;
3640 pgoff_t idx;
3641 struct page *page;
3642
3643 mapping = vma->vm_file->f_mapping;
3644 idx = vma_hugecache_offset(h, vma, address);
3645
3646 page = find_get_page(mapping, idx);
3647 if (page)
3648 put_page(page);
3649 return page != NULL;
3650}
3651
3652int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3653 pgoff_t idx)
3654{
3655 struct inode *inode = mapping->host;
3656 struct hstate *h = hstate_inode(inode);
3657 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3658
3659 if (err)
3660 return err;
3661 ClearPagePrivate(page);
3662
3663 /*
3664 * set page dirty so that it will not be removed from cache/file
3665 * by non-hugetlbfs specific code paths.
3666 */
3667 set_page_dirty(page);
3668
3669 spin_lock(&inode->i_lock);
3670 inode->i_blocks += blocks_per_huge_page(h);
3671 spin_unlock(&inode->i_lock);
3672 return 0;
3673}
3674
3675static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3676 struct address_space *mapping, pgoff_t idx,
3677 unsigned long address, pte_t *ptep, unsigned int flags)
3678{
3679 struct hstate *h = hstate_vma(vma);
3680 int ret = VM_FAULT_SIGBUS;
3681 int anon_rmap = 0;
3682 unsigned long size;
3683 struct page *page;
3684 pte_t new_pte;
3685 spinlock_t *ptl;
3686 bool new_page = false;
3687
3688 /*
3689 * Currently, we are forced to kill the process in the event the
3690 * original mapper has unmapped pages from the child due to a failed
3691 * COW. Warn that such a situation has occurred as it may not be obvious
3692 */
3693 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3694 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3695 current->pid);
3696 return ret;
3697 }
3698
3699 /*
3700 * Use page lock to guard against racing truncation
3701 * before we get page_table_lock.
3702 */
3703retry:
3704 page = find_lock_page(mapping, idx);
3705 if (!page) {
3706 size = i_size_read(mapping->host) >> huge_page_shift(h);
3707 if (idx >= size)
3708 goto out;
3709 page = alloc_huge_page(vma, address, 0);
3710 if (IS_ERR(page)) {
3711 ret = PTR_ERR(page);
3712 if (ret == -ENOMEM)
3713 ret = VM_FAULT_OOM;
3714 else
3715 ret = VM_FAULT_SIGBUS;
3716 goto out;
3717 }
3718 clear_huge_page(page, address, pages_per_huge_page(h));
3719 __SetPageUptodate(page);
3720 new_page = true;
3721
3722 if (vma->vm_flags & VM_MAYSHARE) {
3723 int err = huge_add_to_page_cache(page, mapping, idx);
3724 if (err) {
3725 put_page(page);
3726 if (err == -EEXIST)
3727 goto retry;
3728 goto out;
3729 }
3730 } else {
3731 lock_page(page);
3732 if (unlikely(anon_vma_prepare(vma))) {
3733 ret = VM_FAULT_OOM;
3734 goto backout_unlocked;
3735 }
3736 anon_rmap = 1;
3737 }
3738 } else {
3739 /*
3740 * If memory error occurs between mmap() and fault, some process
3741 * don't have hwpoisoned swap entry for errored virtual address.
3742 * So we need to block hugepage fault by PG_hwpoison bit check.
3743 */
3744 if (unlikely(PageHWPoison(page))) {
3745 ret = VM_FAULT_HWPOISON |
3746 VM_FAULT_SET_HINDEX(hstate_index(h));
3747 goto backout_unlocked;
3748 }
3749 }
3750
3751 /*
3752 * If we are going to COW a private mapping later, we examine the
3753 * pending reservations for this page now. This will ensure that
3754 * any allocations necessary to record that reservation occur outside
3755 * the spinlock.
3756 */
3757 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3758 if (vma_needs_reservation(h, vma, address) < 0) {
3759 ret = VM_FAULT_OOM;
3760 goto backout_unlocked;
3761 }
3762 /* Just decrements count, does not deallocate */
3763 vma_end_reservation(h, vma, address);
3764 }
3765
3766 ptl = huge_pte_lockptr(h, mm, ptep);
3767 spin_lock(ptl);
3768 size = i_size_read(mapping->host) >> huge_page_shift(h);
3769 if (idx >= size)
3770 goto backout;
3771
3772 ret = 0;
3773 if (!huge_pte_none(huge_ptep_get(ptep)))
3774 goto backout;
3775
3776 if (anon_rmap) {
3777 ClearPagePrivate(page);
3778 hugepage_add_new_anon_rmap(page, vma, address);
3779 } else
3780 page_dup_rmap(page, true);
3781 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3782 && (vma->vm_flags & VM_SHARED)));
3783 set_huge_pte_at(mm, address, ptep, new_pte);
3784
3785 hugetlb_count_add(pages_per_huge_page(h), mm);
3786 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3787 /* Optimization, do the COW without a second fault */
3788 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3789 }
3790
3791 spin_unlock(ptl);
3792
3793 /*
3794 * Only make newly allocated pages active. Existing pages found
3795 * in the pagecache could be !page_huge_active() if they have been
3796 * isolated for migration.
3797 */
3798 if (new_page)
3799 set_page_huge_active(page);
3800
3801 unlock_page(page);
3802out:
3803 return ret;
3804
3805backout:
3806 spin_unlock(ptl);
3807backout_unlocked:
3808 unlock_page(page);
3809 restore_reserve_on_error(h, vma, address, page);
3810 put_page(page);
3811 goto out;
3812}
3813
3814#ifdef CONFIG_SMP
3815u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3816 pgoff_t idx, unsigned long address)
3817{
3818 unsigned long key[2];
3819 u32 hash;
3820
3821 key[0] = (unsigned long) mapping;
3822 key[1] = idx;
3823
3824 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3825
3826 return hash & (num_fault_mutexes - 1);
3827}
3828#else
3829/*
3830 * For uniprocesor systems we always use a single mutex, so just
3831 * return 0 and avoid the hashing overhead.
3832 */
3833u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3834 pgoff_t idx, unsigned long address)
3835{
3836 return 0;
3837}
3838#endif
3839
3840int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3841 unsigned long address, unsigned int flags)
3842{
3843 pte_t *ptep, entry;
3844 spinlock_t *ptl;
3845 int ret;
3846 u32 hash;
3847 pgoff_t idx;
3848 struct page *page = NULL;
3849 struct page *pagecache_page = NULL;
3850 struct hstate *h = hstate_vma(vma);
3851 struct address_space *mapping;
3852 int need_wait_lock = 0;
3853
3854 address &= huge_page_mask(h);
3855
3856 ptep = huge_pte_offset(mm, address);
3857 if (ptep) {
3858 entry = huge_ptep_get(ptep);
3859 if (unlikely(is_hugetlb_entry_migration(entry))) {
3860 migration_entry_wait_huge(vma, mm, ptep);
3861 return 0;
3862 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3863 return VM_FAULT_HWPOISON_LARGE |
3864 VM_FAULT_SET_HINDEX(hstate_index(h));
3865 } else {
3866 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3867 if (!ptep)
3868 return VM_FAULT_OOM;
3869 }
3870
3871 mapping = vma->vm_file->f_mapping;
3872 idx = vma_hugecache_offset(h, vma, address);
3873
3874 /*
3875 * Serialize hugepage allocation and instantiation, so that we don't
3876 * get spurious allocation failures if two CPUs race to instantiate
3877 * the same page in the page cache.
3878 */
3879 hash = hugetlb_fault_mutex_hash(h, mapping, idx, address);
3880 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3881
3882 entry = huge_ptep_get(ptep);
3883 if (huge_pte_none(entry)) {
3884 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3885 goto out_mutex;
3886 }
3887
3888 ret = 0;
3889
3890 /*
3891 * entry could be a migration/hwpoison entry at this point, so this
3892 * check prevents the kernel from going below assuming that we have
3893 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3894 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3895 * handle it.
3896 */
3897 if (!pte_present(entry))
3898 goto out_mutex;
3899
3900 /*
3901 * If we are going to COW the mapping later, we examine the pending
3902 * reservations for this page now. This will ensure that any
3903 * allocations necessary to record that reservation occur outside the
3904 * spinlock. For private mappings, we also lookup the pagecache
3905 * page now as it is used to determine if a reservation has been
3906 * consumed.
3907 */
3908 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3909 if (vma_needs_reservation(h, vma, address) < 0) {
3910 ret = VM_FAULT_OOM;
3911 goto out_mutex;
3912 }
3913 /* Just decrements count, does not deallocate */
3914 vma_end_reservation(h, vma, address);
3915
3916 if (!(vma->vm_flags & VM_MAYSHARE))
3917 pagecache_page = hugetlbfs_pagecache_page(h,
3918 vma, address);
3919 }
3920
3921 ptl = huge_pte_lock(h, mm, ptep);
3922
3923 /* Check for a racing update before calling hugetlb_cow */
3924 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3925 goto out_ptl;
3926
3927 /*
3928 * hugetlb_cow() requires page locks of pte_page(entry) and
3929 * pagecache_page, so here we need take the former one
3930 * when page != pagecache_page or !pagecache_page.
3931 */
3932 page = pte_page(entry);
3933 if (page != pagecache_page)
3934 if (!trylock_page(page)) {
3935 need_wait_lock = 1;
3936 goto out_ptl;
3937 }
3938
3939 get_page(page);
3940
3941 if (flags & FAULT_FLAG_WRITE) {
3942 if (!huge_pte_write(entry)) {
3943 ret = hugetlb_cow(mm, vma, address, ptep,
3944 pagecache_page, ptl);
3945 goto out_put_page;
3946 }
3947 entry = huge_pte_mkdirty(entry);
3948 }
3949 entry = pte_mkyoung(entry);
3950 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3951 flags & FAULT_FLAG_WRITE))
3952 update_mmu_cache(vma, address, ptep);
3953out_put_page:
3954 if (page != pagecache_page)
3955 unlock_page(page);
3956 put_page(page);
3957out_ptl:
3958 spin_unlock(ptl);
3959
3960 if (pagecache_page) {
3961 unlock_page(pagecache_page);
3962 put_page(pagecache_page);
3963 }
3964out_mutex:
3965 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3966 /*
3967 * Generally it's safe to hold refcount during waiting page lock. But
3968 * here we just wait to defer the next page fault to avoid busy loop and
3969 * the page is not used after unlocked before returning from the current
3970 * page fault. So we are safe from accessing freed page, even if we wait
3971 * here without taking refcount.
3972 */
3973 if (need_wait_lock)
3974 wait_on_page_locked(page);
3975 return ret;
3976}
3977
3978long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3979 struct page **pages, struct vm_area_struct **vmas,
3980 unsigned long *position, unsigned long *nr_pages,
3981 long i, unsigned int flags)
3982{
3983 unsigned long pfn_offset;
3984 unsigned long vaddr = *position;
3985 unsigned long remainder = *nr_pages;
3986 struct hstate *h = hstate_vma(vma);
3987
3988 while (vaddr < vma->vm_end && remainder) {
3989 pte_t *pte;
3990 spinlock_t *ptl = NULL;
3991 int absent;
3992 struct page *page;
3993
3994 /*
3995 * If we have a pending SIGKILL, don't keep faulting pages and
3996 * potentially allocating memory.
3997 */
3998 if (unlikely(fatal_signal_pending(current))) {
3999 remainder = 0;
4000 break;
4001 }
4002
4003 /*
4004 * Some archs (sparc64, sh*) have multiple pte_ts to
4005 * each hugepage. We have to make sure we get the
4006 * first, for the page indexing below to work.
4007 *
4008 * Note that page table lock is not held when pte is null.
4009 */
4010 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4011 if (pte)
4012 ptl = huge_pte_lock(h, mm, pte);
4013 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4014
4015 /*
4016 * When coredumping, it suits get_dump_page if we just return
4017 * an error where there's an empty slot with no huge pagecache
4018 * to back it. This way, we avoid allocating a hugepage, and
4019 * the sparse dumpfile avoids allocating disk blocks, but its
4020 * huge holes still show up with zeroes where they need to be.
4021 */
4022 if (absent && (flags & FOLL_DUMP) &&
4023 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4024 if (pte)
4025 spin_unlock(ptl);
4026 remainder = 0;
4027 break;
4028 }
4029
4030 /*
4031 * We need call hugetlb_fault for both hugepages under migration
4032 * (in which case hugetlb_fault waits for the migration,) and
4033 * hwpoisoned hugepages (in which case we need to prevent the
4034 * caller from accessing to them.) In order to do this, we use
4035 * here is_swap_pte instead of is_hugetlb_entry_migration and
4036 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4037 * both cases, and because we can't follow correct pages
4038 * directly from any kind of swap entries.
4039 */
4040 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4041 ((flags & FOLL_WRITE) &&
4042 !huge_pte_write(huge_ptep_get(pte)))) {
4043 int ret;
4044
4045 if (pte)
4046 spin_unlock(ptl);
4047 ret = hugetlb_fault(mm, vma, vaddr,
4048 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4049 if (!(ret & VM_FAULT_ERROR))
4050 continue;
4051
4052 remainder = 0;
4053 break;
4054 }
4055
4056 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4057 page = pte_page(huge_ptep_get(pte));
4058same_page:
4059 if (pages) {
4060 pages[i] = mem_map_offset(page, pfn_offset);
4061 get_page(pages[i]);
4062 }
4063
4064 if (vmas)
4065 vmas[i] = vma;
4066
4067 vaddr += PAGE_SIZE;
4068 ++pfn_offset;
4069 --remainder;
4070 ++i;
4071 if (vaddr < vma->vm_end && remainder &&
4072 pfn_offset < pages_per_huge_page(h)) {
4073 /*
4074 * We use pfn_offset to avoid touching the pageframes
4075 * of this compound page.
4076 */
4077 goto same_page;
4078 }
4079 spin_unlock(ptl);
4080 }
4081 *nr_pages = remainder;
4082 *position = vaddr;
4083
4084 return i ? i : -EFAULT;
4085}
4086
4087#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4088/*
4089 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4090 * implement this.
4091 */
4092#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4093#endif
4094
4095unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4096 unsigned long address, unsigned long end, pgprot_t newprot)
4097{
4098 struct mm_struct *mm = vma->vm_mm;
4099 unsigned long start = address;
4100 pte_t *ptep;
4101 pte_t pte;
4102 struct hstate *h = hstate_vma(vma);
4103 unsigned long pages = 0;
4104
4105 BUG_ON(address >= end);
4106 flush_cache_range(vma, address, end);
4107
4108 mmu_notifier_invalidate_range_start(mm, start, end);
4109 i_mmap_lock_write(vma->vm_file->f_mapping);
4110 for (; address < end; address += huge_page_size(h)) {
4111 spinlock_t *ptl;
4112 ptep = huge_pte_offset(mm, address);
4113 if (!ptep)
4114 continue;
4115 ptl = huge_pte_lock(h, mm, ptep);
4116 if (huge_pmd_unshare(mm, &address, ptep)) {
4117 pages++;
4118 spin_unlock(ptl);
4119 continue;
4120 }
4121 pte = huge_ptep_get(ptep);
4122 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4123 spin_unlock(ptl);
4124 continue;
4125 }
4126 if (unlikely(is_hugetlb_entry_migration(pte))) {
4127 swp_entry_t entry = pte_to_swp_entry(pte);
4128
4129 if (is_write_migration_entry(entry)) {
4130 pte_t newpte;
4131
4132 make_migration_entry_read(&entry);
4133 newpte = swp_entry_to_pte(entry);
4134 set_huge_pte_at(mm, address, ptep, newpte);
4135 pages++;
4136 }
4137 spin_unlock(ptl);
4138 continue;
4139 }
4140 if (!huge_pte_none(pte)) {
4141 pte = huge_ptep_get_and_clear(mm, address, ptep);
4142 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4143 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4144 set_huge_pte_at(mm, address, ptep, pte);
4145 pages++;
4146 }
4147 spin_unlock(ptl);
4148 }
4149 /*
4150 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4151 * may have cleared our pud entry and done put_page on the page table:
4152 * once we release i_mmap_rwsem, another task can do the final put_page
4153 * and that page table be reused and filled with junk.
4154 */
4155 flush_hugetlb_tlb_range(vma, start, end);
4156 mmu_notifier_invalidate_range(mm, start, end);
4157 i_mmap_unlock_write(vma->vm_file->f_mapping);
4158 mmu_notifier_invalidate_range_end(mm, start, end);
4159
4160 return pages << h->order;
4161}
4162
4163int hugetlb_reserve_pages(struct inode *inode,
4164 long from, long to,
4165 struct vm_area_struct *vma,
4166 vm_flags_t vm_flags)
4167{
4168 long ret, chg;
4169 struct hstate *h = hstate_inode(inode);
4170 struct hugepage_subpool *spool = subpool_inode(inode);
4171 struct resv_map *resv_map;
4172 long gbl_reserve;
4173
4174 /* This should never happen */
4175 if (from > to) {
4176 VM_WARN(1, "%s called with a negative range\n", __func__);
4177 return -EINVAL;
4178 }
4179
4180 /*
4181 * Only apply hugepage reservation if asked. At fault time, an
4182 * attempt will be made for VM_NORESERVE to allocate a page
4183 * without using reserves
4184 */
4185 if (vm_flags & VM_NORESERVE)
4186 return 0;
4187
4188 /*
4189 * Shared mappings base their reservation on the number of pages that
4190 * are already allocated on behalf of the file. Private mappings need
4191 * to reserve the full area even if read-only as mprotect() may be
4192 * called to make the mapping read-write. Assume !vma is a shm mapping
4193 */
4194 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4195 resv_map = inode_resv_map(inode);
4196
4197 chg = region_chg(resv_map, from, to);
4198
4199 } else {
4200 resv_map = resv_map_alloc();
4201 if (!resv_map)
4202 return -ENOMEM;
4203
4204 chg = to - from;
4205
4206 set_vma_resv_map(vma, resv_map);
4207 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4208 }
4209
4210 if (chg < 0) {
4211 ret = chg;
4212 goto out_err;
4213 }
4214
4215 /*
4216 * There must be enough pages in the subpool for the mapping. If
4217 * the subpool has a minimum size, there may be some global
4218 * reservations already in place (gbl_reserve).
4219 */
4220 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4221 if (gbl_reserve < 0) {
4222 ret = -ENOSPC;
4223 goto out_err;
4224 }
4225
4226 /*
4227 * Check enough hugepages are available for the reservation.
4228 * Hand the pages back to the subpool if there are not
4229 */
4230 ret = hugetlb_acct_memory(h, gbl_reserve);
4231 if (ret < 0) {
4232 /* put back original number of pages, chg */
4233 (void)hugepage_subpool_put_pages(spool, chg);
4234 goto out_err;
4235 }
4236
4237 /*
4238 * Account for the reservations made. Shared mappings record regions
4239 * that have reservations as they are shared by multiple VMAs.
4240 * When the last VMA disappears, the region map says how much
4241 * the reservation was and the page cache tells how much of
4242 * the reservation was consumed. Private mappings are per-VMA and
4243 * only the consumed reservations are tracked. When the VMA
4244 * disappears, the original reservation is the VMA size and the
4245 * consumed reservations are stored in the map. Hence, nothing
4246 * else has to be done for private mappings here
4247 */
4248 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4249 long add = region_add(resv_map, from, to);
4250
4251 if (unlikely(chg > add)) {
4252 /*
4253 * pages in this range were added to the reserve
4254 * map between region_chg and region_add. This
4255 * indicates a race with alloc_huge_page. Adjust
4256 * the subpool and reserve counts modified above
4257 * based on the difference.
4258 */
4259 long rsv_adjust;
4260
4261 rsv_adjust = hugepage_subpool_put_pages(spool,
4262 chg - add);
4263 hugetlb_acct_memory(h, -rsv_adjust);
4264 }
4265 }
4266 return 0;
4267out_err:
4268 if (!vma || vma->vm_flags & VM_MAYSHARE)
4269 /* Don't call region_abort if region_chg failed */
4270 if (chg >= 0)
4271 region_abort(resv_map, from, to);
4272 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4273 kref_put(&resv_map->refs, resv_map_release);
4274 return ret;
4275}
4276
4277long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4278 long freed)
4279{
4280 struct hstate *h = hstate_inode(inode);
4281 struct resv_map *resv_map = inode_resv_map(inode);
4282 long chg = 0;
4283 struct hugepage_subpool *spool = subpool_inode(inode);
4284 long gbl_reserve;
4285
4286 if (resv_map) {
4287 chg = region_del(resv_map, start, end);
4288 /*
4289 * region_del() can fail in the rare case where a region
4290 * must be split and another region descriptor can not be
4291 * allocated. If end == LONG_MAX, it will not fail.
4292 */
4293 if (chg < 0)
4294 return chg;
4295 }
4296
4297 spin_lock(&inode->i_lock);
4298 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4299 spin_unlock(&inode->i_lock);
4300
4301 /*
4302 * If the subpool has a minimum size, the number of global
4303 * reservations to be released may be adjusted.
4304 */
4305 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4306 hugetlb_acct_memory(h, -gbl_reserve);
4307
4308 return 0;
4309}
4310
4311#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4312static unsigned long page_table_shareable(struct vm_area_struct *svma,
4313 struct vm_area_struct *vma,
4314 unsigned long addr, pgoff_t idx)
4315{
4316 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4317 svma->vm_start;
4318 unsigned long sbase = saddr & PUD_MASK;
4319 unsigned long s_end = sbase + PUD_SIZE;
4320
4321 /* Allow segments to share if only one is marked locked */
4322 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4323 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4324
4325 /*
4326 * match the virtual addresses, permission and the alignment of the
4327 * page table page.
4328 */
4329 if (pmd_index(addr) != pmd_index(saddr) ||
4330 vm_flags != svm_flags ||
4331 sbase < svma->vm_start || svma->vm_end < s_end)
4332 return 0;
4333
4334 return saddr;
4335}
4336
4337static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4338{
4339 unsigned long base = addr & PUD_MASK;
4340 unsigned long end = base + PUD_SIZE;
4341
4342 /*
4343 * check on proper vm_flags and page table alignment
4344 */
4345 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4346 return true;
4347 return false;
4348}
4349
4350/*
4351 * Determine if start,end range within vma could be mapped by shared pmd.
4352 * If yes, adjust start and end to cover range associated with possible
4353 * shared pmd mappings.
4354 */
4355void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4356 unsigned long *start, unsigned long *end)
4357{
4358 unsigned long check_addr = *start;
4359
4360 if (!(vma->vm_flags & VM_MAYSHARE))
4361 return;
4362
4363 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4364 unsigned long a_start = check_addr & PUD_MASK;
4365 unsigned long a_end = a_start + PUD_SIZE;
4366
4367 /*
4368 * If sharing is possible, adjust start/end if necessary.
4369 */
4370 if (range_in_vma(vma, a_start, a_end)) {
4371 if (a_start < *start)
4372 *start = a_start;
4373 if (a_end > *end)
4374 *end = a_end;
4375 }
4376 }
4377}
4378
4379/*
4380 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4381 * and returns the corresponding pte. While this is not necessary for the
4382 * !shared pmd case because we can allocate the pmd later as well, it makes the
4383 * code much cleaner. pmd allocation is essential for the shared case because
4384 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4385 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4386 * bad pmd for sharing.
4387 */
4388pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4389{
4390 struct vm_area_struct *vma = find_vma(mm, addr);
4391 struct address_space *mapping = vma->vm_file->f_mapping;
4392 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4393 vma->vm_pgoff;
4394 struct vm_area_struct *svma;
4395 unsigned long saddr;
4396 pte_t *spte = NULL;
4397 pte_t *pte;
4398 spinlock_t *ptl;
4399
4400 if (!vma_shareable(vma, addr))
4401 return (pte_t *)pmd_alloc(mm, pud, addr);
4402
4403 i_mmap_lock_write(mapping);
4404 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4405 if (svma == vma)
4406 continue;
4407
4408 saddr = page_table_shareable(svma, vma, addr, idx);
4409 if (saddr) {
4410 spte = huge_pte_offset(svma->vm_mm, saddr);
4411 if (spte) {
4412 get_page(virt_to_page(spte));
4413 break;
4414 }
4415 }
4416 }
4417
4418 if (!spte)
4419 goto out;
4420
4421 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4422 spin_lock(ptl);
4423 if (pud_none(*pud)) {
4424 pud_populate(mm, pud,
4425 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4426 mm_inc_nr_pmds(mm);
4427 } else {
4428 put_page(virt_to_page(spte));
4429 }
4430 spin_unlock(ptl);
4431out:
4432 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4433 i_mmap_unlock_write(mapping);
4434 return pte;
4435}
4436
4437/*
4438 * unmap huge page backed by shared pte.
4439 *
4440 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4441 * indicated by page_count > 1, unmap is achieved by clearing pud and
4442 * decrementing the ref count. If count == 1, the pte page is not shared.
4443 *
4444 * called with page table lock held.
4445 *
4446 * returns: 1 successfully unmapped a shared pte page
4447 * 0 the underlying pte page is not shared, or it is the last user
4448 */
4449int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4450{
4451 pgd_t *pgd = pgd_offset(mm, *addr);
4452 pud_t *pud = pud_offset(pgd, *addr);
4453
4454 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4455 if (page_count(virt_to_page(ptep)) == 1)
4456 return 0;
4457
4458 pud_clear(pud);
4459 put_page(virt_to_page(ptep));
4460 mm_dec_nr_pmds(mm);
4461 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4462 return 1;
4463}
4464#define want_pmd_share() (1)
4465#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4466pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4467{
4468 return NULL;
4469}
4470
4471int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4472{
4473 return 0;
4474}
4475
4476void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4477 unsigned long *start, unsigned long *end)
4478{
4479}
4480#define want_pmd_share() (0)
4481#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4482
4483#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4484pte_t *huge_pte_alloc(struct mm_struct *mm,
4485 unsigned long addr, unsigned long sz)
4486{
4487 pgd_t *pgd;
4488 pud_t *pud;
4489 pte_t *pte = NULL;
4490
4491 pgd = pgd_offset(mm, addr);
4492 pud = pud_alloc(mm, pgd, addr);
4493 if (pud) {
4494 if (sz == PUD_SIZE) {
4495 pte = (pte_t *)pud;
4496 } else {
4497 BUG_ON(sz != PMD_SIZE);
4498 if (want_pmd_share() && pud_none(*pud))
4499 pte = huge_pmd_share(mm, addr, pud);
4500 else
4501 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4502 }
4503 }
4504 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4505
4506 return pte;
4507}
4508
4509pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4510{
4511 pgd_t *pgd;
4512 pud_t *pud;
4513 pmd_t *pmd = NULL;
4514
4515 pgd = pgd_offset(mm, addr);
4516 if (pgd_present(*pgd)) {
4517 pud = pud_offset(pgd, addr);
4518 if (pud_present(*pud)) {
4519 if (pud_huge(*pud))
4520 return (pte_t *)pud;
4521 pmd = pmd_offset(pud, addr);
4522 }
4523 }
4524 return (pte_t *) pmd;
4525}
4526
4527#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4528
4529/*
4530 * These functions are overwritable if your architecture needs its own
4531 * behavior.
4532 */
4533struct page * __weak
4534follow_huge_addr(struct mm_struct *mm, unsigned long address,
4535 int write)
4536{
4537 return ERR_PTR(-EINVAL);
4538}
4539
4540struct page * __weak
4541follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4542 pmd_t *pmd, int flags)
4543{
4544 struct page *page = NULL;
4545 spinlock_t *ptl;
4546 pte_t pte;
4547retry:
4548 ptl = pmd_lockptr(mm, pmd);
4549 spin_lock(ptl);
4550 /*
4551 * make sure that the address range covered by this pmd is not
4552 * unmapped from other threads.
4553 */
4554 if (!pmd_huge(*pmd))
4555 goto out;
4556 pte = huge_ptep_get((pte_t *)pmd);
4557 if (pte_present(pte)) {
4558 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4559 if (flags & FOLL_GET)
4560 get_page(page);
4561 } else {
4562 if (is_hugetlb_entry_migration(pte)) {
4563 spin_unlock(ptl);
4564 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4565 goto retry;
4566 }
4567 /*
4568 * hwpoisoned entry is treated as no_page_table in
4569 * follow_page_mask().
4570 */
4571 }
4572out:
4573 spin_unlock(ptl);
4574 return page;
4575}
4576
4577struct page * __weak
4578follow_huge_pud(struct mm_struct *mm, unsigned long address,
4579 pud_t *pud, int flags)
4580{
4581 if (flags & FOLL_GET)
4582 return NULL;
4583
4584 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4585}
4586
4587#ifdef CONFIG_MEMORY_FAILURE
4588
4589/*
4590 * This function is called from memory failure code.
4591 */
4592int dequeue_hwpoisoned_huge_page(struct page *hpage)
4593{
4594 struct hstate *h = page_hstate(hpage);
4595 int nid = page_to_nid(hpage);
4596 int ret = -EBUSY;
4597
4598 spin_lock(&hugetlb_lock);
4599 /*
4600 * Just checking !page_huge_active is not enough, because that could be
4601 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4602 */
4603 if (!page_huge_active(hpage) && !page_count(hpage)) {
4604 /*
4605 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4606 * but dangling hpage->lru can trigger list-debug warnings
4607 * (this happens when we call unpoison_memory() on it),
4608 * so let it point to itself with list_del_init().
4609 */
4610 list_del_init(&hpage->lru);
4611 set_page_refcounted(hpage);
4612 h->free_huge_pages--;
4613 h->free_huge_pages_node[nid]--;
4614 ret = 0;
4615 }
4616 spin_unlock(&hugetlb_lock);
4617 return ret;
4618}
4619#endif
4620
4621bool isolate_huge_page(struct page *page, struct list_head *list)
4622{
4623 bool ret = true;
4624
4625 VM_BUG_ON_PAGE(!PageHead(page), page);
4626 spin_lock(&hugetlb_lock);
4627 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4628 ret = false;
4629 goto unlock;
4630 }
4631 clear_page_huge_active(page);
4632 list_move_tail(&page->lru, list);
4633unlock:
4634 spin_unlock(&hugetlb_lock);
4635 return ret;
4636}
4637
4638void putback_active_hugepage(struct page *page)
4639{
4640 VM_BUG_ON_PAGE(!PageHead(page), page);
4641 spin_lock(&hugetlb_lock);
4642 set_page_huge_active(page);
4643 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4644 spin_unlock(&hugetlb_lock);
4645 put_page(page);
4646}
4647