summaryrefslogtreecommitdiff
path: root/mm/mempolicy.c (plain)
blob: c1694ae8fafbca3f817cd325284162381cfeb9cd
1/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70#include <linux/mempolicy.h>
71#include <linux/mm.h>
72#include <linux/highmem.h>
73#include <linux/hugetlb.h>
74#include <linux/kernel.h>
75#include <linux/sched.h>
76#include <linux/nodemask.h>
77#include <linux/cpuset.h>
78#include <linux/slab.h>
79#include <linux/string.h>
80#include <linux/export.h>
81#include <linux/nsproxy.h>
82#include <linux/interrupt.h>
83#include <linux/init.h>
84#include <linux/compat.h>
85#include <linux/swap.h>
86#include <linux/seq_file.h>
87#include <linux/proc_fs.h>
88#include <linux/migrate.h>
89#include <linux/ksm.h>
90#include <linux/rmap.h>
91#include <linux/security.h>
92#include <linux/syscalls.h>
93#include <linux/ctype.h>
94#include <linux/mm_inline.h>
95#include <linux/mmu_notifier.h>
96#include <linux/printk.h>
97
98#include <asm/tlbflush.h>
99#include <asm/uaccess.h>
100
101#include "internal.h"
102
103/* Internal flags */
104#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
105#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
106
107static struct kmem_cache *policy_cache;
108static struct kmem_cache *sn_cache;
109
110/* Highest zone. An specific allocation for a zone below that is not
111 policied. */
112enum zone_type policy_zone = 0;
113
114/*
115 * run-time system-wide default policy => local allocation
116 */
117static struct mempolicy default_policy = {
118 .refcnt = ATOMIC_INIT(1), /* never free it */
119 .mode = MPOL_PREFERRED,
120 .flags = MPOL_F_LOCAL,
121};
122
123static struct mempolicy preferred_node_policy[MAX_NUMNODES];
124
125struct mempolicy *get_task_policy(struct task_struct *p)
126{
127 struct mempolicy *pol = p->mempolicy;
128 int node;
129
130 if (pol)
131 return pol;
132
133 node = numa_node_id();
134 if (node != NUMA_NO_NODE) {
135 pol = &preferred_node_policy[node];
136 /* preferred_node_policy is not initialised early in boot */
137 if (pol->mode)
138 return pol;
139 }
140
141 return &default_policy;
142}
143
144static const struct mempolicy_operations {
145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
146 /*
147 * If read-side task has no lock to protect task->mempolicy, write-side
148 * task will rebind the task->mempolicy by two step. The first step is
149 * setting all the newly nodes, and the second step is cleaning all the
150 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 * page.
152 * If we have a lock to protect task->mempolicy in read-side, we do
153 * rebind directly.
154 *
155 * step:
156 * MPOL_REBIND_ONCE - do rebind work at once
157 * MPOL_REBIND_STEP1 - set all the newly nodes
158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
159 */
160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 enum mpol_rebind_step step);
162} mpol_ops[MPOL_MAX];
163
164static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
165{
166 return pol->flags & MPOL_MODE_FLAGS;
167}
168
169static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
170 const nodemask_t *rel)
171{
172 nodemask_t tmp;
173 nodes_fold(tmp, *orig, nodes_weight(*rel));
174 nodes_onto(*ret, tmp, *rel);
175}
176
177static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
178{
179 if (nodes_empty(*nodes))
180 return -EINVAL;
181 pol->v.nodes = *nodes;
182 return 0;
183}
184
185static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
186{
187 if (!nodes)
188 pol->flags |= MPOL_F_LOCAL; /* local allocation */
189 else if (nodes_empty(*nodes))
190 return -EINVAL; /* no allowed nodes */
191 else
192 pol->v.preferred_node = first_node(*nodes);
193 return 0;
194}
195
196static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
197{
198 if (nodes_empty(*nodes))
199 return -EINVAL;
200 pol->v.nodes = *nodes;
201 return 0;
202}
203
204/*
205 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
206 * any, for the new policy. mpol_new() has already validated the nodes
207 * parameter with respect to the policy mode and flags. But, we need to
208 * handle an empty nodemask with MPOL_PREFERRED here.
209 *
210 * Must be called holding task's alloc_lock to protect task's mems_allowed
211 * and mempolicy. May also be called holding the mmap_semaphore for write.
212 */
213static int mpol_set_nodemask(struct mempolicy *pol,
214 const nodemask_t *nodes, struct nodemask_scratch *nsc)
215{
216 int ret;
217
218 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
219 if (pol == NULL)
220 return 0;
221 /* Check N_MEMORY */
222 nodes_and(nsc->mask1,
223 cpuset_current_mems_allowed, node_states[N_MEMORY]);
224
225 VM_BUG_ON(!nodes);
226 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
227 nodes = NULL; /* explicit local allocation */
228 else {
229 if (pol->flags & MPOL_F_RELATIVE_NODES)
230 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
231 else
232 nodes_and(nsc->mask2, *nodes, nsc->mask1);
233
234 if (mpol_store_user_nodemask(pol))
235 pol->w.user_nodemask = *nodes;
236 else
237 pol->w.cpuset_mems_allowed =
238 cpuset_current_mems_allowed;
239 }
240
241 if (nodes)
242 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
243 else
244 ret = mpol_ops[pol->mode].create(pol, NULL);
245 return ret;
246}
247
248/*
249 * This function just creates a new policy, does some check and simple
250 * initialization. You must invoke mpol_set_nodemask() to set nodes.
251 */
252static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
253 nodemask_t *nodes)
254{
255 struct mempolicy *policy;
256
257 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
258 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
259
260 if (mode == MPOL_DEFAULT) {
261 if (nodes && !nodes_empty(*nodes))
262 return ERR_PTR(-EINVAL);
263 return NULL;
264 }
265 VM_BUG_ON(!nodes);
266
267 /*
268 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
269 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
270 * All other modes require a valid pointer to a non-empty nodemask.
271 */
272 if (mode == MPOL_PREFERRED) {
273 if (nodes_empty(*nodes)) {
274 if (((flags & MPOL_F_STATIC_NODES) ||
275 (flags & MPOL_F_RELATIVE_NODES)))
276 return ERR_PTR(-EINVAL);
277 }
278 } else if (mode == MPOL_LOCAL) {
279 if (!nodes_empty(*nodes))
280 return ERR_PTR(-EINVAL);
281 mode = MPOL_PREFERRED;
282 } else if (nodes_empty(*nodes))
283 return ERR_PTR(-EINVAL);
284 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
285 if (!policy)
286 return ERR_PTR(-ENOMEM);
287 atomic_set(&policy->refcnt, 1);
288 policy->mode = mode;
289 policy->flags = flags;
290
291 return policy;
292}
293
294/* Slow path of a mpol destructor. */
295void __mpol_put(struct mempolicy *p)
296{
297 if (!atomic_dec_and_test(&p->refcnt))
298 return;
299 kmem_cache_free(policy_cache, p);
300}
301
302static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
303 enum mpol_rebind_step step)
304{
305}
306
307/*
308 * step:
309 * MPOL_REBIND_ONCE - do rebind work at once
310 * MPOL_REBIND_STEP1 - set all the newly nodes
311 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
312 */
313static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
314 enum mpol_rebind_step step)
315{
316 nodemask_t tmp;
317
318 if (pol->flags & MPOL_F_STATIC_NODES)
319 nodes_and(tmp, pol->w.user_nodemask, *nodes);
320 else if (pol->flags & MPOL_F_RELATIVE_NODES)
321 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
322 else {
323 /*
324 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
325 * result
326 */
327 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
328 nodes_remap(tmp, pol->v.nodes,
329 pol->w.cpuset_mems_allowed, *nodes);
330 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
331 } else if (step == MPOL_REBIND_STEP2) {
332 tmp = pol->w.cpuset_mems_allowed;
333 pol->w.cpuset_mems_allowed = *nodes;
334 } else
335 BUG();
336 }
337
338 if (nodes_empty(tmp))
339 tmp = *nodes;
340
341 if (step == MPOL_REBIND_STEP1)
342 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
343 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
344 pol->v.nodes = tmp;
345 else
346 BUG();
347
348 if (!node_isset(current->il_next, tmp)) {
349 current->il_next = next_node_in(current->il_next, tmp);
350 if (current->il_next >= MAX_NUMNODES)
351 current->il_next = numa_node_id();
352 }
353}
354
355static void mpol_rebind_preferred(struct mempolicy *pol,
356 const nodemask_t *nodes,
357 enum mpol_rebind_step step)
358{
359 nodemask_t tmp;
360
361 if (pol->flags & MPOL_F_STATIC_NODES) {
362 int node = first_node(pol->w.user_nodemask);
363
364 if (node_isset(node, *nodes)) {
365 pol->v.preferred_node = node;
366 pol->flags &= ~MPOL_F_LOCAL;
367 } else
368 pol->flags |= MPOL_F_LOCAL;
369 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
370 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
371 pol->v.preferred_node = first_node(tmp);
372 } else if (!(pol->flags & MPOL_F_LOCAL)) {
373 pol->v.preferred_node = node_remap(pol->v.preferred_node,
374 pol->w.cpuset_mems_allowed,
375 *nodes);
376 pol->w.cpuset_mems_allowed = *nodes;
377 }
378}
379
380/*
381 * mpol_rebind_policy - Migrate a policy to a different set of nodes
382 *
383 * If read-side task has no lock to protect task->mempolicy, write-side
384 * task will rebind the task->mempolicy by two step. The first step is
385 * setting all the newly nodes, and the second step is cleaning all the
386 * disallowed nodes. In this way, we can avoid finding no node to alloc
387 * page.
388 * If we have a lock to protect task->mempolicy in read-side, we do
389 * rebind directly.
390 *
391 * step:
392 * MPOL_REBIND_ONCE - do rebind work at once
393 * MPOL_REBIND_STEP1 - set all the newly nodes
394 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
395 */
396static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
397 enum mpol_rebind_step step)
398{
399 if (!pol)
400 return;
401 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
402 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
403 return;
404
405 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
406 return;
407
408 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
409 BUG();
410
411 if (step == MPOL_REBIND_STEP1)
412 pol->flags |= MPOL_F_REBINDING;
413 else if (step == MPOL_REBIND_STEP2)
414 pol->flags &= ~MPOL_F_REBINDING;
415 else if (step >= MPOL_REBIND_NSTEP)
416 BUG();
417
418 mpol_ops[pol->mode].rebind(pol, newmask, step);
419}
420
421/*
422 * Wrapper for mpol_rebind_policy() that just requires task
423 * pointer, and updates task mempolicy.
424 *
425 * Called with task's alloc_lock held.
426 */
427
428void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
429 enum mpol_rebind_step step)
430{
431 mpol_rebind_policy(tsk->mempolicy, new, step);
432}
433
434/*
435 * Rebind each vma in mm to new nodemask.
436 *
437 * Call holding a reference to mm. Takes mm->mmap_sem during call.
438 */
439
440void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
441{
442 struct vm_area_struct *vma;
443
444 down_write(&mm->mmap_sem);
445 for (vma = mm->mmap; vma; vma = vma->vm_next)
446 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
447 up_write(&mm->mmap_sem);
448}
449
450static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
451 [MPOL_DEFAULT] = {
452 .rebind = mpol_rebind_default,
453 },
454 [MPOL_INTERLEAVE] = {
455 .create = mpol_new_interleave,
456 .rebind = mpol_rebind_nodemask,
457 },
458 [MPOL_PREFERRED] = {
459 .create = mpol_new_preferred,
460 .rebind = mpol_rebind_preferred,
461 },
462 [MPOL_BIND] = {
463 .create = mpol_new_bind,
464 .rebind = mpol_rebind_nodemask,
465 },
466};
467
468static void migrate_page_add(struct page *page, struct list_head *pagelist,
469 unsigned long flags);
470
471struct queue_pages {
472 struct list_head *pagelist;
473 unsigned long flags;
474 nodemask_t *nmask;
475 struct vm_area_struct *prev;
476};
477
478/*
479 * Scan through pages checking if pages follow certain conditions,
480 * and move them to the pagelist if they do.
481 */
482static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
483 unsigned long end, struct mm_walk *walk)
484{
485 struct vm_area_struct *vma = walk->vma;
486 struct page *page;
487 struct queue_pages *qp = walk->private;
488 unsigned long flags = qp->flags;
489 int nid, ret;
490 pte_t *pte;
491 spinlock_t *ptl;
492
493 if (pmd_trans_huge(*pmd)) {
494 ptl = pmd_lock(walk->mm, pmd);
495 if (pmd_trans_huge(*pmd)) {
496 page = pmd_page(*pmd);
497 if (is_huge_zero_page(page)) {
498 spin_unlock(ptl);
499 split_huge_pmd(vma, pmd, addr);
500 } else {
501 get_page(page);
502 spin_unlock(ptl);
503 lock_page(page);
504 ret = split_huge_page(page);
505 unlock_page(page);
506 put_page(page);
507 if (ret)
508 return 0;
509 }
510 } else {
511 spin_unlock(ptl);
512 }
513 }
514
515 if (pmd_trans_unstable(pmd))
516 return 0;
517retry:
518 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
519 for (; addr != end; pte++, addr += PAGE_SIZE) {
520 if (!pte_present(*pte))
521 continue;
522 page = vm_normal_page(vma, addr, *pte);
523 if (!page)
524 continue;
525 /*
526 * vm_normal_page() filters out zero pages, but there might
527 * still be PageReserved pages to skip, perhaps in a VDSO.
528 */
529 if (PageReserved(page))
530 continue;
531 nid = page_to_nid(page);
532 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
533 continue;
534 if (PageTransCompound(page)) {
535 get_page(page);
536 pte_unmap_unlock(pte, ptl);
537 lock_page(page);
538 ret = split_huge_page(page);
539 unlock_page(page);
540 put_page(page);
541 /* Failed to split -- skip. */
542 if (ret) {
543 pte = pte_offset_map_lock(walk->mm, pmd,
544 addr, &ptl);
545 continue;
546 }
547 goto retry;
548 }
549
550 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
551 if (!vma_migratable(vma))
552 break;
553 migrate_page_add(page, qp->pagelist, flags);
554 } else
555 break;
556 }
557 pte_unmap_unlock(pte - 1, ptl);
558 cond_resched();
559 return addr != end ? -EIO : 0;
560}
561
562static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
563 unsigned long addr, unsigned long end,
564 struct mm_walk *walk)
565{
566#ifdef CONFIG_HUGETLB_PAGE
567 struct queue_pages *qp = walk->private;
568 unsigned long flags = qp->flags;
569 int nid;
570 struct page *page;
571 spinlock_t *ptl;
572 pte_t entry;
573
574 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
575 entry = huge_ptep_get(pte);
576 if (!pte_present(entry))
577 goto unlock;
578 page = pte_page(entry);
579 nid = page_to_nid(page);
580 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
581 goto unlock;
582 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
583 if (flags & (MPOL_MF_MOVE_ALL) ||
584 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
585 isolate_huge_page(page, qp->pagelist);
586unlock:
587 spin_unlock(ptl);
588#else
589 BUG();
590#endif
591 return 0;
592}
593
594#ifdef CONFIG_NUMA_BALANCING
595/*
596 * This is used to mark a range of virtual addresses to be inaccessible.
597 * These are later cleared by a NUMA hinting fault. Depending on these
598 * faults, pages may be migrated for better NUMA placement.
599 *
600 * This is assuming that NUMA faults are handled using PROT_NONE. If
601 * an architecture makes a different choice, it will need further
602 * changes to the core.
603 */
604unsigned long change_prot_numa(struct vm_area_struct *vma,
605 unsigned long addr, unsigned long end)
606{
607 int nr_updated;
608
609 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
610 if (nr_updated)
611 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
612
613 return nr_updated;
614}
615#else
616static unsigned long change_prot_numa(struct vm_area_struct *vma,
617 unsigned long addr, unsigned long end)
618{
619 return 0;
620}
621#endif /* CONFIG_NUMA_BALANCING */
622
623static int queue_pages_test_walk(unsigned long start, unsigned long end,
624 struct mm_walk *walk)
625{
626 struct vm_area_struct *vma = walk->vma;
627 struct queue_pages *qp = walk->private;
628 unsigned long endvma = vma->vm_end;
629 unsigned long flags = qp->flags;
630
631 /*
632 * Need check MPOL_MF_STRICT to return -EIO if possible
633 * regardless of vma_migratable
634 */
635 if (!vma_migratable(vma) &&
636 !(flags & MPOL_MF_STRICT))
637 return 1;
638
639 if (endvma > end)
640 endvma = end;
641 if (vma->vm_start > start)
642 start = vma->vm_start;
643
644 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
645 if (!vma->vm_next && vma->vm_end < end)
646 return -EFAULT;
647 if (qp->prev && qp->prev->vm_end < vma->vm_start)
648 return -EFAULT;
649 }
650
651 qp->prev = vma;
652
653 if (flags & MPOL_MF_LAZY) {
654 /* Similar to task_numa_work, skip inaccessible VMAs */
655 if (!is_vm_hugetlb_page(vma) &&
656 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
657 !(vma->vm_flags & VM_MIXEDMAP))
658 change_prot_numa(vma, start, endvma);
659 return 1;
660 }
661
662 /* queue pages from current vma */
663 if (flags & MPOL_MF_VALID)
664 return 0;
665 return 1;
666}
667
668/*
669 * Walk through page tables and collect pages to be migrated.
670 *
671 * If pages found in a given range are on a set of nodes (determined by
672 * @nodes and @flags,) it's isolated and queued to the pagelist which is
673 * passed via @private.)
674 */
675static int
676queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
677 nodemask_t *nodes, unsigned long flags,
678 struct list_head *pagelist)
679{
680 struct queue_pages qp = {
681 .pagelist = pagelist,
682 .flags = flags,
683 .nmask = nodes,
684 .prev = NULL,
685 };
686 struct mm_walk queue_pages_walk = {
687 .hugetlb_entry = queue_pages_hugetlb,
688 .pmd_entry = queue_pages_pte_range,
689 .test_walk = queue_pages_test_walk,
690 .mm = mm,
691 .private = &qp,
692 };
693
694 return walk_page_range(start, end, &queue_pages_walk);
695}
696
697/*
698 * Apply policy to a single VMA
699 * This must be called with the mmap_sem held for writing.
700 */
701static int vma_replace_policy(struct vm_area_struct *vma,
702 struct mempolicy *pol)
703{
704 int err;
705 struct mempolicy *old;
706 struct mempolicy *new;
707
708 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
709 vma->vm_start, vma->vm_end, vma->vm_pgoff,
710 vma->vm_ops, vma->vm_file,
711 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
712
713 new = mpol_dup(pol);
714 if (IS_ERR(new))
715 return PTR_ERR(new);
716
717 if (vma->vm_ops && vma->vm_ops->set_policy) {
718 err = vma->vm_ops->set_policy(vma, new);
719 if (err)
720 goto err_out;
721 }
722
723 old = vma->vm_policy;
724 vma->vm_policy = new; /* protected by mmap_sem */
725 mpol_put(old);
726
727 return 0;
728 err_out:
729 mpol_put(new);
730 return err;
731}
732
733/* Step 2: apply policy to a range and do splits. */
734static int mbind_range(struct mm_struct *mm, unsigned long start,
735 unsigned long end, struct mempolicy *new_pol)
736{
737 struct vm_area_struct *next;
738 struct vm_area_struct *prev;
739 struct vm_area_struct *vma;
740 int err = 0;
741 pgoff_t pgoff;
742 unsigned long vmstart;
743 unsigned long vmend;
744
745 vma = find_vma(mm, start);
746 if (!vma || vma->vm_start > start)
747 return -EFAULT;
748
749 prev = vma->vm_prev;
750 if (start > vma->vm_start)
751 prev = vma;
752
753 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
754 next = vma->vm_next;
755 vmstart = max(start, vma->vm_start);
756 vmend = min(end, vma->vm_end);
757
758 if (mpol_equal(vma_policy(vma), new_pol))
759 continue;
760
761 pgoff = vma->vm_pgoff +
762 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
763 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
764 vma->anon_vma, vma->vm_file, pgoff,
765 new_pol, vma->vm_userfaultfd_ctx,
766 vma_get_anon_name(vma));
767 if (prev) {
768 vma = prev;
769 next = vma->vm_next;
770 if (mpol_equal(vma_policy(vma), new_pol))
771 continue;
772 /* vma_merge() joined vma && vma->next, case 8 */
773 goto replace;
774 }
775 if (vma->vm_start != vmstart) {
776 err = split_vma(vma->vm_mm, vma, vmstart, 1);
777 if (err)
778 goto out;
779 }
780 if (vma->vm_end != vmend) {
781 err = split_vma(vma->vm_mm, vma, vmend, 0);
782 if (err)
783 goto out;
784 }
785 replace:
786 err = vma_replace_policy(vma, new_pol);
787 if (err)
788 goto out;
789 }
790
791 out:
792 return err;
793}
794
795/* Set the process memory policy */
796static long do_set_mempolicy(unsigned short mode, unsigned short flags,
797 nodemask_t *nodes)
798{
799 struct mempolicy *new, *old;
800 NODEMASK_SCRATCH(scratch);
801 int ret;
802
803 if (!scratch)
804 return -ENOMEM;
805
806 new = mpol_new(mode, flags, nodes);
807 if (IS_ERR(new)) {
808 ret = PTR_ERR(new);
809 goto out;
810 }
811
812 task_lock(current);
813 ret = mpol_set_nodemask(new, nodes, scratch);
814 if (ret) {
815 task_unlock(current);
816 mpol_put(new);
817 goto out;
818 }
819 old = current->mempolicy;
820 current->mempolicy = new;
821 if (new && new->mode == MPOL_INTERLEAVE &&
822 nodes_weight(new->v.nodes))
823 current->il_next = first_node(new->v.nodes);
824 task_unlock(current);
825 mpol_put(old);
826 ret = 0;
827out:
828 NODEMASK_SCRATCH_FREE(scratch);
829 return ret;
830}
831
832/*
833 * Return nodemask for policy for get_mempolicy() query
834 *
835 * Called with task's alloc_lock held
836 */
837static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
838{
839 nodes_clear(*nodes);
840 if (p == &default_policy)
841 return;
842
843 switch (p->mode) {
844 case MPOL_BIND:
845 /* Fall through */
846 case MPOL_INTERLEAVE:
847 *nodes = p->v.nodes;
848 break;
849 case MPOL_PREFERRED:
850 if (!(p->flags & MPOL_F_LOCAL))
851 node_set(p->v.preferred_node, *nodes);
852 /* else return empty node mask for local allocation */
853 break;
854 default:
855 BUG();
856 }
857}
858
859static int lookup_node(unsigned long addr)
860{
861 struct page *p;
862 int err;
863
864 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
865 if (err >= 0) {
866 err = page_to_nid(p);
867 put_page(p);
868 }
869 return err;
870}
871
872/* Retrieve NUMA policy */
873static long do_get_mempolicy(int *policy, nodemask_t *nmask,
874 unsigned long addr, unsigned long flags)
875{
876 int err;
877 struct mm_struct *mm = current->mm;
878 struct vm_area_struct *vma = NULL;
879 struct mempolicy *pol = current->mempolicy;
880
881 if (flags &
882 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
883 return -EINVAL;
884
885 if (flags & MPOL_F_MEMS_ALLOWED) {
886 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
887 return -EINVAL;
888 *policy = 0; /* just so it's initialized */
889 task_lock(current);
890 *nmask = cpuset_current_mems_allowed;
891 task_unlock(current);
892 return 0;
893 }
894
895 if (flags & MPOL_F_ADDR) {
896 /*
897 * Do NOT fall back to task policy if the
898 * vma/shared policy at addr is NULL. We
899 * want to return MPOL_DEFAULT in this case.
900 */
901 down_read(&mm->mmap_sem);
902 vma = find_vma_intersection(mm, addr, addr+1);
903 if (!vma) {
904 up_read(&mm->mmap_sem);
905 return -EFAULT;
906 }
907 if (vma->vm_ops && vma->vm_ops->get_policy)
908 pol = vma->vm_ops->get_policy(vma, addr);
909 else
910 pol = vma->vm_policy;
911 } else if (addr)
912 return -EINVAL;
913
914 if (!pol)
915 pol = &default_policy; /* indicates default behavior */
916
917 if (flags & MPOL_F_NODE) {
918 if (flags & MPOL_F_ADDR) {
919 err = lookup_node(addr);
920 if (err < 0)
921 goto out;
922 *policy = err;
923 } else if (pol == current->mempolicy &&
924 pol->mode == MPOL_INTERLEAVE) {
925 *policy = current->il_next;
926 } else {
927 err = -EINVAL;
928 goto out;
929 }
930 } else {
931 *policy = pol == &default_policy ? MPOL_DEFAULT :
932 pol->mode;
933 /*
934 * Internal mempolicy flags must be masked off before exposing
935 * the policy to userspace.
936 */
937 *policy |= (pol->flags & MPOL_MODE_FLAGS);
938 }
939
940 err = 0;
941 if (nmask) {
942 if (mpol_store_user_nodemask(pol)) {
943 *nmask = pol->w.user_nodemask;
944 } else {
945 task_lock(current);
946 get_policy_nodemask(pol, nmask);
947 task_unlock(current);
948 }
949 }
950
951 out:
952 mpol_cond_put(pol);
953 if (vma)
954 up_read(&current->mm->mmap_sem);
955 return err;
956}
957
958#ifdef CONFIG_MIGRATION
959/*
960 * page migration
961 */
962static void migrate_page_add(struct page *page, struct list_head *pagelist,
963 unsigned long flags)
964{
965 /*
966 * Avoid migrating a page that is shared with others.
967 */
968 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
969 if (!isolate_lru_page(page)) {
970 list_add_tail(&page->lru, pagelist);
971 inc_node_page_state(page, NR_ISOLATED_ANON +
972 page_is_file_cache(page));
973 }
974 }
975}
976
977static struct page *new_node_page(struct page *page, unsigned long node, int **x)
978{
979 if (PageHuge(page))
980 return alloc_huge_page_node(page_hstate(compound_head(page)),
981 node);
982 else
983 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
984 __GFP_THISNODE, 0);
985}
986
987/*
988 * Migrate pages from one node to a target node.
989 * Returns error or the number of pages not migrated.
990 */
991static int migrate_to_node(struct mm_struct *mm, int source, int dest,
992 int flags)
993{
994 nodemask_t nmask;
995 LIST_HEAD(pagelist);
996 int err = 0;
997
998 nodes_clear(nmask);
999 node_set(source, nmask);
1000
1001 /*
1002 * This does not "check" the range but isolates all pages that
1003 * need migration. Between passing in the full user address
1004 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1005 */
1006 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1007 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1008 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1009
1010 if (!list_empty(&pagelist)) {
1011 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1012 MIGRATE_SYNC, MR_SYSCALL);
1013 if (err)
1014 putback_movable_pages(&pagelist);
1015 }
1016
1017 return err;
1018}
1019
1020/*
1021 * Move pages between the two nodesets so as to preserve the physical
1022 * layout as much as possible.
1023 *
1024 * Returns the number of page that could not be moved.
1025 */
1026int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1027 const nodemask_t *to, int flags)
1028{
1029 int busy = 0;
1030 int err;
1031 nodemask_t tmp;
1032
1033 err = migrate_prep();
1034 if (err)
1035 return err;
1036
1037 down_read(&mm->mmap_sem);
1038
1039 /*
1040 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1041 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1042 * bit in 'tmp', and return that <source, dest> pair for migration.
1043 * The pair of nodemasks 'to' and 'from' define the map.
1044 *
1045 * If no pair of bits is found that way, fallback to picking some
1046 * pair of 'source' and 'dest' bits that are not the same. If the
1047 * 'source' and 'dest' bits are the same, this represents a node
1048 * that will be migrating to itself, so no pages need move.
1049 *
1050 * If no bits are left in 'tmp', or if all remaining bits left
1051 * in 'tmp' correspond to the same bit in 'to', return false
1052 * (nothing left to migrate).
1053 *
1054 * This lets us pick a pair of nodes to migrate between, such that
1055 * if possible the dest node is not already occupied by some other
1056 * source node, minimizing the risk of overloading the memory on a
1057 * node that would happen if we migrated incoming memory to a node
1058 * before migrating outgoing memory source that same node.
1059 *
1060 * A single scan of tmp is sufficient. As we go, we remember the
1061 * most recent <s, d> pair that moved (s != d). If we find a pair
1062 * that not only moved, but what's better, moved to an empty slot
1063 * (d is not set in tmp), then we break out then, with that pair.
1064 * Otherwise when we finish scanning from_tmp, we at least have the
1065 * most recent <s, d> pair that moved. If we get all the way through
1066 * the scan of tmp without finding any node that moved, much less
1067 * moved to an empty node, then there is nothing left worth migrating.
1068 */
1069
1070 tmp = *from;
1071 while (!nodes_empty(tmp)) {
1072 int s,d;
1073 int source = NUMA_NO_NODE;
1074 int dest = 0;
1075
1076 for_each_node_mask(s, tmp) {
1077
1078 /*
1079 * do_migrate_pages() tries to maintain the relative
1080 * node relationship of the pages established between
1081 * threads and memory areas.
1082 *
1083 * However if the number of source nodes is not equal to
1084 * the number of destination nodes we can not preserve
1085 * this node relative relationship. In that case, skip
1086 * copying memory from a node that is in the destination
1087 * mask.
1088 *
1089 * Example: [2,3,4] -> [3,4,5] moves everything.
1090 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1091 */
1092
1093 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1094 (node_isset(s, *to)))
1095 continue;
1096
1097 d = node_remap(s, *from, *to);
1098 if (s == d)
1099 continue;
1100
1101 source = s; /* Node moved. Memorize */
1102 dest = d;
1103
1104 /* dest not in remaining from nodes? */
1105 if (!node_isset(dest, tmp))
1106 break;
1107 }
1108 if (source == NUMA_NO_NODE)
1109 break;
1110
1111 node_clear(source, tmp);
1112 err = migrate_to_node(mm, source, dest, flags);
1113 if (err > 0)
1114 busy += err;
1115 if (err < 0)
1116 break;
1117 }
1118 up_read(&mm->mmap_sem);
1119 if (err < 0)
1120 return err;
1121 return busy;
1122
1123}
1124
1125/*
1126 * Allocate a new page for page migration based on vma policy.
1127 * Start by assuming the page is mapped by the same vma as contains @start.
1128 * Search forward from there, if not. N.B., this assumes that the
1129 * list of pages handed to migrate_pages()--which is how we get here--
1130 * is in virtual address order.
1131 */
1132static struct page *new_page(struct page *page, unsigned long start, int **x)
1133{
1134 struct vm_area_struct *vma;
1135 unsigned long uninitialized_var(address);
1136
1137 vma = find_vma(current->mm, start);
1138 while (vma) {
1139 address = page_address_in_vma(page, vma);
1140 if (address != -EFAULT)
1141 break;
1142 vma = vma->vm_next;
1143 }
1144
1145 if (PageHuge(page)) {
1146 BUG_ON(!vma);
1147 return alloc_huge_page_noerr(vma, address, 1);
1148 }
1149 /*
1150 * if !vma, alloc_page_vma() will use task or system default policy
1151 */
1152 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1153}
1154#else
1155
1156static void migrate_page_add(struct page *page, struct list_head *pagelist,
1157 unsigned long flags)
1158{
1159}
1160
1161int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1162 const nodemask_t *to, int flags)
1163{
1164 return -ENOSYS;
1165}
1166
1167static struct page *new_page(struct page *page, unsigned long start, int **x)
1168{
1169 return NULL;
1170}
1171#endif
1172
1173static long do_mbind(unsigned long start, unsigned long len,
1174 unsigned short mode, unsigned short mode_flags,
1175 nodemask_t *nmask, unsigned long flags)
1176{
1177 struct mm_struct *mm = current->mm;
1178 struct mempolicy *new;
1179 unsigned long end;
1180 int err;
1181 LIST_HEAD(pagelist);
1182
1183 if (flags & ~(unsigned long)MPOL_MF_VALID)
1184 return -EINVAL;
1185 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1186 return -EPERM;
1187
1188 if (start & ~PAGE_MASK)
1189 return -EINVAL;
1190
1191 if (mode == MPOL_DEFAULT)
1192 flags &= ~MPOL_MF_STRICT;
1193
1194 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1195 end = start + len;
1196
1197 if (end < start)
1198 return -EINVAL;
1199 if (end == start)
1200 return 0;
1201
1202 new = mpol_new(mode, mode_flags, nmask);
1203 if (IS_ERR(new))
1204 return PTR_ERR(new);
1205
1206 if (flags & MPOL_MF_LAZY)
1207 new->flags |= MPOL_F_MOF;
1208
1209 /*
1210 * If we are using the default policy then operation
1211 * on discontinuous address spaces is okay after all
1212 */
1213 if (!new)
1214 flags |= MPOL_MF_DISCONTIG_OK;
1215
1216 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1217 start, start + len, mode, mode_flags,
1218 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1219
1220 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1221
1222 err = migrate_prep();
1223 if (err)
1224 goto mpol_out;
1225 }
1226 {
1227 NODEMASK_SCRATCH(scratch);
1228 if (scratch) {
1229 down_write(&mm->mmap_sem);
1230 task_lock(current);
1231 err = mpol_set_nodemask(new, nmask, scratch);
1232 task_unlock(current);
1233 if (err)
1234 up_write(&mm->mmap_sem);
1235 } else
1236 err = -ENOMEM;
1237 NODEMASK_SCRATCH_FREE(scratch);
1238 }
1239 if (err)
1240 goto mpol_out;
1241
1242 err = queue_pages_range(mm, start, end, nmask,
1243 flags | MPOL_MF_INVERT, &pagelist);
1244 if (!err)
1245 err = mbind_range(mm, start, end, new);
1246
1247 if (!err) {
1248 int nr_failed = 0;
1249
1250 if (!list_empty(&pagelist)) {
1251 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1252 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1253 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1254 if (nr_failed)
1255 putback_movable_pages(&pagelist);
1256 }
1257
1258 if (nr_failed && (flags & MPOL_MF_STRICT))
1259 err = -EIO;
1260 } else
1261 putback_movable_pages(&pagelist);
1262
1263 up_write(&mm->mmap_sem);
1264 mpol_out:
1265 mpol_put(new);
1266 return err;
1267}
1268
1269/*
1270 * User space interface with variable sized bitmaps for nodelists.
1271 */
1272
1273/* Copy a node mask from user space. */
1274static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1275 unsigned long maxnode)
1276{
1277 unsigned long k;
1278 unsigned long t;
1279 unsigned long nlongs;
1280 unsigned long endmask;
1281
1282 --maxnode;
1283 nodes_clear(*nodes);
1284 if (maxnode == 0 || !nmask)
1285 return 0;
1286 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1287 return -EINVAL;
1288
1289 nlongs = BITS_TO_LONGS(maxnode);
1290 if ((maxnode % BITS_PER_LONG) == 0)
1291 endmask = ~0UL;
1292 else
1293 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1294
1295 /*
1296 * When the user specified more nodes than supported just check
1297 * if the non supported part is all zero.
1298 *
1299 * If maxnode have more longs than MAX_NUMNODES, check
1300 * the bits in that area first. And then go through to
1301 * check the rest bits which equal or bigger than MAX_NUMNODES.
1302 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1303 */
1304 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1305 if (nlongs > PAGE_SIZE/sizeof(long))
1306 return -EINVAL;
1307 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1308 if (get_user(t, nmask + k))
1309 return -EFAULT;
1310 if (k == nlongs - 1) {
1311 if (t & endmask)
1312 return -EINVAL;
1313 } else if (t)
1314 return -EINVAL;
1315 }
1316 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1317 endmask = ~0UL;
1318 }
1319
1320 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1321 unsigned long valid_mask = endmask;
1322
1323 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1324 if (get_user(t, nmask + nlongs - 1))
1325 return -EFAULT;
1326 if (t & valid_mask)
1327 return -EINVAL;
1328 }
1329
1330 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1331 return -EFAULT;
1332 nodes_addr(*nodes)[nlongs-1] &= endmask;
1333 return 0;
1334}
1335
1336/* Copy a kernel node mask to user space */
1337static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1338 nodemask_t *nodes)
1339{
1340 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1341 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1342
1343 if (copy > nbytes) {
1344 if (copy > PAGE_SIZE)
1345 return -EINVAL;
1346 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1347 return -EFAULT;
1348 copy = nbytes;
1349 }
1350 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1351}
1352
1353SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1354 unsigned long, mode, const unsigned long __user *, nmask,
1355 unsigned long, maxnode, unsigned, flags)
1356{
1357 nodemask_t nodes;
1358 int err;
1359 unsigned short mode_flags;
1360
1361 mode_flags = mode & MPOL_MODE_FLAGS;
1362 mode &= ~MPOL_MODE_FLAGS;
1363 if (mode >= MPOL_MAX)
1364 return -EINVAL;
1365 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1366 (mode_flags & MPOL_F_RELATIVE_NODES))
1367 return -EINVAL;
1368 err = get_nodes(&nodes, nmask, maxnode);
1369 if (err)
1370 return err;
1371 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1372}
1373
1374/* Set the process memory policy */
1375SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1376 unsigned long, maxnode)
1377{
1378 int err;
1379 nodemask_t nodes;
1380 unsigned short flags;
1381
1382 flags = mode & MPOL_MODE_FLAGS;
1383 mode &= ~MPOL_MODE_FLAGS;
1384 if ((unsigned int)mode >= MPOL_MAX)
1385 return -EINVAL;
1386 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1387 return -EINVAL;
1388 err = get_nodes(&nodes, nmask, maxnode);
1389 if (err)
1390 return err;
1391 return do_set_mempolicy(mode, flags, &nodes);
1392}
1393
1394SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1395 const unsigned long __user *, old_nodes,
1396 const unsigned long __user *, new_nodes)
1397{
1398 const struct cred *cred = current_cred(), *tcred;
1399 struct mm_struct *mm = NULL;
1400 struct task_struct *task;
1401 nodemask_t task_nodes;
1402 int err;
1403 nodemask_t *old;
1404 nodemask_t *new;
1405 NODEMASK_SCRATCH(scratch);
1406
1407 if (!scratch)
1408 return -ENOMEM;
1409
1410 old = &scratch->mask1;
1411 new = &scratch->mask2;
1412
1413 err = get_nodes(old, old_nodes, maxnode);
1414 if (err)
1415 goto out;
1416
1417 err = get_nodes(new, new_nodes, maxnode);
1418 if (err)
1419 goto out;
1420
1421 /* Find the mm_struct */
1422 rcu_read_lock();
1423 task = pid ? find_task_by_vpid(pid) : current;
1424 if (!task) {
1425 rcu_read_unlock();
1426 err = -ESRCH;
1427 goto out;
1428 }
1429 get_task_struct(task);
1430
1431 err = -EINVAL;
1432
1433 /*
1434 * Check if this process has the right to modify the specified
1435 * process. The right exists if the process has administrative
1436 * capabilities, superuser privileges or the same
1437 * userid as the target process.
1438 */
1439 tcred = __task_cred(task);
1440 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1441 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1442 !capable(CAP_SYS_NICE)) {
1443 rcu_read_unlock();
1444 err = -EPERM;
1445 goto out_put;
1446 }
1447 rcu_read_unlock();
1448
1449 task_nodes = cpuset_mems_allowed(task);
1450 /* Is the user allowed to access the target nodes? */
1451 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1452 err = -EPERM;
1453 goto out_put;
1454 }
1455
1456 task_nodes = cpuset_mems_allowed(current);
1457 nodes_and(*new, *new, task_nodes);
1458 if (nodes_empty(*new))
1459 goto out_put;
1460
1461 nodes_and(*new, *new, node_states[N_MEMORY]);
1462 if (nodes_empty(*new))
1463 goto out_put;
1464
1465 err = security_task_movememory(task);
1466 if (err)
1467 goto out_put;
1468
1469 mm = get_task_mm(task);
1470 put_task_struct(task);
1471
1472 if (!mm) {
1473 err = -EINVAL;
1474 goto out;
1475 }
1476
1477 err = do_migrate_pages(mm, old, new,
1478 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1479
1480 mmput(mm);
1481out:
1482 NODEMASK_SCRATCH_FREE(scratch);
1483
1484 return err;
1485
1486out_put:
1487 put_task_struct(task);
1488 goto out;
1489
1490}
1491
1492
1493/* Retrieve NUMA policy */
1494SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1495 unsigned long __user *, nmask, unsigned long, maxnode,
1496 unsigned long, addr, unsigned long, flags)
1497{
1498 int err;
1499 int uninitialized_var(pval);
1500 nodemask_t nodes;
1501
1502 if (nmask != NULL && maxnode < nr_node_ids)
1503 return -EINVAL;
1504
1505 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1506
1507 if (err)
1508 return err;
1509
1510 if (policy && put_user(pval, policy))
1511 return -EFAULT;
1512
1513 if (nmask)
1514 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1515
1516 return err;
1517}
1518
1519#ifdef CONFIG_COMPAT
1520
1521COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1522 compat_ulong_t __user *, nmask,
1523 compat_ulong_t, maxnode,
1524 compat_ulong_t, addr, compat_ulong_t, flags)
1525{
1526 long err;
1527 unsigned long __user *nm = NULL;
1528 unsigned long nr_bits, alloc_size;
1529 DECLARE_BITMAP(bm, MAX_NUMNODES);
1530
1531 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1532 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1533
1534 if (nmask)
1535 nm = compat_alloc_user_space(alloc_size);
1536
1537 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1538
1539 if (!err && nmask) {
1540 unsigned long copy_size;
1541 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1542 err = copy_from_user(bm, nm, copy_size);
1543 /* ensure entire bitmap is zeroed */
1544 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1545 err |= compat_put_bitmap(nmask, bm, nr_bits);
1546 }
1547
1548 return err;
1549}
1550
1551COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1552 compat_ulong_t, maxnode)
1553{
1554 unsigned long __user *nm = NULL;
1555 unsigned long nr_bits, alloc_size;
1556 DECLARE_BITMAP(bm, MAX_NUMNODES);
1557
1558 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1559 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1560
1561 if (nmask) {
1562 if (compat_get_bitmap(bm, nmask, nr_bits))
1563 return -EFAULT;
1564 nm = compat_alloc_user_space(alloc_size);
1565 if (copy_to_user(nm, bm, alloc_size))
1566 return -EFAULT;
1567 }
1568
1569 return sys_set_mempolicy(mode, nm, nr_bits+1);
1570}
1571
1572COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1573 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1574 compat_ulong_t, maxnode, compat_ulong_t, flags)
1575{
1576 unsigned long __user *nm = NULL;
1577 unsigned long nr_bits, alloc_size;
1578 nodemask_t bm;
1579
1580 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1581 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1582
1583 if (nmask) {
1584 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1585 return -EFAULT;
1586 nm = compat_alloc_user_space(alloc_size);
1587 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1588 return -EFAULT;
1589 }
1590
1591 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1592}
1593
1594#endif
1595
1596struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1597 unsigned long addr)
1598{
1599 struct mempolicy *pol = NULL;
1600
1601 if (vma) {
1602 if (vma->vm_ops && vma->vm_ops->get_policy) {
1603 pol = vma->vm_ops->get_policy(vma, addr);
1604 } else if (vma->vm_policy) {
1605 pol = vma->vm_policy;
1606
1607 /*
1608 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1609 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1610 * count on these policies which will be dropped by
1611 * mpol_cond_put() later
1612 */
1613 if (mpol_needs_cond_ref(pol))
1614 mpol_get(pol);
1615 }
1616 }
1617
1618 return pol;
1619}
1620
1621/*
1622 * get_vma_policy(@vma, @addr)
1623 * @vma: virtual memory area whose policy is sought
1624 * @addr: address in @vma for shared policy lookup
1625 *
1626 * Returns effective policy for a VMA at specified address.
1627 * Falls back to current->mempolicy or system default policy, as necessary.
1628 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1629 * count--added by the get_policy() vm_op, as appropriate--to protect against
1630 * freeing by another task. It is the caller's responsibility to free the
1631 * extra reference for shared policies.
1632 */
1633static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1634 unsigned long addr)
1635{
1636 struct mempolicy *pol = __get_vma_policy(vma, addr);
1637
1638 if (!pol)
1639 pol = get_task_policy(current);
1640
1641 return pol;
1642}
1643
1644bool vma_policy_mof(struct vm_area_struct *vma)
1645{
1646 struct mempolicy *pol;
1647
1648 if (vma->vm_ops && vma->vm_ops->get_policy) {
1649 bool ret = false;
1650
1651 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1652 if (pol && (pol->flags & MPOL_F_MOF))
1653 ret = true;
1654 mpol_cond_put(pol);
1655
1656 return ret;
1657 }
1658
1659 pol = vma->vm_policy;
1660 if (!pol)
1661 pol = get_task_policy(current);
1662
1663 return pol->flags & MPOL_F_MOF;
1664}
1665
1666static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1667{
1668 enum zone_type dynamic_policy_zone = policy_zone;
1669
1670 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1671
1672 /*
1673 * if policy->v.nodes has movable memory only,
1674 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1675 *
1676 * policy->v.nodes is intersect with node_states[N_MEMORY].
1677 * so if the following test faile, it implies
1678 * policy->v.nodes has movable memory only.
1679 */
1680 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1681 dynamic_policy_zone = ZONE_MOVABLE;
1682
1683 return zone >= dynamic_policy_zone;
1684}
1685
1686/*
1687 * Return a nodemask representing a mempolicy for filtering nodes for
1688 * page allocation
1689 */
1690static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1691{
1692 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1693 if (unlikely(policy->mode == MPOL_BIND) &&
1694 apply_policy_zone(policy, gfp_zone(gfp)) &&
1695 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1696 return &policy->v.nodes;
1697
1698 return NULL;
1699}
1700
1701/* Return a zonelist indicated by gfp for node representing a mempolicy */
1702static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1703 int nd)
1704{
1705 switch (policy->mode) {
1706 case MPOL_PREFERRED:
1707 if (!(policy->flags & MPOL_F_LOCAL))
1708 nd = policy->v.preferred_node;
1709 break;
1710 case MPOL_BIND:
1711 /*
1712 * Normally, MPOL_BIND allocations are node-local within the
1713 * allowed nodemask. However, if __GFP_THISNODE is set and the
1714 * current node isn't part of the mask, we use the zonelist for
1715 * the first node in the mask instead.
1716 */
1717 if (unlikely(gfp & __GFP_THISNODE) &&
1718 unlikely(!node_isset(nd, policy->v.nodes)))
1719 nd = first_node(policy->v.nodes);
1720 break;
1721 default:
1722 BUG();
1723 }
1724 return node_zonelist(nd, gfp);
1725}
1726
1727/* Do dynamic interleaving for a process */
1728static unsigned interleave_nodes(struct mempolicy *policy)
1729{
1730 unsigned nid, next;
1731 struct task_struct *me = current;
1732
1733 nid = me->il_next;
1734 next = next_node_in(nid, policy->v.nodes);
1735 if (next < MAX_NUMNODES)
1736 me->il_next = next;
1737 return nid;
1738}
1739
1740/*
1741 * Depending on the memory policy provide a node from which to allocate the
1742 * next slab entry.
1743 */
1744unsigned int mempolicy_slab_node(void)
1745{
1746 struct mempolicy *policy;
1747 int node = numa_mem_id();
1748
1749 if (in_interrupt())
1750 return node;
1751
1752 policy = current->mempolicy;
1753 if (!policy || policy->flags & MPOL_F_LOCAL)
1754 return node;
1755
1756 switch (policy->mode) {
1757 case MPOL_PREFERRED:
1758 /*
1759 * handled MPOL_F_LOCAL above
1760 */
1761 return policy->v.preferred_node;
1762
1763 case MPOL_INTERLEAVE:
1764 return interleave_nodes(policy);
1765
1766 case MPOL_BIND: {
1767 struct zoneref *z;
1768
1769 /*
1770 * Follow bind policy behavior and start allocation at the
1771 * first node.
1772 */
1773 struct zonelist *zonelist;
1774 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1775 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1776 z = first_zones_zonelist(zonelist, highest_zoneidx,
1777 &policy->v.nodes);
1778 return z->zone ? z->zone->node : node;
1779 }
1780
1781 default:
1782 BUG();
1783 }
1784}
1785
1786/*
1787 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1788 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1789 * number of present nodes.
1790 */
1791static unsigned offset_il_node(struct mempolicy *pol,
1792 struct vm_area_struct *vma, unsigned long n)
1793{
1794 unsigned nnodes = nodes_weight(pol->v.nodes);
1795 unsigned target;
1796 int i;
1797 int nid;
1798
1799 if (!nnodes)
1800 return numa_node_id();
1801 target = (unsigned int)n % nnodes;
1802 nid = first_node(pol->v.nodes);
1803 for (i = 0; i < target; i++)
1804 nid = next_node(nid, pol->v.nodes);
1805 return nid;
1806}
1807
1808/* Determine a node number for interleave */
1809static inline unsigned interleave_nid(struct mempolicy *pol,
1810 struct vm_area_struct *vma, unsigned long addr, int shift)
1811{
1812 if (vma) {
1813 unsigned long off;
1814
1815 /*
1816 * for small pages, there is no difference between
1817 * shift and PAGE_SHIFT, so the bit-shift is safe.
1818 * for huge pages, since vm_pgoff is in units of small
1819 * pages, we need to shift off the always 0 bits to get
1820 * a useful offset.
1821 */
1822 BUG_ON(shift < PAGE_SHIFT);
1823 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1824 off += (addr - vma->vm_start) >> shift;
1825 return offset_il_node(pol, vma, off);
1826 } else
1827 return interleave_nodes(pol);
1828}
1829
1830#ifdef CONFIG_HUGETLBFS
1831/*
1832 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1833 * @vma: virtual memory area whose policy is sought
1834 * @addr: address in @vma for shared policy lookup and interleave policy
1835 * @gfp_flags: for requested zone
1836 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1837 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1838 *
1839 * Returns a zonelist suitable for a huge page allocation and a pointer
1840 * to the struct mempolicy for conditional unref after allocation.
1841 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1842 * @nodemask for filtering the zonelist.
1843 *
1844 * Must be protected by read_mems_allowed_begin()
1845 */
1846struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1847 gfp_t gfp_flags, struct mempolicy **mpol,
1848 nodemask_t **nodemask)
1849{
1850 struct zonelist *zl;
1851
1852 *mpol = get_vma_policy(vma, addr);
1853 *nodemask = NULL; /* assume !MPOL_BIND */
1854
1855 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1856 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1857 huge_page_shift(hstate_vma(vma))), gfp_flags);
1858 } else {
1859 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1860 if ((*mpol)->mode == MPOL_BIND)
1861 *nodemask = &(*mpol)->v.nodes;
1862 }
1863 return zl;
1864}
1865
1866/*
1867 * init_nodemask_of_mempolicy
1868 *
1869 * If the current task's mempolicy is "default" [NULL], return 'false'
1870 * to indicate default policy. Otherwise, extract the policy nodemask
1871 * for 'bind' or 'interleave' policy into the argument nodemask, or
1872 * initialize the argument nodemask to contain the single node for
1873 * 'preferred' or 'local' policy and return 'true' to indicate presence
1874 * of non-default mempolicy.
1875 *
1876 * We don't bother with reference counting the mempolicy [mpol_get/put]
1877 * because the current task is examining it's own mempolicy and a task's
1878 * mempolicy is only ever changed by the task itself.
1879 *
1880 * N.B., it is the caller's responsibility to free a returned nodemask.
1881 */
1882bool init_nodemask_of_mempolicy(nodemask_t *mask)
1883{
1884 struct mempolicy *mempolicy;
1885 int nid;
1886
1887 if (!(mask && current->mempolicy))
1888 return false;
1889
1890 task_lock(current);
1891 mempolicy = current->mempolicy;
1892 switch (mempolicy->mode) {
1893 case MPOL_PREFERRED:
1894 if (mempolicy->flags & MPOL_F_LOCAL)
1895 nid = numa_node_id();
1896 else
1897 nid = mempolicy->v.preferred_node;
1898 init_nodemask_of_node(mask, nid);
1899 break;
1900
1901 case MPOL_BIND:
1902 /* Fall through */
1903 case MPOL_INTERLEAVE:
1904 *mask = mempolicy->v.nodes;
1905 break;
1906
1907 default:
1908 BUG();
1909 }
1910 task_unlock(current);
1911
1912 return true;
1913}
1914#endif
1915
1916/*
1917 * mempolicy_nodemask_intersects
1918 *
1919 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1920 * policy. Otherwise, check for intersection between mask and the policy
1921 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1922 * policy, always return true since it may allocate elsewhere on fallback.
1923 *
1924 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1925 */
1926bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1927 const nodemask_t *mask)
1928{
1929 struct mempolicy *mempolicy;
1930 bool ret = true;
1931
1932 if (!mask)
1933 return ret;
1934 task_lock(tsk);
1935 mempolicy = tsk->mempolicy;
1936 if (!mempolicy)
1937 goto out;
1938
1939 switch (mempolicy->mode) {
1940 case MPOL_PREFERRED:
1941 /*
1942 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1943 * allocate from, they may fallback to other nodes when oom.
1944 * Thus, it's possible for tsk to have allocated memory from
1945 * nodes in mask.
1946 */
1947 break;
1948 case MPOL_BIND:
1949 case MPOL_INTERLEAVE:
1950 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1951 break;
1952 default:
1953 BUG();
1954 }
1955out:
1956 task_unlock(tsk);
1957 return ret;
1958}
1959
1960/* Allocate a page in interleaved policy.
1961 Own path because it needs to do special accounting. */
1962static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1963 unsigned nid)
1964{
1965 struct zonelist *zl;
1966 struct page *page;
1967
1968 zl = node_zonelist(nid, gfp);
1969 page = __alloc_pages(gfp, order, zl);
1970 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1971 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1972 return page;
1973}
1974
1975/**
1976 * alloc_pages_vma - Allocate a page for a VMA.
1977 *
1978 * @gfp:
1979 * %GFP_USER user allocation.
1980 * %GFP_KERNEL kernel allocations,
1981 * %GFP_HIGHMEM highmem/user allocations,
1982 * %GFP_FS allocation should not call back into a file system.
1983 * %GFP_ATOMIC don't sleep.
1984 *
1985 * @order:Order of the GFP allocation.
1986 * @vma: Pointer to VMA or NULL if not available.
1987 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1988 * @node: Which node to prefer for allocation (modulo policy).
1989 * @hugepage: for hugepages try only the preferred node if possible
1990 *
1991 * This function allocates a page from the kernel page pool and applies
1992 * a NUMA policy associated with the VMA or the current process.
1993 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1994 * mm_struct of the VMA to prevent it from going away. Should be used for
1995 * all allocations for pages that will be mapped into user space. Returns
1996 * NULL when no page can be allocated.
1997 */
1998struct page *
1999alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2000 unsigned long addr, int node, bool hugepage)
2001{
2002 struct mempolicy *pol;
2003 struct page *page;
2004 unsigned int cpuset_mems_cookie;
2005 struct zonelist *zl;
2006 nodemask_t *nmask;
2007
2008retry_cpuset:
2009 pol = get_vma_policy(vma, addr);
2010 cpuset_mems_cookie = read_mems_allowed_begin();
2011
2012 if (pol->mode == MPOL_INTERLEAVE) {
2013 unsigned nid;
2014
2015 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2016 mpol_cond_put(pol);
2017 page = alloc_page_interleave(gfp, order, nid);
2018 goto out;
2019 }
2020
2021 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2022 int hpage_node = node;
2023
2024 /*
2025 * For hugepage allocation and non-interleave policy which
2026 * allows the current node (or other explicitly preferred
2027 * node) we only try to allocate from the current/preferred
2028 * node and don't fall back to other nodes, as the cost of
2029 * remote accesses would likely offset THP benefits.
2030 *
2031 * If the policy is interleave, or does not allow the current
2032 * node in its nodemask, we allocate the standard way.
2033 */
2034 if (pol->mode == MPOL_PREFERRED &&
2035 !(pol->flags & MPOL_F_LOCAL))
2036 hpage_node = pol->v.preferred_node;
2037
2038 nmask = policy_nodemask(gfp, pol);
2039 if (!nmask || node_isset(hpage_node, *nmask)) {
2040 mpol_cond_put(pol);
2041 /*
2042 * We cannot invoke reclaim if __GFP_THISNODE
2043 * is set. Invoking reclaim with
2044 * __GFP_THISNODE set, would cause THP
2045 * allocations to trigger heavy swapping
2046 * despite there may be tons of free memory
2047 * (including potentially plenty of THP
2048 * already available in the buddy) on all the
2049 * other NUMA nodes.
2050 *
2051 * At most we could invoke compaction when
2052 * __GFP_THISNODE is set (but we would need to
2053 * refrain from invoking reclaim even if
2054 * compaction returned COMPACT_SKIPPED because
2055 * there wasn't not enough memory to succeed
2056 * compaction). For now just avoid
2057 * __GFP_THISNODE instead of limiting the
2058 * allocation path to a strict and single
2059 * compaction invocation.
2060 *
2061 * Supposedly if direct reclaim was enabled by
2062 * the caller, the app prefers THP regardless
2063 * of the node it comes from so this would be
2064 * more desiderable behavior than only
2065 * providing THP originated from the local
2066 * node in such case.
2067 */
2068 if (!(gfp & __GFP_DIRECT_RECLAIM))
2069 gfp |= __GFP_THISNODE;
2070 page = __alloc_pages_node(hpage_node, gfp, order);
2071 goto out;
2072 }
2073 }
2074
2075 nmask = policy_nodemask(gfp, pol);
2076 zl = policy_zonelist(gfp, pol, node);
2077 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2078 mpol_cond_put(pol);
2079out:
2080 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2081 goto retry_cpuset;
2082 return page;
2083}
2084
2085/**
2086 * alloc_pages_current - Allocate pages.
2087 *
2088 * @gfp:
2089 * %GFP_USER user allocation,
2090 * %GFP_KERNEL kernel allocation,
2091 * %GFP_HIGHMEM highmem allocation,
2092 * %GFP_FS don't call back into a file system.
2093 * %GFP_ATOMIC don't sleep.
2094 * @order: Power of two of allocation size in pages. 0 is a single page.
2095 *
2096 * Allocate a page from the kernel page pool. When not in
2097 * interrupt context and apply the current process NUMA policy.
2098 * Returns NULL when no page can be allocated.
2099 *
2100 * Don't call cpuset_update_task_memory_state() unless
2101 * 1) it's ok to take cpuset_sem (can WAIT), and
2102 * 2) allocating for current task (not interrupt).
2103 */
2104struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2105{
2106 struct mempolicy *pol = &default_policy;
2107 struct page *page;
2108 unsigned int cpuset_mems_cookie;
2109
2110 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2111 pol = get_task_policy(current);
2112
2113retry_cpuset:
2114 cpuset_mems_cookie = read_mems_allowed_begin();
2115
2116 /*
2117 * No reference counting needed for current->mempolicy
2118 * nor system default_policy
2119 */
2120 if (pol->mode == MPOL_INTERLEAVE)
2121 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2122 else
2123 page = __alloc_pages_nodemask(gfp, order,
2124 policy_zonelist(gfp, pol, numa_node_id()),
2125 policy_nodemask(gfp, pol));
2126
2127 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2128 goto retry_cpuset;
2129
2130 return page;
2131}
2132EXPORT_SYMBOL(alloc_pages_current);
2133
2134int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2135{
2136 struct mempolicy *pol = mpol_dup(vma_policy(src));
2137
2138 if (IS_ERR(pol))
2139 return PTR_ERR(pol);
2140 dst->vm_policy = pol;
2141 return 0;
2142}
2143
2144/*
2145 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2146 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2147 * with the mems_allowed returned by cpuset_mems_allowed(). This
2148 * keeps mempolicies cpuset relative after its cpuset moves. See
2149 * further kernel/cpuset.c update_nodemask().
2150 *
2151 * current's mempolicy may be rebinded by the other task(the task that changes
2152 * cpuset's mems), so we needn't do rebind work for current task.
2153 */
2154
2155/* Slow path of a mempolicy duplicate */
2156struct mempolicy *__mpol_dup(struct mempolicy *old)
2157{
2158 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2159
2160 if (!new)
2161 return ERR_PTR(-ENOMEM);
2162
2163 /* task's mempolicy is protected by alloc_lock */
2164 if (old == current->mempolicy) {
2165 task_lock(current);
2166 *new = *old;
2167 task_unlock(current);
2168 } else
2169 *new = *old;
2170
2171 if (current_cpuset_is_being_rebound()) {
2172 nodemask_t mems = cpuset_mems_allowed(current);
2173 if (new->flags & MPOL_F_REBINDING)
2174 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2175 else
2176 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2177 }
2178 atomic_set(&new->refcnt, 1);
2179 return new;
2180}
2181
2182/* Slow path of a mempolicy comparison */
2183bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2184{
2185 if (!a || !b)
2186 return false;
2187 if (a->mode != b->mode)
2188 return false;
2189 if (a->flags != b->flags)
2190 return false;
2191 if (mpol_store_user_nodemask(a))
2192 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2193 return false;
2194
2195 switch (a->mode) {
2196 case MPOL_BIND:
2197 /* Fall through */
2198 case MPOL_INTERLEAVE:
2199 return !!nodes_equal(a->v.nodes, b->v.nodes);
2200 case MPOL_PREFERRED:
2201 /* a's ->flags is the same as b's */
2202 if (a->flags & MPOL_F_LOCAL)
2203 return true;
2204 return a->v.preferred_node == b->v.preferred_node;
2205 default:
2206 BUG();
2207 return false;
2208 }
2209}
2210
2211/*
2212 * Shared memory backing store policy support.
2213 *
2214 * Remember policies even when nobody has shared memory mapped.
2215 * The policies are kept in Red-Black tree linked from the inode.
2216 * They are protected by the sp->lock rwlock, which should be held
2217 * for any accesses to the tree.
2218 */
2219
2220/*
2221 * lookup first element intersecting start-end. Caller holds sp->lock for
2222 * reading or for writing
2223 */
2224static struct sp_node *
2225sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2226{
2227 struct rb_node *n = sp->root.rb_node;
2228
2229 while (n) {
2230 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2231
2232 if (start >= p->end)
2233 n = n->rb_right;
2234 else if (end <= p->start)
2235 n = n->rb_left;
2236 else
2237 break;
2238 }
2239 if (!n)
2240 return NULL;
2241 for (;;) {
2242 struct sp_node *w = NULL;
2243 struct rb_node *prev = rb_prev(n);
2244 if (!prev)
2245 break;
2246 w = rb_entry(prev, struct sp_node, nd);
2247 if (w->end <= start)
2248 break;
2249 n = prev;
2250 }
2251 return rb_entry(n, struct sp_node, nd);
2252}
2253
2254/*
2255 * Insert a new shared policy into the list. Caller holds sp->lock for
2256 * writing.
2257 */
2258static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2259{
2260 struct rb_node **p = &sp->root.rb_node;
2261 struct rb_node *parent = NULL;
2262 struct sp_node *nd;
2263
2264 while (*p) {
2265 parent = *p;
2266 nd = rb_entry(parent, struct sp_node, nd);
2267 if (new->start < nd->start)
2268 p = &(*p)->rb_left;
2269 else if (new->end > nd->end)
2270 p = &(*p)->rb_right;
2271 else
2272 BUG();
2273 }
2274 rb_link_node(&new->nd, parent, p);
2275 rb_insert_color(&new->nd, &sp->root);
2276 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2277 new->policy ? new->policy->mode : 0);
2278}
2279
2280/* Find shared policy intersecting idx */
2281struct mempolicy *
2282mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2283{
2284 struct mempolicy *pol = NULL;
2285 struct sp_node *sn;
2286
2287 if (!sp->root.rb_node)
2288 return NULL;
2289 read_lock(&sp->lock);
2290 sn = sp_lookup(sp, idx, idx+1);
2291 if (sn) {
2292 mpol_get(sn->policy);
2293 pol = sn->policy;
2294 }
2295 read_unlock(&sp->lock);
2296 return pol;
2297}
2298
2299static void sp_free(struct sp_node *n)
2300{
2301 mpol_put(n->policy);
2302 kmem_cache_free(sn_cache, n);
2303}
2304
2305/**
2306 * mpol_misplaced - check whether current page node is valid in policy
2307 *
2308 * @page: page to be checked
2309 * @vma: vm area where page mapped
2310 * @addr: virtual address where page mapped
2311 *
2312 * Lookup current policy node id for vma,addr and "compare to" page's
2313 * node id.
2314 *
2315 * Returns:
2316 * -1 - not misplaced, page is in the right node
2317 * node - node id where the page should be
2318 *
2319 * Policy determination "mimics" alloc_page_vma().
2320 * Called from fault path where we know the vma and faulting address.
2321 */
2322int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2323{
2324 struct mempolicy *pol;
2325 struct zoneref *z;
2326 int curnid = page_to_nid(page);
2327 unsigned long pgoff;
2328 int thiscpu = raw_smp_processor_id();
2329 int thisnid = cpu_to_node(thiscpu);
2330 int polnid = -1;
2331 int ret = -1;
2332
2333 BUG_ON(!vma);
2334
2335 pol = get_vma_policy(vma, addr);
2336 if (!(pol->flags & MPOL_F_MOF))
2337 goto out;
2338
2339 switch (pol->mode) {
2340 case MPOL_INTERLEAVE:
2341 BUG_ON(addr >= vma->vm_end);
2342 BUG_ON(addr < vma->vm_start);
2343
2344 pgoff = vma->vm_pgoff;
2345 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2346 polnid = offset_il_node(pol, vma, pgoff);
2347 break;
2348
2349 case MPOL_PREFERRED:
2350 if (pol->flags & MPOL_F_LOCAL)
2351 polnid = numa_node_id();
2352 else
2353 polnid = pol->v.preferred_node;
2354 break;
2355
2356 case MPOL_BIND:
2357
2358 /*
2359 * allows binding to multiple nodes.
2360 * use current page if in policy nodemask,
2361 * else select nearest allowed node, if any.
2362 * If no allowed nodes, use current [!misplaced].
2363 */
2364 if (node_isset(curnid, pol->v.nodes))
2365 goto out;
2366 z = first_zones_zonelist(
2367 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2368 gfp_zone(GFP_HIGHUSER),
2369 &pol->v.nodes);
2370 polnid = z->zone->node;
2371 break;
2372
2373 default:
2374 BUG();
2375 }
2376
2377 /* Migrate the page towards the node whose CPU is referencing it */
2378 if (pol->flags & MPOL_F_MORON) {
2379 polnid = thisnid;
2380
2381 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2382 goto out;
2383 }
2384
2385 if (curnid != polnid)
2386 ret = polnid;
2387out:
2388 mpol_cond_put(pol);
2389
2390 return ret;
2391}
2392
2393/*
2394 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2395 * dropped after task->mempolicy is set to NULL so that any allocation done as
2396 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2397 * policy.
2398 */
2399void mpol_put_task_policy(struct task_struct *task)
2400{
2401 struct mempolicy *pol;
2402
2403 task_lock(task);
2404 pol = task->mempolicy;
2405 task->mempolicy = NULL;
2406 task_unlock(task);
2407 mpol_put(pol);
2408}
2409
2410static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2411{
2412 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2413 rb_erase(&n->nd, &sp->root);
2414 sp_free(n);
2415}
2416
2417static void sp_node_init(struct sp_node *node, unsigned long start,
2418 unsigned long end, struct mempolicy *pol)
2419{
2420 node->start = start;
2421 node->end = end;
2422 node->policy = pol;
2423}
2424
2425static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2426 struct mempolicy *pol)
2427{
2428 struct sp_node *n;
2429 struct mempolicy *newpol;
2430
2431 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2432 if (!n)
2433 return NULL;
2434
2435 newpol = mpol_dup(pol);
2436 if (IS_ERR(newpol)) {
2437 kmem_cache_free(sn_cache, n);
2438 return NULL;
2439 }
2440 newpol->flags |= MPOL_F_SHARED;
2441 sp_node_init(n, start, end, newpol);
2442
2443 return n;
2444}
2445
2446/* Replace a policy range. */
2447static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2448 unsigned long end, struct sp_node *new)
2449{
2450 struct sp_node *n;
2451 struct sp_node *n_new = NULL;
2452 struct mempolicy *mpol_new = NULL;
2453 int ret = 0;
2454
2455restart:
2456 write_lock(&sp->lock);
2457 n = sp_lookup(sp, start, end);
2458 /* Take care of old policies in the same range. */
2459 while (n && n->start < end) {
2460 struct rb_node *next = rb_next(&n->nd);
2461 if (n->start >= start) {
2462 if (n->end <= end)
2463 sp_delete(sp, n);
2464 else
2465 n->start = end;
2466 } else {
2467 /* Old policy spanning whole new range. */
2468 if (n->end > end) {
2469 if (!n_new)
2470 goto alloc_new;
2471
2472 *mpol_new = *n->policy;
2473 atomic_set(&mpol_new->refcnt, 1);
2474 sp_node_init(n_new, end, n->end, mpol_new);
2475 n->end = start;
2476 sp_insert(sp, n_new);
2477 n_new = NULL;
2478 mpol_new = NULL;
2479 break;
2480 } else
2481 n->end = start;
2482 }
2483 if (!next)
2484 break;
2485 n = rb_entry(next, struct sp_node, nd);
2486 }
2487 if (new)
2488 sp_insert(sp, new);
2489 write_unlock(&sp->lock);
2490 ret = 0;
2491
2492err_out:
2493 if (mpol_new)
2494 mpol_put(mpol_new);
2495 if (n_new)
2496 kmem_cache_free(sn_cache, n_new);
2497
2498 return ret;
2499
2500alloc_new:
2501 write_unlock(&sp->lock);
2502 ret = -ENOMEM;
2503 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2504 if (!n_new)
2505 goto err_out;
2506 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2507 if (!mpol_new)
2508 goto err_out;
2509 goto restart;
2510}
2511
2512/**
2513 * mpol_shared_policy_init - initialize shared policy for inode
2514 * @sp: pointer to inode shared policy
2515 * @mpol: struct mempolicy to install
2516 *
2517 * Install non-NULL @mpol in inode's shared policy rb-tree.
2518 * On entry, the current task has a reference on a non-NULL @mpol.
2519 * This must be released on exit.
2520 * This is called at get_inode() calls and we can use GFP_KERNEL.
2521 */
2522void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2523{
2524 int ret;
2525
2526 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2527 rwlock_init(&sp->lock);
2528
2529 if (mpol) {
2530 struct vm_area_struct pvma;
2531 struct mempolicy *new;
2532 NODEMASK_SCRATCH(scratch);
2533
2534 if (!scratch)
2535 goto put_mpol;
2536 /* contextualize the tmpfs mount point mempolicy */
2537 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2538 if (IS_ERR(new))
2539 goto free_scratch; /* no valid nodemask intersection */
2540
2541 task_lock(current);
2542 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2543 task_unlock(current);
2544 if (ret)
2545 goto put_new;
2546
2547 /* Create pseudo-vma that contains just the policy */
2548 memset(&pvma, 0, sizeof(struct vm_area_struct));
2549 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2550 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2551
2552put_new:
2553 mpol_put(new); /* drop initial ref */
2554free_scratch:
2555 NODEMASK_SCRATCH_FREE(scratch);
2556put_mpol:
2557 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2558 }
2559}
2560
2561int mpol_set_shared_policy(struct shared_policy *info,
2562 struct vm_area_struct *vma, struct mempolicy *npol)
2563{
2564 int err;
2565 struct sp_node *new = NULL;
2566 unsigned long sz = vma_pages(vma);
2567
2568 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2569 vma->vm_pgoff,
2570 sz, npol ? npol->mode : -1,
2571 npol ? npol->flags : -1,
2572 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2573
2574 if (npol) {
2575 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2576 if (!new)
2577 return -ENOMEM;
2578 }
2579 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2580 if (err && new)
2581 sp_free(new);
2582 return err;
2583}
2584
2585/* Free a backing policy store on inode delete. */
2586void mpol_free_shared_policy(struct shared_policy *p)
2587{
2588 struct sp_node *n;
2589 struct rb_node *next;
2590
2591 if (!p->root.rb_node)
2592 return;
2593 write_lock(&p->lock);
2594 next = rb_first(&p->root);
2595 while (next) {
2596 n = rb_entry(next, struct sp_node, nd);
2597 next = rb_next(&n->nd);
2598 sp_delete(p, n);
2599 }
2600 write_unlock(&p->lock);
2601}
2602
2603#ifdef CONFIG_NUMA_BALANCING
2604static int __initdata numabalancing_override;
2605
2606static void __init check_numabalancing_enable(void)
2607{
2608 bool numabalancing_default = false;
2609
2610 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2611 numabalancing_default = true;
2612
2613 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2614 if (numabalancing_override)
2615 set_numabalancing_state(numabalancing_override == 1);
2616
2617 if (num_online_nodes() > 1 && !numabalancing_override) {
2618 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2619 numabalancing_default ? "Enabling" : "Disabling");
2620 set_numabalancing_state(numabalancing_default);
2621 }
2622}
2623
2624static int __init setup_numabalancing(char *str)
2625{
2626 int ret = 0;
2627 if (!str)
2628 goto out;
2629
2630 if (!strcmp(str, "enable")) {
2631 numabalancing_override = 1;
2632 ret = 1;
2633 } else if (!strcmp(str, "disable")) {
2634 numabalancing_override = -1;
2635 ret = 1;
2636 }
2637out:
2638 if (!ret)
2639 pr_warn("Unable to parse numa_balancing=\n");
2640
2641 return ret;
2642}
2643__setup("numa_balancing=", setup_numabalancing);
2644#else
2645static inline void __init check_numabalancing_enable(void)
2646{
2647}
2648#endif /* CONFIG_NUMA_BALANCING */
2649
2650/* assumes fs == KERNEL_DS */
2651void __init numa_policy_init(void)
2652{
2653 nodemask_t interleave_nodes;
2654 unsigned long largest = 0;
2655 int nid, prefer = 0;
2656
2657 policy_cache = kmem_cache_create("numa_policy",
2658 sizeof(struct mempolicy),
2659 0, SLAB_PANIC, NULL);
2660
2661 sn_cache = kmem_cache_create("shared_policy_node",
2662 sizeof(struct sp_node),
2663 0, SLAB_PANIC, NULL);
2664
2665 for_each_node(nid) {
2666 preferred_node_policy[nid] = (struct mempolicy) {
2667 .refcnt = ATOMIC_INIT(1),
2668 .mode = MPOL_PREFERRED,
2669 .flags = MPOL_F_MOF | MPOL_F_MORON,
2670 .v = { .preferred_node = nid, },
2671 };
2672 }
2673
2674 /*
2675 * Set interleaving policy for system init. Interleaving is only
2676 * enabled across suitably sized nodes (default is >= 16MB), or
2677 * fall back to the largest node if they're all smaller.
2678 */
2679 nodes_clear(interleave_nodes);
2680 for_each_node_state(nid, N_MEMORY) {
2681 unsigned long total_pages = node_present_pages(nid);
2682
2683 /* Preserve the largest node */
2684 if (largest < total_pages) {
2685 largest = total_pages;
2686 prefer = nid;
2687 }
2688
2689 /* Interleave this node? */
2690 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2691 node_set(nid, interleave_nodes);
2692 }
2693
2694 /* All too small, use the largest */
2695 if (unlikely(nodes_empty(interleave_nodes)))
2696 node_set(prefer, interleave_nodes);
2697
2698 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2699 pr_err("%s: interleaving failed\n", __func__);
2700
2701 check_numabalancing_enable();
2702}
2703
2704/* Reset policy of current process to default */
2705void numa_default_policy(void)
2706{
2707 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2708}
2709
2710/*
2711 * Parse and format mempolicy from/to strings
2712 */
2713
2714/*
2715 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2716 */
2717static const char * const policy_modes[] =
2718{
2719 [MPOL_DEFAULT] = "default",
2720 [MPOL_PREFERRED] = "prefer",
2721 [MPOL_BIND] = "bind",
2722 [MPOL_INTERLEAVE] = "interleave",
2723 [MPOL_LOCAL] = "local",
2724};
2725
2726
2727#ifdef CONFIG_TMPFS
2728/**
2729 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2730 * @str: string containing mempolicy to parse
2731 * @mpol: pointer to struct mempolicy pointer, returned on success.
2732 *
2733 * Format of input:
2734 * <mode>[=<flags>][:<nodelist>]
2735 *
2736 * On success, returns 0, else 1
2737 */
2738int mpol_parse_str(char *str, struct mempolicy **mpol)
2739{
2740 struct mempolicy *new = NULL;
2741 unsigned short mode;
2742 unsigned short mode_flags;
2743 nodemask_t nodes;
2744 char *nodelist = strchr(str, ':');
2745 char *flags = strchr(str, '=');
2746 int err = 1;
2747
2748 if (nodelist) {
2749 /* NUL-terminate mode or flags string */
2750 *nodelist++ = '\0';
2751 if (nodelist_parse(nodelist, nodes))
2752 goto out;
2753 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2754 goto out;
2755 } else
2756 nodes_clear(nodes);
2757
2758 if (flags)
2759 *flags++ = '\0'; /* terminate mode string */
2760
2761 for (mode = 0; mode < MPOL_MAX; mode++) {
2762 if (!strcmp(str, policy_modes[mode])) {
2763 break;
2764 }
2765 }
2766 if (mode >= MPOL_MAX)
2767 goto out;
2768
2769 switch (mode) {
2770 case MPOL_PREFERRED:
2771 /*
2772 * Insist on a nodelist of one node only
2773 */
2774 if (nodelist) {
2775 char *rest = nodelist;
2776 while (isdigit(*rest))
2777 rest++;
2778 if (*rest)
2779 goto out;
2780 }
2781 break;
2782 case MPOL_INTERLEAVE:
2783 /*
2784 * Default to online nodes with memory if no nodelist
2785 */
2786 if (!nodelist)
2787 nodes = node_states[N_MEMORY];
2788 break;
2789 case MPOL_LOCAL:
2790 /*
2791 * Don't allow a nodelist; mpol_new() checks flags
2792 */
2793 if (nodelist)
2794 goto out;
2795 mode = MPOL_PREFERRED;
2796 break;
2797 case MPOL_DEFAULT:
2798 /*
2799 * Insist on a empty nodelist
2800 */
2801 if (!nodelist)
2802 err = 0;
2803 goto out;
2804 case MPOL_BIND:
2805 /*
2806 * Insist on a nodelist
2807 */
2808 if (!nodelist)
2809 goto out;
2810 }
2811
2812 mode_flags = 0;
2813 if (flags) {
2814 /*
2815 * Currently, we only support two mutually exclusive
2816 * mode flags.
2817 */
2818 if (!strcmp(flags, "static"))
2819 mode_flags |= MPOL_F_STATIC_NODES;
2820 else if (!strcmp(flags, "relative"))
2821 mode_flags |= MPOL_F_RELATIVE_NODES;
2822 else
2823 goto out;
2824 }
2825
2826 new = mpol_new(mode, mode_flags, &nodes);
2827 if (IS_ERR(new))
2828 goto out;
2829
2830 /*
2831 * Save nodes for mpol_to_str() to show the tmpfs mount options
2832 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2833 */
2834 if (mode != MPOL_PREFERRED)
2835 new->v.nodes = nodes;
2836 else if (nodelist)
2837 new->v.preferred_node = first_node(nodes);
2838 else
2839 new->flags |= MPOL_F_LOCAL;
2840
2841 /*
2842 * Save nodes for contextualization: this will be used to "clone"
2843 * the mempolicy in a specific context [cpuset] at a later time.
2844 */
2845 new->w.user_nodemask = nodes;
2846
2847 err = 0;
2848
2849out:
2850 /* Restore string for error message */
2851 if (nodelist)
2852 *--nodelist = ':';
2853 if (flags)
2854 *--flags = '=';
2855 if (!err)
2856 *mpol = new;
2857 return err;
2858}
2859#endif /* CONFIG_TMPFS */
2860
2861/**
2862 * mpol_to_str - format a mempolicy structure for printing
2863 * @buffer: to contain formatted mempolicy string
2864 * @maxlen: length of @buffer
2865 * @pol: pointer to mempolicy to be formatted
2866 *
2867 * Convert @pol into a string. If @buffer is too short, truncate the string.
2868 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2869 * longest flag, "relative", and to display at least a few node ids.
2870 */
2871void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2872{
2873 char *p = buffer;
2874 nodemask_t nodes = NODE_MASK_NONE;
2875 unsigned short mode = MPOL_DEFAULT;
2876 unsigned short flags = 0;
2877
2878 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2879 mode = pol->mode;
2880 flags = pol->flags;
2881 }
2882
2883 switch (mode) {
2884 case MPOL_DEFAULT:
2885 break;
2886 case MPOL_PREFERRED:
2887 if (flags & MPOL_F_LOCAL)
2888 mode = MPOL_LOCAL;
2889 else
2890 node_set(pol->v.preferred_node, nodes);
2891 break;
2892 case MPOL_BIND:
2893 case MPOL_INTERLEAVE:
2894 nodes = pol->v.nodes;
2895 break;
2896 default:
2897 WARN_ON_ONCE(1);
2898 snprintf(p, maxlen, "unknown");
2899 return;
2900 }
2901
2902 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2903
2904 if (flags & MPOL_MODE_FLAGS) {
2905 p += snprintf(p, buffer + maxlen - p, "=");
2906
2907 /*
2908 * Currently, the only defined flags are mutually exclusive
2909 */
2910 if (flags & MPOL_F_STATIC_NODES)
2911 p += snprintf(p, buffer + maxlen - p, "static");
2912 else if (flags & MPOL_F_RELATIVE_NODES)
2913 p += snprintf(p, buffer + maxlen - p, "relative");
2914 }
2915
2916 if (!nodes_empty(nodes))
2917 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2918 nodemask_pr_args(&nodes));
2919}
2920