summaryrefslogtreecommitdiff
path: root/mm/percpu.c (plain)
blob: 0462a2a00f0597e353cd91d268337e6607bafe24
1/*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
29 *
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
45 *
46 * To use this allocator, arch code should do the followings.
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
51 *
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
54 */
55
56#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57
58#include <linux/bitmap.h>
59#include <linux/bootmem.h>
60#include <linux/err.h>
61#include <linux/list.h>
62#include <linux/log2.h>
63#include <linux/mm.h>
64#include <linux/module.h>
65#include <linux/mutex.h>
66#include <linux/percpu.h>
67#include <linux/pfn.h>
68#include <linux/slab.h>
69#include <linux/spinlock.h>
70#include <linux/vmalloc.h>
71#include <linux/workqueue.h>
72#include <linux/kmemleak.h>
73#include <linux/sched.h>
74
75#include <asm/cacheflush.h>
76#include <asm/sections.h>
77#include <asm/tlbflush.h>
78#include <asm/io.h>
79
80#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
81#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
82#define PCPU_ATOMIC_MAP_MARGIN_LOW 32
83#define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
84#define PCPU_EMPTY_POP_PAGES_LOW 2
85#define PCPU_EMPTY_POP_PAGES_HIGH 4
86
87#ifdef CONFIG_SMP
88/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
89#ifndef __addr_to_pcpu_ptr
90#define __addr_to_pcpu_ptr(addr) \
91 (void __percpu *)((unsigned long)(addr) - \
92 (unsigned long)pcpu_base_addr + \
93 (unsigned long)__per_cpu_start)
94#endif
95#ifndef __pcpu_ptr_to_addr
96#define __pcpu_ptr_to_addr(ptr) \
97 (void __force *)((unsigned long)(ptr) + \
98 (unsigned long)pcpu_base_addr - \
99 (unsigned long)__per_cpu_start)
100#endif
101#else /* CONFIG_SMP */
102/* on UP, it's always identity mapped */
103#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
104#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
105#endif /* CONFIG_SMP */
106
107struct pcpu_chunk {
108 struct list_head list; /* linked to pcpu_slot lists */
109 int free_size; /* free bytes in the chunk */
110 int contig_hint; /* max contiguous size hint */
111 void *base_addr; /* base address of this chunk */
112
113 int map_used; /* # of map entries used before the sentry */
114 int map_alloc; /* # of map entries allocated */
115 int *map; /* allocation map */
116 struct list_head map_extend_list;/* on pcpu_map_extend_chunks */
117
118 void *data; /* chunk data */
119 int first_free; /* no free below this */
120 bool immutable; /* no [de]population allowed */
121 int nr_populated; /* # of populated pages */
122 unsigned long populated[]; /* populated bitmap */
123};
124
125static int pcpu_unit_pages __read_mostly;
126static int pcpu_unit_size __read_mostly;
127static int pcpu_nr_units __read_mostly;
128static int pcpu_atom_size __read_mostly;
129static int pcpu_nr_slots __read_mostly;
130static size_t pcpu_chunk_struct_size __read_mostly;
131
132/* cpus with the lowest and highest unit addresses */
133static unsigned int pcpu_low_unit_cpu __read_mostly;
134static unsigned int pcpu_high_unit_cpu __read_mostly;
135
136/* the address of the first chunk which starts with the kernel static area */
137void *pcpu_base_addr __read_mostly;
138EXPORT_SYMBOL_GPL(pcpu_base_addr);
139
140static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
141const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
142
143/* group information, used for vm allocation */
144static int pcpu_nr_groups __read_mostly;
145static const unsigned long *pcpu_group_offsets __read_mostly;
146static const size_t *pcpu_group_sizes __read_mostly;
147
148/*
149 * The first chunk which always exists. Note that unlike other
150 * chunks, this one can be allocated and mapped in several different
151 * ways and thus often doesn't live in the vmalloc area.
152 */
153static struct pcpu_chunk *pcpu_first_chunk;
154
155/*
156 * Optional reserved chunk. This chunk reserves part of the first
157 * chunk and serves it for reserved allocations. The amount of
158 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
159 * area doesn't exist, the following variables contain NULL and 0
160 * respectively.
161 */
162static struct pcpu_chunk *pcpu_reserved_chunk;
163static int pcpu_reserved_chunk_limit;
164
165static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
166static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
167
168static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
169
170/* chunks which need their map areas extended, protected by pcpu_lock */
171static LIST_HEAD(pcpu_map_extend_chunks);
172
173/*
174 * The number of empty populated pages, protected by pcpu_lock. The
175 * reserved chunk doesn't contribute to the count.
176 */
177static int pcpu_nr_empty_pop_pages;
178
179/*
180 * Balance work is used to populate or destroy chunks asynchronously. We
181 * try to keep the number of populated free pages between
182 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
183 * empty chunk.
184 */
185static void pcpu_balance_workfn(struct work_struct *work);
186static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
187static bool pcpu_async_enabled __read_mostly;
188static bool pcpu_atomic_alloc_failed;
189
190static void pcpu_schedule_balance_work(void)
191{
192 if (pcpu_async_enabled)
193 schedule_work(&pcpu_balance_work);
194}
195
196static bool pcpu_addr_in_first_chunk(void *addr)
197{
198 void *first_start = pcpu_first_chunk->base_addr;
199
200 return addr >= first_start && addr < first_start + pcpu_unit_size;
201}
202
203static bool pcpu_addr_in_reserved_chunk(void *addr)
204{
205 void *first_start = pcpu_first_chunk->base_addr;
206
207 return addr >= first_start &&
208 addr < first_start + pcpu_reserved_chunk_limit;
209}
210
211static int __pcpu_size_to_slot(int size)
212{
213 int highbit = fls(size); /* size is in bytes */
214 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
215}
216
217static int pcpu_size_to_slot(int size)
218{
219 if (size == pcpu_unit_size)
220 return pcpu_nr_slots - 1;
221 return __pcpu_size_to_slot(size);
222}
223
224static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
225{
226 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
227 return 0;
228
229 return pcpu_size_to_slot(chunk->free_size);
230}
231
232/* set the pointer to a chunk in a page struct */
233static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
234{
235 page->index = (unsigned long)pcpu;
236}
237
238/* obtain pointer to a chunk from a page struct */
239static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
240{
241 return (struct pcpu_chunk *)page->index;
242}
243
244static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
245{
246 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
247}
248
249static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
250 unsigned int cpu, int page_idx)
251{
252 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
253 (page_idx << PAGE_SHIFT);
254}
255
256static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
257 int *rs, int *re, int end)
258{
259 *rs = find_next_zero_bit(chunk->populated, end, *rs);
260 *re = find_next_bit(chunk->populated, end, *rs + 1);
261}
262
263static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
264 int *rs, int *re, int end)
265{
266 *rs = find_next_bit(chunk->populated, end, *rs);
267 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
268}
269
270/*
271 * (Un)populated page region iterators. Iterate over (un)populated
272 * page regions between @start and @end in @chunk. @rs and @re should
273 * be integer variables and will be set to start and end page index of
274 * the current region.
275 */
276#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
277 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
278 (rs) < (re); \
279 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
280
281#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
282 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
283 (rs) < (re); \
284 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
285
286/**
287 * pcpu_mem_zalloc - allocate memory
288 * @size: bytes to allocate
289 *
290 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
291 * kzalloc() is used; otherwise, vzalloc() is used. The returned
292 * memory is always zeroed.
293 *
294 * CONTEXT:
295 * Does GFP_KERNEL allocation.
296 *
297 * RETURNS:
298 * Pointer to the allocated area on success, NULL on failure.
299 */
300static void *pcpu_mem_zalloc(size_t size)
301{
302 if (WARN_ON_ONCE(!slab_is_available()))
303 return NULL;
304
305 if (size <= PAGE_SIZE)
306 return kzalloc(size, GFP_KERNEL);
307 else
308 return vzalloc(size);
309}
310
311/**
312 * pcpu_mem_free - free memory
313 * @ptr: memory to free
314 *
315 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
316 */
317static void pcpu_mem_free(void *ptr)
318{
319 kvfree(ptr);
320}
321
322/**
323 * pcpu_count_occupied_pages - count the number of pages an area occupies
324 * @chunk: chunk of interest
325 * @i: index of the area in question
326 *
327 * Count the number of pages chunk's @i'th area occupies. When the area's
328 * start and/or end address isn't aligned to page boundary, the straddled
329 * page is included in the count iff the rest of the page is free.
330 */
331static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
332{
333 int off = chunk->map[i] & ~1;
334 int end = chunk->map[i + 1] & ~1;
335
336 if (!PAGE_ALIGNED(off) && i > 0) {
337 int prev = chunk->map[i - 1];
338
339 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
340 off = round_down(off, PAGE_SIZE);
341 }
342
343 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
344 int next = chunk->map[i + 1];
345 int nend = chunk->map[i + 2] & ~1;
346
347 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
348 end = round_up(end, PAGE_SIZE);
349 }
350
351 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
352}
353
354/**
355 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
356 * @chunk: chunk of interest
357 * @oslot: the previous slot it was on
358 *
359 * This function is called after an allocation or free changed @chunk.
360 * New slot according to the changed state is determined and @chunk is
361 * moved to the slot. Note that the reserved chunk is never put on
362 * chunk slots.
363 *
364 * CONTEXT:
365 * pcpu_lock.
366 */
367static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
368{
369 int nslot = pcpu_chunk_slot(chunk);
370
371 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
372 if (oslot < nslot)
373 list_move(&chunk->list, &pcpu_slot[nslot]);
374 else
375 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
376 }
377}
378
379/**
380 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
381 * @chunk: chunk of interest
382 * @is_atomic: the allocation context
383 *
384 * Determine whether area map of @chunk needs to be extended. If
385 * @is_atomic, only the amount necessary for a new allocation is
386 * considered; however, async extension is scheduled if the left amount is
387 * low. If !@is_atomic, it aims for more empty space. Combined, this
388 * ensures that the map is likely to have enough available space to
389 * accomodate atomic allocations which can't extend maps directly.
390 *
391 * CONTEXT:
392 * pcpu_lock.
393 *
394 * RETURNS:
395 * New target map allocation length if extension is necessary, 0
396 * otherwise.
397 */
398static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
399{
400 int margin, new_alloc;
401
402 lockdep_assert_held(&pcpu_lock);
403
404 if (is_atomic) {
405 margin = 3;
406
407 if (chunk->map_alloc <
408 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
409 if (list_empty(&chunk->map_extend_list)) {
410 list_add_tail(&chunk->map_extend_list,
411 &pcpu_map_extend_chunks);
412 pcpu_schedule_balance_work();
413 }
414 }
415 } else {
416 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
417 }
418
419 if (chunk->map_alloc >= chunk->map_used + margin)
420 return 0;
421
422 new_alloc = PCPU_DFL_MAP_ALLOC;
423 while (new_alloc < chunk->map_used + margin)
424 new_alloc *= 2;
425
426 return new_alloc;
427}
428
429/**
430 * pcpu_extend_area_map - extend area map of a chunk
431 * @chunk: chunk of interest
432 * @new_alloc: new target allocation length of the area map
433 *
434 * Extend area map of @chunk to have @new_alloc entries.
435 *
436 * CONTEXT:
437 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
438 *
439 * RETURNS:
440 * 0 on success, -errno on failure.
441 */
442static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
443{
444 int *old = NULL, *new = NULL;
445 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
446 unsigned long flags;
447
448 lockdep_assert_held(&pcpu_alloc_mutex);
449
450 new = pcpu_mem_zalloc(new_size);
451 if (!new)
452 return -ENOMEM;
453
454 /* acquire pcpu_lock and switch to new area map */
455 spin_lock_irqsave(&pcpu_lock, flags);
456
457 if (new_alloc <= chunk->map_alloc)
458 goto out_unlock;
459
460 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
461 old = chunk->map;
462
463 memcpy(new, old, old_size);
464
465 chunk->map_alloc = new_alloc;
466 chunk->map = new;
467 new = NULL;
468
469out_unlock:
470 spin_unlock_irqrestore(&pcpu_lock, flags);
471
472 /*
473 * pcpu_mem_free() might end up calling vfree() which uses
474 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
475 */
476 pcpu_mem_free(old);
477 pcpu_mem_free(new);
478
479 return 0;
480}
481
482/**
483 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
484 * @chunk: chunk the candidate area belongs to
485 * @off: the offset to the start of the candidate area
486 * @this_size: the size of the candidate area
487 * @size: the size of the target allocation
488 * @align: the alignment of the target allocation
489 * @pop_only: only allocate from already populated region
490 *
491 * We're trying to allocate @size bytes aligned at @align. @chunk's area
492 * at @off sized @this_size is a candidate. This function determines
493 * whether the target allocation fits in the candidate area and returns the
494 * number of bytes to pad after @off. If the target area doesn't fit, -1
495 * is returned.
496 *
497 * If @pop_only is %true, this function only considers the already
498 * populated part of the candidate area.
499 */
500static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
501 int size, int align, bool pop_only)
502{
503 int cand_off = off;
504
505 while (true) {
506 int head = ALIGN(cand_off, align) - off;
507 int page_start, page_end, rs, re;
508
509 if (this_size < head + size)
510 return -1;
511
512 if (!pop_only)
513 return head;
514
515 /*
516 * If the first unpopulated page is beyond the end of the
517 * allocation, the whole allocation is populated;
518 * otherwise, retry from the end of the unpopulated area.
519 */
520 page_start = PFN_DOWN(head + off);
521 page_end = PFN_UP(head + off + size);
522
523 rs = page_start;
524 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
525 if (rs >= page_end)
526 return head;
527 cand_off = re * PAGE_SIZE;
528 }
529}
530
531/**
532 * pcpu_alloc_area - allocate area from a pcpu_chunk
533 * @chunk: chunk of interest
534 * @size: wanted size in bytes
535 * @align: wanted align
536 * @pop_only: allocate only from the populated area
537 * @occ_pages_p: out param for the number of pages the area occupies
538 *
539 * Try to allocate @size bytes area aligned at @align from @chunk.
540 * Note that this function only allocates the offset. It doesn't
541 * populate or map the area.
542 *
543 * @chunk->map must have at least two free slots.
544 *
545 * CONTEXT:
546 * pcpu_lock.
547 *
548 * RETURNS:
549 * Allocated offset in @chunk on success, -1 if no matching area is
550 * found.
551 */
552static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
553 bool pop_only, int *occ_pages_p)
554{
555 int oslot = pcpu_chunk_slot(chunk);
556 int max_contig = 0;
557 int i, off;
558 bool seen_free = false;
559 int *p;
560
561 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
562 int head, tail;
563 int this_size;
564
565 off = *p;
566 if (off & 1)
567 continue;
568
569 this_size = (p[1] & ~1) - off;
570
571 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
572 pop_only);
573 if (head < 0) {
574 if (!seen_free) {
575 chunk->first_free = i;
576 seen_free = true;
577 }
578 max_contig = max(this_size, max_contig);
579 continue;
580 }
581
582 /*
583 * If head is small or the previous block is free,
584 * merge'em. Note that 'small' is defined as smaller
585 * than sizeof(int), which is very small but isn't too
586 * uncommon for percpu allocations.
587 */
588 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
589 *p = off += head;
590 if (p[-1] & 1)
591 chunk->free_size -= head;
592 else
593 max_contig = max(*p - p[-1], max_contig);
594 this_size -= head;
595 head = 0;
596 }
597
598 /* if tail is small, just keep it around */
599 tail = this_size - head - size;
600 if (tail < sizeof(int)) {
601 tail = 0;
602 size = this_size - head;
603 }
604
605 /* split if warranted */
606 if (head || tail) {
607 int nr_extra = !!head + !!tail;
608
609 /* insert new subblocks */
610 memmove(p + nr_extra + 1, p + 1,
611 sizeof(chunk->map[0]) * (chunk->map_used - i));
612 chunk->map_used += nr_extra;
613
614 if (head) {
615 if (!seen_free) {
616 chunk->first_free = i;
617 seen_free = true;
618 }
619 *++p = off += head;
620 ++i;
621 max_contig = max(head, max_contig);
622 }
623 if (tail) {
624 p[1] = off + size;
625 max_contig = max(tail, max_contig);
626 }
627 }
628
629 if (!seen_free)
630 chunk->first_free = i + 1;
631
632 /* update hint and mark allocated */
633 if (i + 1 == chunk->map_used)
634 chunk->contig_hint = max_contig; /* fully scanned */
635 else
636 chunk->contig_hint = max(chunk->contig_hint,
637 max_contig);
638
639 chunk->free_size -= size;
640 *p |= 1;
641
642 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
643 pcpu_chunk_relocate(chunk, oslot);
644 return off;
645 }
646
647 chunk->contig_hint = max_contig; /* fully scanned */
648 pcpu_chunk_relocate(chunk, oslot);
649
650 /* tell the upper layer that this chunk has no matching area */
651 return -1;
652}
653
654/**
655 * pcpu_free_area - free area to a pcpu_chunk
656 * @chunk: chunk of interest
657 * @freeme: offset of area to free
658 * @occ_pages_p: out param for the number of pages the area occupies
659 *
660 * Free area starting from @freeme to @chunk. Note that this function
661 * only modifies the allocation map. It doesn't depopulate or unmap
662 * the area.
663 *
664 * CONTEXT:
665 * pcpu_lock.
666 */
667static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
668 int *occ_pages_p)
669{
670 int oslot = pcpu_chunk_slot(chunk);
671 int off = 0;
672 unsigned i, j;
673 int to_free = 0;
674 int *p;
675
676 freeme |= 1; /* we are searching for <given offset, in use> pair */
677
678 i = 0;
679 j = chunk->map_used;
680 while (i != j) {
681 unsigned k = (i + j) / 2;
682 off = chunk->map[k];
683 if (off < freeme)
684 i = k + 1;
685 else if (off > freeme)
686 j = k;
687 else
688 i = j = k;
689 }
690 BUG_ON(off != freeme);
691
692 if (i < chunk->first_free)
693 chunk->first_free = i;
694
695 p = chunk->map + i;
696 *p = off &= ~1;
697 chunk->free_size += (p[1] & ~1) - off;
698
699 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
700
701 /* merge with next? */
702 if (!(p[1] & 1))
703 to_free++;
704 /* merge with previous? */
705 if (i > 0 && !(p[-1] & 1)) {
706 to_free++;
707 i--;
708 p--;
709 }
710 if (to_free) {
711 chunk->map_used -= to_free;
712 memmove(p + 1, p + 1 + to_free,
713 (chunk->map_used - i) * sizeof(chunk->map[0]));
714 }
715
716 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
717 pcpu_chunk_relocate(chunk, oslot);
718}
719
720static struct pcpu_chunk *pcpu_alloc_chunk(void)
721{
722 struct pcpu_chunk *chunk;
723
724 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
725 if (!chunk)
726 return NULL;
727
728 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
729 sizeof(chunk->map[0]));
730 if (!chunk->map) {
731 pcpu_mem_free(chunk);
732 return NULL;
733 }
734
735 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
736 chunk->map[0] = 0;
737 chunk->map[1] = pcpu_unit_size | 1;
738 chunk->map_used = 1;
739
740 INIT_LIST_HEAD(&chunk->list);
741 INIT_LIST_HEAD(&chunk->map_extend_list);
742 chunk->free_size = pcpu_unit_size;
743 chunk->contig_hint = pcpu_unit_size;
744
745 return chunk;
746}
747
748static void pcpu_free_chunk(struct pcpu_chunk *chunk)
749{
750 if (!chunk)
751 return;
752 pcpu_mem_free(chunk->map);
753 pcpu_mem_free(chunk);
754}
755
756/**
757 * pcpu_chunk_populated - post-population bookkeeping
758 * @chunk: pcpu_chunk which got populated
759 * @page_start: the start page
760 * @page_end: the end page
761 *
762 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
763 * the bookkeeping information accordingly. Must be called after each
764 * successful population.
765 */
766static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
767 int page_start, int page_end)
768{
769 int nr = page_end - page_start;
770
771 lockdep_assert_held(&pcpu_lock);
772
773 bitmap_set(chunk->populated, page_start, nr);
774 chunk->nr_populated += nr;
775 pcpu_nr_empty_pop_pages += nr;
776}
777
778/**
779 * pcpu_chunk_depopulated - post-depopulation bookkeeping
780 * @chunk: pcpu_chunk which got depopulated
781 * @page_start: the start page
782 * @page_end: the end page
783 *
784 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
785 * Update the bookkeeping information accordingly. Must be called after
786 * each successful depopulation.
787 */
788static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
789 int page_start, int page_end)
790{
791 int nr = page_end - page_start;
792
793 lockdep_assert_held(&pcpu_lock);
794
795 bitmap_clear(chunk->populated, page_start, nr);
796 chunk->nr_populated -= nr;
797 pcpu_nr_empty_pop_pages -= nr;
798}
799
800/*
801 * Chunk management implementation.
802 *
803 * To allow different implementations, chunk alloc/free and
804 * [de]population are implemented in a separate file which is pulled
805 * into this file and compiled together. The following functions
806 * should be implemented.
807 *
808 * pcpu_populate_chunk - populate the specified range of a chunk
809 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
810 * pcpu_create_chunk - create a new chunk
811 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
812 * pcpu_addr_to_page - translate address to physical address
813 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
814 */
815static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
816static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
817static struct pcpu_chunk *pcpu_create_chunk(void);
818static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
819static struct page *pcpu_addr_to_page(void *addr);
820static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
821
822#ifdef CONFIG_NEED_PER_CPU_KM
823#include "percpu-km.c"
824#else
825#include "percpu-vm.c"
826#endif
827
828/**
829 * pcpu_chunk_addr_search - determine chunk containing specified address
830 * @addr: address for which the chunk needs to be determined.
831 *
832 * RETURNS:
833 * The address of the found chunk.
834 */
835static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
836{
837 /* is it in the first chunk? */
838 if (pcpu_addr_in_first_chunk(addr)) {
839 /* is it in the reserved area? */
840 if (pcpu_addr_in_reserved_chunk(addr))
841 return pcpu_reserved_chunk;
842 return pcpu_first_chunk;
843 }
844
845 /*
846 * The address is relative to unit0 which might be unused and
847 * thus unmapped. Offset the address to the unit space of the
848 * current processor before looking it up in the vmalloc
849 * space. Note that any possible cpu id can be used here, so
850 * there's no need to worry about preemption or cpu hotplug.
851 */
852 addr += pcpu_unit_offsets[raw_smp_processor_id()];
853 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
854}
855
856/**
857 * pcpu_alloc - the percpu allocator
858 * @size: size of area to allocate in bytes
859 * @align: alignment of area (max PAGE_SIZE)
860 * @reserved: allocate from the reserved chunk if available
861 * @gfp: allocation flags
862 *
863 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
864 * contain %GFP_KERNEL, the allocation is atomic.
865 *
866 * RETURNS:
867 * Percpu pointer to the allocated area on success, NULL on failure.
868 */
869static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
870 gfp_t gfp)
871{
872 static int warn_limit = 10;
873 struct pcpu_chunk *chunk;
874 const char *err;
875 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
876 int occ_pages = 0;
877 int slot, off, new_alloc, cpu, ret;
878 unsigned long flags;
879 void __percpu *ptr;
880
881 /*
882 * We want the lowest bit of offset available for in-use/free
883 * indicator, so force >= 16bit alignment and make size even.
884 */
885 if (unlikely(align < 2))
886 align = 2;
887
888 size = ALIGN(size, 2);
889
890 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
891 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
892 size, align);
893 return NULL;
894 }
895
896 if (!is_atomic)
897 mutex_lock(&pcpu_alloc_mutex);
898
899 spin_lock_irqsave(&pcpu_lock, flags);
900
901 /* serve reserved allocations from the reserved chunk if available */
902 if (reserved && pcpu_reserved_chunk) {
903 chunk = pcpu_reserved_chunk;
904
905 if (size > chunk->contig_hint) {
906 err = "alloc from reserved chunk failed";
907 goto fail_unlock;
908 }
909
910 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
911 spin_unlock_irqrestore(&pcpu_lock, flags);
912 if (is_atomic ||
913 pcpu_extend_area_map(chunk, new_alloc) < 0) {
914 err = "failed to extend area map of reserved chunk";
915 goto fail;
916 }
917 spin_lock_irqsave(&pcpu_lock, flags);
918 }
919
920 off = pcpu_alloc_area(chunk, size, align, is_atomic,
921 &occ_pages);
922 if (off >= 0)
923 goto area_found;
924
925 err = "alloc from reserved chunk failed";
926 goto fail_unlock;
927 }
928
929restart:
930 /* search through normal chunks */
931 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
932 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
933 if (size > chunk->contig_hint)
934 continue;
935
936 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
937 if (new_alloc) {
938 if (is_atomic)
939 continue;
940 spin_unlock_irqrestore(&pcpu_lock, flags);
941 if (pcpu_extend_area_map(chunk,
942 new_alloc) < 0) {
943 err = "failed to extend area map";
944 goto fail;
945 }
946 spin_lock_irqsave(&pcpu_lock, flags);
947 /*
948 * pcpu_lock has been dropped, need to
949 * restart cpu_slot list walking.
950 */
951 goto restart;
952 }
953
954 off = pcpu_alloc_area(chunk, size, align, is_atomic,
955 &occ_pages);
956 if (off >= 0)
957 goto area_found;
958 }
959 }
960
961 spin_unlock_irqrestore(&pcpu_lock, flags);
962
963 /*
964 * No space left. Create a new chunk. We don't want multiple
965 * tasks to create chunks simultaneously. Serialize and create iff
966 * there's still no empty chunk after grabbing the mutex.
967 */
968 if (is_atomic)
969 goto fail;
970
971 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
972 chunk = pcpu_create_chunk();
973 if (!chunk) {
974 err = "failed to allocate new chunk";
975 goto fail;
976 }
977
978 spin_lock_irqsave(&pcpu_lock, flags);
979 pcpu_chunk_relocate(chunk, -1);
980 } else {
981 spin_lock_irqsave(&pcpu_lock, flags);
982 }
983
984 goto restart;
985
986area_found:
987 spin_unlock_irqrestore(&pcpu_lock, flags);
988
989 /* populate if not all pages are already there */
990 if (!is_atomic) {
991 int page_start, page_end, rs, re;
992
993 page_start = PFN_DOWN(off);
994 page_end = PFN_UP(off + size);
995
996 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
997 WARN_ON(chunk->immutable);
998
999 ret = pcpu_populate_chunk(chunk, rs, re);
1000
1001 spin_lock_irqsave(&pcpu_lock, flags);
1002 if (ret) {
1003 pcpu_free_area(chunk, off, &occ_pages);
1004 err = "failed to populate";
1005 goto fail_unlock;
1006 }
1007 pcpu_chunk_populated(chunk, rs, re);
1008 spin_unlock_irqrestore(&pcpu_lock, flags);
1009 }
1010
1011 mutex_unlock(&pcpu_alloc_mutex);
1012 }
1013
1014 if (chunk != pcpu_reserved_chunk) {
1015 spin_lock_irqsave(&pcpu_lock, flags);
1016 pcpu_nr_empty_pop_pages -= occ_pages;
1017 spin_unlock_irqrestore(&pcpu_lock, flags);
1018 }
1019
1020 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1021 pcpu_schedule_balance_work();
1022
1023 /* clear the areas and return address relative to base address */
1024 for_each_possible_cpu(cpu)
1025 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1026
1027 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1028 kmemleak_alloc_percpu(ptr, size, gfp);
1029 return ptr;
1030
1031fail_unlock:
1032 spin_unlock_irqrestore(&pcpu_lock, flags);
1033fail:
1034 if (!is_atomic && warn_limit) {
1035 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1036 size, align, is_atomic, err);
1037 dump_stack();
1038 if (!--warn_limit)
1039 pr_info("limit reached, disable warning\n");
1040 }
1041 if (is_atomic) {
1042 /* see the flag handling in pcpu_blance_workfn() */
1043 pcpu_atomic_alloc_failed = true;
1044 pcpu_schedule_balance_work();
1045 } else {
1046 mutex_unlock(&pcpu_alloc_mutex);
1047 }
1048 return NULL;
1049}
1050
1051/**
1052 * __alloc_percpu_gfp - allocate dynamic percpu area
1053 * @size: size of area to allocate in bytes
1054 * @align: alignment of area (max PAGE_SIZE)
1055 * @gfp: allocation flags
1056 *
1057 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1058 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1059 * be called from any context but is a lot more likely to fail.
1060 *
1061 * RETURNS:
1062 * Percpu pointer to the allocated area on success, NULL on failure.
1063 */
1064void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1065{
1066 return pcpu_alloc(size, align, false, gfp);
1067}
1068EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1069
1070/**
1071 * __alloc_percpu - allocate dynamic percpu area
1072 * @size: size of area to allocate in bytes
1073 * @align: alignment of area (max PAGE_SIZE)
1074 *
1075 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1076 */
1077void __percpu *__alloc_percpu(size_t size, size_t align)
1078{
1079 return pcpu_alloc(size, align, false, GFP_KERNEL);
1080}
1081EXPORT_SYMBOL_GPL(__alloc_percpu);
1082
1083/**
1084 * __alloc_reserved_percpu - allocate reserved percpu area
1085 * @size: size of area to allocate in bytes
1086 * @align: alignment of area (max PAGE_SIZE)
1087 *
1088 * Allocate zero-filled percpu area of @size bytes aligned at @align
1089 * from reserved percpu area if arch has set it up; otherwise,
1090 * allocation is served from the same dynamic area. Might sleep.
1091 * Might trigger writeouts.
1092 *
1093 * CONTEXT:
1094 * Does GFP_KERNEL allocation.
1095 *
1096 * RETURNS:
1097 * Percpu pointer to the allocated area on success, NULL on failure.
1098 */
1099void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1100{
1101 return pcpu_alloc(size, align, true, GFP_KERNEL);
1102}
1103
1104/**
1105 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1106 * @work: unused
1107 *
1108 * Reclaim all fully free chunks except for the first one.
1109 */
1110static void pcpu_balance_workfn(struct work_struct *work)
1111{
1112 LIST_HEAD(to_free);
1113 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1114 struct pcpu_chunk *chunk, *next;
1115 int slot, nr_to_pop, ret;
1116
1117 /*
1118 * There's no reason to keep around multiple unused chunks and VM
1119 * areas can be scarce. Destroy all free chunks except for one.
1120 */
1121 mutex_lock(&pcpu_alloc_mutex);
1122 spin_lock_irq(&pcpu_lock);
1123
1124 list_for_each_entry_safe(chunk, next, free_head, list) {
1125 WARN_ON(chunk->immutable);
1126
1127 /* spare the first one */
1128 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1129 continue;
1130
1131 list_del_init(&chunk->map_extend_list);
1132 list_move(&chunk->list, &to_free);
1133 }
1134
1135 spin_unlock_irq(&pcpu_lock);
1136
1137 list_for_each_entry_safe(chunk, next, &to_free, list) {
1138 int rs, re;
1139
1140 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1141 pcpu_depopulate_chunk(chunk, rs, re);
1142 spin_lock_irq(&pcpu_lock);
1143 pcpu_chunk_depopulated(chunk, rs, re);
1144 spin_unlock_irq(&pcpu_lock);
1145 }
1146 pcpu_destroy_chunk(chunk);
1147 }
1148
1149 /* service chunks which requested async area map extension */
1150 do {
1151 int new_alloc = 0;
1152
1153 spin_lock_irq(&pcpu_lock);
1154
1155 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1156 struct pcpu_chunk, map_extend_list);
1157 if (chunk) {
1158 list_del_init(&chunk->map_extend_list);
1159 new_alloc = pcpu_need_to_extend(chunk, false);
1160 }
1161
1162 spin_unlock_irq(&pcpu_lock);
1163
1164 if (new_alloc)
1165 pcpu_extend_area_map(chunk, new_alloc);
1166 } while (chunk);
1167
1168 /*
1169 * Ensure there are certain number of free populated pages for
1170 * atomic allocs. Fill up from the most packed so that atomic
1171 * allocs don't increase fragmentation. If atomic allocation
1172 * failed previously, always populate the maximum amount. This
1173 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1174 * failing indefinitely; however, large atomic allocs are not
1175 * something we support properly and can be highly unreliable and
1176 * inefficient.
1177 */
1178retry_pop:
1179 if (pcpu_atomic_alloc_failed) {
1180 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1181 /* best effort anyway, don't worry about synchronization */
1182 pcpu_atomic_alloc_failed = false;
1183 } else {
1184 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1185 pcpu_nr_empty_pop_pages,
1186 0, PCPU_EMPTY_POP_PAGES_HIGH);
1187 }
1188
1189 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1190 int nr_unpop = 0, rs, re;
1191
1192 if (!nr_to_pop)
1193 break;
1194
1195 spin_lock_irq(&pcpu_lock);
1196 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1197 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1198 if (nr_unpop)
1199 break;
1200 }
1201 spin_unlock_irq(&pcpu_lock);
1202
1203 if (!nr_unpop)
1204 continue;
1205
1206 /* @chunk can't go away while pcpu_alloc_mutex is held */
1207 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1208 int nr = min(re - rs, nr_to_pop);
1209
1210 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1211 if (!ret) {
1212 nr_to_pop -= nr;
1213 spin_lock_irq(&pcpu_lock);
1214 pcpu_chunk_populated(chunk, rs, rs + nr);
1215 spin_unlock_irq(&pcpu_lock);
1216 } else {
1217 nr_to_pop = 0;
1218 }
1219
1220 if (!nr_to_pop)
1221 break;
1222 }
1223 }
1224
1225 if (nr_to_pop) {
1226 /* ran out of chunks to populate, create a new one and retry */
1227 chunk = pcpu_create_chunk();
1228 if (chunk) {
1229 spin_lock_irq(&pcpu_lock);
1230 pcpu_chunk_relocate(chunk, -1);
1231 spin_unlock_irq(&pcpu_lock);
1232 goto retry_pop;
1233 }
1234 }
1235
1236 mutex_unlock(&pcpu_alloc_mutex);
1237}
1238
1239/**
1240 * free_percpu - free percpu area
1241 * @ptr: pointer to area to free
1242 *
1243 * Free percpu area @ptr.
1244 *
1245 * CONTEXT:
1246 * Can be called from atomic context.
1247 */
1248void free_percpu(void __percpu *ptr)
1249{
1250 void *addr;
1251 struct pcpu_chunk *chunk;
1252 unsigned long flags;
1253 int off, occ_pages;
1254
1255 if (!ptr)
1256 return;
1257
1258 kmemleak_free_percpu(ptr);
1259
1260 addr = __pcpu_ptr_to_addr(ptr);
1261
1262 spin_lock_irqsave(&pcpu_lock, flags);
1263
1264 chunk = pcpu_chunk_addr_search(addr);
1265 off = addr - chunk->base_addr;
1266
1267 pcpu_free_area(chunk, off, &occ_pages);
1268
1269 if (chunk != pcpu_reserved_chunk)
1270 pcpu_nr_empty_pop_pages += occ_pages;
1271
1272 /* if there are more than one fully free chunks, wake up grim reaper */
1273 if (chunk->free_size == pcpu_unit_size) {
1274 struct pcpu_chunk *pos;
1275
1276 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1277 if (pos != chunk) {
1278 pcpu_schedule_balance_work();
1279 break;
1280 }
1281 }
1282
1283 spin_unlock_irqrestore(&pcpu_lock, flags);
1284}
1285EXPORT_SYMBOL_GPL(free_percpu);
1286
1287/**
1288 * is_kernel_percpu_address - test whether address is from static percpu area
1289 * @addr: address to test
1290 *
1291 * Test whether @addr belongs to in-kernel static percpu area. Module
1292 * static percpu areas are not considered. For those, use
1293 * is_module_percpu_address().
1294 *
1295 * RETURNS:
1296 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1297 */
1298bool is_kernel_percpu_address(unsigned long addr)
1299{
1300#ifdef CONFIG_SMP
1301 const size_t static_size = __per_cpu_end - __per_cpu_start;
1302 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1303 unsigned int cpu;
1304
1305 for_each_possible_cpu(cpu) {
1306 void *start = per_cpu_ptr(base, cpu);
1307
1308 if ((void *)addr >= start && (void *)addr < start + static_size)
1309 return true;
1310 }
1311#endif
1312 /* on UP, can't distinguish from other static vars, always false */
1313 return false;
1314}
1315
1316/**
1317 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1318 * @addr: the address to be converted to physical address
1319 *
1320 * Given @addr which is dereferenceable address obtained via one of
1321 * percpu access macros, this function translates it into its physical
1322 * address. The caller is responsible for ensuring @addr stays valid
1323 * until this function finishes.
1324 *
1325 * percpu allocator has special setup for the first chunk, which currently
1326 * supports either embedding in linear address space or vmalloc mapping,
1327 * and, from the second one, the backing allocator (currently either vm or
1328 * km) provides translation.
1329 *
1330 * The addr can be translated simply without checking if it falls into the
1331 * first chunk. But the current code reflects better how percpu allocator
1332 * actually works, and the verification can discover both bugs in percpu
1333 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1334 * code.
1335 *
1336 * RETURNS:
1337 * The physical address for @addr.
1338 */
1339phys_addr_t per_cpu_ptr_to_phys(void *addr)
1340{
1341 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1342 bool in_first_chunk = false;
1343 unsigned long first_low, first_high;
1344 unsigned int cpu;
1345
1346 /*
1347 * The following test on unit_low/high isn't strictly
1348 * necessary but will speed up lookups of addresses which
1349 * aren't in the first chunk.
1350 */
1351 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1352 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1353 pcpu_unit_pages);
1354 if ((unsigned long)addr >= first_low &&
1355 (unsigned long)addr < first_high) {
1356 for_each_possible_cpu(cpu) {
1357 void *start = per_cpu_ptr(base, cpu);
1358
1359 if (addr >= start && addr < start + pcpu_unit_size) {
1360 in_first_chunk = true;
1361 break;
1362 }
1363 }
1364 }
1365
1366 if (in_first_chunk) {
1367 if (!is_vmalloc_addr(addr))
1368 return __pa(addr);
1369 else
1370 return page_to_phys(vmalloc_to_page(addr)) +
1371 offset_in_page(addr);
1372 } else
1373 return page_to_phys(pcpu_addr_to_page(addr)) +
1374 offset_in_page(addr);
1375}
1376
1377/**
1378 * pcpu_alloc_alloc_info - allocate percpu allocation info
1379 * @nr_groups: the number of groups
1380 * @nr_units: the number of units
1381 *
1382 * Allocate ai which is large enough for @nr_groups groups containing
1383 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1384 * cpu_map array which is long enough for @nr_units and filled with
1385 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1386 * pointer of other groups.
1387 *
1388 * RETURNS:
1389 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1390 * failure.
1391 */
1392struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1393 int nr_units)
1394{
1395 struct pcpu_alloc_info *ai;
1396 size_t base_size, ai_size;
1397 void *ptr;
1398 int unit;
1399
1400 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1401 __alignof__(ai->groups[0].cpu_map[0]));
1402 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1403
1404 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1405 if (!ptr)
1406 return NULL;
1407 ai = ptr;
1408 ptr += base_size;
1409
1410 ai->groups[0].cpu_map = ptr;
1411
1412 for (unit = 0; unit < nr_units; unit++)
1413 ai->groups[0].cpu_map[unit] = NR_CPUS;
1414
1415 ai->nr_groups = nr_groups;
1416 ai->__ai_size = PFN_ALIGN(ai_size);
1417
1418 return ai;
1419}
1420
1421/**
1422 * pcpu_free_alloc_info - free percpu allocation info
1423 * @ai: pcpu_alloc_info to free
1424 *
1425 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1426 */
1427void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1428{
1429 memblock_free_early(__pa(ai), ai->__ai_size);
1430}
1431
1432/**
1433 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1434 * @lvl: loglevel
1435 * @ai: allocation info to dump
1436 *
1437 * Print out information about @ai using loglevel @lvl.
1438 */
1439static void pcpu_dump_alloc_info(const char *lvl,
1440 const struct pcpu_alloc_info *ai)
1441{
1442 int group_width = 1, cpu_width = 1, width;
1443 char empty_str[] = "--------";
1444 int alloc = 0, alloc_end = 0;
1445 int group, v;
1446 int upa, apl; /* units per alloc, allocs per line */
1447
1448 v = ai->nr_groups;
1449 while (v /= 10)
1450 group_width++;
1451
1452 v = num_possible_cpus();
1453 while (v /= 10)
1454 cpu_width++;
1455 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1456
1457 upa = ai->alloc_size / ai->unit_size;
1458 width = upa * (cpu_width + 1) + group_width + 3;
1459 apl = rounddown_pow_of_two(max(60 / width, 1));
1460
1461 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1462 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1463 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1464
1465 for (group = 0; group < ai->nr_groups; group++) {
1466 const struct pcpu_group_info *gi = &ai->groups[group];
1467 int unit = 0, unit_end = 0;
1468
1469 BUG_ON(gi->nr_units % upa);
1470 for (alloc_end += gi->nr_units / upa;
1471 alloc < alloc_end; alloc++) {
1472 if (!(alloc % apl)) {
1473 pr_cont("\n");
1474 printk("%spcpu-alloc: ", lvl);
1475 }
1476 pr_cont("[%0*d] ", group_width, group);
1477
1478 for (unit_end += upa; unit < unit_end; unit++)
1479 if (gi->cpu_map[unit] != NR_CPUS)
1480 pr_cont("%0*d ",
1481 cpu_width, gi->cpu_map[unit]);
1482 else
1483 pr_cont("%s ", empty_str);
1484 }
1485 }
1486 pr_cont("\n");
1487}
1488
1489/**
1490 * pcpu_setup_first_chunk - initialize the first percpu chunk
1491 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1492 * @base_addr: mapped address
1493 *
1494 * Initialize the first percpu chunk which contains the kernel static
1495 * perpcu area. This function is to be called from arch percpu area
1496 * setup path.
1497 *
1498 * @ai contains all information necessary to initialize the first
1499 * chunk and prime the dynamic percpu allocator.
1500 *
1501 * @ai->static_size is the size of static percpu area.
1502 *
1503 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1504 * reserve after the static area in the first chunk. This reserves
1505 * the first chunk such that it's available only through reserved
1506 * percpu allocation. This is primarily used to serve module percpu
1507 * static areas on architectures where the addressing model has
1508 * limited offset range for symbol relocations to guarantee module
1509 * percpu symbols fall inside the relocatable range.
1510 *
1511 * @ai->dyn_size determines the number of bytes available for dynamic
1512 * allocation in the first chunk. The area between @ai->static_size +
1513 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1514 *
1515 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1516 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1517 * @ai->dyn_size.
1518 *
1519 * @ai->atom_size is the allocation atom size and used as alignment
1520 * for vm areas.
1521 *
1522 * @ai->alloc_size is the allocation size and always multiple of
1523 * @ai->atom_size. This is larger than @ai->atom_size if
1524 * @ai->unit_size is larger than @ai->atom_size.
1525 *
1526 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1527 * percpu areas. Units which should be colocated are put into the
1528 * same group. Dynamic VM areas will be allocated according to these
1529 * groupings. If @ai->nr_groups is zero, a single group containing
1530 * all units is assumed.
1531 *
1532 * The caller should have mapped the first chunk at @base_addr and
1533 * copied static data to each unit.
1534 *
1535 * If the first chunk ends up with both reserved and dynamic areas, it
1536 * is served by two chunks - one to serve the core static and reserved
1537 * areas and the other for the dynamic area. They share the same vm
1538 * and page map but uses different area allocation map to stay away
1539 * from each other. The latter chunk is circulated in the chunk slots
1540 * and available for dynamic allocation like any other chunks.
1541 *
1542 * RETURNS:
1543 * 0 on success, -errno on failure.
1544 */
1545int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1546 void *base_addr)
1547{
1548 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1549 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1550 size_t dyn_size = ai->dyn_size;
1551 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1552 struct pcpu_chunk *schunk, *dchunk = NULL;
1553 unsigned long *group_offsets;
1554 size_t *group_sizes;
1555 unsigned long *unit_off;
1556 unsigned int cpu;
1557 int *unit_map;
1558 int group, unit, i;
1559
1560#define PCPU_SETUP_BUG_ON(cond) do { \
1561 if (unlikely(cond)) { \
1562 pr_emerg("failed to initialize, %s\n", #cond); \
1563 pr_emerg("cpu_possible_mask=%*pb\n", \
1564 cpumask_pr_args(cpu_possible_mask)); \
1565 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1566 BUG(); \
1567 } \
1568} while (0)
1569
1570 /* sanity checks */
1571 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1572#ifdef CONFIG_SMP
1573 PCPU_SETUP_BUG_ON(!ai->static_size);
1574 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1575#endif
1576 PCPU_SETUP_BUG_ON(!base_addr);
1577 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1578 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1579 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1580 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1581 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1582 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1583
1584 /* process group information and build config tables accordingly */
1585 group_offsets = memblock_virt_alloc(ai->nr_groups *
1586 sizeof(group_offsets[0]), 0);
1587 group_sizes = memblock_virt_alloc(ai->nr_groups *
1588 sizeof(group_sizes[0]), 0);
1589 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1590 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1591
1592 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1593 unit_map[cpu] = UINT_MAX;
1594
1595 pcpu_low_unit_cpu = NR_CPUS;
1596 pcpu_high_unit_cpu = NR_CPUS;
1597
1598 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1599 const struct pcpu_group_info *gi = &ai->groups[group];
1600
1601 group_offsets[group] = gi->base_offset;
1602 group_sizes[group] = gi->nr_units * ai->unit_size;
1603
1604 for (i = 0; i < gi->nr_units; i++) {
1605 cpu = gi->cpu_map[i];
1606 if (cpu == NR_CPUS)
1607 continue;
1608
1609 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1610 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1611 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1612
1613 unit_map[cpu] = unit + i;
1614 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1615
1616 /* determine low/high unit_cpu */
1617 if (pcpu_low_unit_cpu == NR_CPUS ||
1618 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1619 pcpu_low_unit_cpu = cpu;
1620 if (pcpu_high_unit_cpu == NR_CPUS ||
1621 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1622 pcpu_high_unit_cpu = cpu;
1623 }
1624 }
1625 pcpu_nr_units = unit;
1626
1627 for_each_possible_cpu(cpu)
1628 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1629
1630 /* we're done parsing the input, undefine BUG macro and dump config */
1631#undef PCPU_SETUP_BUG_ON
1632 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1633
1634 pcpu_nr_groups = ai->nr_groups;
1635 pcpu_group_offsets = group_offsets;
1636 pcpu_group_sizes = group_sizes;
1637 pcpu_unit_map = unit_map;
1638 pcpu_unit_offsets = unit_off;
1639
1640 /* determine basic parameters */
1641 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1642 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1643 pcpu_atom_size = ai->atom_size;
1644 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1645 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1646
1647 /*
1648 * Allocate chunk slots. The additional last slot is for
1649 * empty chunks.
1650 */
1651 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1652 pcpu_slot = memblock_virt_alloc(
1653 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1654 for (i = 0; i < pcpu_nr_slots; i++)
1655 INIT_LIST_HEAD(&pcpu_slot[i]);
1656
1657 /*
1658 * Initialize static chunk. If reserved_size is zero, the
1659 * static chunk covers static area + dynamic allocation area
1660 * in the first chunk. If reserved_size is not zero, it
1661 * covers static area + reserved area (mostly used for module
1662 * static percpu allocation).
1663 */
1664 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1665 INIT_LIST_HEAD(&schunk->list);
1666 INIT_LIST_HEAD(&schunk->map_extend_list);
1667 schunk->base_addr = base_addr;
1668 schunk->map = smap;
1669 schunk->map_alloc = ARRAY_SIZE(smap);
1670 schunk->immutable = true;
1671 bitmap_fill(schunk->populated, pcpu_unit_pages);
1672 schunk->nr_populated = pcpu_unit_pages;
1673
1674 if (ai->reserved_size) {
1675 schunk->free_size = ai->reserved_size;
1676 pcpu_reserved_chunk = schunk;
1677 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1678 } else {
1679 schunk->free_size = dyn_size;
1680 dyn_size = 0; /* dynamic area covered */
1681 }
1682 schunk->contig_hint = schunk->free_size;
1683
1684 schunk->map[0] = 1;
1685 schunk->map[1] = ai->static_size;
1686 schunk->map_used = 1;
1687 if (schunk->free_size)
1688 schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1689 schunk->map[schunk->map_used] |= 1;
1690
1691 /* init dynamic chunk if necessary */
1692 if (dyn_size) {
1693 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1694 INIT_LIST_HEAD(&dchunk->list);
1695 INIT_LIST_HEAD(&dchunk->map_extend_list);
1696 dchunk->base_addr = base_addr;
1697 dchunk->map = dmap;
1698 dchunk->map_alloc = ARRAY_SIZE(dmap);
1699 dchunk->immutable = true;
1700 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1701 dchunk->nr_populated = pcpu_unit_pages;
1702
1703 dchunk->contig_hint = dchunk->free_size = dyn_size;
1704 dchunk->map[0] = 1;
1705 dchunk->map[1] = pcpu_reserved_chunk_limit;
1706 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1707 dchunk->map_used = 2;
1708 }
1709
1710 /* link the first chunk in */
1711 pcpu_first_chunk = dchunk ?: schunk;
1712 pcpu_nr_empty_pop_pages +=
1713 pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1714 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1715
1716 /* we're done */
1717 pcpu_base_addr = base_addr;
1718 return 0;
1719}
1720
1721#ifdef CONFIG_SMP
1722
1723const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1724 [PCPU_FC_AUTO] = "auto",
1725 [PCPU_FC_EMBED] = "embed",
1726 [PCPU_FC_PAGE] = "page",
1727};
1728
1729enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1730
1731static int __init percpu_alloc_setup(char *str)
1732{
1733 if (!str)
1734 return -EINVAL;
1735
1736 if (0)
1737 /* nada */;
1738#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1739 else if (!strcmp(str, "embed"))
1740 pcpu_chosen_fc = PCPU_FC_EMBED;
1741#endif
1742#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1743 else if (!strcmp(str, "page"))
1744 pcpu_chosen_fc = PCPU_FC_PAGE;
1745#endif
1746 else
1747 pr_warn("unknown allocator %s specified\n", str);
1748
1749 return 0;
1750}
1751early_param("percpu_alloc", percpu_alloc_setup);
1752
1753/*
1754 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1755 * Build it if needed by the arch config or the generic setup is going
1756 * to be used.
1757 */
1758#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1759 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1760#define BUILD_EMBED_FIRST_CHUNK
1761#endif
1762
1763/* build pcpu_page_first_chunk() iff needed by the arch config */
1764#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1765#define BUILD_PAGE_FIRST_CHUNK
1766#endif
1767
1768/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1769#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1770/**
1771 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1772 * @reserved_size: the size of reserved percpu area in bytes
1773 * @dyn_size: minimum free size for dynamic allocation in bytes
1774 * @atom_size: allocation atom size
1775 * @cpu_distance_fn: callback to determine distance between cpus, optional
1776 *
1777 * This function determines grouping of units, their mappings to cpus
1778 * and other parameters considering needed percpu size, allocation
1779 * atom size and distances between CPUs.
1780 *
1781 * Groups are always multiples of atom size and CPUs which are of
1782 * LOCAL_DISTANCE both ways are grouped together and share space for
1783 * units in the same group. The returned configuration is guaranteed
1784 * to have CPUs on different nodes on different groups and >=75% usage
1785 * of allocated virtual address space.
1786 *
1787 * RETURNS:
1788 * On success, pointer to the new allocation_info is returned. On
1789 * failure, ERR_PTR value is returned.
1790 */
1791static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1792 size_t reserved_size, size_t dyn_size,
1793 size_t atom_size,
1794 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1795{
1796 static int group_map[NR_CPUS] __initdata;
1797 static int group_cnt[NR_CPUS] __initdata;
1798 const size_t static_size = __per_cpu_end - __per_cpu_start;
1799 int nr_groups = 1, nr_units = 0;
1800 size_t size_sum, min_unit_size, alloc_size;
1801 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1802 int last_allocs, group, unit;
1803 unsigned int cpu, tcpu;
1804 struct pcpu_alloc_info *ai;
1805 unsigned int *cpu_map;
1806
1807 /* this function may be called multiple times */
1808 memset(group_map, 0, sizeof(group_map));
1809 memset(group_cnt, 0, sizeof(group_cnt));
1810
1811 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1812 size_sum = PFN_ALIGN(static_size + reserved_size +
1813 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1814 dyn_size = size_sum - static_size - reserved_size;
1815
1816 /*
1817 * Determine min_unit_size, alloc_size and max_upa such that
1818 * alloc_size is multiple of atom_size and is the smallest
1819 * which can accommodate 4k aligned segments which are equal to
1820 * or larger than min_unit_size.
1821 */
1822 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1823
1824 alloc_size = roundup(min_unit_size, atom_size);
1825 upa = alloc_size / min_unit_size;
1826 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1827 upa--;
1828 max_upa = upa;
1829
1830 /* group cpus according to their proximity */
1831 for_each_possible_cpu(cpu) {
1832 group = 0;
1833 next_group:
1834 for_each_possible_cpu(tcpu) {
1835 if (cpu == tcpu)
1836 break;
1837 if (group_map[tcpu] == group && cpu_distance_fn &&
1838 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1839 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1840 group++;
1841 nr_groups = max(nr_groups, group + 1);
1842 goto next_group;
1843 }
1844 }
1845 group_map[cpu] = group;
1846 group_cnt[group]++;
1847 }
1848
1849 /*
1850 * Expand unit size until address space usage goes over 75%
1851 * and then as much as possible without using more address
1852 * space.
1853 */
1854 last_allocs = INT_MAX;
1855 for (upa = max_upa; upa; upa--) {
1856 int allocs = 0, wasted = 0;
1857
1858 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1859 continue;
1860
1861 for (group = 0; group < nr_groups; group++) {
1862 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1863 allocs += this_allocs;
1864 wasted += this_allocs * upa - group_cnt[group];
1865 }
1866
1867 /*
1868 * Don't accept if wastage is over 1/3. The
1869 * greater-than comparison ensures upa==1 always
1870 * passes the following check.
1871 */
1872 if (wasted > num_possible_cpus() / 3)
1873 continue;
1874
1875 /* and then don't consume more memory */
1876 if (allocs > last_allocs)
1877 break;
1878 last_allocs = allocs;
1879 best_upa = upa;
1880 }
1881 upa = best_upa;
1882
1883 /* allocate and fill alloc_info */
1884 for (group = 0; group < nr_groups; group++)
1885 nr_units += roundup(group_cnt[group], upa);
1886
1887 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1888 if (!ai)
1889 return ERR_PTR(-ENOMEM);
1890 cpu_map = ai->groups[0].cpu_map;
1891
1892 for (group = 0; group < nr_groups; group++) {
1893 ai->groups[group].cpu_map = cpu_map;
1894 cpu_map += roundup(group_cnt[group], upa);
1895 }
1896
1897 ai->static_size = static_size;
1898 ai->reserved_size = reserved_size;
1899 ai->dyn_size = dyn_size;
1900 ai->unit_size = alloc_size / upa;
1901 ai->atom_size = atom_size;
1902 ai->alloc_size = alloc_size;
1903
1904 for (group = 0, unit = 0; group_cnt[group]; group++) {
1905 struct pcpu_group_info *gi = &ai->groups[group];
1906
1907 /*
1908 * Initialize base_offset as if all groups are located
1909 * back-to-back. The caller should update this to
1910 * reflect actual allocation.
1911 */
1912 gi->base_offset = unit * ai->unit_size;
1913
1914 for_each_possible_cpu(cpu)
1915 if (group_map[cpu] == group)
1916 gi->cpu_map[gi->nr_units++] = cpu;
1917 gi->nr_units = roundup(gi->nr_units, upa);
1918 unit += gi->nr_units;
1919 }
1920 BUG_ON(unit != nr_units);
1921
1922 return ai;
1923}
1924#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1925
1926#if defined(BUILD_EMBED_FIRST_CHUNK)
1927/**
1928 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1929 * @reserved_size: the size of reserved percpu area in bytes
1930 * @dyn_size: minimum free size for dynamic allocation in bytes
1931 * @atom_size: allocation atom size
1932 * @cpu_distance_fn: callback to determine distance between cpus, optional
1933 * @alloc_fn: function to allocate percpu page
1934 * @free_fn: function to free percpu page
1935 *
1936 * This is a helper to ease setting up embedded first percpu chunk and
1937 * can be called where pcpu_setup_first_chunk() is expected.
1938 *
1939 * If this function is used to setup the first chunk, it is allocated
1940 * by calling @alloc_fn and used as-is without being mapped into
1941 * vmalloc area. Allocations are always whole multiples of @atom_size
1942 * aligned to @atom_size.
1943 *
1944 * This enables the first chunk to piggy back on the linear physical
1945 * mapping which often uses larger page size. Please note that this
1946 * can result in very sparse cpu->unit mapping on NUMA machines thus
1947 * requiring large vmalloc address space. Don't use this allocator if
1948 * vmalloc space is not orders of magnitude larger than distances
1949 * between node memory addresses (ie. 32bit NUMA machines).
1950 *
1951 * @dyn_size specifies the minimum dynamic area size.
1952 *
1953 * If the needed size is smaller than the minimum or specified unit
1954 * size, the leftover is returned using @free_fn.
1955 *
1956 * RETURNS:
1957 * 0 on success, -errno on failure.
1958 */
1959int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1960 size_t atom_size,
1961 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1962 pcpu_fc_alloc_fn_t alloc_fn,
1963 pcpu_fc_free_fn_t free_fn)
1964{
1965 void *base = (void *)ULONG_MAX;
1966 void **areas = NULL;
1967 struct pcpu_alloc_info *ai;
1968 size_t size_sum, areas_size;
1969 unsigned long max_distance;
1970 int group, i, highest_group, rc;
1971
1972 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1973 cpu_distance_fn);
1974 if (IS_ERR(ai))
1975 return PTR_ERR(ai);
1976
1977 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1978 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1979
1980 areas = memblock_virt_alloc_nopanic(areas_size, 0);
1981 if (!areas) {
1982 rc = -ENOMEM;
1983 goto out_free;
1984 }
1985
1986 /* allocate, copy and determine base address & max_distance */
1987 highest_group = 0;
1988 for (group = 0; group < ai->nr_groups; group++) {
1989 struct pcpu_group_info *gi = &ai->groups[group];
1990 unsigned int cpu = NR_CPUS;
1991 void *ptr;
1992
1993 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1994 cpu = gi->cpu_map[i];
1995 BUG_ON(cpu == NR_CPUS);
1996
1997 /* allocate space for the whole group */
1998 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1999 if (!ptr) {
2000 rc = -ENOMEM;
2001 goto out_free_areas;
2002 }
2003 /* kmemleak tracks the percpu allocations separately */
2004 kmemleak_free(ptr);
2005 areas[group] = ptr;
2006
2007 base = min(ptr, base);
2008 if (ptr > areas[highest_group])
2009 highest_group = group;
2010 }
2011 max_distance = areas[highest_group] - base;
2012 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2013
2014 /* warn if maximum distance is further than 75% of vmalloc space */
2015 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2016 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2017 max_distance, VMALLOC_TOTAL);
2018#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2019 /* and fail if we have fallback */
2020 rc = -EINVAL;
2021 goto out_free_areas;
2022#endif
2023 }
2024
2025 /*
2026 * Copy data and free unused parts. This should happen after all
2027 * allocations are complete; otherwise, we may end up with
2028 * overlapping groups.
2029 */
2030 for (group = 0; group < ai->nr_groups; group++) {
2031 struct pcpu_group_info *gi = &ai->groups[group];
2032 void *ptr = areas[group];
2033
2034 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2035 if (gi->cpu_map[i] == NR_CPUS) {
2036 /* unused unit, free whole */
2037 free_fn(ptr, ai->unit_size);
2038 continue;
2039 }
2040 /* copy and return the unused part */
2041 memcpy(ptr, __per_cpu_load, ai->static_size);
2042 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2043 }
2044 }
2045
2046 /* base address is now known, determine group base offsets */
2047 for (group = 0; group < ai->nr_groups; group++) {
2048 ai->groups[group].base_offset = areas[group] - base;
2049 }
2050
2051 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2052 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2053 ai->dyn_size, ai->unit_size);
2054
2055 rc = pcpu_setup_first_chunk(ai, base);
2056 goto out_free;
2057
2058out_free_areas:
2059 for (group = 0; group < ai->nr_groups; group++)
2060 if (areas[group])
2061 free_fn(areas[group],
2062 ai->groups[group].nr_units * ai->unit_size);
2063out_free:
2064 pcpu_free_alloc_info(ai);
2065 if (areas)
2066 memblock_free_early(__pa(areas), areas_size);
2067 return rc;
2068}
2069#endif /* BUILD_EMBED_FIRST_CHUNK */
2070
2071#ifdef BUILD_PAGE_FIRST_CHUNK
2072/**
2073 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2074 * @reserved_size: the size of reserved percpu area in bytes
2075 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2076 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2077 * @populate_pte_fn: function to populate pte
2078 *
2079 * This is a helper to ease setting up page-remapped first percpu
2080 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2081 *
2082 * This is the basic allocator. Static percpu area is allocated
2083 * page-by-page into vmalloc area.
2084 *
2085 * RETURNS:
2086 * 0 on success, -errno on failure.
2087 */
2088int __init pcpu_page_first_chunk(size_t reserved_size,
2089 pcpu_fc_alloc_fn_t alloc_fn,
2090 pcpu_fc_free_fn_t free_fn,
2091 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2092{
2093 static struct vm_struct vm;
2094 struct pcpu_alloc_info *ai;
2095 char psize_str[16];
2096 int unit_pages;
2097 size_t pages_size;
2098 struct page **pages;
2099 int unit, i, j, rc;
2100
2101 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2102
2103 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2104 if (IS_ERR(ai))
2105 return PTR_ERR(ai);
2106 BUG_ON(ai->nr_groups != 1);
2107 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2108
2109 unit_pages = ai->unit_size >> PAGE_SHIFT;
2110
2111 /* unaligned allocations can't be freed, round up to page size */
2112 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2113 sizeof(pages[0]));
2114 pages = memblock_virt_alloc(pages_size, 0);
2115
2116 /* allocate pages */
2117 j = 0;
2118 for (unit = 0; unit < num_possible_cpus(); unit++)
2119 for (i = 0; i < unit_pages; i++) {
2120 unsigned int cpu = ai->groups[0].cpu_map[unit];
2121 void *ptr;
2122
2123 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2124 if (!ptr) {
2125 pr_warn("failed to allocate %s page for cpu%u\n",
2126 psize_str, cpu);
2127 goto enomem;
2128 }
2129 /* kmemleak tracks the percpu allocations separately */
2130 kmemleak_free(ptr);
2131 pages[j++] = virt_to_page(ptr);
2132 }
2133
2134 /* allocate vm area, map the pages and copy static data */
2135 vm.flags = VM_ALLOC;
2136 vm.size = num_possible_cpus() * ai->unit_size;
2137 vm_area_register_early(&vm, PAGE_SIZE);
2138
2139 for (unit = 0; unit < num_possible_cpus(); unit++) {
2140 unsigned long unit_addr =
2141 (unsigned long)vm.addr + unit * ai->unit_size;
2142
2143 for (i = 0; i < unit_pages; i++)
2144 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2145
2146 /* pte already populated, the following shouldn't fail */
2147 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2148 unit_pages);
2149 if (rc < 0)
2150 panic("failed to map percpu area, err=%d\n", rc);
2151
2152 /*
2153 * FIXME: Archs with virtual cache should flush local
2154 * cache for the linear mapping here - something
2155 * equivalent to flush_cache_vmap() on the local cpu.
2156 * flush_cache_vmap() can't be used as most supporting
2157 * data structures are not set up yet.
2158 */
2159
2160 /* copy static data */
2161 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2162 }
2163
2164 /* we're ready, commit */
2165 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
2166 unit_pages, psize_str, ai->static_size,
2167 ai->reserved_size, ai->dyn_size);
2168
2169 rc = pcpu_setup_first_chunk(ai, vm.addr);
2170 goto out_free_ar;
2171
2172enomem:
2173 while (--j >= 0)
2174 free_fn(page_address(pages[j]), PAGE_SIZE);
2175 rc = -ENOMEM;
2176out_free_ar:
2177 memblock_free_early(__pa(pages), pages_size);
2178 pcpu_free_alloc_info(ai);
2179 return rc;
2180}
2181#endif /* BUILD_PAGE_FIRST_CHUNK */
2182
2183#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2184/*
2185 * Generic SMP percpu area setup.
2186 *
2187 * The embedding helper is used because its behavior closely resembles
2188 * the original non-dynamic generic percpu area setup. This is
2189 * important because many archs have addressing restrictions and might
2190 * fail if the percpu area is located far away from the previous
2191 * location. As an added bonus, in non-NUMA cases, embedding is
2192 * generally a good idea TLB-wise because percpu area can piggy back
2193 * on the physical linear memory mapping which uses large page
2194 * mappings on applicable archs.
2195 */
2196unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2197EXPORT_SYMBOL(__per_cpu_offset);
2198
2199static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2200 size_t align)
2201{
2202 return memblock_virt_alloc_from_nopanic(
2203 size, align, __pa(MAX_DMA_ADDRESS));
2204}
2205
2206static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2207{
2208 memblock_free_early(__pa(ptr), size);
2209}
2210
2211void __init setup_per_cpu_areas(void)
2212{
2213 unsigned long delta;
2214 unsigned int cpu;
2215 int rc;
2216
2217 /*
2218 * Always reserve area for module percpu variables. That's
2219 * what the legacy allocator did.
2220 */
2221 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2222 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2223 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2224 if (rc < 0)
2225 panic("Failed to initialize percpu areas.");
2226
2227 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2228 for_each_possible_cpu(cpu)
2229 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2230}
2231#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2232
2233#else /* CONFIG_SMP */
2234
2235/*
2236 * UP percpu area setup.
2237 *
2238 * UP always uses km-based percpu allocator with identity mapping.
2239 * Static percpu variables are indistinguishable from the usual static
2240 * variables and don't require any special preparation.
2241 */
2242void __init setup_per_cpu_areas(void)
2243{
2244 const size_t unit_size =
2245 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2246 PERCPU_DYNAMIC_RESERVE));
2247 struct pcpu_alloc_info *ai;
2248 void *fc;
2249
2250 ai = pcpu_alloc_alloc_info(1, 1);
2251 fc = memblock_virt_alloc_from_nopanic(unit_size,
2252 PAGE_SIZE,
2253 __pa(MAX_DMA_ADDRESS));
2254 if (!ai || !fc)
2255 panic("Failed to allocate memory for percpu areas.");
2256 /* kmemleak tracks the percpu allocations separately */
2257 kmemleak_free(fc);
2258
2259 ai->dyn_size = unit_size;
2260 ai->unit_size = unit_size;
2261 ai->atom_size = unit_size;
2262 ai->alloc_size = unit_size;
2263 ai->groups[0].nr_units = 1;
2264 ai->groups[0].cpu_map[0] = 0;
2265
2266 if (pcpu_setup_first_chunk(ai, fc) < 0)
2267 panic("Failed to initialize percpu areas.");
2268}
2269
2270#endif /* CONFIG_SMP */
2271
2272/*
2273 * First and reserved chunks are initialized with temporary allocation
2274 * map in initdata so that they can be used before slab is online.
2275 * This function is called after slab is brought up and replaces those
2276 * with properly allocated maps.
2277 */
2278void __init percpu_init_late(void)
2279{
2280 struct pcpu_chunk *target_chunks[] =
2281 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2282 struct pcpu_chunk *chunk;
2283 unsigned long flags;
2284 int i;
2285
2286 for (i = 0; (chunk = target_chunks[i]); i++) {
2287 int *map;
2288 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2289
2290 BUILD_BUG_ON(size > PAGE_SIZE);
2291
2292 map = pcpu_mem_zalloc(size);
2293 BUG_ON(!map);
2294
2295 spin_lock_irqsave(&pcpu_lock, flags);
2296 memcpy(map, chunk->map, size);
2297 chunk->map = map;
2298 spin_unlock_irqrestore(&pcpu_lock, flags);
2299 }
2300}
2301
2302/*
2303 * Percpu allocator is initialized early during boot when neither slab or
2304 * workqueue is available. Plug async management until everything is up
2305 * and running.
2306 */
2307static int __init percpu_enable_async(void)
2308{
2309 pcpu_async_enabled = true;
2310 return 0;
2311}
2312subsys_initcall(percpu_enable_async);
2313