summaryrefslogtreecommitdiff
path: root/mm/ksm.c (plain)
blob: 95f902c4f6f6ad5f2f4b33840edd2e259b02dfc7
1/*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/mman.h>
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
32#include <linux/memory.h>
33#include <linux/mmu_notifier.h>
34#include <linux/swap.h>
35#include <linux/ksm.h>
36#include <linux/hashtable.h>
37#include <linux/freezer.h>
38#include <linux/oom.h>
39#include <linux/numa.h>
40
41#include <asm/tlbflush.h>
42#include "internal.h"
43
44#ifdef CONFIG_NUMA
45#define NUMA(x) (x)
46#define DO_NUMA(x) do { (x); } while (0)
47#else
48#define NUMA(x) (0)
49#define DO_NUMA(x) do { } while (0)
50#endif
51
52/*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
93 */
94
95/**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
101 */
102struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
107};
108
109/**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
123};
124
125/**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133 */
134struct stable_node {
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
142 struct hlist_head hlist;
143 unsigned long kpfn;
144#ifdef CONFIG_NUMA
145 int nid;
146#endif
147};
148
149/**
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
160 */
161struct rmap_item {
162 struct rmap_item *rmap_list;
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165#ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167#endif
168 };
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
171 unsigned int oldchecksum; /* when unstable */
172 union {
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
177 };
178 };
179};
180
181#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
182#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183#define STABLE_FLAG 0x200 /* is listed from the stable tree */
184
185/* The stable and unstable tree heads */
186static struct rb_root one_stable_tree[1] = { RB_ROOT };
187static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188static struct rb_root *root_stable_tree = one_stable_tree;
189static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191/* Recently migrated nodes of stable tree, pending proper placement */
192static LIST_HEAD(migrate_nodes);
193
194#define MM_SLOTS_HASH_BITS 10
195static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199};
200static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
202};
203
204static struct kmem_cache *rmap_item_cache;
205static struct kmem_cache *stable_node_cache;
206static struct kmem_cache *mm_slot_cache;
207
208/* The number of nodes in the stable tree */
209static unsigned long ksm_pages_shared;
210
211/* The number of page slots additionally sharing those nodes */
212static unsigned long ksm_pages_sharing;
213
214/* The number of nodes in the unstable tree */
215static unsigned long ksm_pages_unshared;
216
217/* The number of rmap_items in use: to calculate pages_volatile */
218static unsigned long ksm_rmap_items;
219
220/* Number of pages ksmd should scan in one batch */
221static unsigned int ksm_thread_pages_to_scan = 100;
222
223/* Milliseconds ksmd should sleep between batches */
224static unsigned int ksm_thread_sleep_millisecs = 20;
225
226#ifdef CONFIG_NUMA
227/* Zeroed when merging across nodes is not allowed */
228static unsigned int ksm_merge_across_nodes = 1;
229static int ksm_nr_node_ids = 1;
230#else
231#define ksm_merge_across_nodes 1U
232#define ksm_nr_node_ids 1
233#endif
234
235#define KSM_RUN_STOP 0
236#define KSM_RUN_MERGE 1
237#define KSM_RUN_UNMERGE 2
238#define KSM_RUN_OFFLINE 4
239static unsigned long ksm_run = KSM_RUN_STOP;
240static void wait_while_offlining(void);
241
242static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243static DEFINE_MUTEX(ksm_thread_mutex);
244static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 sizeof(struct __struct), __alignof__(struct __struct),\
248 (__flags), NULL)
249
250static int __init ksm_slab_init(void)
251{
252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 if (!rmap_item_cache)
254 goto out;
255
256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 if (!stable_node_cache)
258 goto out_free1;
259
260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 if (!mm_slot_cache)
262 goto out_free2;
263
264 return 0;
265
266out_free2:
267 kmem_cache_destroy(stable_node_cache);
268out_free1:
269 kmem_cache_destroy(rmap_item_cache);
270out:
271 return -ENOMEM;
272}
273
274static void __init ksm_slab_free(void)
275{
276 kmem_cache_destroy(mm_slot_cache);
277 kmem_cache_destroy(stable_node_cache);
278 kmem_cache_destroy(rmap_item_cache);
279 mm_slot_cache = NULL;
280}
281
282static inline struct rmap_item *alloc_rmap_item(void)
283{
284 struct rmap_item *rmap_item;
285
286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
287 __GFP_NORETRY | __GFP_NOWARN);
288 if (rmap_item)
289 ksm_rmap_items++;
290 return rmap_item;
291}
292
293static inline void free_rmap_item(struct rmap_item *rmap_item)
294{
295 ksm_rmap_items--;
296 rmap_item->mm = NULL; /* debug safety */
297 kmem_cache_free(rmap_item_cache, rmap_item);
298}
299
300static inline struct stable_node *alloc_stable_node(void)
301{
302 /*
303 * The allocation can take too long with GFP_KERNEL when memory is under
304 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
305 * grants access to memory reserves, helping to avoid this problem.
306 */
307 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
308}
309
310static inline void free_stable_node(struct stable_node *stable_node)
311{
312 kmem_cache_free(stable_node_cache, stable_node);
313}
314
315static inline struct mm_slot *alloc_mm_slot(void)
316{
317 if (!mm_slot_cache) /* initialization failed */
318 return NULL;
319 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
320}
321
322static inline void free_mm_slot(struct mm_slot *mm_slot)
323{
324 kmem_cache_free(mm_slot_cache, mm_slot);
325}
326
327static struct mm_slot *get_mm_slot(struct mm_struct *mm)
328{
329 struct mm_slot *slot;
330
331 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
332 if (slot->mm == mm)
333 return slot;
334
335 return NULL;
336}
337
338static void insert_to_mm_slots_hash(struct mm_struct *mm,
339 struct mm_slot *mm_slot)
340{
341 mm_slot->mm = mm;
342 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
343}
344
345/*
346 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
347 * page tables after it has passed through ksm_exit() - which, if necessary,
348 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
349 * a special flag: they can just back out as soon as mm_users goes to zero.
350 * ksm_test_exit() is used throughout to make this test for exit: in some
351 * places for correctness, in some places just to avoid unnecessary work.
352 */
353static inline bool ksm_test_exit(struct mm_struct *mm)
354{
355 return atomic_read(&mm->mm_users) == 0;
356}
357
358/*
359 * We use break_ksm to break COW on a ksm page: it's a stripped down
360 *
361 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
362 * put_page(page);
363 *
364 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
365 * in case the application has unmapped and remapped mm,addr meanwhile.
366 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
367 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
368 *
369 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
370 * of the process that owns 'vma'. We also do not want to enforce
371 * protection keys here anyway.
372 */
373static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
374{
375 struct page *page;
376 int ret = 0;
377
378 do {
379 cond_resched();
380 page = follow_page(vma, addr,
381 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
382 if (IS_ERR_OR_NULL(page))
383 break;
384 if (PageKsm(page))
385 ret = handle_mm_fault(vma, addr,
386 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
387 else
388 ret = VM_FAULT_WRITE;
389 put_page(page);
390 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
391 /*
392 * We must loop because handle_mm_fault() may back out if there's
393 * any difficulty e.g. if pte accessed bit gets updated concurrently.
394 *
395 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
396 * COW has been broken, even if the vma does not permit VM_WRITE;
397 * but note that a concurrent fault might break PageKsm for us.
398 *
399 * VM_FAULT_SIGBUS could occur if we race with truncation of the
400 * backing file, which also invalidates anonymous pages: that's
401 * okay, that truncation will have unmapped the PageKsm for us.
402 *
403 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
404 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
405 * current task has TIF_MEMDIE set, and will be OOM killed on return
406 * to user; and ksmd, having no mm, would never be chosen for that.
407 *
408 * But if the mm is in a limited mem_cgroup, then the fault may fail
409 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
410 * even ksmd can fail in this way - though it's usually breaking ksm
411 * just to undo a merge it made a moment before, so unlikely to oom.
412 *
413 * That's a pity: we might therefore have more kernel pages allocated
414 * than we're counting as nodes in the stable tree; but ksm_do_scan
415 * will retry to break_cow on each pass, so should recover the page
416 * in due course. The important thing is to not let VM_MERGEABLE
417 * be cleared while any such pages might remain in the area.
418 */
419 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
420}
421
422static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
423 unsigned long addr)
424{
425 struct vm_area_struct *vma;
426 if (ksm_test_exit(mm))
427 return NULL;
428 vma = find_vma(mm, addr);
429 if (!vma || vma->vm_start > addr)
430 return NULL;
431 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
432 return NULL;
433 return vma;
434}
435
436static void break_cow(struct rmap_item *rmap_item)
437{
438 struct mm_struct *mm = rmap_item->mm;
439 unsigned long addr = rmap_item->address;
440 struct vm_area_struct *vma;
441
442 /*
443 * It is not an accident that whenever we want to break COW
444 * to undo, we also need to drop a reference to the anon_vma.
445 */
446 put_anon_vma(rmap_item->anon_vma);
447
448 down_read(&mm->mmap_sem);
449 vma = find_mergeable_vma(mm, addr);
450 if (vma)
451 break_ksm(vma, addr);
452 up_read(&mm->mmap_sem);
453}
454
455static struct page *get_mergeable_page(struct rmap_item *rmap_item)
456{
457 struct mm_struct *mm = rmap_item->mm;
458 unsigned long addr = rmap_item->address;
459 struct vm_area_struct *vma;
460 struct page *page;
461
462 down_read(&mm->mmap_sem);
463 vma = find_mergeable_vma(mm, addr);
464 if (!vma)
465 goto out;
466
467 page = follow_page(vma, addr, FOLL_GET);
468 if (IS_ERR_OR_NULL(page))
469 goto out;
470 if (PageAnon(page)) {
471 flush_anon_page(vma, page, addr);
472 flush_dcache_page(page);
473 } else {
474 put_page(page);
475out:
476 page = NULL;
477 }
478 up_read(&mm->mmap_sem);
479 return page;
480}
481
482/*
483 * This helper is used for getting right index into array of tree roots.
484 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
485 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
486 * every node has its own stable and unstable tree.
487 */
488static inline int get_kpfn_nid(unsigned long kpfn)
489{
490 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
491}
492
493static void remove_node_from_stable_tree(struct stable_node *stable_node)
494{
495 struct rmap_item *rmap_item;
496
497 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
498 if (rmap_item->hlist.next)
499 ksm_pages_sharing--;
500 else
501 ksm_pages_shared--;
502 put_anon_vma(rmap_item->anon_vma);
503 rmap_item->address &= PAGE_MASK;
504 cond_resched();
505 }
506
507 if (stable_node->head == &migrate_nodes)
508 list_del(&stable_node->list);
509 else
510 rb_erase(&stable_node->node,
511 root_stable_tree + NUMA(stable_node->nid));
512 free_stable_node(stable_node);
513}
514
515/*
516 * get_ksm_page: checks if the page indicated by the stable node
517 * is still its ksm page, despite having held no reference to it.
518 * In which case we can trust the content of the page, and it
519 * returns the gotten page; but if the page has now been zapped,
520 * remove the stale node from the stable tree and return NULL.
521 * But beware, the stable node's page might be being migrated.
522 *
523 * You would expect the stable_node to hold a reference to the ksm page.
524 * But if it increments the page's count, swapping out has to wait for
525 * ksmd to come around again before it can free the page, which may take
526 * seconds or even minutes: much too unresponsive. So instead we use a
527 * "keyhole reference": access to the ksm page from the stable node peeps
528 * out through its keyhole to see if that page still holds the right key,
529 * pointing back to this stable node. This relies on freeing a PageAnon
530 * page to reset its page->mapping to NULL, and relies on no other use of
531 * a page to put something that might look like our key in page->mapping.
532 * is on its way to being freed; but it is an anomaly to bear in mind.
533 */
534static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
535{
536 struct page *page;
537 void *expected_mapping;
538 unsigned long kpfn;
539
540 expected_mapping = (void *)((unsigned long)stable_node |
541 PAGE_MAPPING_KSM);
542again:
543 kpfn = READ_ONCE(stable_node->kpfn);
544 page = pfn_to_page(kpfn);
545
546 /*
547 * page is computed from kpfn, so on most architectures reading
548 * page->mapping is naturally ordered after reading node->kpfn,
549 * but on Alpha we need to be more careful.
550 */
551 smp_read_barrier_depends();
552 if (READ_ONCE(page->mapping) != expected_mapping)
553 goto stale;
554
555 /*
556 * We cannot do anything with the page while its refcount is 0.
557 * Usually 0 means free, or tail of a higher-order page: in which
558 * case this node is no longer referenced, and should be freed;
559 * however, it might mean that the page is under page_freeze_refs().
560 * The __remove_mapping() case is easy, again the node is now stale;
561 * but if page is swapcache in migrate_page_move_mapping(), it might
562 * still be our page, in which case it's essential to keep the node.
563 */
564 while (!get_page_unless_zero(page)) {
565 /*
566 * Another check for page->mapping != expected_mapping would
567 * work here too. We have chosen the !PageSwapCache test to
568 * optimize the common case, when the page is or is about to
569 * be freed: PageSwapCache is cleared (under spin_lock_irq)
570 * in the freeze_refs section of __remove_mapping(); but Anon
571 * page->mapping reset to NULL later, in free_pages_prepare().
572 */
573 if (!PageSwapCache(page))
574 goto stale;
575 cpu_relax();
576 }
577
578 if (READ_ONCE(page->mapping) != expected_mapping) {
579 put_page(page);
580 goto stale;
581 }
582
583 if (lock_it) {
584 lock_page(page);
585 if (READ_ONCE(page->mapping) != expected_mapping) {
586 unlock_page(page);
587 put_page(page);
588 goto stale;
589 }
590 }
591 return page;
592
593stale:
594 /*
595 * We come here from above when page->mapping or !PageSwapCache
596 * suggests that the node is stale; but it might be under migration.
597 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
598 * before checking whether node->kpfn has been changed.
599 */
600 smp_rmb();
601 if (READ_ONCE(stable_node->kpfn) != kpfn)
602 goto again;
603 remove_node_from_stable_tree(stable_node);
604 return NULL;
605}
606
607/*
608 * Removing rmap_item from stable or unstable tree.
609 * This function will clean the information from the stable/unstable tree.
610 */
611static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
612{
613 if (rmap_item->address & STABLE_FLAG) {
614 struct stable_node *stable_node;
615 struct page *page;
616
617 stable_node = rmap_item->head;
618 page = get_ksm_page(stable_node, true);
619 if (!page)
620 goto out;
621
622 hlist_del(&rmap_item->hlist);
623 unlock_page(page);
624 put_page(page);
625
626 if (!hlist_empty(&stable_node->hlist))
627 ksm_pages_sharing--;
628 else
629 ksm_pages_shared--;
630
631 put_anon_vma(rmap_item->anon_vma);
632 rmap_item->address &= PAGE_MASK;
633
634 } else if (rmap_item->address & UNSTABLE_FLAG) {
635 unsigned char age;
636 /*
637 * Usually ksmd can and must skip the rb_erase, because
638 * root_unstable_tree was already reset to RB_ROOT.
639 * But be careful when an mm is exiting: do the rb_erase
640 * if this rmap_item was inserted by this scan, rather
641 * than left over from before.
642 */
643 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
644 BUG_ON(age > 1);
645 if (!age)
646 rb_erase(&rmap_item->node,
647 root_unstable_tree + NUMA(rmap_item->nid));
648 ksm_pages_unshared--;
649 rmap_item->address &= PAGE_MASK;
650 }
651out:
652 cond_resched(); /* we're called from many long loops */
653}
654
655static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
656 struct rmap_item **rmap_list)
657{
658 while (*rmap_list) {
659 struct rmap_item *rmap_item = *rmap_list;
660 *rmap_list = rmap_item->rmap_list;
661 remove_rmap_item_from_tree(rmap_item);
662 free_rmap_item(rmap_item);
663 }
664}
665
666/*
667 * Though it's very tempting to unmerge rmap_items from stable tree rather
668 * than check every pte of a given vma, the locking doesn't quite work for
669 * that - an rmap_item is assigned to the stable tree after inserting ksm
670 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
671 * rmap_items from parent to child at fork time (so as not to waste time
672 * if exit comes before the next scan reaches it).
673 *
674 * Similarly, although we'd like to remove rmap_items (so updating counts
675 * and freeing memory) when unmerging an area, it's easier to leave that
676 * to the next pass of ksmd - consider, for example, how ksmd might be
677 * in cmp_and_merge_page on one of the rmap_items we would be removing.
678 */
679static int unmerge_ksm_pages(struct vm_area_struct *vma,
680 unsigned long start, unsigned long end)
681{
682 unsigned long addr;
683 int err = 0;
684
685 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
686 if (ksm_test_exit(vma->vm_mm))
687 break;
688 if (signal_pending(current))
689 err = -ERESTARTSYS;
690 else
691 err = break_ksm(vma, addr);
692 }
693 return err;
694}
695
696#ifdef CONFIG_SYSFS
697/*
698 * Only called through the sysfs control interface:
699 */
700static int remove_stable_node(struct stable_node *stable_node)
701{
702 struct page *page;
703 int err;
704
705 page = get_ksm_page(stable_node, true);
706 if (!page) {
707 /*
708 * get_ksm_page did remove_node_from_stable_tree itself.
709 */
710 return 0;
711 }
712
713 if (WARN_ON_ONCE(page_mapped(page))) {
714 /*
715 * This should not happen: but if it does, just refuse to let
716 * merge_across_nodes be switched - there is no need to panic.
717 */
718 err = -EBUSY;
719 } else {
720 /*
721 * The stable node did not yet appear stale to get_ksm_page(),
722 * since that allows for an unmapped ksm page to be recognized
723 * right up until it is freed; but the node is safe to remove.
724 * This page might be in a pagevec waiting to be freed,
725 * or it might be PageSwapCache (perhaps under writeback),
726 * or it might have been removed from swapcache a moment ago.
727 */
728 set_page_stable_node(page, NULL);
729 remove_node_from_stable_tree(stable_node);
730 err = 0;
731 }
732
733 unlock_page(page);
734 put_page(page);
735 return err;
736}
737
738static int remove_all_stable_nodes(void)
739{
740 struct stable_node *stable_node, *next;
741 int nid;
742 int err = 0;
743
744 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
745 while (root_stable_tree[nid].rb_node) {
746 stable_node = rb_entry(root_stable_tree[nid].rb_node,
747 struct stable_node, node);
748 if (remove_stable_node(stable_node)) {
749 err = -EBUSY;
750 break; /* proceed to next nid */
751 }
752 cond_resched();
753 }
754 }
755 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
756 if (remove_stable_node(stable_node))
757 err = -EBUSY;
758 cond_resched();
759 }
760 return err;
761}
762
763static int unmerge_and_remove_all_rmap_items(void)
764{
765 struct mm_slot *mm_slot;
766 struct mm_struct *mm;
767 struct vm_area_struct *vma;
768 int err = 0;
769
770 spin_lock(&ksm_mmlist_lock);
771 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
772 struct mm_slot, mm_list);
773 spin_unlock(&ksm_mmlist_lock);
774
775 for (mm_slot = ksm_scan.mm_slot;
776 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
777 mm = mm_slot->mm;
778 down_read(&mm->mmap_sem);
779 for (vma = mm->mmap; vma; vma = vma->vm_next) {
780 if (ksm_test_exit(mm))
781 break;
782 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
783 continue;
784 err = unmerge_ksm_pages(vma,
785 vma->vm_start, vma->vm_end);
786 if (err)
787 goto error;
788 }
789
790 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
791 up_read(&mm->mmap_sem);
792
793 spin_lock(&ksm_mmlist_lock);
794 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
795 struct mm_slot, mm_list);
796 if (ksm_test_exit(mm)) {
797 hash_del(&mm_slot->link);
798 list_del(&mm_slot->mm_list);
799 spin_unlock(&ksm_mmlist_lock);
800
801 free_mm_slot(mm_slot);
802 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
803 mmdrop(mm);
804 } else
805 spin_unlock(&ksm_mmlist_lock);
806 }
807
808 /* Clean up stable nodes, but don't worry if some are still busy */
809 remove_all_stable_nodes();
810 ksm_scan.seqnr = 0;
811 return 0;
812
813error:
814 up_read(&mm->mmap_sem);
815 spin_lock(&ksm_mmlist_lock);
816 ksm_scan.mm_slot = &ksm_mm_head;
817 spin_unlock(&ksm_mmlist_lock);
818 return err;
819}
820#endif /* CONFIG_SYSFS */
821
822static u32 calc_checksum(struct page *page)
823{
824 u32 checksum;
825 void *addr = kmap_atomic(page);
826 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
827 kunmap_atomic(addr);
828 return checksum;
829}
830
831static int memcmp_pages(struct page *page1, struct page *page2)
832{
833 char *addr1, *addr2;
834 int ret;
835
836 addr1 = kmap_atomic(page1);
837 addr2 = kmap_atomic(page2);
838 ret = memcmp(addr1, addr2, PAGE_SIZE);
839 kunmap_atomic(addr2);
840 kunmap_atomic(addr1);
841 return ret;
842}
843
844static inline int pages_identical(struct page *page1, struct page *page2)
845{
846 return !memcmp_pages(page1, page2);
847}
848
849static int write_protect_page(struct vm_area_struct *vma, struct page *page,
850 pte_t *orig_pte)
851{
852 struct mm_struct *mm = vma->vm_mm;
853 unsigned long addr;
854 pte_t *ptep;
855 spinlock_t *ptl;
856 int swapped;
857 int err = -EFAULT;
858 unsigned long mmun_start; /* For mmu_notifiers */
859 unsigned long mmun_end; /* For mmu_notifiers */
860
861 addr = page_address_in_vma(page, vma);
862 if (addr == -EFAULT)
863 goto out;
864
865 BUG_ON(PageTransCompound(page));
866
867 mmun_start = addr;
868 mmun_end = addr + PAGE_SIZE;
869 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
870
871 ptep = page_check_address(page, mm, addr, &ptl, 0);
872 if (!ptep)
873 goto out_mn;
874
875 if (pte_write(*ptep) || pte_dirty(*ptep)) {
876 pte_t entry;
877
878 swapped = PageSwapCache(page);
879 flush_cache_page(vma, addr, page_to_pfn(page));
880 /*
881 * Ok this is tricky, when get_user_pages_fast() run it doesn't
882 * take any lock, therefore the check that we are going to make
883 * with the pagecount against the mapcount is racey and
884 * O_DIRECT can happen right after the check.
885 * So we clear the pte and flush the tlb before the check
886 * this assure us that no O_DIRECT can happen after the check
887 * or in the middle of the check.
888 */
889 entry = ptep_clear_flush_notify(vma, addr, ptep);
890 /*
891 * Check that no O_DIRECT or similar I/O is in progress on the
892 * page
893 */
894 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
895 set_pte_at(mm, addr, ptep, entry);
896 goto out_unlock;
897 }
898 if (pte_dirty(entry))
899 set_page_dirty(page);
900 entry = pte_mkclean(pte_wrprotect(entry));
901 set_pte_at_notify(mm, addr, ptep, entry);
902 }
903 *orig_pte = *ptep;
904 err = 0;
905
906out_unlock:
907 pte_unmap_unlock(ptep, ptl);
908out_mn:
909 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
910out:
911 return err;
912}
913
914/**
915 * replace_page - replace page in vma by new ksm page
916 * @vma: vma that holds the pte pointing to page
917 * @page: the page we are replacing by kpage
918 * @kpage: the ksm page we replace page by
919 * @orig_pte: the original value of the pte
920 *
921 * Returns 0 on success, -EFAULT on failure.
922 */
923static int replace_page(struct vm_area_struct *vma, struct page *page,
924 struct page *kpage, pte_t orig_pte)
925{
926 struct mm_struct *mm = vma->vm_mm;
927 pmd_t *pmd;
928 pte_t *ptep;
929 spinlock_t *ptl;
930 unsigned long addr;
931 int err = -EFAULT;
932 unsigned long mmun_start; /* For mmu_notifiers */
933 unsigned long mmun_end; /* For mmu_notifiers */
934
935 addr = page_address_in_vma(page, vma);
936 if (addr == -EFAULT)
937 goto out;
938
939 pmd = mm_find_pmd(mm, addr);
940 if (!pmd)
941 goto out;
942
943 mmun_start = addr;
944 mmun_end = addr + PAGE_SIZE;
945 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
946
947 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
948 if (!pte_same(*ptep, orig_pte)) {
949 pte_unmap_unlock(ptep, ptl);
950 goto out_mn;
951 }
952
953 get_page(kpage);
954 page_add_anon_rmap(kpage, vma, addr, false);
955
956 flush_cache_page(vma, addr, pte_pfn(*ptep));
957 ptep_clear_flush_notify(vma, addr, ptep);
958 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
959
960 page_remove_rmap(page, false);
961 if (!page_mapped(page))
962 try_to_free_swap(page);
963 put_page(page);
964
965 pte_unmap_unlock(ptep, ptl);
966 err = 0;
967out_mn:
968 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
969out:
970 return err;
971}
972
973/*
974 * try_to_merge_one_page - take two pages and merge them into one
975 * @vma: the vma that holds the pte pointing to page
976 * @page: the PageAnon page that we want to replace with kpage
977 * @kpage: the PageKsm page that we want to map instead of page,
978 * or NULL the first time when we want to use page as kpage.
979 *
980 * This function returns 0 if the pages were merged, -EFAULT otherwise.
981 */
982static int try_to_merge_one_page(struct vm_area_struct *vma,
983 struct page *page, struct page *kpage)
984{
985 pte_t orig_pte = __pte(0);
986 int err = -EFAULT;
987
988 if (page == kpage) /* ksm page forked */
989 return 0;
990
991 if (!PageAnon(page))
992 goto out;
993
994 /*
995 * We need the page lock to read a stable PageSwapCache in
996 * write_protect_page(). We use trylock_page() instead of
997 * lock_page() because we don't want to wait here - we
998 * prefer to continue scanning and merging different pages,
999 * then come back to this page when it is unlocked.
1000 */
1001 if (!trylock_page(page))
1002 goto out;
1003
1004 if (PageTransCompound(page)) {
1005 if (split_huge_page(page))
1006 goto out_unlock;
1007 }
1008
1009 /*
1010 * If this anonymous page is mapped only here, its pte may need
1011 * to be write-protected. If it's mapped elsewhere, all of its
1012 * ptes are necessarily already write-protected. But in either
1013 * case, we need to lock and check page_count is not raised.
1014 */
1015 if (write_protect_page(vma, page, &orig_pte) == 0) {
1016 if (!kpage) {
1017 /*
1018 * While we hold page lock, upgrade page from
1019 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1020 * stable_tree_insert() will update stable_node.
1021 */
1022 set_page_stable_node(page, NULL);
1023 mark_page_accessed(page);
1024 /*
1025 * Page reclaim just frees a clean page with no dirty
1026 * ptes: make sure that the ksm page would be swapped.
1027 */
1028 if (!PageDirty(page))
1029 SetPageDirty(page);
1030 err = 0;
1031 } else if (pages_identical(page, kpage))
1032 err = replace_page(vma, page, kpage, orig_pte);
1033 }
1034
1035 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1036 munlock_vma_page(page);
1037 if (!PageMlocked(kpage)) {
1038 unlock_page(page);
1039 lock_page(kpage);
1040 mlock_vma_page(kpage);
1041 page = kpage; /* for final unlock */
1042 }
1043 }
1044
1045out_unlock:
1046 unlock_page(page);
1047out:
1048 return err;
1049}
1050
1051/*
1052 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1053 * but no new kernel page is allocated: kpage must already be a ksm page.
1054 *
1055 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1056 */
1057static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1058 struct page *page, struct page *kpage)
1059{
1060 struct mm_struct *mm = rmap_item->mm;
1061 struct vm_area_struct *vma;
1062 int err = -EFAULT;
1063
1064 down_read(&mm->mmap_sem);
1065 vma = find_mergeable_vma(mm, rmap_item->address);
1066 if (!vma)
1067 goto out;
1068
1069 err = try_to_merge_one_page(vma, page, kpage);
1070 if (err)
1071 goto out;
1072
1073 /* Unstable nid is in union with stable anon_vma: remove first */
1074 remove_rmap_item_from_tree(rmap_item);
1075
1076 /* Must get reference to anon_vma while still holding mmap_sem */
1077 rmap_item->anon_vma = vma->anon_vma;
1078 get_anon_vma(vma->anon_vma);
1079out:
1080 up_read(&mm->mmap_sem);
1081 return err;
1082}
1083
1084/*
1085 * try_to_merge_two_pages - take two identical pages and prepare them
1086 * to be merged into one page.
1087 *
1088 * This function returns the kpage if we successfully merged two identical
1089 * pages into one ksm page, NULL otherwise.
1090 *
1091 * Note that this function upgrades page to ksm page: if one of the pages
1092 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1093 */
1094static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1095 struct page *page,
1096 struct rmap_item *tree_rmap_item,
1097 struct page *tree_page)
1098{
1099 int err;
1100
1101 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1102 if (!err) {
1103 err = try_to_merge_with_ksm_page(tree_rmap_item,
1104 tree_page, page);
1105 /*
1106 * If that fails, we have a ksm page with only one pte
1107 * pointing to it: so break it.
1108 */
1109 if (err)
1110 break_cow(rmap_item);
1111 }
1112 return err ? NULL : page;
1113}
1114
1115/*
1116 * stable_tree_search - search for page inside the stable tree
1117 *
1118 * This function checks if there is a page inside the stable tree
1119 * with identical content to the page that we are scanning right now.
1120 *
1121 * This function returns the stable tree node of identical content if found,
1122 * NULL otherwise.
1123 */
1124static struct page *stable_tree_search(struct page *page)
1125{
1126 int nid;
1127 struct rb_root *root;
1128 struct rb_node **new;
1129 struct rb_node *parent;
1130 struct stable_node *stable_node;
1131 struct stable_node *page_node;
1132
1133 page_node = page_stable_node(page);
1134 if (page_node && page_node->head != &migrate_nodes) {
1135 /* ksm page forked */
1136 get_page(page);
1137 return page;
1138 }
1139
1140 nid = get_kpfn_nid(page_to_pfn(page));
1141 root = root_stable_tree + nid;
1142again:
1143 new = &root->rb_node;
1144 parent = NULL;
1145
1146 while (*new) {
1147 struct page *tree_page;
1148 int ret;
1149
1150 cond_resched();
1151 stable_node = rb_entry(*new, struct stable_node, node);
1152 tree_page = get_ksm_page(stable_node, false);
1153 if (!tree_page) {
1154 /*
1155 * If we walked over a stale stable_node,
1156 * get_ksm_page() will call rb_erase() and it
1157 * may rebalance the tree from under us. So
1158 * restart the search from scratch. Returning
1159 * NULL would be safe too, but we'd generate
1160 * false negative insertions just because some
1161 * stable_node was stale.
1162 */
1163 goto again;
1164 }
1165
1166 ret = memcmp_pages(page, tree_page);
1167 put_page(tree_page);
1168
1169 parent = *new;
1170 if (ret < 0)
1171 new = &parent->rb_left;
1172 else if (ret > 0)
1173 new = &parent->rb_right;
1174 else {
1175 /*
1176 * Lock and unlock the stable_node's page (which
1177 * might already have been migrated) so that page
1178 * migration is sure to notice its raised count.
1179 * It would be more elegant to return stable_node
1180 * than kpage, but that involves more changes.
1181 */
1182 tree_page = get_ksm_page(stable_node, true);
1183 if (tree_page) {
1184 unlock_page(tree_page);
1185 if (get_kpfn_nid(stable_node->kpfn) !=
1186 NUMA(stable_node->nid)) {
1187 put_page(tree_page);
1188 goto replace;
1189 }
1190 return tree_page;
1191 }
1192 /*
1193 * There is now a place for page_node, but the tree may
1194 * have been rebalanced, so re-evaluate parent and new.
1195 */
1196 if (page_node)
1197 goto again;
1198 return NULL;
1199 }
1200 }
1201
1202 if (!page_node)
1203 return NULL;
1204
1205 list_del(&page_node->list);
1206 DO_NUMA(page_node->nid = nid);
1207 rb_link_node(&page_node->node, parent, new);
1208 rb_insert_color(&page_node->node, root);
1209 get_page(page);
1210 return page;
1211
1212replace:
1213 if (page_node) {
1214 list_del(&page_node->list);
1215 DO_NUMA(page_node->nid = nid);
1216 rb_replace_node(&stable_node->node, &page_node->node, root);
1217 get_page(page);
1218 } else {
1219 rb_erase(&stable_node->node, root);
1220 page = NULL;
1221 }
1222 stable_node->head = &migrate_nodes;
1223 list_add(&stable_node->list, stable_node->head);
1224 return page;
1225}
1226
1227/*
1228 * stable_tree_insert - insert stable tree node pointing to new ksm page
1229 * into the stable tree.
1230 *
1231 * This function returns the stable tree node just allocated on success,
1232 * NULL otherwise.
1233 */
1234static struct stable_node *stable_tree_insert(struct page *kpage)
1235{
1236 int nid;
1237 unsigned long kpfn;
1238 struct rb_root *root;
1239 struct rb_node **new;
1240 struct rb_node *parent;
1241 struct stable_node *stable_node;
1242
1243 kpfn = page_to_pfn(kpage);
1244 nid = get_kpfn_nid(kpfn);
1245 root = root_stable_tree + nid;
1246again:
1247 parent = NULL;
1248 new = &root->rb_node;
1249
1250 while (*new) {
1251 struct page *tree_page;
1252 int ret;
1253
1254 cond_resched();
1255 stable_node = rb_entry(*new, struct stable_node, node);
1256 tree_page = get_ksm_page(stable_node, false);
1257 if (!tree_page) {
1258 /*
1259 * If we walked over a stale stable_node,
1260 * get_ksm_page() will call rb_erase() and it
1261 * may rebalance the tree from under us. So
1262 * restart the search from scratch. Returning
1263 * NULL would be safe too, but we'd generate
1264 * false negative insertions just because some
1265 * stable_node was stale.
1266 */
1267 goto again;
1268 }
1269
1270 ret = memcmp_pages(kpage, tree_page);
1271 put_page(tree_page);
1272
1273 parent = *new;
1274 if (ret < 0)
1275 new = &parent->rb_left;
1276 else if (ret > 0)
1277 new = &parent->rb_right;
1278 else {
1279 /*
1280 * It is not a bug that stable_tree_search() didn't
1281 * find this node: because at that time our page was
1282 * not yet write-protected, so may have changed since.
1283 */
1284 return NULL;
1285 }
1286 }
1287
1288 stable_node = alloc_stable_node();
1289 if (!stable_node)
1290 return NULL;
1291
1292 INIT_HLIST_HEAD(&stable_node->hlist);
1293 stable_node->kpfn = kpfn;
1294 set_page_stable_node(kpage, stable_node);
1295 DO_NUMA(stable_node->nid = nid);
1296 rb_link_node(&stable_node->node, parent, new);
1297 rb_insert_color(&stable_node->node, root);
1298
1299 return stable_node;
1300}
1301
1302/*
1303 * unstable_tree_search_insert - search for identical page,
1304 * else insert rmap_item into the unstable tree.
1305 *
1306 * This function searches for a page in the unstable tree identical to the
1307 * page currently being scanned; and if no identical page is found in the
1308 * tree, we insert rmap_item as a new object into the unstable tree.
1309 *
1310 * This function returns pointer to rmap_item found to be identical
1311 * to the currently scanned page, NULL otherwise.
1312 *
1313 * This function does both searching and inserting, because they share
1314 * the same walking algorithm in an rbtree.
1315 */
1316static
1317struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1318 struct page *page,
1319 struct page **tree_pagep)
1320{
1321 struct rb_node **new;
1322 struct rb_root *root;
1323 struct rb_node *parent = NULL;
1324 int nid;
1325
1326 nid = get_kpfn_nid(page_to_pfn(page));
1327 root = root_unstable_tree + nid;
1328 new = &root->rb_node;
1329
1330 while (*new) {
1331 struct rmap_item *tree_rmap_item;
1332 struct page *tree_page;
1333 int ret;
1334
1335 cond_resched();
1336 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1337 tree_page = get_mergeable_page(tree_rmap_item);
1338 if (!tree_page)
1339 return NULL;
1340
1341 /*
1342 * Don't substitute a ksm page for a forked page.
1343 */
1344 if (page == tree_page) {
1345 put_page(tree_page);
1346 return NULL;
1347 }
1348
1349 ret = memcmp_pages(page, tree_page);
1350
1351 parent = *new;
1352 if (ret < 0) {
1353 put_page(tree_page);
1354 new = &parent->rb_left;
1355 } else if (ret > 0) {
1356 put_page(tree_page);
1357 new = &parent->rb_right;
1358 } else if (!ksm_merge_across_nodes &&
1359 page_to_nid(tree_page) != nid) {
1360 /*
1361 * If tree_page has been migrated to another NUMA node,
1362 * it will be flushed out and put in the right unstable
1363 * tree next time: only merge with it when across_nodes.
1364 */
1365 put_page(tree_page);
1366 return NULL;
1367 } else {
1368 *tree_pagep = tree_page;
1369 return tree_rmap_item;
1370 }
1371 }
1372
1373 rmap_item->address |= UNSTABLE_FLAG;
1374 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1375 DO_NUMA(rmap_item->nid = nid);
1376 rb_link_node(&rmap_item->node, parent, new);
1377 rb_insert_color(&rmap_item->node, root);
1378
1379 ksm_pages_unshared++;
1380 return NULL;
1381}
1382
1383/*
1384 * stable_tree_append - add another rmap_item to the linked list of
1385 * rmap_items hanging off a given node of the stable tree, all sharing
1386 * the same ksm page.
1387 */
1388static void stable_tree_append(struct rmap_item *rmap_item,
1389 struct stable_node *stable_node)
1390{
1391 rmap_item->head = stable_node;
1392 rmap_item->address |= STABLE_FLAG;
1393 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1394
1395 if (rmap_item->hlist.next)
1396 ksm_pages_sharing++;
1397 else
1398 ksm_pages_shared++;
1399}
1400
1401/*
1402 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1403 * if not, compare checksum to previous and if it's the same, see if page can
1404 * be inserted into the unstable tree, or merged with a page already there and
1405 * both transferred to the stable tree.
1406 *
1407 * @page: the page that we are searching identical page to.
1408 * @rmap_item: the reverse mapping into the virtual address of this page
1409 */
1410static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1411{
1412 struct rmap_item *tree_rmap_item;
1413 struct page *tree_page = NULL;
1414 struct stable_node *stable_node;
1415 struct page *kpage;
1416 unsigned int checksum;
1417 int err;
1418
1419 stable_node = page_stable_node(page);
1420 if (stable_node) {
1421 if (stable_node->head != &migrate_nodes &&
1422 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1423 rb_erase(&stable_node->node,
1424 root_stable_tree + NUMA(stable_node->nid));
1425 stable_node->head = &migrate_nodes;
1426 list_add(&stable_node->list, stable_node->head);
1427 }
1428 if (stable_node->head != &migrate_nodes &&
1429 rmap_item->head == stable_node)
1430 return;
1431 }
1432
1433 /* We first start with searching the page inside the stable tree */
1434 kpage = stable_tree_search(page);
1435 if (kpage == page && rmap_item->head == stable_node) {
1436 put_page(kpage);
1437 return;
1438 }
1439
1440 remove_rmap_item_from_tree(rmap_item);
1441
1442 if (kpage) {
1443 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1444 if (!err) {
1445 /*
1446 * The page was successfully merged:
1447 * add its rmap_item to the stable tree.
1448 */
1449 lock_page(kpage);
1450 stable_tree_append(rmap_item, page_stable_node(kpage));
1451 unlock_page(kpage);
1452 }
1453 put_page(kpage);
1454 return;
1455 }
1456
1457 /*
1458 * If the hash value of the page has changed from the last time
1459 * we calculated it, this page is changing frequently: therefore we
1460 * don't want to insert it in the unstable tree, and we don't want
1461 * to waste our time searching for something identical to it there.
1462 */
1463 checksum = calc_checksum(page);
1464 if (rmap_item->oldchecksum != checksum) {
1465 rmap_item->oldchecksum = checksum;
1466 return;
1467 }
1468
1469 tree_rmap_item =
1470 unstable_tree_search_insert(rmap_item, page, &tree_page);
1471#ifdef CONFIG_AMLOGIC_CMA
1472 /*
1473 * Now page is inserted to unstable tree, but do not
1474 * let cma page to be kpage, it can be merged with other pages
1475 */
1476 if (cma_page(page)) {
1477 if (tree_rmap_item)
1478 put_page(tree_page);
1479 return;
1480 }
1481#endif /* CONFIG_AMLOGIC_CMA */
1482 if (tree_rmap_item) {
1483 bool split;
1484
1485 kpage = try_to_merge_two_pages(rmap_item, page,
1486 tree_rmap_item, tree_page);
1487 /*
1488 * If both pages we tried to merge belong to the same compound
1489 * page, then we actually ended up increasing the reference
1490 * count of the same compound page twice, and split_huge_page
1491 * failed.
1492 * Here we set a flag if that happened, and we use it later to
1493 * try split_huge_page again. Since we call put_page right
1494 * afterwards, the reference count will be correct and
1495 * split_huge_page should succeed.
1496 */
1497 split = PageTransCompound(page)
1498 && compound_head(page) == compound_head(tree_page);
1499 put_page(tree_page);
1500 if (kpage) {
1501 /*
1502 * The pages were successfully merged: insert new
1503 * node in the stable tree and add both rmap_items.
1504 */
1505 lock_page(kpage);
1506 stable_node = stable_tree_insert(kpage);
1507 if (stable_node) {
1508 stable_tree_append(tree_rmap_item, stable_node);
1509 stable_tree_append(rmap_item, stable_node);
1510 }
1511 unlock_page(kpage);
1512
1513 /*
1514 * If we fail to insert the page into the stable tree,
1515 * we will have 2 virtual addresses that are pointing
1516 * to a ksm page left outside the stable tree,
1517 * in which case we need to break_cow on both.
1518 */
1519 if (!stable_node) {
1520 break_cow(tree_rmap_item);
1521 break_cow(rmap_item);
1522 }
1523 } else if (split) {
1524 /*
1525 * We are here if we tried to merge two pages and
1526 * failed because they both belonged to the same
1527 * compound page. We will split the page now, but no
1528 * merging will take place.
1529 * We do not want to add the cost of a full lock; if
1530 * the page is locked, it is better to skip it and
1531 * perhaps try again later.
1532 */
1533 if (!trylock_page(page))
1534 return;
1535 split_huge_page(page);
1536 unlock_page(page);
1537 }
1538 }
1539}
1540
1541static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1542 struct rmap_item **rmap_list,
1543 unsigned long addr)
1544{
1545 struct rmap_item *rmap_item;
1546
1547 while (*rmap_list) {
1548 rmap_item = *rmap_list;
1549 if ((rmap_item->address & PAGE_MASK) == addr)
1550 return rmap_item;
1551 if (rmap_item->address > addr)
1552 break;
1553 *rmap_list = rmap_item->rmap_list;
1554 remove_rmap_item_from_tree(rmap_item);
1555 free_rmap_item(rmap_item);
1556 }
1557
1558 rmap_item = alloc_rmap_item();
1559 if (rmap_item) {
1560 /* It has already been zeroed */
1561 rmap_item->mm = mm_slot->mm;
1562 rmap_item->address = addr;
1563 rmap_item->rmap_list = *rmap_list;
1564 *rmap_list = rmap_item;
1565 }
1566 return rmap_item;
1567}
1568
1569static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1570{
1571 struct mm_struct *mm;
1572 struct mm_slot *slot;
1573 struct vm_area_struct *vma;
1574 struct rmap_item *rmap_item;
1575 int nid;
1576
1577 if (list_empty(&ksm_mm_head.mm_list))
1578 return NULL;
1579
1580 slot = ksm_scan.mm_slot;
1581 if (slot == &ksm_mm_head) {
1582 /*
1583 * A number of pages can hang around indefinitely on per-cpu
1584 * pagevecs, raised page count preventing write_protect_page
1585 * from merging them. Though it doesn't really matter much,
1586 * it is puzzling to see some stuck in pages_volatile until
1587 * other activity jostles them out, and they also prevented
1588 * LTP's KSM test from succeeding deterministically; so drain
1589 * them here (here rather than on entry to ksm_do_scan(),
1590 * so we don't IPI too often when pages_to_scan is set low).
1591 */
1592 lru_add_drain_all();
1593
1594 /*
1595 * Whereas stale stable_nodes on the stable_tree itself
1596 * get pruned in the regular course of stable_tree_search(),
1597 * those moved out to the migrate_nodes list can accumulate:
1598 * so prune them once before each full scan.
1599 */
1600 if (!ksm_merge_across_nodes) {
1601 struct stable_node *stable_node, *next;
1602 struct page *page;
1603
1604 list_for_each_entry_safe(stable_node, next,
1605 &migrate_nodes, list) {
1606 page = get_ksm_page(stable_node, false);
1607 if (page)
1608 put_page(page);
1609 cond_resched();
1610 }
1611 }
1612
1613 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1614 root_unstable_tree[nid] = RB_ROOT;
1615
1616 spin_lock(&ksm_mmlist_lock);
1617 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1618 ksm_scan.mm_slot = slot;
1619 spin_unlock(&ksm_mmlist_lock);
1620 /*
1621 * Although we tested list_empty() above, a racing __ksm_exit
1622 * of the last mm on the list may have removed it since then.
1623 */
1624 if (slot == &ksm_mm_head)
1625 return NULL;
1626next_mm:
1627 ksm_scan.address = 0;
1628 ksm_scan.rmap_list = &slot->rmap_list;
1629 }
1630
1631 mm = slot->mm;
1632 down_read(&mm->mmap_sem);
1633 if (ksm_test_exit(mm))
1634 vma = NULL;
1635 else
1636 vma = find_vma(mm, ksm_scan.address);
1637
1638 for (; vma; vma = vma->vm_next) {
1639 if (!(vma->vm_flags & VM_MERGEABLE))
1640 continue;
1641 if (ksm_scan.address < vma->vm_start)
1642 ksm_scan.address = vma->vm_start;
1643 if (!vma->anon_vma)
1644 ksm_scan.address = vma->vm_end;
1645
1646 while (ksm_scan.address < vma->vm_end) {
1647 if (ksm_test_exit(mm))
1648 break;
1649 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1650 if (IS_ERR_OR_NULL(*page)) {
1651 ksm_scan.address += PAGE_SIZE;
1652 cond_resched();
1653 continue;
1654 }
1655 if (PageAnon(*page)) {
1656 flush_anon_page(vma, *page, ksm_scan.address);
1657 flush_dcache_page(*page);
1658 rmap_item = get_next_rmap_item(slot,
1659 ksm_scan.rmap_list, ksm_scan.address);
1660 if (rmap_item) {
1661 ksm_scan.rmap_list =
1662 &rmap_item->rmap_list;
1663 ksm_scan.address += PAGE_SIZE;
1664 } else
1665 put_page(*page);
1666 up_read(&mm->mmap_sem);
1667 return rmap_item;
1668 }
1669 put_page(*page);
1670 ksm_scan.address += PAGE_SIZE;
1671 cond_resched();
1672 }
1673 }
1674
1675 if (ksm_test_exit(mm)) {
1676 ksm_scan.address = 0;
1677 ksm_scan.rmap_list = &slot->rmap_list;
1678 }
1679 /*
1680 * Nuke all the rmap_items that are above this current rmap:
1681 * because there were no VM_MERGEABLE vmas with such addresses.
1682 */
1683 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1684
1685 spin_lock(&ksm_mmlist_lock);
1686 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1687 struct mm_slot, mm_list);
1688 if (ksm_scan.address == 0) {
1689 /*
1690 * We've completed a full scan of all vmas, holding mmap_sem
1691 * throughout, and found no VM_MERGEABLE: so do the same as
1692 * __ksm_exit does to remove this mm from all our lists now.
1693 * This applies either when cleaning up after __ksm_exit
1694 * (but beware: we can reach here even before __ksm_exit),
1695 * or when all VM_MERGEABLE areas have been unmapped (and
1696 * mmap_sem then protects against race with MADV_MERGEABLE).
1697 */
1698 hash_del(&slot->link);
1699 list_del(&slot->mm_list);
1700 spin_unlock(&ksm_mmlist_lock);
1701
1702 free_mm_slot(slot);
1703 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1704 up_read(&mm->mmap_sem);
1705 mmdrop(mm);
1706 } else {
1707 up_read(&mm->mmap_sem);
1708 /*
1709 * up_read(&mm->mmap_sem) first because after
1710 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1711 * already have been freed under us by __ksm_exit()
1712 * because the "mm_slot" is still hashed and
1713 * ksm_scan.mm_slot doesn't point to it anymore.
1714 */
1715 spin_unlock(&ksm_mmlist_lock);
1716 }
1717
1718 /* Repeat until we've completed scanning the whole list */
1719 slot = ksm_scan.mm_slot;
1720 if (slot != &ksm_mm_head)
1721 goto next_mm;
1722
1723 ksm_scan.seqnr++;
1724 return NULL;
1725}
1726
1727/**
1728 * ksm_do_scan - the ksm scanner main worker function.
1729 * @scan_npages - number of pages we want to scan before we return.
1730 */
1731static void ksm_do_scan(unsigned int scan_npages)
1732{
1733 struct rmap_item *rmap_item;
1734 struct page *uninitialized_var(page);
1735
1736 while (scan_npages-- && likely(!freezing(current))) {
1737 cond_resched();
1738 rmap_item = scan_get_next_rmap_item(&page);
1739 if (!rmap_item)
1740 return;
1741 cmp_and_merge_page(page, rmap_item);
1742 put_page(page);
1743 }
1744}
1745
1746static int ksmd_should_run(void)
1747{
1748 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1749}
1750
1751static int ksm_scan_thread(void *nothing)
1752{
1753 set_freezable();
1754 set_user_nice(current, 5);
1755
1756 while (!kthread_should_stop()) {
1757 mutex_lock(&ksm_thread_mutex);
1758 wait_while_offlining();
1759 if (ksmd_should_run())
1760 ksm_do_scan(ksm_thread_pages_to_scan);
1761 mutex_unlock(&ksm_thread_mutex);
1762
1763 try_to_freeze();
1764
1765 if (ksmd_should_run()) {
1766 schedule_timeout_interruptible(
1767 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1768 } else {
1769 wait_event_freezable(ksm_thread_wait,
1770 ksmd_should_run() || kthread_should_stop());
1771 }
1772 }
1773 return 0;
1774}
1775
1776int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1777 unsigned long end, int advice, unsigned long *vm_flags)
1778{
1779 struct mm_struct *mm = vma->vm_mm;
1780 int err;
1781
1782 switch (advice) {
1783 case MADV_MERGEABLE:
1784 /*
1785 * Be somewhat over-protective for now!
1786 */
1787 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1788 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1789 VM_HUGETLB | VM_MIXEDMAP))
1790 return 0; /* just ignore the advice */
1791
1792#ifdef VM_SAO
1793 if (*vm_flags & VM_SAO)
1794 return 0;
1795#endif
1796
1797 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1798 err = __ksm_enter(mm);
1799 if (err)
1800 return err;
1801 }
1802
1803 *vm_flags |= VM_MERGEABLE;
1804 break;
1805
1806 case MADV_UNMERGEABLE:
1807 if (!(*vm_flags & VM_MERGEABLE))
1808 return 0; /* just ignore the advice */
1809
1810 if (vma->anon_vma) {
1811 err = unmerge_ksm_pages(vma, start, end);
1812 if (err)
1813 return err;
1814 }
1815
1816 *vm_flags &= ~VM_MERGEABLE;
1817 break;
1818 }
1819
1820 return 0;
1821}
1822
1823int __ksm_enter(struct mm_struct *mm)
1824{
1825 struct mm_slot *mm_slot;
1826 int needs_wakeup;
1827
1828 mm_slot = alloc_mm_slot();
1829 if (!mm_slot)
1830 return -ENOMEM;
1831
1832 /* Check ksm_run too? Would need tighter locking */
1833 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1834
1835 spin_lock(&ksm_mmlist_lock);
1836 insert_to_mm_slots_hash(mm, mm_slot);
1837 /*
1838 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1839 * insert just behind the scanning cursor, to let the area settle
1840 * down a little; when fork is followed by immediate exec, we don't
1841 * want ksmd to waste time setting up and tearing down an rmap_list.
1842 *
1843 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1844 * scanning cursor, otherwise KSM pages in newly forked mms will be
1845 * missed: then we might as well insert at the end of the list.
1846 */
1847 if (ksm_run & KSM_RUN_UNMERGE)
1848 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1849 else
1850 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1851 spin_unlock(&ksm_mmlist_lock);
1852
1853 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1854 atomic_inc(&mm->mm_count);
1855
1856 if (needs_wakeup)
1857 wake_up_interruptible(&ksm_thread_wait);
1858
1859 return 0;
1860}
1861
1862void __ksm_exit(struct mm_struct *mm)
1863{
1864 struct mm_slot *mm_slot;
1865 int easy_to_free = 0;
1866
1867 /*
1868 * This process is exiting: if it's straightforward (as is the
1869 * case when ksmd was never running), free mm_slot immediately.
1870 * But if it's at the cursor or has rmap_items linked to it, use
1871 * mmap_sem to synchronize with any break_cows before pagetables
1872 * are freed, and leave the mm_slot on the list for ksmd to free.
1873 * Beware: ksm may already have noticed it exiting and freed the slot.
1874 */
1875
1876 spin_lock(&ksm_mmlist_lock);
1877 mm_slot = get_mm_slot(mm);
1878 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1879 if (!mm_slot->rmap_list) {
1880 hash_del(&mm_slot->link);
1881 list_del(&mm_slot->mm_list);
1882 easy_to_free = 1;
1883 } else {
1884 list_move(&mm_slot->mm_list,
1885 &ksm_scan.mm_slot->mm_list);
1886 }
1887 }
1888 spin_unlock(&ksm_mmlist_lock);
1889
1890 if (easy_to_free) {
1891 free_mm_slot(mm_slot);
1892 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1893 mmdrop(mm);
1894 } else if (mm_slot) {
1895 down_write(&mm->mmap_sem);
1896 up_write(&mm->mmap_sem);
1897 }
1898}
1899
1900struct page *ksm_might_need_to_copy(struct page *page,
1901 struct vm_area_struct *vma, unsigned long address)
1902{
1903 struct anon_vma *anon_vma = page_anon_vma(page);
1904 struct page *new_page;
1905
1906 if (PageKsm(page)) {
1907 if (page_stable_node(page) &&
1908 !(ksm_run & KSM_RUN_UNMERGE))
1909 return page; /* no need to copy it */
1910 } else if (!anon_vma) {
1911 return page; /* no need to copy it */
1912 } else if (anon_vma->root == vma->anon_vma->root &&
1913 page->index == linear_page_index(vma, address)) {
1914 return page; /* still no need to copy it */
1915 }
1916 if (!PageUptodate(page))
1917 return page; /* let do_swap_page report the error */
1918
1919 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1920 if (new_page) {
1921 copy_user_highpage(new_page, page, address, vma);
1922
1923 SetPageDirty(new_page);
1924 __SetPageUptodate(new_page);
1925 __SetPageLocked(new_page);
1926 }
1927
1928 return new_page;
1929}
1930
1931int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1932{
1933 struct stable_node *stable_node;
1934 struct rmap_item *rmap_item;
1935 int ret = SWAP_AGAIN;
1936 int search_new_forks = 0;
1937
1938 VM_BUG_ON_PAGE(!PageKsm(page), page);
1939
1940 /*
1941 * Rely on the page lock to protect against concurrent modifications
1942 * to that page's node of the stable tree.
1943 */
1944 VM_BUG_ON_PAGE(!PageLocked(page), page);
1945
1946 stable_node = page_stable_node(page);
1947 if (!stable_node)
1948 return ret;
1949again:
1950 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1951 struct anon_vma *anon_vma = rmap_item->anon_vma;
1952 struct anon_vma_chain *vmac;
1953 struct vm_area_struct *vma;
1954
1955 cond_resched();
1956 anon_vma_lock_read(anon_vma);
1957 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1958 0, ULONG_MAX) {
1959 cond_resched();
1960 vma = vmac->vma;
1961 if (rmap_item->address < vma->vm_start ||
1962 rmap_item->address >= vma->vm_end)
1963 continue;
1964 /*
1965 * Initially we examine only the vma which covers this
1966 * rmap_item; but later, if there is still work to do,
1967 * we examine covering vmas in other mms: in case they
1968 * were forked from the original since ksmd passed.
1969 */
1970 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1971 continue;
1972
1973 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1974 continue;
1975
1976 ret = rwc->rmap_one(page, vma,
1977 rmap_item->address, rwc->arg);
1978 if (ret != SWAP_AGAIN) {
1979 anon_vma_unlock_read(anon_vma);
1980 goto out;
1981 }
1982 if (rwc->done && rwc->done(page)) {
1983 anon_vma_unlock_read(anon_vma);
1984 goto out;
1985 }
1986 }
1987 anon_vma_unlock_read(anon_vma);
1988 }
1989 if (!search_new_forks++)
1990 goto again;
1991out:
1992 return ret;
1993}
1994
1995#ifdef CONFIG_MIGRATION
1996void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1997{
1998 struct stable_node *stable_node;
1999
2000 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2001 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2002 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2003
2004 stable_node = page_stable_node(newpage);
2005 if (stable_node) {
2006 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2007 stable_node->kpfn = page_to_pfn(newpage);
2008 /*
2009 * newpage->mapping was set in advance; now we need smp_wmb()
2010 * to make sure that the new stable_node->kpfn is visible
2011 * to get_ksm_page() before it can see that oldpage->mapping
2012 * has gone stale (or that PageSwapCache has been cleared).
2013 */
2014 smp_wmb();
2015 set_page_stable_node(oldpage, NULL);
2016 }
2017}
2018#endif /* CONFIG_MIGRATION */
2019
2020#ifdef CONFIG_MEMORY_HOTREMOVE
2021static void wait_while_offlining(void)
2022{
2023 while (ksm_run & KSM_RUN_OFFLINE) {
2024 mutex_unlock(&ksm_thread_mutex);
2025 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2026 TASK_UNINTERRUPTIBLE);
2027 mutex_lock(&ksm_thread_mutex);
2028 }
2029}
2030
2031static void ksm_check_stable_tree(unsigned long start_pfn,
2032 unsigned long end_pfn)
2033{
2034 struct stable_node *stable_node, *next;
2035 struct rb_node *node;
2036 int nid;
2037
2038 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2039 node = rb_first(root_stable_tree + nid);
2040 while (node) {
2041 stable_node = rb_entry(node, struct stable_node, node);
2042 if (stable_node->kpfn >= start_pfn &&
2043 stable_node->kpfn < end_pfn) {
2044 /*
2045 * Don't get_ksm_page, page has already gone:
2046 * which is why we keep kpfn instead of page*
2047 */
2048 remove_node_from_stable_tree(stable_node);
2049 node = rb_first(root_stable_tree + nid);
2050 } else
2051 node = rb_next(node);
2052 cond_resched();
2053 }
2054 }
2055 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2056 if (stable_node->kpfn >= start_pfn &&
2057 stable_node->kpfn < end_pfn)
2058 remove_node_from_stable_tree(stable_node);
2059 cond_resched();
2060 }
2061}
2062
2063static int ksm_memory_callback(struct notifier_block *self,
2064 unsigned long action, void *arg)
2065{
2066 struct memory_notify *mn = arg;
2067
2068 switch (action) {
2069 case MEM_GOING_OFFLINE:
2070 /*
2071 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2072 * and remove_all_stable_nodes() while memory is going offline:
2073 * it is unsafe for them to touch the stable tree at this time.
2074 * But unmerge_ksm_pages(), rmap lookups and other entry points
2075 * which do not need the ksm_thread_mutex are all safe.
2076 */
2077 mutex_lock(&ksm_thread_mutex);
2078 ksm_run |= KSM_RUN_OFFLINE;
2079 mutex_unlock(&ksm_thread_mutex);
2080 break;
2081
2082 case MEM_OFFLINE:
2083 /*
2084 * Most of the work is done by page migration; but there might
2085 * be a few stable_nodes left over, still pointing to struct
2086 * pages which have been offlined: prune those from the tree,
2087 * otherwise get_ksm_page() might later try to access a
2088 * non-existent struct page.
2089 */
2090 ksm_check_stable_tree(mn->start_pfn,
2091 mn->start_pfn + mn->nr_pages);
2092 /* fallthrough */
2093
2094 case MEM_CANCEL_OFFLINE:
2095 mutex_lock(&ksm_thread_mutex);
2096 ksm_run &= ~KSM_RUN_OFFLINE;
2097 mutex_unlock(&ksm_thread_mutex);
2098
2099 smp_mb(); /* wake_up_bit advises this */
2100 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2101 break;
2102 }
2103 return NOTIFY_OK;
2104}
2105#else
2106static void wait_while_offlining(void)
2107{
2108}
2109#endif /* CONFIG_MEMORY_HOTREMOVE */
2110
2111#ifdef CONFIG_SYSFS
2112/*
2113 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2114 */
2115
2116#define KSM_ATTR_RO(_name) \
2117 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2118#define KSM_ATTR(_name) \
2119 static struct kobj_attribute _name##_attr = \
2120 __ATTR(_name, 0644, _name##_show, _name##_store)
2121
2122static ssize_t sleep_millisecs_show(struct kobject *kobj,
2123 struct kobj_attribute *attr, char *buf)
2124{
2125 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2126}
2127
2128static ssize_t sleep_millisecs_store(struct kobject *kobj,
2129 struct kobj_attribute *attr,
2130 const char *buf, size_t count)
2131{
2132 unsigned long msecs;
2133 int err;
2134
2135 err = kstrtoul(buf, 10, &msecs);
2136 if (err || msecs > UINT_MAX)
2137 return -EINVAL;
2138
2139 ksm_thread_sleep_millisecs = msecs;
2140
2141 return count;
2142}
2143KSM_ATTR(sleep_millisecs);
2144
2145static ssize_t pages_to_scan_show(struct kobject *kobj,
2146 struct kobj_attribute *attr, char *buf)
2147{
2148 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2149}
2150
2151static ssize_t pages_to_scan_store(struct kobject *kobj,
2152 struct kobj_attribute *attr,
2153 const char *buf, size_t count)
2154{
2155 int err;
2156 unsigned long nr_pages;
2157
2158 err = kstrtoul(buf, 10, &nr_pages);
2159 if (err || nr_pages > UINT_MAX)
2160 return -EINVAL;
2161
2162 ksm_thread_pages_to_scan = nr_pages;
2163
2164 return count;
2165}
2166KSM_ATTR(pages_to_scan);
2167
2168static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2169 char *buf)
2170{
2171 return sprintf(buf, "%lu\n", ksm_run);
2172}
2173
2174static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2175 const char *buf, size_t count)
2176{
2177 int err;
2178 unsigned long flags;
2179
2180 err = kstrtoul(buf, 10, &flags);
2181 if (err || flags > UINT_MAX)
2182 return -EINVAL;
2183 if (flags > KSM_RUN_UNMERGE)
2184 return -EINVAL;
2185
2186 /*
2187 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2188 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2189 * breaking COW to free the pages_shared (but leaves mm_slots
2190 * on the list for when ksmd may be set running again).
2191 */
2192
2193 mutex_lock(&ksm_thread_mutex);
2194 wait_while_offlining();
2195 if (ksm_run != flags) {
2196 ksm_run = flags;
2197 if (flags & KSM_RUN_UNMERGE) {
2198 set_current_oom_origin();
2199 err = unmerge_and_remove_all_rmap_items();
2200 clear_current_oom_origin();
2201 if (err) {
2202 ksm_run = KSM_RUN_STOP;
2203 count = err;
2204 }
2205 }
2206 }
2207 mutex_unlock(&ksm_thread_mutex);
2208
2209 if (flags & KSM_RUN_MERGE)
2210 wake_up_interruptible(&ksm_thread_wait);
2211
2212 return count;
2213}
2214KSM_ATTR(run);
2215
2216#ifdef CONFIG_NUMA
2217static ssize_t merge_across_nodes_show(struct kobject *kobj,
2218 struct kobj_attribute *attr, char *buf)
2219{
2220 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2221}
2222
2223static ssize_t merge_across_nodes_store(struct kobject *kobj,
2224 struct kobj_attribute *attr,
2225 const char *buf, size_t count)
2226{
2227 int err;
2228 unsigned long knob;
2229
2230 err = kstrtoul(buf, 10, &knob);
2231 if (err)
2232 return err;
2233 if (knob > 1)
2234 return -EINVAL;
2235
2236 mutex_lock(&ksm_thread_mutex);
2237 wait_while_offlining();
2238 if (ksm_merge_across_nodes != knob) {
2239 if (ksm_pages_shared || remove_all_stable_nodes())
2240 err = -EBUSY;
2241 else if (root_stable_tree == one_stable_tree) {
2242 struct rb_root *buf;
2243 /*
2244 * This is the first time that we switch away from the
2245 * default of merging across nodes: must now allocate
2246 * a buffer to hold as many roots as may be needed.
2247 * Allocate stable and unstable together:
2248 * MAXSMP NODES_SHIFT 10 will use 16kB.
2249 */
2250 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2251 GFP_KERNEL);
2252 /* Let us assume that RB_ROOT is NULL is zero */
2253 if (!buf)
2254 err = -ENOMEM;
2255 else {
2256 root_stable_tree = buf;
2257 root_unstable_tree = buf + nr_node_ids;
2258 /* Stable tree is empty but not the unstable */
2259 root_unstable_tree[0] = one_unstable_tree[0];
2260 }
2261 }
2262 if (!err) {
2263 ksm_merge_across_nodes = knob;
2264 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2265 }
2266 }
2267 mutex_unlock(&ksm_thread_mutex);
2268
2269 return err ? err : count;
2270}
2271KSM_ATTR(merge_across_nodes);
2272#endif
2273
2274static ssize_t pages_shared_show(struct kobject *kobj,
2275 struct kobj_attribute *attr, char *buf)
2276{
2277 return sprintf(buf, "%lu\n", ksm_pages_shared);
2278}
2279KSM_ATTR_RO(pages_shared);
2280
2281static ssize_t pages_sharing_show(struct kobject *kobj,
2282 struct kobj_attribute *attr, char *buf)
2283{
2284 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2285}
2286KSM_ATTR_RO(pages_sharing);
2287
2288static ssize_t pages_unshared_show(struct kobject *kobj,
2289 struct kobj_attribute *attr, char *buf)
2290{
2291 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2292}
2293KSM_ATTR_RO(pages_unshared);
2294
2295static ssize_t pages_volatile_show(struct kobject *kobj,
2296 struct kobj_attribute *attr, char *buf)
2297{
2298 long ksm_pages_volatile;
2299
2300 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2301 - ksm_pages_sharing - ksm_pages_unshared;
2302 /*
2303 * It was not worth any locking to calculate that statistic,
2304 * but it might therefore sometimes be negative: conceal that.
2305 */
2306 if (ksm_pages_volatile < 0)
2307 ksm_pages_volatile = 0;
2308 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2309}
2310KSM_ATTR_RO(pages_volatile);
2311
2312static ssize_t full_scans_show(struct kobject *kobj,
2313 struct kobj_attribute *attr, char *buf)
2314{
2315 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2316}
2317KSM_ATTR_RO(full_scans);
2318
2319static struct attribute *ksm_attrs[] = {
2320 &sleep_millisecs_attr.attr,
2321 &pages_to_scan_attr.attr,
2322 &run_attr.attr,
2323 &pages_shared_attr.attr,
2324 &pages_sharing_attr.attr,
2325 &pages_unshared_attr.attr,
2326 &pages_volatile_attr.attr,
2327 &full_scans_attr.attr,
2328#ifdef CONFIG_NUMA
2329 &merge_across_nodes_attr.attr,
2330#endif
2331 NULL,
2332};
2333
2334static struct attribute_group ksm_attr_group = {
2335 .attrs = ksm_attrs,
2336 .name = "ksm",
2337};
2338#endif /* CONFIG_SYSFS */
2339
2340static int __init ksm_init(void)
2341{
2342 struct task_struct *ksm_thread;
2343 int err;
2344
2345 err = ksm_slab_init();
2346 if (err)
2347 goto out;
2348
2349 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2350 if (IS_ERR(ksm_thread)) {
2351 pr_err("ksm: creating kthread failed\n");
2352 err = PTR_ERR(ksm_thread);
2353 goto out_free;
2354 }
2355
2356#ifdef CONFIG_SYSFS
2357 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2358 if (err) {
2359 pr_err("ksm: register sysfs failed\n");
2360 kthread_stop(ksm_thread);
2361 goto out_free;
2362 }
2363#else
2364 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2365
2366#endif /* CONFIG_SYSFS */
2367
2368#ifdef CONFIG_MEMORY_HOTREMOVE
2369 /* There is no significance to this priority 100 */
2370 hotplug_memory_notifier(ksm_memory_callback, 100);
2371#endif
2372 return 0;
2373
2374out_free:
2375 ksm_slab_free();
2376out:
2377 return err;
2378}
2379subsys_initcall(ksm_init);
2380