summaryrefslogtreecommitdiff
path: root/mm/migrate.c (plain)
blob: 24485f5ec498dc48fb40e8d4f23d689cde5da357
1/*
2 * Memory Migration functionality - linux/mm/migrate.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15#include <linux/migrate.h>
16#include <linux/export.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/pagemap.h>
20#include <linux/buffer_head.h>
21#include <linux/mm_inline.h>
22#include <linux/nsproxy.h>
23#include <linux/pagevec.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
29#include <linux/writeback.h>
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
32#include <linux/security.h>
33#include <linux/backing-dev.h>
34#include <linux/compaction.h>
35#include <linux/syscalls.h>
36#include <linux/hugetlb.h>
37#include <linux/hugetlb_cgroup.h>
38#include <linux/gfp.h>
39#include <linux/balloon_compaction.h>
40#include <linux/mmu_notifier.h>
41#include <linux/page_idle.h>
42#include <linux/page_owner.h>
43#include <linux/ptrace.h>
44#ifdef CONFIG_AMLOGIC_CMA
45#include <linux/delay.h>
46#endif
47
48#include <asm/tlbflush.h>
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/migrate.h>
52
53#include "internal.h"
54
55/*
56 * migrate_prep() needs to be called before we start compiling a list of pages
57 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
58 * undesirable, use migrate_prep_local()
59 */
60int migrate_prep(void)
61{
62 /*
63 * Clear the LRU lists so pages can be isolated.
64 * Note that pages may be moved off the LRU after we have
65 * drained them. Those pages will fail to migrate like other
66 * pages that may be busy.
67 */
68 lru_add_drain_all();
69
70 return 0;
71}
72
73/* Do the necessary work of migrate_prep but not if it involves other CPUs */
74int migrate_prep_local(void)
75{
76 lru_add_drain();
77
78 return 0;
79}
80
81bool isolate_movable_page(struct page *page, isolate_mode_t mode)
82{
83 struct address_space *mapping;
84
85 /*
86 * Avoid burning cycles with pages that are yet under __free_pages(),
87 * or just got freed under us.
88 *
89 * In case we 'win' a race for a movable page being freed under us and
90 * raise its refcount preventing __free_pages() from doing its job
91 * the put_page() at the end of this block will take care of
92 * release this page, thus avoiding a nasty leakage.
93 */
94 if (unlikely(!get_page_unless_zero(page)))
95 goto out;
96
97 /*
98 * Check PageMovable before holding a PG_lock because page's owner
99 * assumes anybody doesn't touch PG_lock of newly allocated page
100 * so unconditionally grapping the lock ruins page's owner side.
101 */
102 if (unlikely(!__PageMovable(page)))
103 goto out_putpage;
104 /*
105 * As movable pages are not isolated from LRU lists, concurrent
106 * compaction threads can race against page migration functions
107 * as well as race against the releasing a page.
108 *
109 * In order to avoid having an already isolated movable page
110 * being (wrongly) re-isolated while it is under migration,
111 * or to avoid attempting to isolate pages being released,
112 * lets be sure we have the page lock
113 * before proceeding with the movable page isolation steps.
114 */
115 if (unlikely(!trylock_page(page)))
116 goto out_putpage;
117
118 if (!PageMovable(page) || PageIsolated(page))
119 goto out_no_isolated;
120
121 mapping = page_mapping(page);
122 VM_BUG_ON_PAGE(!mapping, page);
123
124 if (!mapping->a_ops->isolate_page(page, mode))
125 goto out_no_isolated;
126
127 /* Driver shouldn't use PG_isolated bit of page->flags */
128 WARN_ON_ONCE(PageIsolated(page));
129 __SetPageIsolated(page);
130 unlock_page(page);
131
132 return true;
133
134out_no_isolated:
135 unlock_page(page);
136out_putpage:
137 put_page(page);
138out:
139 return false;
140}
141
142/* It should be called on page which is PG_movable */
143void putback_movable_page(struct page *page)
144{
145 struct address_space *mapping;
146
147 VM_BUG_ON_PAGE(!PageLocked(page), page);
148 VM_BUG_ON_PAGE(!PageMovable(page), page);
149 VM_BUG_ON_PAGE(!PageIsolated(page), page);
150
151 mapping = page_mapping(page);
152 mapping->a_ops->putback_page(page);
153 __ClearPageIsolated(page);
154}
155
156/*
157 * Put previously isolated pages back onto the appropriate lists
158 * from where they were once taken off for compaction/migration.
159 *
160 * This function shall be used whenever the isolated pageset has been
161 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
162 * and isolate_huge_page().
163 */
164void putback_movable_pages(struct list_head *l)
165{
166 struct page *page;
167 struct page *page2;
168
169 list_for_each_entry_safe(page, page2, l, lru) {
170 #ifdef CONFIG_AMLOGIC_CMA
171 if (PageCmaAllocating(page)) /* migrate/reclaim failed */
172 ClearPageCmaAllocating(page);
173 #endif
174 if (unlikely(PageHuge(page))) {
175 putback_active_hugepage(page);
176 continue;
177 }
178 list_del(&page->lru);
179 /*
180 * We isolated non-lru movable page so here we can use
181 * __PageMovable because LRU page's mapping cannot have
182 * PAGE_MAPPING_MOVABLE.
183 */
184 if (unlikely(__PageMovable(page))) {
185 VM_BUG_ON_PAGE(!PageIsolated(page), page);
186 lock_page(page);
187 if (PageMovable(page))
188 putback_movable_page(page);
189 else
190 __ClearPageIsolated(page);
191 unlock_page(page);
192 put_page(page);
193 } else {
194 dec_node_page_state(page, NR_ISOLATED_ANON +
195 page_is_file_cache(page));
196 putback_lru_page(page);
197 }
198 }
199}
200
201/*
202 * Restore a potential migration pte to a working pte entry
203 */
204static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
205 unsigned long addr, void *old)
206{
207 struct mm_struct *mm = vma->vm_mm;
208 swp_entry_t entry;
209 pmd_t *pmd;
210 pte_t *ptep, pte;
211 spinlock_t *ptl;
212
213 if (unlikely(PageHuge(new))) {
214 ptep = huge_pte_offset(mm, addr);
215 if (!ptep)
216 goto out;
217 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
218 } else {
219 pmd = mm_find_pmd(mm, addr);
220 if (!pmd)
221 goto out;
222
223 ptep = pte_offset_map(pmd, addr);
224
225 /*
226 * Peek to check is_swap_pte() before taking ptlock? No, we
227 * can race mremap's move_ptes(), which skips anon_vma lock.
228 */
229
230 ptl = pte_lockptr(mm, pmd);
231 }
232
233 spin_lock(ptl);
234 pte = *ptep;
235 if (!is_swap_pte(pte))
236 goto unlock;
237
238 entry = pte_to_swp_entry(pte);
239
240 if (!is_migration_entry(entry) ||
241 migration_entry_to_page(entry) != old)
242 goto unlock;
243
244 get_page(new);
245 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
246 if (pte_swp_soft_dirty(*ptep))
247 pte = pte_mksoft_dirty(pte);
248
249 /* Recheck VMA as permissions can change since migration started */
250 if (is_write_migration_entry(entry))
251 pte = maybe_mkwrite(pte, vma);
252
253#ifdef CONFIG_HUGETLB_PAGE
254 if (PageHuge(new)) {
255 pte = pte_mkhuge(pte);
256 pte = arch_make_huge_pte(pte, vma, new, 0);
257 }
258#endif
259 flush_dcache_page(new);
260 set_pte_at(mm, addr, ptep, pte);
261
262 if (PageHuge(new)) {
263 if (PageAnon(new))
264 hugepage_add_anon_rmap(new, vma, addr);
265 else
266 page_dup_rmap(new, true);
267 } else if (PageAnon(new))
268 page_add_anon_rmap(new, vma, addr, false);
269 else
270 page_add_file_rmap(new, false);
271
272 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
273 mlock_vma_page(new);
274
275 /* No need to invalidate - it was non-present before */
276 update_mmu_cache(vma, addr, ptep);
277unlock:
278 pte_unmap_unlock(ptep, ptl);
279out:
280 return SWAP_AGAIN;
281}
282
283/*
284 * Get rid of all migration entries and replace them by
285 * references to the indicated page.
286 */
287void remove_migration_ptes(struct page *old, struct page *new, bool locked)
288{
289 struct rmap_walk_control rwc = {
290 .rmap_one = remove_migration_pte,
291 .arg = old,
292 };
293
294 if (locked)
295 rmap_walk_locked(new, &rwc);
296 else
297 rmap_walk(new, &rwc);
298}
299
300/*
301 * Something used the pte of a page under migration. We need to
302 * get to the page and wait until migration is finished.
303 * When we return from this function the fault will be retried.
304 */
305void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
306 spinlock_t *ptl)
307{
308 pte_t pte;
309 swp_entry_t entry;
310 struct page *page;
311#ifdef CONFIG_AMLOGIC_CMA
312 bool need_wait = 0;
313#endif
314
315 spin_lock(ptl);
316 pte = *ptep;
317 if (!is_swap_pte(pte))
318 goto out;
319
320 entry = pte_to_swp_entry(pte);
321 if (!is_migration_entry(entry))
322 goto out;
323
324 page = migration_entry_to_page(entry);
325#ifdef CONFIG_AMLOGIC_CMA
326 /* This page is under cma allocating, do not increase it ref */
327 if (PageCmaAllocating(page)) {
328 pr_debug("%s, Page:%lx, flags:%lx, m:%d, c:%d, map:%p\n",
329 __func__, page_to_pfn(page), page->flags,
330 page_mapcount(page), page_count(page),
331 page->mapping);
332 need_wait = 1;
333 goto out;
334 }
335#endif
336
337 /*
338 * Once radix-tree replacement of page migration started, page_count
339 * *must* be zero. And, we don't want to call wait_on_page_locked()
340 * against a page without get_page().
341 * So, we use get_page_unless_zero(), here. Even failed, page fault
342 * will occur again.
343 */
344 if (!get_page_unless_zero(page))
345 goto out;
346 pte_unmap_unlock(ptep, ptl);
347 wait_on_page_locked(page);
348 put_page(page);
349 return;
350out:
351 pte_unmap_unlock(ptep, ptl);
352#ifdef CONFIG_AMLOGIC_CMA
353 if (need_wait)
354 usleep_range(1000, 1100);
355#endif
356}
357
358void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
359 unsigned long address)
360{
361 spinlock_t *ptl = pte_lockptr(mm, pmd);
362 pte_t *ptep = pte_offset_map(pmd, address);
363 __migration_entry_wait(mm, ptep, ptl);
364}
365
366void migration_entry_wait_huge(struct vm_area_struct *vma,
367 struct mm_struct *mm, pte_t *pte)
368{
369 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
370 __migration_entry_wait(mm, pte, ptl);
371}
372
373#ifdef CONFIG_BLOCK
374/* Returns true if all buffers are successfully locked */
375static bool buffer_migrate_lock_buffers(struct buffer_head *head,
376 enum migrate_mode mode)
377{
378 struct buffer_head *bh = head;
379
380 /* Simple case, sync compaction */
381 if (mode != MIGRATE_ASYNC) {
382 do {
383 get_bh(bh);
384 lock_buffer(bh);
385 bh = bh->b_this_page;
386
387 } while (bh != head);
388
389 return true;
390 }
391
392 /* async case, we cannot block on lock_buffer so use trylock_buffer */
393 do {
394 get_bh(bh);
395 if (!trylock_buffer(bh)) {
396 /*
397 * We failed to lock the buffer and cannot stall in
398 * async migration. Release the taken locks
399 */
400 struct buffer_head *failed_bh = bh;
401 put_bh(failed_bh);
402 bh = head;
403 while (bh != failed_bh) {
404 unlock_buffer(bh);
405 put_bh(bh);
406 bh = bh->b_this_page;
407 }
408 return false;
409 }
410
411 bh = bh->b_this_page;
412 } while (bh != head);
413 return true;
414}
415#else
416static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
417 enum migrate_mode mode)
418{
419 return true;
420}
421#endif /* CONFIG_BLOCK */
422
423/*
424 * Replace the page in the mapping.
425 *
426 * The number of remaining references must be:
427 * 1 for anonymous pages without a mapping
428 * 2 for pages with a mapping
429 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
430 */
431int migrate_page_move_mapping(struct address_space *mapping,
432 struct page *newpage, struct page *page,
433 struct buffer_head *head, enum migrate_mode mode,
434 int extra_count)
435{
436 struct zone *oldzone, *newzone;
437 int dirty;
438 int expected_count = 1 + extra_count;
439 void **pslot;
440
441 if (!mapping) {
442 /* Anonymous page without mapping */
443 #ifdef CONFIG_AMLOGIC_CMA
444 if (page_count(page) != expected_count)
445 cma_debug(2, page, " anon page cnt miss match, e:%d\n",
446 expected_count);
447 #endif
448 if (page_count(page) != expected_count)
449 return -EAGAIN;
450
451 /* No turning back from here */
452 newpage->index = page->index;
453 newpage->mapping = page->mapping;
454 if (PageSwapBacked(page))
455 __SetPageSwapBacked(newpage);
456
457 return MIGRATEPAGE_SUCCESS;
458 }
459
460 oldzone = page_zone(page);
461 newzone = page_zone(newpage);
462
463 spin_lock_irq(&mapping->tree_lock);
464
465 pslot = radix_tree_lookup_slot(&mapping->page_tree,
466 page_index(page));
467
468 expected_count += 1 + page_has_private(page);
469 if (page_count(page) != expected_count ||
470 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
471 spin_unlock_irq(&mapping->tree_lock);
472 #ifdef CONFIG_AMLOGIC_CMA
473 cma_debug(2, page, " file page cnt miss match, e:%d, p:%d\n",
474 expected_count, page_has_private(page));
475 #endif
476 return -EAGAIN;
477 }
478
479 if (!page_ref_freeze(page, expected_count)) {
480 spin_unlock_irq(&mapping->tree_lock);
481 return -EAGAIN;
482 }
483
484 /*
485 * In the async migration case of moving a page with buffers, lock the
486 * buffers using trylock before the mapping is moved. If the mapping
487 * was moved, we later failed to lock the buffers and could not move
488 * the mapping back due to an elevated page count, we would have to
489 * block waiting on other references to be dropped.
490 */
491 if (mode == MIGRATE_ASYNC && head &&
492 !buffer_migrate_lock_buffers(head, mode)) {
493 page_ref_unfreeze(page, expected_count);
494 spin_unlock_irq(&mapping->tree_lock);
495 return -EAGAIN;
496 }
497
498 /*
499 * Now we know that no one else is looking at the page:
500 * no turning back from here.
501 */
502 newpage->index = page->index;
503 newpage->mapping = page->mapping;
504 if (PageSwapBacked(page))
505 __SetPageSwapBacked(newpage);
506
507 get_page(newpage); /* add cache reference */
508 if (PageSwapCache(page)) {
509 SetPageSwapCache(newpage);
510 set_page_private(newpage, page_private(page));
511 }
512
513 /* Move dirty while page refs frozen and newpage not yet exposed */
514 dirty = PageDirty(page);
515 if (dirty) {
516 ClearPageDirty(page);
517 SetPageDirty(newpage);
518 }
519
520 radix_tree_replace_slot(pslot, newpage);
521
522 /*
523 * Drop cache reference from old page by unfreezing
524 * to one less reference.
525 * We know this isn't the last reference.
526 */
527 page_ref_unfreeze(page, expected_count - 1);
528
529 spin_unlock(&mapping->tree_lock);
530 /* Leave irq disabled to prevent preemption while updating stats */
531
532 /*
533 * If moved to a different zone then also account
534 * the page for that zone. Other VM counters will be
535 * taken care of when we establish references to the
536 * new page and drop references to the old page.
537 *
538 * Note that anonymous pages are accounted for
539 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
540 * are mapped to swap space.
541 */
542 if (newzone != oldzone) {
543 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
544 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
545 if (PageSwapBacked(page) && !PageSwapCache(page)) {
546 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
547 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
548 }
549 if (dirty && mapping_cap_account_dirty(mapping)) {
550 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
551 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
552 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
553 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
554 }
555 }
556 local_irq_enable();
557
558 return MIGRATEPAGE_SUCCESS;
559}
560EXPORT_SYMBOL(migrate_page_move_mapping);
561
562/*
563 * The expected number of remaining references is the same as that
564 * of migrate_page_move_mapping().
565 */
566int migrate_huge_page_move_mapping(struct address_space *mapping,
567 struct page *newpage, struct page *page)
568{
569 int expected_count;
570 void **pslot;
571
572 spin_lock_irq(&mapping->tree_lock);
573
574 pslot = radix_tree_lookup_slot(&mapping->page_tree,
575 page_index(page));
576
577 expected_count = 2 + page_has_private(page);
578 if (page_count(page) != expected_count ||
579 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
580 spin_unlock_irq(&mapping->tree_lock);
581 return -EAGAIN;
582 }
583
584 if (!page_ref_freeze(page, expected_count)) {
585 spin_unlock_irq(&mapping->tree_lock);
586 return -EAGAIN;
587 }
588
589 newpage->index = page->index;
590 newpage->mapping = page->mapping;
591
592 get_page(newpage);
593
594 radix_tree_replace_slot(pslot, newpage);
595
596 page_ref_unfreeze(page, expected_count - 1);
597
598 spin_unlock_irq(&mapping->tree_lock);
599
600 return MIGRATEPAGE_SUCCESS;
601}
602
603/*
604 * Gigantic pages are so large that we do not guarantee that page++ pointer
605 * arithmetic will work across the entire page. We need something more
606 * specialized.
607 */
608static void __copy_gigantic_page(struct page *dst, struct page *src,
609 int nr_pages)
610{
611 int i;
612 struct page *dst_base = dst;
613 struct page *src_base = src;
614
615 for (i = 0; i < nr_pages; ) {
616 cond_resched();
617 copy_highpage(dst, src);
618
619 i++;
620 dst = mem_map_next(dst, dst_base, i);
621 src = mem_map_next(src, src_base, i);
622 }
623}
624
625static void copy_huge_page(struct page *dst, struct page *src)
626{
627 int i;
628 int nr_pages;
629
630 if (PageHuge(src)) {
631 /* hugetlbfs page */
632 struct hstate *h = page_hstate(src);
633 nr_pages = pages_per_huge_page(h);
634
635 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
636 __copy_gigantic_page(dst, src, nr_pages);
637 return;
638 }
639 } else {
640 /* thp page */
641 BUG_ON(!PageTransHuge(src));
642 nr_pages = hpage_nr_pages(src);
643 }
644
645 for (i = 0; i < nr_pages; i++) {
646 cond_resched();
647 copy_highpage(dst + i, src + i);
648 }
649}
650
651/*
652 * Copy the page to its new location
653 */
654void migrate_page_copy(struct page *newpage, struct page *page)
655{
656 int cpupid;
657
658 if (PageHuge(page) || PageTransHuge(page))
659 copy_huge_page(newpage, page);
660 else
661 copy_highpage(newpage, page);
662
663 if (PageError(page))
664 SetPageError(newpage);
665 if (PageReferenced(page))
666 SetPageReferenced(newpage);
667 if (PageUptodate(page))
668 SetPageUptodate(newpage);
669 if (TestClearPageActive(page)) {
670 VM_BUG_ON_PAGE(PageUnevictable(page), page);
671 SetPageActive(newpage);
672 } else if (TestClearPageUnevictable(page))
673 SetPageUnevictable(newpage);
674 if (PageWorkingset(page))
675 SetPageWorkingset(newpage);
676 if (PageChecked(page))
677 SetPageChecked(newpage);
678 if (PageMappedToDisk(page))
679 SetPageMappedToDisk(newpage);
680
681 /* Move dirty on pages not done by migrate_page_move_mapping() */
682 if (PageDirty(page))
683 SetPageDirty(newpage);
684
685 if (page_is_young(page))
686 set_page_young(newpage);
687 if (page_is_idle(page))
688 set_page_idle(newpage);
689
690 /*
691 * Copy NUMA information to the new page, to prevent over-eager
692 * future migrations of this same page.
693 */
694 cpupid = page_cpupid_xchg_last(page, -1);
695 page_cpupid_xchg_last(newpage, cpupid);
696
697 ksm_migrate_page(newpage, page);
698 /*
699 * Please do not reorder this without considering how mm/ksm.c's
700 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
701 */
702 if (PageSwapCache(page))
703 ClearPageSwapCache(page);
704 ClearPagePrivate(page);
705 set_page_private(page, 0);
706
707 /*
708 * If any waiters have accumulated on the new page then
709 * wake them up.
710 */
711 if (PageWriteback(newpage))
712 end_page_writeback(newpage);
713
714 copy_page_owner(page, newpage);
715
716 mem_cgroup_migrate(page, newpage);
717}
718EXPORT_SYMBOL(migrate_page_copy);
719
720/************************************************************
721 * Migration functions
722 ***********************************************************/
723
724/*
725 * Common logic to directly migrate a single LRU page suitable for
726 * pages that do not use PagePrivate/PagePrivate2.
727 *
728 * Pages are locked upon entry and exit.
729 */
730int migrate_page(struct address_space *mapping,
731 struct page *newpage, struct page *page,
732 enum migrate_mode mode)
733{
734 int rc;
735
736 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
737
738 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
739
740 if (rc != MIGRATEPAGE_SUCCESS)
741 return rc;
742
743 migrate_page_copy(newpage, page);
744 return MIGRATEPAGE_SUCCESS;
745}
746EXPORT_SYMBOL(migrate_page);
747
748#ifdef CONFIG_BLOCK
749/*
750 * Migration function for pages with buffers. This function can only be used
751 * if the underlying filesystem guarantees that no other references to "page"
752 * exist.
753 */
754int buffer_migrate_page(struct address_space *mapping,
755 struct page *newpage, struct page *page, enum migrate_mode mode)
756{
757 struct buffer_head *bh, *head;
758 int rc;
759
760 if (!page_has_buffers(page))
761 return migrate_page(mapping, newpage, page, mode);
762
763 head = page_buffers(page);
764
765 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
766
767 if (rc != MIGRATEPAGE_SUCCESS)
768 return rc;
769
770 /*
771 * In the async case, migrate_page_move_mapping locked the buffers
772 * with an IRQ-safe spinlock held. In the sync case, the buffers
773 * need to be locked now
774 */
775 if (mode != MIGRATE_ASYNC)
776 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
777
778 ClearPagePrivate(page);
779 set_page_private(newpage, page_private(page));
780 set_page_private(page, 0);
781 put_page(page);
782 get_page(newpage);
783
784 bh = head;
785 do {
786 set_bh_page(bh, newpage, bh_offset(bh));
787 bh = bh->b_this_page;
788
789 } while (bh != head);
790
791 SetPagePrivate(newpage);
792
793 migrate_page_copy(newpage, page);
794
795 bh = head;
796 do {
797 unlock_buffer(bh);
798 put_bh(bh);
799 bh = bh->b_this_page;
800
801 } while (bh != head);
802
803 return MIGRATEPAGE_SUCCESS;
804}
805EXPORT_SYMBOL(buffer_migrate_page);
806#endif
807
808/*
809 * Writeback a page to clean the dirty state
810 */
811static int writeout(struct address_space *mapping, struct page *page)
812{
813 struct writeback_control wbc = {
814 .sync_mode = WB_SYNC_NONE,
815 .nr_to_write = 1,
816 .range_start = 0,
817 .range_end = LLONG_MAX,
818 .for_reclaim = 1
819 };
820 int rc;
821
822 if (!mapping->a_ops->writepage)
823 /* No write method for the address space */
824 return -EINVAL;
825
826 if (!clear_page_dirty_for_io(page))
827 /* Someone else already triggered a write */
828 return -EAGAIN;
829
830 /*
831 * A dirty page may imply that the underlying filesystem has
832 * the page on some queue. So the page must be clean for
833 * migration. Writeout may mean we loose the lock and the
834 * page state is no longer what we checked for earlier.
835 * At this point we know that the migration attempt cannot
836 * be successful.
837 */
838 remove_migration_ptes(page, page, false);
839
840 rc = mapping->a_ops->writepage(page, &wbc);
841
842 if (rc != AOP_WRITEPAGE_ACTIVATE)
843 /* unlocked. Relock */
844 lock_page(page);
845
846 return (rc < 0) ? -EIO : -EAGAIN;
847}
848
849/*
850 * Default handling if a filesystem does not provide a migration function.
851 */
852static int fallback_migrate_page(struct address_space *mapping,
853 struct page *newpage, struct page *page, enum migrate_mode mode)
854{
855 if (PageDirty(page)) {
856 /* Only writeback pages in full synchronous migration */
857 if (mode != MIGRATE_SYNC)
858 return -EBUSY;
859 return writeout(mapping, page);
860 }
861
862 /*
863 * Buffers may be managed in a filesystem specific way.
864 * We must have no buffers or drop them.
865 */
866 if (page_has_private(page) &&
867 !try_to_release_page(page, GFP_KERNEL))
868 return -EAGAIN;
869
870 return migrate_page(mapping, newpage, page, mode);
871}
872
873/*
874 * Move a page to a newly allocated page
875 * The page is locked and all ptes have been successfully removed.
876 *
877 * The new page will have replaced the old page if this function
878 * is successful.
879 *
880 * Return value:
881 * < 0 - error code
882 * MIGRATEPAGE_SUCCESS - success
883 */
884static int move_to_new_page(struct page *newpage, struct page *page,
885 enum migrate_mode mode)
886{
887 struct address_space *mapping;
888 int rc = -EAGAIN;
889 bool is_lru = !__PageMovable(page);
890
891 VM_BUG_ON_PAGE(!PageLocked(page), page);
892 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
893
894 mapping = page_mapping(page);
895
896 if (likely(is_lru)) {
897 if (!mapping)
898 rc = migrate_page(mapping, newpage, page, mode);
899 else if (mapping->a_ops->migratepage)
900 /*
901 * Most pages have a mapping and most filesystems
902 * provide a migratepage callback. Anonymous pages
903 * are part of swap space which also has its own
904 * migratepage callback. This is the most common path
905 * for page migration.
906 */
907 rc = mapping->a_ops->migratepage(mapping, newpage,
908 page, mode);
909 else
910 rc = fallback_migrate_page(mapping, newpage,
911 page, mode);
912 } else {
913 /*
914 * In case of non-lru page, it could be released after
915 * isolation step. In that case, we shouldn't try migration.
916 */
917 VM_BUG_ON_PAGE(!PageIsolated(page), page);
918 if (!PageMovable(page)) {
919 rc = MIGRATEPAGE_SUCCESS;
920 __ClearPageIsolated(page);
921 goto out;
922 }
923
924 rc = mapping->a_ops->migratepage(mapping, newpage,
925 page, mode);
926 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
927 !PageIsolated(page));
928 }
929
930 /*
931 * When successful, old pagecache page->mapping must be cleared before
932 * page is freed; but stats require that PageAnon be left as PageAnon.
933 */
934 if (rc == MIGRATEPAGE_SUCCESS) {
935 if (__PageMovable(page)) {
936 VM_BUG_ON_PAGE(!PageIsolated(page), page);
937
938 /*
939 * We clear PG_movable under page_lock so any compactor
940 * cannot try to migrate this page.
941 */
942 __ClearPageIsolated(page);
943 }
944
945 /*
946 * Anonymous and movable page->mapping will be cleard by
947 * free_pages_prepare so don't reset it here for keeping
948 * the type to work PageAnon, for example.
949 */
950 if (!PageMappingFlags(page))
951 page->mapping = NULL;
952 }
953out:
954 return rc;
955}
956
957static int __unmap_and_move(struct page *page, struct page *newpage,
958 int force, enum migrate_mode mode)
959{
960 int rc = -EAGAIN;
961 int page_was_mapped = 0;
962 struct anon_vma *anon_vma = NULL;
963 bool is_lru = !__PageMovable(page);
964
965 if (!trylock_page(page)) {
966 if (!force || mode == MIGRATE_ASYNC)
967 goto out;
968
969 /*
970 * It's not safe for direct compaction to call lock_page.
971 * For example, during page readahead pages are added locked
972 * to the LRU. Later, when the IO completes the pages are
973 * marked uptodate and unlocked. However, the queueing
974 * could be merging multiple pages for one bio (e.g.
975 * mpage_readpages). If an allocation happens for the
976 * second or third page, the process can end up locking
977 * the same page twice and deadlocking. Rather than
978 * trying to be clever about what pages can be locked,
979 * avoid the use of lock_page for direct compaction
980 * altogether.
981 */
982 if (current->flags & PF_MEMALLOC)
983 goto out;
984
985 lock_page(page);
986 }
987
988 if (PageWriteback(page)) {
989 /*
990 * Only in the case of a full synchronous migration is it
991 * necessary to wait for PageWriteback. In the async case,
992 * the retry loop is too short and in the sync-light case,
993 * the overhead of stalling is too much
994 */
995 if (mode != MIGRATE_SYNC) {
996 rc = -EBUSY;
997 goto out_unlock;
998 }
999 if (!force)
1000 goto out_unlock;
1001 wait_on_page_writeback(page);
1002 }
1003
1004 /*
1005 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1006 * we cannot notice that anon_vma is freed while we migrates a page.
1007 * This get_anon_vma() delays freeing anon_vma pointer until the end
1008 * of migration. File cache pages are no problem because of page_lock()
1009 * File Caches may use write_page() or lock_page() in migration, then,
1010 * just care Anon page here.
1011 *
1012 * Only page_get_anon_vma() understands the subtleties of
1013 * getting a hold on an anon_vma from outside one of its mms.
1014 * But if we cannot get anon_vma, then we won't need it anyway,
1015 * because that implies that the anon page is no longer mapped
1016 * (and cannot be remapped so long as we hold the page lock).
1017 */
1018 if (PageAnon(page) && !PageKsm(page))
1019 anon_vma = page_get_anon_vma(page);
1020
1021 /*
1022 * Block others from accessing the new page when we get around to
1023 * establishing additional references. We are usually the only one
1024 * holding a reference to newpage at this point. We used to have a BUG
1025 * here if trylock_page(newpage) fails, but would like to allow for
1026 * cases where there might be a race with the previous use of newpage.
1027 * This is much like races on refcount of oldpage: just don't BUG().
1028 */
1029 if (unlikely(!trylock_page(newpage)))
1030 goto out_unlock;
1031
1032 if (unlikely(!is_lru)) {
1033 rc = move_to_new_page(newpage, page, mode);
1034 goto out_unlock_both;
1035 }
1036
1037 /*
1038 * Corner case handling:
1039 * 1. When a new swap-cache page is read into, it is added to the LRU
1040 * and treated as swapcache but it has no rmap yet.
1041 * Calling try_to_unmap() against a page->mapping==NULL page will
1042 * trigger a BUG. So handle it here.
1043 * 2. An orphaned page (see truncate_complete_page) might have
1044 * fs-private metadata. The page can be picked up due to memory
1045 * offlining. Everywhere else except page reclaim, the page is
1046 * invisible to the vm, so the page can not be migrated. So try to
1047 * free the metadata, so the page can be freed.
1048 */
1049 if (!page->mapping) {
1050 VM_BUG_ON_PAGE(PageAnon(page), page);
1051 if (page_has_private(page)) {
1052 try_to_free_buffers(page);
1053 goto out_unlock_both;
1054 }
1055 } else if (page_mapped(page)) {
1056 #ifdef CONFIG_AMLOGIC_CMA
1057 int ret;
1058
1059 ret = try_to_unmap(page,
1060 TTU_MIGRATION | TTU_IGNORE_MLOCK |
1061 TTU_IGNORE_ACCESS);
1062 if (ret != SWAP_SUCCESS)
1063 cma_debug(2, page, " unmap failed:%d\n", ret);
1064 #else
1065 /* Establish migration ptes */
1066 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1067 page);
1068 try_to_unmap(page,
1069 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1070 #endif
1071 page_was_mapped = 1;
1072 }
1073
1074 if (!page_mapped(page))
1075 rc = move_to_new_page(newpage, page, mode);
1076
1077 if (page_was_mapped)
1078 remove_migration_ptes(page,
1079 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1080
1081out_unlock_both:
1082 unlock_page(newpage);
1083out_unlock:
1084 /* Drop an anon_vma reference if we took one */
1085 if (anon_vma)
1086 put_anon_vma(anon_vma);
1087 unlock_page(page);
1088out:
1089 /*
1090 * If migration is successful, decrease refcount of the newpage
1091 * which will not free the page because new page owner increased
1092 * refcounter. As well, if it is LRU page, add the page to LRU
1093 * list in here. Use the old state of the isolated source page to
1094 * determine if we migrated a LRU page. newpage was already unlocked
1095 * and possibly modified by its owner - don't rely on the page
1096 * state.
1097 */
1098 if (rc == MIGRATEPAGE_SUCCESS) {
1099 if (unlikely(!is_lru))
1100 put_page(newpage);
1101 else
1102 putback_lru_page(newpage);
1103 }
1104
1105 return rc;
1106}
1107
1108/*
1109 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1110 * around it.
1111 */
1112#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1113#define ICE_noinline noinline
1114#else
1115#define ICE_noinline
1116#endif
1117
1118/*
1119 * Obtain the lock on page, remove all ptes and migrate the page
1120 * to the newly allocated page in newpage.
1121 */
1122static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1123 free_page_t put_new_page,
1124 unsigned long private, struct page *page,
1125 int force, enum migrate_mode mode,
1126 enum migrate_reason reason)
1127{
1128 int rc = MIGRATEPAGE_SUCCESS;
1129 int *result = NULL;
1130 struct page *newpage;
1131
1132 newpage = get_new_page(page, private, &result);
1133 if (!newpage)
1134 return -ENOMEM;
1135
1136 if (page_count(page) == 1) {
1137 /* page was freed from under us. So we are done. */
1138 ClearPageActive(page);
1139 ClearPageUnevictable(page);
1140 if (unlikely(__PageMovable(page))) {
1141 lock_page(page);
1142 if (!PageMovable(page))
1143 __ClearPageIsolated(page);
1144 unlock_page(page);
1145 }
1146 if (put_new_page)
1147 put_new_page(newpage, private);
1148 else
1149 put_page(newpage);
1150 goto out;
1151 }
1152
1153 if (unlikely(PageTransHuge(page))) {
1154 lock_page(page);
1155 rc = split_huge_page(page);
1156 unlock_page(page);
1157 if (rc)
1158 goto out;
1159 }
1160
1161 rc = __unmap_and_move(page, newpage, force, mode);
1162 if (rc == MIGRATEPAGE_SUCCESS)
1163 set_page_owner_migrate_reason(newpage, reason);
1164
1165out:
1166 if (rc != -EAGAIN) {
1167 /*
1168 * A page that has been migrated has all references
1169 * removed and will be freed. A page that has not been
1170 * migrated will have kepts its references and be
1171 * restored.
1172 */
1173 list_del(&page->lru);
1174
1175 /*
1176 * Compaction can migrate also non-LRU pages which are
1177 * not accounted to NR_ISOLATED_*. They can be recognized
1178 * as __PageMovable
1179 */
1180 if (likely(!__PageMovable(page)))
1181 dec_node_page_state(page, NR_ISOLATED_ANON +
1182 page_is_file_cache(page));
1183 }
1184
1185 /*
1186 * If migration is successful, releases reference grabbed during
1187 * isolation. Otherwise, restore the page to right list unless
1188 * we want to retry.
1189 */
1190 if (rc == MIGRATEPAGE_SUCCESS) {
1191 put_page(page);
1192 if (reason == MR_MEMORY_FAILURE) {
1193 /*
1194 * Set PG_HWPoison on just freed page
1195 * intentionally. Although it's rather weird,
1196 * it's how HWPoison flag works at the moment.
1197 */
1198 if (!test_set_page_hwpoison(page))
1199 num_poisoned_pages_inc();
1200 }
1201 } else {
1202 if (rc != -EAGAIN) {
1203 if (likely(!__PageMovable(page))) {
1204 putback_lru_page(page);
1205 goto put_new;
1206 }
1207
1208 lock_page(page);
1209 if (PageMovable(page))
1210 putback_movable_page(page);
1211 else
1212 __ClearPageIsolated(page);
1213 unlock_page(page);
1214 put_page(page);
1215 }
1216put_new:
1217 if (put_new_page)
1218 put_new_page(newpage, private);
1219 else
1220 put_page(newpage);
1221 }
1222
1223 if (result) {
1224 if (rc)
1225 *result = rc;
1226 else
1227 *result = page_to_nid(newpage);
1228 }
1229#ifdef CONFIG_AMLOGIC_CMA
1230 if (reason == MR_CMA && rc == MIGRATEPAGE_SUCCESS)
1231 ClearPageCmaAllocating(page);
1232#endif
1233 return rc;
1234}
1235
1236/*
1237 * Counterpart of unmap_and_move_page() for hugepage migration.
1238 *
1239 * This function doesn't wait the completion of hugepage I/O
1240 * because there is no race between I/O and migration for hugepage.
1241 * Note that currently hugepage I/O occurs only in direct I/O
1242 * where no lock is held and PG_writeback is irrelevant,
1243 * and writeback status of all subpages are counted in the reference
1244 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1245 * under direct I/O, the reference of the head page is 512 and a bit more.)
1246 * This means that when we try to migrate hugepage whose subpages are
1247 * doing direct I/O, some references remain after try_to_unmap() and
1248 * hugepage migration fails without data corruption.
1249 *
1250 * There is also no race when direct I/O is issued on the page under migration,
1251 * because then pte is replaced with migration swap entry and direct I/O code
1252 * will wait in the page fault for migration to complete.
1253 */
1254static int unmap_and_move_huge_page(new_page_t get_new_page,
1255 free_page_t put_new_page, unsigned long private,
1256 struct page *hpage, int force,
1257 enum migrate_mode mode, int reason)
1258{
1259 int rc = -EAGAIN;
1260 int *result = NULL;
1261 int page_was_mapped = 0;
1262 struct page *new_hpage;
1263 struct anon_vma *anon_vma = NULL;
1264
1265 /*
1266 * Movability of hugepages depends on architectures and hugepage size.
1267 * This check is necessary because some callers of hugepage migration
1268 * like soft offline and memory hotremove don't walk through page
1269 * tables or check whether the hugepage is pmd-based or not before
1270 * kicking migration.
1271 */
1272 if (!hugepage_migration_supported(page_hstate(hpage))) {
1273 putback_active_hugepage(hpage);
1274 return -ENOSYS;
1275 }
1276
1277 new_hpage = get_new_page(hpage, private, &result);
1278 if (!new_hpage)
1279 return -ENOMEM;
1280
1281 if (!trylock_page(hpage)) {
1282 if (!force || mode != MIGRATE_SYNC)
1283 goto out;
1284 lock_page(hpage);
1285 }
1286
1287 /*
1288 * Check for pages which are in the process of being freed. Without
1289 * page_mapping() set, hugetlbfs specific move page routine will not
1290 * be called and we could leak usage counts for subpools.
1291 */
1292 if (page_private(hpage) && !page_mapping(hpage)) {
1293 rc = -EBUSY;
1294 goto out_unlock;
1295 }
1296
1297 if (PageAnon(hpage))
1298 anon_vma = page_get_anon_vma(hpage);
1299
1300 if (unlikely(!trylock_page(new_hpage)))
1301 goto put_anon;
1302
1303 if (page_mapped(hpage)) {
1304 try_to_unmap(hpage,
1305 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1306 page_was_mapped = 1;
1307 }
1308
1309 if (!page_mapped(hpage))
1310 rc = move_to_new_page(new_hpage, hpage, mode);
1311
1312 if (page_was_mapped)
1313 remove_migration_ptes(hpage,
1314 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1315
1316 unlock_page(new_hpage);
1317
1318put_anon:
1319 if (anon_vma)
1320 put_anon_vma(anon_vma);
1321
1322 if (rc == MIGRATEPAGE_SUCCESS) {
1323 hugetlb_cgroup_migrate(hpage, new_hpage);
1324 put_new_page = NULL;
1325 set_page_owner_migrate_reason(new_hpage, reason);
1326 }
1327
1328out_unlock:
1329 unlock_page(hpage);
1330out:
1331 if (rc != -EAGAIN)
1332 putback_active_hugepage(hpage);
1333
1334 /*
1335 * If migration was not successful and there's a freeing callback, use
1336 * it. Otherwise, put_page() will drop the reference grabbed during
1337 * isolation.
1338 */
1339 if (put_new_page)
1340 put_new_page(new_hpage, private);
1341 else
1342 putback_active_hugepage(new_hpage);
1343
1344 if (result) {
1345 if (rc)
1346 *result = rc;
1347 else
1348 *result = page_to_nid(new_hpage);
1349 }
1350 return rc;
1351}
1352
1353/*
1354 * migrate_pages - migrate the pages specified in a list, to the free pages
1355 * supplied as the target for the page migration
1356 *
1357 * @from: The list of pages to be migrated.
1358 * @get_new_page: The function used to allocate free pages to be used
1359 * as the target of the page migration.
1360 * @put_new_page: The function used to free target pages if migration
1361 * fails, or NULL if no special handling is necessary.
1362 * @private: Private data to be passed on to get_new_page()
1363 * @mode: The migration mode that specifies the constraints for
1364 * page migration, if any.
1365 * @reason: The reason for page migration.
1366 *
1367 * The function returns after 10 attempts or if no pages are movable any more
1368 * because the list has become empty or no retryable pages exist any more.
1369 * The caller should call putback_movable_pages() to return pages to the LRU
1370 * or free list only if ret != 0.
1371 *
1372 * Returns the number of pages that were not migrated, or an error code.
1373 */
1374int migrate_pages(struct list_head *from, new_page_t get_new_page,
1375 free_page_t put_new_page, unsigned long private,
1376 enum migrate_mode mode, int reason)
1377{
1378 int retry = 1;
1379 int nr_failed = 0;
1380 int nr_succeeded = 0;
1381 int pass = 0;
1382 struct page *page;
1383 struct page *page2;
1384 int swapwrite = current->flags & PF_SWAPWRITE;
1385 int rc;
1386
1387 if (!swapwrite)
1388 current->flags |= PF_SWAPWRITE;
1389
1390 for(pass = 0; pass < 10 && retry; pass++) {
1391 retry = 0;
1392
1393 list_for_each_entry_safe(page, page2, from, lru) {
1394 cond_resched();
1395
1396 if (PageHuge(page))
1397 rc = unmap_and_move_huge_page(get_new_page,
1398 put_new_page, private, page,
1399 pass > 2, mode, reason);
1400 else
1401 rc = unmap_and_move(get_new_page, put_new_page,
1402 private, page, pass > 2, mode,
1403 reason);
1404
1405 switch(rc) {
1406 case -ENOMEM:
1407 nr_failed++;
1408 #ifdef CONFIG_AMLOGIC_CMA
1409 cma_debug(2, page, " NO MEM\n");
1410 #endif
1411 goto out;
1412 case -EAGAIN:
1413 retry++;
1414 break;
1415 case MIGRATEPAGE_SUCCESS:
1416 nr_succeeded++;
1417 break;
1418 default:
1419 /*
1420 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1421 * unlike -EAGAIN case, the failed page is
1422 * removed from migration page list and not
1423 * retried in the next outer loop.
1424 */
1425 nr_failed++;
1426 #ifdef CONFIG_AMLOGIC_CMA
1427 cma_debug(2, page, " failed:%d\n", rc);
1428 #endif
1429 break;
1430 }
1431 }
1432 }
1433 nr_failed += retry;
1434 rc = nr_failed;
1435out:
1436 if (nr_succeeded)
1437 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1438 if (nr_failed)
1439 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1440 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1441
1442 if (!swapwrite)
1443 current->flags &= ~PF_SWAPWRITE;
1444
1445 return rc;
1446}
1447
1448#ifdef CONFIG_NUMA
1449/*
1450 * Move a list of individual pages
1451 */
1452struct page_to_node {
1453 unsigned long addr;
1454 struct page *page;
1455 int node;
1456 int status;
1457};
1458
1459static struct page *new_page_node(struct page *p, unsigned long private,
1460 int **result)
1461{
1462 struct page_to_node *pm = (struct page_to_node *)private;
1463
1464 while (pm->node != MAX_NUMNODES && pm->page != p)
1465 pm++;
1466
1467 if (pm->node == MAX_NUMNODES)
1468 return NULL;
1469
1470 *result = &pm->status;
1471
1472 if (PageHuge(p))
1473 return alloc_huge_page_node(page_hstate(compound_head(p)),
1474 pm->node);
1475 else
1476 return __alloc_pages_node(pm->node,
1477 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1478}
1479
1480/*
1481 * Move a set of pages as indicated in the pm array. The addr
1482 * field must be set to the virtual address of the page to be moved
1483 * and the node number must contain a valid target node.
1484 * The pm array ends with node = MAX_NUMNODES.
1485 */
1486static int do_move_page_to_node_array(struct mm_struct *mm,
1487 struct page_to_node *pm,
1488 int migrate_all)
1489{
1490 int err;
1491 struct page_to_node *pp;
1492 LIST_HEAD(pagelist);
1493
1494 down_read(&mm->mmap_sem);
1495
1496 /*
1497 * Build a list of pages to migrate
1498 */
1499 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1500 struct vm_area_struct *vma;
1501 struct page *page;
1502
1503 err = -EFAULT;
1504 vma = find_vma(mm, pp->addr);
1505 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1506 goto set_status;
1507
1508 /* FOLL_DUMP to ignore special (like zero) pages */
1509 page = follow_page(vma, pp->addr,
1510 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1511
1512 err = PTR_ERR(page);
1513 if (IS_ERR(page))
1514 goto set_status;
1515
1516 err = -ENOENT;
1517 if (!page)
1518 goto set_status;
1519
1520 pp->page = page;
1521 err = page_to_nid(page);
1522
1523 if (err == pp->node)
1524 /*
1525 * Node already in the right place
1526 */
1527 goto put_and_set;
1528
1529 err = -EACCES;
1530 if (page_mapcount(page) > 1 &&
1531 !migrate_all)
1532 goto put_and_set;
1533
1534 if (PageHuge(page)) {
1535 if (PageHead(page))
1536 isolate_huge_page(page, &pagelist);
1537 goto put_and_set;
1538 }
1539
1540 err = isolate_lru_page(page);
1541 if (!err) {
1542 list_add_tail(&page->lru, &pagelist);
1543 inc_node_page_state(page, NR_ISOLATED_ANON +
1544 page_is_file_cache(page));
1545 }
1546put_and_set:
1547 /*
1548 * Either remove the duplicate refcount from
1549 * isolate_lru_page() or drop the page ref if it was
1550 * not isolated.
1551 */
1552 put_page(page);
1553set_status:
1554 pp->status = err;
1555 }
1556
1557 err = 0;
1558 if (!list_empty(&pagelist)) {
1559 err = migrate_pages(&pagelist, new_page_node, NULL,
1560 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1561 if (err)
1562 putback_movable_pages(&pagelist);
1563 }
1564
1565 up_read(&mm->mmap_sem);
1566 return err;
1567}
1568
1569/*
1570 * Migrate an array of page address onto an array of nodes and fill
1571 * the corresponding array of status.
1572 */
1573static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1574 unsigned long nr_pages,
1575 const void __user * __user *pages,
1576 const int __user *nodes,
1577 int __user *status, int flags)
1578{
1579 struct page_to_node *pm;
1580 unsigned long chunk_nr_pages;
1581 unsigned long chunk_start;
1582 int err;
1583
1584 err = -ENOMEM;
1585 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1586 if (!pm)
1587 goto out;
1588
1589 migrate_prep();
1590
1591 /*
1592 * Store a chunk of page_to_node array in a page,
1593 * but keep the last one as a marker
1594 */
1595 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1596
1597 for (chunk_start = 0;
1598 chunk_start < nr_pages;
1599 chunk_start += chunk_nr_pages) {
1600 int j;
1601
1602 if (chunk_start + chunk_nr_pages > nr_pages)
1603 chunk_nr_pages = nr_pages - chunk_start;
1604
1605 /* fill the chunk pm with addrs and nodes from user-space */
1606 for (j = 0; j < chunk_nr_pages; j++) {
1607 const void __user *p;
1608 int node;
1609
1610 err = -EFAULT;
1611 if (get_user(p, pages + j + chunk_start))
1612 goto out_pm;
1613 pm[j].addr = (unsigned long) p;
1614
1615 if (get_user(node, nodes + j + chunk_start))
1616 goto out_pm;
1617
1618 err = -ENODEV;
1619 if (node < 0 || node >= MAX_NUMNODES)
1620 goto out_pm;
1621
1622 if (!node_state(node, N_MEMORY))
1623 goto out_pm;
1624
1625 err = -EACCES;
1626 if (!node_isset(node, task_nodes))
1627 goto out_pm;
1628
1629 pm[j].node = node;
1630 }
1631
1632 /* End marker for this chunk */
1633 pm[chunk_nr_pages].node = MAX_NUMNODES;
1634
1635 /* Migrate this chunk */
1636 err = do_move_page_to_node_array(mm, pm,
1637 flags & MPOL_MF_MOVE_ALL);
1638 if (err < 0)
1639 goto out_pm;
1640
1641 /* Return status information */
1642 for (j = 0; j < chunk_nr_pages; j++)
1643 if (put_user(pm[j].status, status + j + chunk_start)) {
1644 err = -EFAULT;
1645 goto out_pm;
1646 }
1647 }
1648 err = 0;
1649
1650out_pm:
1651 free_page((unsigned long)pm);
1652out:
1653 return err;
1654}
1655
1656/*
1657 * Determine the nodes of an array of pages and store it in an array of status.
1658 */
1659static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1660 const void __user **pages, int *status)
1661{
1662 unsigned long i;
1663
1664 down_read(&mm->mmap_sem);
1665
1666 for (i = 0; i < nr_pages; i++) {
1667 unsigned long addr = (unsigned long)(*pages);
1668 struct vm_area_struct *vma;
1669 struct page *page;
1670 int err = -EFAULT;
1671
1672 vma = find_vma(mm, addr);
1673 if (!vma || addr < vma->vm_start)
1674 goto set_status;
1675
1676 /* FOLL_DUMP to ignore special (like zero) pages */
1677 page = follow_page(vma, addr, FOLL_DUMP);
1678
1679 err = PTR_ERR(page);
1680 if (IS_ERR(page))
1681 goto set_status;
1682
1683 err = page ? page_to_nid(page) : -ENOENT;
1684set_status:
1685 *status = err;
1686
1687 pages++;
1688 status++;
1689 }
1690
1691 up_read(&mm->mmap_sem);
1692}
1693
1694/*
1695 * Determine the nodes of a user array of pages and store it in
1696 * a user array of status.
1697 */
1698static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1699 const void __user * __user *pages,
1700 int __user *status)
1701{
1702#define DO_PAGES_STAT_CHUNK_NR 16
1703 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1704 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1705
1706 while (nr_pages) {
1707 unsigned long chunk_nr;
1708
1709 chunk_nr = nr_pages;
1710 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1711 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1712
1713 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1714 break;
1715
1716 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1717
1718 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1719 break;
1720
1721 pages += chunk_nr;
1722 status += chunk_nr;
1723 nr_pages -= chunk_nr;
1724 }
1725 return nr_pages ? -EFAULT : 0;
1726}
1727
1728/*
1729 * Move a list of pages in the address space of the currently executing
1730 * process.
1731 */
1732SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1733 const void __user * __user *, pages,
1734 const int __user *, nodes,
1735 int __user *, status, int, flags)
1736{
1737 struct task_struct *task;
1738 struct mm_struct *mm;
1739 int err;
1740 nodemask_t task_nodes;
1741
1742 /* Check flags */
1743 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1744 return -EINVAL;
1745
1746 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1747 return -EPERM;
1748
1749 /* Find the mm_struct */
1750 rcu_read_lock();
1751 task = pid ? find_task_by_vpid(pid) : current;
1752 if (!task) {
1753 rcu_read_unlock();
1754 return -ESRCH;
1755 }
1756 get_task_struct(task);
1757
1758 /*
1759 * Check if this process has the right to modify the specified
1760 * process. Use the regular "ptrace_may_access()" checks.
1761 */
1762 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1763 rcu_read_unlock();
1764 err = -EPERM;
1765 goto out;
1766 }
1767 rcu_read_unlock();
1768
1769 err = security_task_movememory(task);
1770 if (err)
1771 goto out;
1772
1773 task_nodes = cpuset_mems_allowed(task);
1774 mm = get_task_mm(task);
1775 put_task_struct(task);
1776
1777 if (!mm)
1778 return -EINVAL;
1779
1780 if (nodes)
1781 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1782 nodes, status, flags);
1783 else
1784 err = do_pages_stat(mm, nr_pages, pages, status);
1785
1786 mmput(mm);
1787 return err;
1788
1789out:
1790 put_task_struct(task);
1791 return err;
1792}
1793
1794#ifdef CONFIG_NUMA_BALANCING
1795/*
1796 * Returns true if this is a safe migration target node for misplaced NUMA
1797 * pages. Currently it only checks the watermarks which crude
1798 */
1799static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1800 unsigned long nr_migrate_pages)
1801{
1802 int z;
1803
1804 if (!pgdat_reclaimable(pgdat))
1805 return false;
1806
1807 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1808 struct zone *zone = pgdat->node_zones + z;
1809
1810 if (!populated_zone(zone))
1811 continue;
1812
1813 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1814 if (!zone_watermark_ok(zone, 0,
1815 high_wmark_pages(zone) +
1816 nr_migrate_pages,
1817 0, 0))
1818 continue;
1819 return true;
1820 }
1821 return false;
1822}
1823
1824static struct page *alloc_misplaced_dst_page(struct page *page,
1825 unsigned long data,
1826 int **result)
1827{
1828 int nid = (int) data;
1829 struct page *newpage;
1830
1831 newpage = __alloc_pages_node(nid,
1832 (GFP_HIGHUSER_MOVABLE |
1833 __GFP_THISNODE | __GFP_NOMEMALLOC |
1834 __GFP_NORETRY | __GFP_NOWARN) &
1835 ~__GFP_RECLAIM, 0);
1836
1837 return newpage;
1838}
1839
1840/*
1841 * page migration rate limiting control.
1842 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1843 * window of time. Default here says do not migrate more than 1280M per second.
1844 */
1845static unsigned int migrate_interval_millisecs __read_mostly = 100;
1846static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1847
1848/* Returns true if the node is migrate rate-limited after the update */
1849static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1850 unsigned long nr_pages)
1851{
1852 /*
1853 * Rate-limit the amount of data that is being migrated to a node.
1854 * Optimal placement is no good if the memory bus is saturated and
1855 * all the time is being spent migrating!
1856 */
1857 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1858 spin_lock(&pgdat->numabalancing_migrate_lock);
1859 pgdat->numabalancing_migrate_nr_pages = 0;
1860 pgdat->numabalancing_migrate_next_window = jiffies +
1861 msecs_to_jiffies(migrate_interval_millisecs);
1862 spin_unlock(&pgdat->numabalancing_migrate_lock);
1863 }
1864 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1865 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1866 nr_pages);
1867 return true;
1868 }
1869
1870 /*
1871 * This is an unlocked non-atomic update so errors are possible.
1872 * The consequences are failing to migrate when we potentiall should
1873 * have which is not severe enough to warrant locking. If it is ever
1874 * a problem, it can be converted to a per-cpu counter.
1875 */
1876 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1877 return false;
1878}
1879
1880static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1881{
1882 int page_lru;
1883
1884 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1885
1886 /* Avoid migrating to a node that is nearly full */
1887 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1888 return 0;
1889
1890 if (isolate_lru_page(page))
1891 return 0;
1892
1893 /*
1894 * migrate_misplaced_transhuge_page() skips page migration's usual
1895 * check on page_count(), so we must do it here, now that the page
1896 * has been isolated: a GUP pin, or any other pin, prevents migration.
1897 * The expected page count is 3: 1 for page's mapcount and 1 for the
1898 * caller's pin and 1 for the reference taken by isolate_lru_page().
1899 */
1900 if (PageTransHuge(page) && page_count(page) != 3) {
1901 putback_lru_page(page);
1902 return 0;
1903 }
1904
1905 page_lru = page_is_file_cache(page);
1906 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1907 hpage_nr_pages(page));
1908
1909 /*
1910 * Isolating the page has taken another reference, so the
1911 * caller's reference can be safely dropped without the page
1912 * disappearing underneath us during migration.
1913 */
1914 put_page(page);
1915 return 1;
1916}
1917
1918bool pmd_trans_migrating(pmd_t pmd)
1919{
1920 struct page *page = pmd_page(pmd);
1921 return PageLocked(page);
1922}
1923
1924/*
1925 * Attempt to migrate a misplaced page to the specified destination
1926 * node. Caller is expected to have an elevated reference count on
1927 * the page that will be dropped by this function before returning.
1928 */
1929int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1930 int node)
1931{
1932 pg_data_t *pgdat = NODE_DATA(node);
1933 int isolated;
1934 int nr_remaining;
1935 LIST_HEAD(migratepages);
1936
1937 /*
1938 * Don't migrate file pages that are mapped in multiple processes
1939 * with execute permissions as they are probably shared libraries.
1940 */
1941 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1942 (vma->vm_flags & VM_EXEC))
1943 goto out;
1944
1945 /*
1946 * Rate-limit the amount of data that is being migrated to a node.
1947 * Optimal placement is no good if the memory bus is saturated and
1948 * all the time is being spent migrating!
1949 */
1950 if (numamigrate_update_ratelimit(pgdat, 1))
1951 goto out;
1952
1953 isolated = numamigrate_isolate_page(pgdat, page);
1954 if (!isolated)
1955 goto out;
1956
1957 list_add(&page->lru, &migratepages);
1958 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1959 NULL, node, MIGRATE_ASYNC,
1960 MR_NUMA_MISPLACED);
1961 if (nr_remaining) {
1962 if (!list_empty(&migratepages)) {
1963 list_del(&page->lru);
1964 dec_node_page_state(page, NR_ISOLATED_ANON +
1965 page_is_file_cache(page));
1966 putback_lru_page(page);
1967 }
1968 isolated = 0;
1969 } else
1970 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1971 BUG_ON(!list_empty(&migratepages));
1972 return isolated;
1973
1974out:
1975 put_page(page);
1976 return 0;
1977}
1978#endif /* CONFIG_NUMA_BALANCING */
1979
1980#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1981/*
1982 * Migrates a THP to a given target node. page must be locked and is unlocked
1983 * before returning.
1984 */
1985int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1986 struct vm_area_struct *vma,
1987 pmd_t *pmd, pmd_t entry,
1988 unsigned long address,
1989 struct page *page, int node)
1990{
1991 spinlock_t *ptl;
1992 pg_data_t *pgdat = NODE_DATA(node);
1993 int isolated = 0;
1994 struct page *new_page = NULL;
1995 int page_lru = page_is_file_cache(page);
1996 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1997 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1998 pmd_t orig_entry;
1999
2000 /*
2001 * Rate-limit the amount of data that is being migrated to a node.
2002 * Optimal placement is no good if the memory bus is saturated and
2003 * all the time is being spent migrating!
2004 */
2005 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2006 goto out_dropref;
2007
2008 new_page = alloc_pages_node(node,
2009 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2010 HPAGE_PMD_ORDER);
2011 if (!new_page)
2012 goto out_fail;
2013 prep_transhuge_page(new_page);
2014
2015 isolated = numamigrate_isolate_page(pgdat, page);
2016 if (!isolated) {
2017 put_page(new_page);
2018 goto out_fail;
2019 }
2020 /*
2021 * We are not sure a pending tlb flush here is for a huge page
2022 * mapping or not. Hence use the tlb range variant
2023 */
2024 if (mm_tlb_flush_pending(mm))
2025 flush_tlb_range(vma, mmun_start, mmun_end);
2026
2027 /* Prepare a page as a migration target */
2028 __SetPageLocked(new_page);
2029 __SetPageSwapBacked(new_page);
2030
2031 /* anon mapping, we can simply copy page->mapping to the new page: */
2032 new_page->mapping = page->mapping;
2033 new_page->index = page->index;
2034 migrate_page_copy(new_page, page);
2035 WARN_ON(PageLRU(new_page));
2036
2037 /* Recheck the target PMD */
2038 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2039 ptl = pmd_lock(mm, pmd);
2040 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
2041fail_putback:
2042 spin_unlock(ptl);
2043 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2044
2045 /* Reverse changes made by migrate_page_copy() */
2046 if (TestClearPageActive(new_page))
2047 SetPageActive(page);
2048 if (TestClearPageUnevictable(new_page))
2049 SetPageUnevictable(page);
2050
2051 unlock_page(new_page);
2052 put_page(new_page); /* Free it */
2053
2054 /* Retake the callers reference and putback on LRU */
2055 get_page(page);
2056 putback_lru_page(page);
2057 mod_node_page_state(page_pgdat(page),
2058 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2059
2060 goto out_unlock;
2061 }
2062
2063 orig_entry = *pmd;
2064 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2065 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2066
2067 /*
2068 * Clear the old entry under pagetable lock and establish the new PTE.
2069 * Any parallel GUP will either observe the old page blocking on the
2070 * page lock, block on the page table lock or observe the new page.
2071 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2072 * guarantee the copy is visible before the pagetable update.
2073 */
2074 flush_cache_range(vma, mmun_start, mmun_end);
2075 page_add_anon_rmap(new_page, vma, mmun_start, true);
2076 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2077 set_pmd_at(mm, mmun_start, pmd, entry);
2078 update_mmu_cache_pmd(vma, address, &entry);
2079
2080 if (page_count(page) != 2) {
2081 set_pmd_at(mm, mmun_start, pmd, orig_entry);
2082 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2083 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2084 update_mmu_cache_pmd(vma, address, &entry);
2085 page_remove_rmap(new_page, true);
2086 goto fail_putback;
2087 }
2088
2089 mlock_migrate_page(new_page, page);
2090 page_remove_rmap(page, true);
2091 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2092
2093 spin_unlock(ptl);
2094 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2095
2096 /* Take an "isolate" reference and put new page on the LRU. */
2097 get_page(new_page);
2098 putback_lru_page(new_page);
2099
2100 unlock_page(new_page);
2101 unlock_page(page);
2102 put_page(page); /* Drop the rmap reference */
2103 put_page(page); /* Drop the LRU isolation reference */
2104
2105 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2106 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2107
2108 mod_node_page_state(page_pgdat(page),
2109 NR_ISOLATED_ANON + page_lru,
2110 -HPAGE_PMD_NR);
2111 return isolated;
2112
2113out_fail:
2114 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2115out_dropref:
2116 ptl = pmd_lock(mm, pmd);
2117 if (pmd_same(*pmd, entry)) {
2118 entry = pmd_modify(entry, vma->vm_page_prot);
2119 set_pmd_at(mm, mmun_start, pmd, entry);
2120 update_mmu_cache_pmd(vma, address, &entry);
2121 }
2122 spin_unlock(ptl);
2123
2124out_unlock:
2125 unlock_page(page);
2126 put_page(page);
2127 return 0;
2128}
2129#endif /* CONFIG_NUMA_BALANCING */
2130
2131#endif /* CONFIG_NUMA */
2132