summaryrefslogtreecommitdiff
path: root/mm/shmem.c (plain)
blob: 21521551b6b5a86fe750ca21a0e386f6b24d67d2
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/export.h>
33#include <linux/swap.h>
34#include <linux/uio.h>
35#include <linux/khugepaged.h>
36
37static struct vfsmount *shm_mnt;
38
39#ifdef CONFIG_SHMEM
40/*
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
44 */
45
46#include <linux/xattr.h>
47#include <linux/exportfs.h>
48#include <linux/posix_acl.h>
49#include <linux/posix_acl_xattr.h>
50#include <linux/mman.h>
51#include <linux/string.h>
52#include <linux/slab.h>
53#include <linux/backing-dev.h>
54#include <linux/shmem_fs.h>
55#include <linux/writeback.h>
56#include <linux/blkdev.h>
57#include <linux/pagevec.h>
58#include <linux/percpu_counter.h>
59#include <linux/falloc.h>
60#include <linux/splice.h>
61#include <linux/security.h>
62#include <linux/swapops.h>
63#include <linux/mempolicy.h>
64#include <linux/namei.h>
65#include <linux/ctype.h>
66#include <linux/migrate.h>
67#include <linux/highmem.h>
68#include <linux/seq_file.h>
69#include <linux/magic.h>
70#include <linux/syscalls.h>
71#include <linux/fcntl.h>
72#include <uapi/linux/memfd.h>
73
74#include <asm/uaccess.h>
75#include <asm/pgtable.h>
76
77#include "internal.h"
78
79#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
81
82/* Pretend that each entry is of this size in directory's i_size */
83#define BOGO_DIRENT_SIZE 20
84
85/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86#define SHORT_SYMLINK_LEN 128
87
88/*
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
92 */
93struct shmem_falloc {
94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 pgoff_t start; /* start of range currently being fallocated */
96 pgoff_t next; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
99};
100
101#ifdef CONFIG_TMPFS
102static unsigned long shmem_default_max_blocks(void)
103{
104 return totalram_pages / 2;
105}
106
107static unsigned long shmem_default_max_inodes(void)
108{
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110}
111#endif
112
113static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
116static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 struct page **pagep, enum sgp_type sgp,
118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119
120int shmem_getpage(struct inode *inode, pgoff_t index,
121 struct page **pagep, enum sgp_type sgp)
122{
123 return shmem_getpage_gfp(inode, index, pagep, sgp,
124 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125}
126
127static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128{
129 return sb->s_fs_info;
130}
131
132/*
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
137 */
138static inline int shmem_acct_size(unsigned long flags, loff_t size)
139{
140 return (flags & VM_NORESERVE) ?
141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142}
143
144static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145{
146 if (!(flags & VM_NORESERVE))
147 vm_unacct_memory(VM_ACCT(size));
148}
149
150static inline int shmem_reacct_size(unsigned long flags,
151 loff_t oldsize, loff_t newsize)
152{
153 if (!(flags & VM_NORESERVE)) {
154 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 return security_vm_enough_memory_mm(current->mm,
156 VM_ACCT(newsize) - VM_ACCT(oldsize));
157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159 }
160 return 0;
161}
162
163/*
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168 */
169static inline int shmem_acct_block(unsigned long flags, long pages)
170{
171 if (!(flags & VM_NORESERVE))
172 return 0;
173
174 return security_vm_enough_memory_mm(current->mm,
175 pages * VM_ACCT(PAGE_SIZE));
176}
177
178static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179{
180 if (flags & VM_NORESERVE)
181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182}
183
184static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
185{
186 struct shmem_inode_info *info = SHMEM_I(inode);
187 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
188
189 if (shmem_acct_block(info->flags, pages))
190 return false;
191
192 if (sbinfo->max_blocks) {
193 if (percpu_counter_compare(&sbinfo->used_blocks,
194 sbinfo->max_blocks - pages) > 0)
195 goto unacct;
196 percpu_counter_add(&sbinfo->used_blocks, pages);
197 }
198
199 return true;
200
201unacct:
202 shmem_unacct_blocks(info->flags, pages);
203 return false;
204}
205
206static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
207{
208 struct shmem_inode_info *info = SHMEM_I(inode);
209 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
210
211 if (sbinfo->max_blocks)
212 percpu_counter_sub(&sbinfo->used_blocks, pages);
213 shmem_unacct_blocks(info->flags, pages);
214}
215
216static const struct super_operations shmem_ops;
217static const struct address_space_operations shmem_aops;
218static const struct file_operations shmem_file_operations;
219static const struct inode_operations shmem_inode_operations;
220static const struct inode_operations shmem_dir_inode_operations;
221static const struct inode_operations shmem_special_inode_operations;
222static const struct vm_operations_struct shmem_vm_ops;
223static struct file_system_type shmem_fs_type;
224
225static LIST_HEAD(shmem_swaplist);
226static DEFINE_MUTEX(shmem_swaplist_mutex);
227
228static int shmem_reserve_inode(struct super_block *sb)
229{
230 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
231 if (sbinfo->max_inodes) {
232 spin_lock(&sbinfo->stat_lock);
233 if (!sbinfo->free_inodes) {
234 spin_unlock(&sbinfo->stat_lock);
235 return -ENOSPC;
236 }
237 sbinfo->free_inodes--;
238 spin_unlock(&sbinfo->stat_lock);
239 }
240 return 0;
241}
242
243static void shmem_free_inode(struct super_block *sb)
244{
245 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
246 if (sbinfo->max_inodes) {
247 spin_lock(&sbinfo->stat_lock);
248 sbinfo->free_inodes++;
249 spin_unlock(&sbinfo->stat_lock);
250 }
251}
252
253/**
254 * shmem_recalc_inode - recalculate the block usage of an inode
255 * @inode: inode to recalc
256 *
257 * We have to calculate the free blocks since the mm can drop
258 * undirtied hole pages behind our back.
259 *
260 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
261 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
262 *
263 * It has to be called with the spinlock held.
264 */
265static void shmem_recalc_inode(struct inode *inode)
266{
267 struct shmem_inode_info *info = SHMEM_I(inode);
268 long freed;
269
270 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
271 if (freed > 0) {
272 info->alloced -= freed;
273 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
274 shmem_inode_unacct_blocks(inode, freed);
275 }
276}
277
278bool shmem_charge(struct inode *inode, long pages)
279{
280 struct shmem_inode_info *info = SHMEM_I(inode);
281 unsigned long flags;
282
283 if (!shmem_inode_acct_block(inode, pages))
284 return false;
285
286 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
287 inode->i_mapping->nrpages += pages;
288
289 spin_lock_irqsave(&info->lock, flags);
290 info->alloced += pages;
291 inode->i_blocks += pages * BLOCKS_PER_PAGE;
292 shmem_recalc_inode(inode);
293 spin_unlock_irqrestore(&info->lock, flags);
294
295 return true;
296}
297
298void shmem_uncharge(struct inode *inode, long pages)
299{
300 struct shmem_inode_info *info = SHMEM_I(inode);
301 unsigned long flags;
302
303 /* nrpages adjustment done by __delete_from_page_cache() or caller */
304
305 spin_lock_irqsave(&info->lock, flags);
306 info->alloced -= pages;
307 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
308 shmem_recalc_inode(inode);
309 spin_unlock_irqrestore(&info->lock, flags);
310
311 shmem_inode_unacct_blocks(inode, pages);
312}
313
314/*
315 * Replace item expected in radix tree by a new item, while holding tree lock.
316 */
317static int shmem_radix_tree_replace(struct address_space *mapping,
318 pgoff_t index, void *expected, void *replacement)
319{
320 void **pslot;
321 void *item;
322
323 VM_BUG_ON(!expected);
324 VM_BUG_ON(!replacement);
325 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
326 if (!pslot)
327 return -ENOENT;
328 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
329 if (item != expected)
330 return -ENOENT;
331 radix_tree_replace_slot(pslot, replacement);
332 return 0;
333}
334
335/*
336 * Sometimes, before we decide whether to proceed or to fail, we must check
337 * that an entry was not already brought back from swap by a racing thread.
338 *
339 * Checking page is not enough: by the time a SwapCache page is locked, it
340 * might be reused, and again be SwapCache, using the same swap as before.
341 */
342static bool shmem_confirm_swap(struct address_space *mapping,
343 pgoff_t index, swp_entry_t swap)
344{
345 void *item;
346
347 rcu_read_lock();
348 item = radix_tree_lookup(&mapping->page_tree, index);
349 rcu_read_unlock();
350 return item == swp_to_radix_entry(swap);
351}
352
353/*
354 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
355 *
356 * SHMEM_HUGE_NEVER:
357 * disables huge pages for the mount;
358 * SHMEM_HUGE_ALWAYS:
359 * enables huge pages for the mount;
360 * SHMEM_HUGE_WITHIN_SIZE:
361 * only allocate huge pages if the page will be fully within i_size,
362 * also respect fadvise()/madvise() hints;
363 * SHMEM_HUGE_ADVISE:
364 * only allocate huge pages if requested with fadvise()/madvise();
365 */
366
367#define SHMEM_HUGE_NEVER 0
368#define SHMEM_HUGE_ALWAYS 1
369#define SHMEM_HUGE_WITHIN_SIZE 2
370#define SHMEM_HUGE_ADVISE 3
371
372/*
373 * Special values.
374 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
375 *
376 * SHMEM_HUGE_DENY:
377 * disables huge on shm_mnt and all mounts, for emergency use;
378 * SHMEM_HUGE_FORCE:
379 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
380 *
381 */
382#define SHMEM_HUGE_DENY (-1)
383#define SHMEM_HUGE_FORCE (-2)
384
385#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
386/* ifdef here to avoid bloating shmem.o when not necessary */
387
388int shmem_huge __read_mostly;
389
390#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
391static int shmem_parse_huge(const char *str)
392{
393 if (!strcmp(str, "never"))
394 return SHMEM_HUGE_NEVER;
395 if (!strcmp(str, "always"))
396 return SHMEM_HUGE_ALWAYS;
397 if (!strcmp(str, "within_size"))
398 return SHMEM_HUGE_WITHIN_SIZE;
399 if (!strcmp(str, "advise"))
400 return SHMEM_HUGE_ADVISE;
401 if (!strcmp(str, "deny"))
402 return SHMEM_HUGE_DENY;
403 if (!strcmp(str, "force"))
404 return SHMEM_HUGE_FORCE;
405 return -EINVAL;
406}
407
408static const char *shmem_format_huge(int huge)
409{
410 switch (huge) {
411 case SHMEM_HUGE_NEVER:
412 return "never";
413 case SHMEM_HUGE_ALWAYS:
414 return "always";
415 case SHMEM_HUGE_WITHIN_SIZE:
416 return "within_size";
417 case SHMEM_HUGE_ADVISE:
418 return "advise";
419 case SHMEM_HUGE_DENY:
420 return "deny";
421 case SHMEM_HUGE_FORCE:
422 return "force";
423 default:
424 VM_BUG_ON(1);
425 return "bad_val";
426 }
427}
428#endif
429
430static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
431 struct shrink_control *sc, unsigned long nr_to_split)
432{
433 LIST_HEAD(list), *pos, *next;
434 LIST_HEAD(to_remove);
435 struct inode *inode;
436 struct shmem_inode_info *info;
437 struct page *page;
438 unsigned long batch = sc ? sc->nr_to_scan : 128;
439 int removed = 0, split = 0;
440
441 if (list_empty(&sbinfo->shrinklist))
442 return SHRINK_STOP;
443
444 spin_lock(&sbinfo->shrinklist_lock);
445 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
446 info = list_entry(pos, struct shmem_inode_info, shrinklist);
447
448 /* pin the inode */
449 inode = igrab(&info->vfs_inode);
450
451 /* inode is about to be evicted */
452 if (!inode) {
453 list_del_init(&info->shrinklist);
454 removed++;
455 goto next;
456 }
457
458 /* Check if there's anything to gain */
459 if (round_up(inode->i_size, PAGE_SIZE) ==
460 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
461 list_move(&info->shrinklist, &to_remove);
462 removed++;
463 goto next;
464 }
465
466 list_move(&info->shrinklist, &list);
467next:
468 if (!--batch)
469 break;
470 }
471 spin_unlock(&sbinfo->shrinklist_lock);
472
473 list_for_each_safe(pos, next, &to_remove) {
474 info = list_entry(pos, struct shmem_inode_info, shrinklist);
475 inode = &info->vfs_inode;
476 list_del_init(&info->shrinklist);
477 iput(inode);
478 }
479
480 list_for_each_safe(pos, next, &list) {
481 int ret;
482
483 info = list_entry(pos, struct shmem_inode_info, shrinklist);
484 inode = &info->vfs_inode;
485
486 if (nr_to_split && split >= nr_to_split)
487 goto leave;
488
489 page = find_get_page(inode->i_mapping,
490 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
491 if (!page)
492 goto drop;
493
494 /* No huge page at the end of the file: nothing to split */
495 if (!PageTransHuge(page)) {
496 put_page(page);
497 goto drop;
498 }
499
500 /*
501 * Leave the inode on the list if we failed to lock
502 * the page at this time.
503 *
504 * Waiting for the lock may lead to deadlock in the
505 * reclaim path.
506 */
507 if (!trylock_page(page)) {
508 put_page(page);
509 goto leave;
510 }
511
512 ret = split_huge_page(page);
513 unlock_page(page);
514 put_page(page);
515
516 /* If split failed leave the inode on the list */
517 if (ret)
518 goto leave;
519
520 split++;
521drop:
522 list_del_init(&info->shrinklist);
523 removed++;
524leave:
525 iput(inode);
526 }
527
528 spin_lock(&sbinfo->shrinklist_lock);
529 list_splice_tail(&list, &sbinfo->shrinklist);
530 sbinfo->shrinklist_len -= removed;
531 spin_unlock(&sbinfo->shrinklist_lock);
532
533 return split;
534}
535
536static long shmem_unused_huge_scan(struct super_block *sb,
537 struct shrink_control *sc)
538{
539 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
540
541 if (!READ_ONCE(sbinfo->shrinklist_len))
542 return SHRINK_STOP;
543
544 return shmem_unused_huge_shrink(sbinfo, sc, 0);
545}
546
547static long shmem_unused_huge_count(struct super_block *sb,
548 struct shrink_control *sc)
549{
550 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
551 return READ_ONCE(sbinfo->shrinklist_len);
552}
553#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
554
555#define shmem_huge SHMEM_HUGE_DENY
556
557static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
558 struct shrink_control *sc, unsigned long nr_to_split)
559{
560 return 0;
561}
562#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
563
564/*
565 * Like add_to_page_cache_locked, but error if expected item has gone.
566 */
567static int shmem_add_to_page_cache(struct page *page,
568 struct address_space *mapping,
569 pgoff_t index, void *expected)
570{
571 int error, nr = hpage_nr_pages(page);
572
573 VM_BUG_ON_PAGE(PageTail(page), page);
574 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
575 VM_BUG_ON_PAGE(!PageLocked(page), page);
576 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
577 VM_BUG_ON(expected && PageTransHuge(page));
578
579 page_ref_add(page, nr);
580 page->mapping = mapping;
581 page->index = index;
582
583 spin_lock_irq(&mapping->tree_lock);
584 if (PageTransHuge(page)) {
585 void __rcu **results;
586 pgoff_t idx;
587 int i;
588
589 error = 0;
590 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
591 &results, &idx, index, 1) &&
592 idx < index + HPAGE_PMD_NR) {
593 error = -EEXIST;
594 }
595
596 if (!error) {
597 for (i = 0; i < HPAGE_PMD_NR; i++) {
598 error = radix_tree_insert(&mapping->page_tree,
599 index + i, page + i);
600 VM_BUG_ON(error);
601 }
602 count_vm_event(THP_FILE_ALLOC);
603 }
604 } else if (!expected) {
605 error = radix_tree_insert(&mapping->page_tree, index, page);
606 } else {
607 error = shmem_radix_tree_replace(mapping, index, expected,
608 page);
609 }
610
611 if (!error) {
612 mapping->nrpages += nr;
613 if (PageTransHuge(page))
614 __inc_node_page_state(page, NR_SHMEM_THPS);
615 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
616 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
617 spin_unlock_irq(&mapping->tree_lock);
618 } else {
619 page->mapping = NULL;
620 spin_unlock_irq(&mapping->tree_lock);
621 page_ref_sub(page, nr);
622 }
623 return error;
624}
625
626/*
627 * Like delete_from_page_cache, but substitutes swap for page.
628 */
629static void shmem_delete_from_page_cache(struct page *page, void *radswap)
630{
631 struct address_space *mapping = page->mapping;
632 int error;
633
634 VM_BUG_ON_PAGE(PageCompound(page), page);
635
636 spin_lock_irq(&mapping->tree_lock);
637 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
638 page->mapping = NULL;
639 mapping->nrpages--;
640 __dec_node_page_state(page, NR_FILE_PAGES);
641 __dec_node_page_state(page, NR_SHMEM);
642 spin_unlock_irq(&mapping->tree_lock);
643 put_page(page);
644 BUG_ON(error);
645}
646
647/*
648 * Remove swap entry from radix tree, free the swap and its page cache.
649 */
650static int shmem_free_swap(struct address_space *mapping,
651 pgoff_t index, void *radswap)
652{
653 void *old;
654
655 spin_lock_irq(&mapping->tree_lock);
656 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
657 spin_unlock_irq(&mapping->tree_lock);
658 if (old != radswap)
659 return -ENOENT;
660 free_swap_and_cache(radix_to_swp_entry(radswap));
661 return 0;
662}
663
664/*
665 * Determine (in bytes) how many of the shmem object's pages mapped by the
666 * given offsets are swapped out.
667 *
668 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
669 * as long as the inode doesn't go away and racy results are not a problem.
670 */
671unsigned long shmem_partial_swap_usage(struct address_space *mapping,
672 pgoff_t start, pgoff_t end)
673{
674 struct radix_tree_iter iter;
675 void **slot;
676 struct page *page;
677 unsigned long swapped = 0;
678
679 rcu_read_lock();
680
681 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
682 if (iter.index >= end)
683 break;
684
685 page = radix_tree_deref_slot(slot);
686
687 if (radix_tree_deref_retry(page)) {
688 slot = radix_tree_iter_retry(&iter);
689 continue;
690 }
691
692 if (radix_tree_exceptional_entry(page))
693 swapped++;
694
695 if (need_resched()) {
696 cond_resched_rcu();
697 slot = radix_tree_iter_next(&iter);
698 }
699 }
700
701 rcu_read_unlock();
702
703 return swapped << PAGE_SHIFT;
704}
705
706/*
707 * Determine (in bytes) how many of the shmem object's pages mapped by the
708 * given vma is swapped out.
709 *
710 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
711 * as long as the inode doesn't go away and racy results are not a problem.
712 */
713unsigned long shmem_swap_usage(struct vm_area_struct *vma)
714{
715 struct inode *inode = file_inode(vma->vm_file);
716 struct shmem_inode_info *info = SHMEM_I(inode);
717 struct address_space *mapping = inode->i_mapping;
718 unsigned long swapped;
719
720 /* Be careful as we don't hold info->lock */
721 swapped = READ_ONCE(info->swapped);
722
723 /*
724 * The easier cases are when the shmem object has nothing in swap, or
725 * the vma maps it whole. Then we can simply use the stats that we
726 * already track.
727 */
728 if (!swapped)
729 return 0;
730
731 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
732 return swapped << PAGE_SHIFT;
733
734 /* Here comes the more involved part */
735 return shmem_partial_swap_usage(mapping,
736 linear_page_index(vma, vma->vm_start),
737 linear_page_index(vma, vma->vm_end));
738}
739
740/*
741 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
742 */
743void shmem_unlock_mapping(struct address_space *mapping)
744{
745 struct pagevec pvec;
746 pgoff_t indices[PAGEVEC_SIZE];
747 pgoff_t index = 0;
748
749 pagevec_init(&pvec, 0);
750 /*
751 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
752 */
753 while (!mapping_unevictable(mapping)) {
754 /*
755 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
756 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
757 */
758 pvec.nr = find_get_entries(mapping, index,
759 PAGEVEC_SIZE, pvec.pages, indices);
760 if (!pvec.nr)
761 break;
762 index = indices[pvec.nr - 1] + 1;
763 pagevec_remove_exceptionals(&pvec);
764 check_move_unevictable_pages(pvec.pages, pvec.nr);
765 pagevec_release(&pvec);
766 cond_resched();
767 }
768}
769
770/*
771 * Remove range of pages and swap entries from radix tree, and free them.
772 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
773 */
774static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
775 bool unfalloc)
776{
777 struct address_space *mapping = inode->i_mapping;
778 struct shmem_inode_info *info = SHMEM_I(inode);
779 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
780 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
781 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
782 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
783 struct pagevec pvec;
784 pgoff_t indices[PAGEVEC_SIZE];
785 long nr_swaps_freed = 0;
786 pgoff_t index;
787 int i;
788
789 if (lend == -1)
790 end = -1; /* unsigned, so actually very big */
791
792 pagevec_init(&pvec, 0);
793 index = start;
794 while (index < end) {
795 pvec.nr = find_get_entries(mapping, index,
796 min(end - index, (pgoff_t)PAGEVEC_SIZE),
797 pvec.pages, indices);
798 if (!pvec.nr)
799 break;
800 for (i = 0; i < pagevec_count(&pvec); i++) {
801 struct page *page = pvec.pages[i];
802
803 index = indices[i];
804 if (index >= end)
805 break;
806
807 if (radix_tree_exceptional_entry(page)) {
808 if (unfalloc)
809 continue;
810 nr_swaps_freed += !shmem_free_swap(mapping,
811 index, page);
812 continue;
813 }
814
815 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
816
817 if (!trylock_page(page))
818 continue;
819
820 if (PageTransTail(page)) {
821 /* Middle of THP: zero out the page */
822 clear_highpage(page);
823 unlock_page(page);
824 continue;
825 } else if (PageTransHuge(page)) {
826 if (index == round_down(end, HPAGE_PMD_NR)) {
827 /*
828 * Range ends in the middle of THP:
829 * zero out the page
830 */
831 clear_highpage(page);
832 unlock_page(page);
833 continue;
834 }
835 index += HPAGE_PMD_NR - 1;
836 i += HPAGE_PMD_NR - 1;
837 }
838
839 if (!unfalloc || !PageUptodate(page)) {
840 VM_BUG_ON_PAGE(PageTail(page), page);
841 if (page_mapping(page) == mapping) {
842 VM_BUG_ON_PAGE(PageWriteback(page), page);
843 truncate_inode_page(mapping, page);
844 }
845 }
846 unlock_page(page);
847 }
848 pagevec_remove_exceptionals(&pvec);
849 pagevec_release(&pvec);
850 cond_resched();
851 index++;
852 }
853
854 if (partial_start) {
855 struct page *page = NULL;
856 shmem_getpage(inode, start - 1, &page, SGP_READ);
857 if (page) {
858 unsigned int top = PAGE_SIZE;
859 if (start > end) {
860 top = partial_end;
861 partial_end = 0;
862 }
863 zero_user_segment(page, partial_start, top);
864 set_page_dirty(page);
865 unlock_page(page);
866 put_page(page);
867 }
868 }
869 if (partial_end) {
870 struct page *page = NULL;
871 shmem_getpage(inode, end, &page, SGP_READ);
872 if (page) {
873 zero_user_segment(page, 0, partial_end);
874 set_page_dirty(page);
875 unlock_page(page);
876 put_page(page);
877 }
878 }
879 if (start >= end)
880 return;
881
882 index = start;
883 while (index < end) {
884 cond_resched();
885
886 pvec.nr = find_get_entries(mapping, index,
887 min(end - index, (pgoff_t)PAGEVEC_SIZE),
888 pvec.pages, indices);
889 if (!pvec.nr) {
890 /* If all gone or hole-punch or unfalloc, we're done */
891 if (index == start || end != -1)
892 break;
893 /* But if truncating, restart to make sure all gone */
894 index = start;
895 continue;
896 }
897 for (i = 0; i < pagevec_count(&pvec); i++) {
898 struct page *page = pvec.pages[i];
899
900 index = indices[i];
901 if (index >= end)
902 break;
903
904 if (radix_tree_exceptional_entry(page)) {
905 if (unfalloc)
906 continue;
907 if (shmem_free_swap(mapping, index, page)) {
908 /* Swap was replaced by page: retry */
909 index--;
910 break;
911 }
912 nr_swaps_freed++;
913 continue;
914 }
915
916 lock_page(page);
917
918 if (PageTransTail(page)) {
919 /* Middle of THP: zero out the page */
920 clear_highpage(page);
921 unlock_page(page);
922 /*
923 * Partial thp truncate due 'start' in middle
924 * of THP: don't need to look on these pages
925 * again on !pvec.nr restart.
926 */
927 if (index != round_down(end, HPAGE_PMD_NR))
928 start++;
929 continue;
930 } else if (PageTransHuge(page)) {
931 if (index == round_down(end, HPAGE_PMD_NR)) {
932 /*
933 * Range ends in the middle of THP:
934 * zero out the page
935 */
936 clear_highpage(page);
937 unlock_page(page);
938 continue;
939 }
940 index += HPAGE_PMD_NR - 1;
941 i += HPAGE_PMD_NR - 1;
942 }
943
944 if (!unfalloc || !PageUptodate(page)) {
945 VM_BUG_ON_PAGE(PageTail(page), page);
946 if (page_mapping(page) == mapping) {
947 VM_BUG_ON_PAGE(PageWriteback(page), page);
948 truncate_inode_page(mapping, page);
949 } else {
950 /* Page was replaced by swap: retry */
951 unlock_page(page);
952 index--;
953 break;
954 }
955 }
956 unlock_page(page);
957 }
958 pagevec_remove_exceptionals(&pvec);
959 pagevec_release(&pvec);
960 index++;
961 }
962
963 spin_lock_irq(&info->lock);
964 info->swapped -= nr_swaps_freed;
965 shmem_recalc_inode(inode);
966 spin_unlock_irq(&info->lock);
967}
968
969void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
970{
971 shmem_undo_range(inode, lstart, lend, false);
972 inode->i_ctime = inode->i_mtime = current_time(inode);
973}
974EXPORT_SYMBOL_GPL(shmem_truncate_range);
975
976static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
977 struct kstat *stat)
978{
979 struct inode *inode = dentry->d_inode;
980 struct shmem_inode_info *info = SHMEM_I(inode);
981
982 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
983 spin_lock_irq(&info->lock);
984 shmem_recalc_inode(inode);
985 spin_unlock_irq(&info->lock);
986 }
987 generic_fillattr(inode, stat);
988 return 0;
989}
990
991static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
992{
993 struct inode *inode = d_inode(dentry);
994 struct shmem_inode_info *info = SHMEM_I(inode);
995 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
996 int error;
997
998 error = setattr_prepare(dentry, attr);
999 if (error)
1000 return error;
1001
1002 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1003 loff_t oldsize = inode->i_size;
1004 loff_t newsize = attr->ia_size;
1005
1006 /* protected by i_mutex */
1007 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1008 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1009 return -EPERM;
1010
1011 if (newsize != oldsize) {
1012 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1013 oldsize, newsize);
1014 if (error)
1015 return error;
1016 i_size_write(inode, newsize);
1017 inode->i_ctime = inode->i_mtime = current_time(inode);
1018 }
1019 if (newsize <= oldsize) {
1020 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1021 if (oldsize > holebegin)
1022 unmap_mapping_range(inode->i_mapping,
1023 holebegin, 0, 1);
1024 if (info->alloced)
1025 shmem_truncate_range(inode,
1026 newsize, (loff_t)-1);
1027 /* unmap again to remove racily COWed private pages */
1028 if (oldsize > holebegin)
1029 unmap_mapping_range(inode->i_mapping,
1030 holebegin, 0, 1);
1031
1032 /*
1033 * Part of the huge page can be beyond i_size: subject
1034 * to shrink under memory pressure.
1035 */
1036 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1037 spin_lock(&sbinfo->shrinklist_lock);
1038 /*
1039 * _careful to defend against unlocked access to
1040 * ->shrink_list in shmem_unused_huge_shrink()
1041 */
1042 if (list_empty_careful(&info->shrinklist)) {
1043 list_add_tail(&info->shrinklist,
1044 &sbinfo->shrinklist);
1045 sbinfo->shrinklist_len++;
1046 }
1047 spin_unlock(&sbinfo->shrinklist_lock);
1048 }
1049 }
1050 }
1051
1052 setattr_copy(inode, attr);
1053 if (attr->ia_valid & ATTR_MODE)
1054 error = posix_acl_chmod(inode, inode->i_mode);
1055 return error;
1056}
1057
1058static void shmem_evict_inode(struct inode *inode)
1059{
1060 struct shmem_inode_info *info = SHMEM_I(inode);
1061 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062
1063 if (inode->i_mapping->a_ops == &shmem_aops) {
1064 shmem_unacct_size(info->flags, inode->i_size);
1065 inode->i_size = 0;
1066 shmem_truncate_range(inode, 0, (loff_t)-1);
1067 if (!list_empty(&info->shrinklist)) {
1068 spin_lock(&sbinfo->shrinklist_lock);
1069 if (!list_empty(&info->shrinklist)) {
1070 list_del_init(&info->shrinklist);
1071 sbinfo->shrinklist_len--;
1072 }
1073 spin_unlock(&sbinfo->shrinklist_lock);
1074 }
1075 if (!list_empty(&info->swaplist)) {
1076 mutex_lock(&shmem_swaplist_mutex);
1077 list_del_init(&info->swaplist);
1078 mutex_unlock(&shmem_swaplist_mutex);
1079 }
1080 }
1081
1082 simple_xattrs_free(&info->xattrs);
1083 WARN_ON(inode->i_blocks);
1084 shmem_free_inode(inode->i_sb);
1085 clear_inode(inode);
1086}
1087
1088/*
1089 * If swap found in inode, free it and move page from swapcache to filecache.
1090 */
1091static int shmem_unuse_inode(struct shmem_inode_info *info,
1092 swp_entry_t swap, struct page **pagep)
1093{
1094 struct address_space *mapping = info->vfs_inode.i_mapping;
1095 void *radswap;
1096 pgoff_t index;
1097 gfp_t gfp;
1098 int error = 0;
1099
1100 radswap = swp_to_radix_entry(swap);
1101 index = radix_tree_locate_item(&mapping->page_tree, radswap);
1102 if (index == -1)
1103 return -EAGAIN; /* tell shmem_unuse we found nothing */
1104
1105 /*
1106 * Move _head_ to start search for next from here.
1107 * But be careful: shmem_evict_inode checks list_empty without taking
1108 * mutex, and there's an instant in list_move_tail when info->swaplist
1109 * would appear empty, if it were the only one on shmem_swaplist.
1110 */
1111 if (shmem_swaplist.next != &info->swaplist)
1112 list_move_tail(&shmem_swaplist, &info->swaplist);
1113
1114 gfp = mapping_gfp_mask(mapping);
1115 if (shmem_should_replace_page(*pagep, gfp)) {
1116 mutex_unlock(&shmem_swaplist_mutex);
1117 error = shmem_replace_page(pagep, gfp, info, index);
1118 mutex_lock(&shmem_swaplist_mutex);
1119 /*
1120 * We needed to drop mutex to make that restrictive page
1121 * allocation, but the inode might have been freed while we
1122 * dropped it: although a racing shmem_evict_inode() cannot
1123 * complete without emptying the radix_tree, our page lock
1124 * on this swapcache page is not enough to prevent that -
1125 * free_swap_and_cache() of our swap entry will only
1126 * trylock_page(), removing swap from radix_tree whatever.
1127 *
1128 * We must not proceed to shmem_add_to_page_cache() if the
1129 * inode has been freed, but of course we cannot rely on
1130 * inode or mapping or info to check that. However, we can
1131 * safely check if our swap entry is still in use (and here
1132 * it can't have got reused for another page): if it's still
1133 * in use, then the inode cannot have been freed yet, and we
1134 * can safely proceed (if it's no longer in use, that tells
1135 * nothing about the inode, but we don't need to unuse swap).
1136 */
1137 if (!page_swapcount(*pagep))
1138 error = -ENOENT;
1139 }
1140
1141 /*
1142 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1143 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1144 * beneath us (pagelock doesn't help until the page is in pagecache).
1145 */
1146 if (!error)
1147 error = shmem_add_to_page_cache(*pagep, mapping, index,
1148 radswap);
1149 if (error != -ENOMEM) {
1150 /*
1151 * Truncation and eviction use free_swap_and_cache(), which
1152 * only does trylock page: if we raced, best clean up here.
1153 */
1154 delete_from_swap_cache(*pagep);
1155 set_page_dirty(*pagep);
1156 if (!error) {
1157 spin_lock_irq(&info->lock);
1158 info->swapped--;
1159 spin_unlock_irq(&info->lock);
1160 swap_free(swap);
1161 }
1162 }
1163 return error;
1164}
1165
1166/*
1167 * Search through swapped inodes to find and replace swap by page.
1168 */
1169int shmem_unuse(swp_entry_t swap, struct page *page)
1170{
1171 struct list_head *this, *next;
1172 struct shmem_inode_info *info;
1173 struct mem_cgroup *memcg;
1174 int error = 0;
1175
1176 /*
1177 * There's a faint possibility that swap page was replaced before
1178 * caller locked it: caller will come back later with the right page.
1179 */
1180 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1181 goto out;
1182
1183 /*
1184 * Charge page using GFP_KERNEL while we can wait, before taking
1185 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1186 * Charged back to the user (not to caller) when swap account is used.
1187 */
1188 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1189 false);
1190 if (error)
1191 goto out;
1192 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1193 error = -EAGAIN;
1194
1195 mutex_lock(&shmem_swaplist_mutex);
1196 list_for_each_safe(this, next, &shmem_swaplist) {
1197 info = list_entry(this, struct shmem_inode_info, swaplist);
1198 if (info->swapped)
1199 error = shmem_unuse_inode(info, swap, &page);
1200 else
1201 list_del_init(&info->swaplist);
1202 cond_resched();
1203 if (error != -EAGAIN)
1204 break;
1205 /* found nothing in this: move on to search the next */
1206 }
1207 mutex_unlock(&shmem_swaplist_mutex);
1208
1209 if (error) {
1210 if (error != -ENOMEM)
1211 error = 0;
1212 mem_cgroup_cancel_charge(page, memcg, false);
1213 } else
1214 mem_cgroup_commit_charge(page, memcg, true, false);
1215out:
1216 unlock_page(page);
1217 put_page(page);
1218 return error;
1219}
1220
1221/*
1222 * Move the page from the page cache to the swap cache.
1223 */
1224static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1225{
1226 struct shmem_inode_info *info;
1227 struct address_space *mapping;
1228 struct inode *inode;
1229 swp_entry_t swap;
1230 pgoff_t index;
1231
1232 VM_BUG_ON_PAGE(PageCompound(page), page);
1233 BUG_ON(!PageLocked(page));
1234 mapping = page->mapping;
1235 index = page->index;
1236 inode = mapping->host;
1237 info = SHMEM_I(inode);
1238 if (info->flags & VM_LOCKED)
1239 goto redirty;
1240 if (!total_swap_pages)
1241 goto redirty;
1242
1243 /*
1244 * Our capabilities prevent regular writeback or sync from ever calling
1245 * shmem_writepage; but a stacking filesystem might use ->writepage of
1246 * its underlying filesystem, in which case tmpfs should write out to
1247 * swap only in response to memory pressure, and not for the writeback
1248 * threads or sync.
1249 */
1250 if (!wbc->for_reclaim) {
1251 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1252 goto redirty;
1253 }
1254
1255 /*
1256 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1257 * value into swapfile.c, the only way we can correctly account for a
1258 * fallocated page arriving here is now to initialize it and write it.
1259 *
1260 * That's okay for a page already fallocated earlier, but if we have
1261 * not yet completed the fallocation, then (a) we want to keep track
1262 * of this page in case we have to undo it, and (b) it may not be a
1263 * good idea to continue anyway, once we're pushing into swap. So
1264 * reactivate the page, and let shmem_fallocate() quit when too many.
1265 */
1266 if (!PageUptodate(page)) {
1267 if (inode->i_private) {
1268 struct shmem_falloc *shmem_falloc;
1269 spin_lock(&inode->i_lock);
1270 shmem_falloc = inode->i_private;
1271 if (shmem_falloc &&
1272 !shmem_falloc->waitq &&
1273 index >= shmem_falloc->start &&
1274 index < shmem_falloc->next)
1275 shmem_falloc->nr_unswapped++;
1276 else
1277 shmem_falloc = NULL;
1278 spin_unlock(&inode->i_lock);
1279 if (shmem_falloc)
1280 goto redirty;
1281 }
1282 clear_highpage(page);
1283 flush_dcache_page(page);
1284 SetPageUptodate(page);
1285 }
1286
1287 swap = get_swap_page();
1288 if (!swap.val)
1289 goto redirty;
1290
1291 if (mem_cgroup_try_charge_swap(page, swap))
1292 goto free_swap;
1293
1294 /*
1295 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1296 * if it's not already there. Do it now before the page is
1297 * moved to swap cache, when its pagelock no longer protects
1298 * the inode from eviction. But don't unlock the mutex until
1299 * we've incremented swapped, because shmem_unuse_inode() will
1300 * prune a !swapped inode from the swaplist under this mutex.
1301 */
1302 mutex_lock(&shmem_swaplist_mutex);
1303 if (list_empty(&info->swaplist))
1304 list_add_tail(&info->swaplist, &shmem_swaplist);
1305
1306 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1307 spin_lock_irq(&info->lock);
1308 shmem_recalc_inode(inode);
1309 info->swapped++;
1310 spin_unlock_irq(&info->lock);
1311
1312 swap_shmem_alloc(swap);
1313 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1314
1315 mutex_unlock(&shmem_swaplist_mutex);
1316 BUG_ON(page_mapped(page));
1317 swap_writepage(page, wbc);
1318 return 0;
1319 }
1320
1321 mutex_unlock(&shmem_swaplist_mutex);
1322free_swap:
1323 swapcache_free(swap);
1324redirty:
1325 set_page_dirty(page);
1326 if (wbc->for_reclaim)
1327 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1328 unlock_page(page);
1329 return 0;
1330}
1331
1332#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1333static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1334{
1335 char buffer[64];
1336
1337 if (!mpol || mpol->mode == MPOL_DEFAULT)
1338 return; /* show nothing */
1339
1340 mpol_to_str(buffer, sizeof(buffer), mpol);
1341
1342 seq_printf(seq, ",mpol=%s", buffer);
1343}
1344
1345static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1346{
1347 struct mempolicy *mpol = NULL;
1348 if (sbinfo->mpol) {
1349 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1350 mpol = sbinfo->mpol;
1351 mpol_get(mpol);
1352 spin_unlock(&sbinfo->stat_lock);
1353 }
1354 return mpol;
1355}
1356#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1357static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1358{
1359}
1360static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1361{
1362 return NULL;
1363}
1364#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1365#ifndef CONFIG_NUMA
1366#define vm_policy vm_private_data
1367#endif
1368
1369static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1370 struct shmem_inode_info *info, pgoff_t index)
1371{
1372 /* Create a pseudo vma that just contains the policy */
1373 vma->vm_start = 0;
1374 /* Bias interleave by inode number to distribute better across nodes */
1375 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1376 vma->vm_ops = NULL;
1377 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1378}
1379
1380static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1381{
1382 /* Drop reference taken by mpol_shared_policy_lookup() */
1383 mpol_cond_put(vma->vm_policy);
1384}
1385
1386static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1387 struct shmem_inode_info *info, pgoff_t index)
1388{
1389 struct vm_area_struct pvma;
1390 struct page *page;
1391
1392 shmem_pseudo_vma_init(&pvma, info, index);
1393#ifdef CONFIG_AMLOGIC_CMA
1394 page = swapin_readahead(swap, gfp | __GFP_BDEV, &pvma, 0);
1395#else
1396 page = swapin_readahead(swap, gfp, &pvma, 0);
1397#endif
1398 shmem_pseudo_vma_destroy(&pvma);
1399
1400 return page;
1401}
1402
1403static struct page *shmem_alloc_hugepage(gfp_t gfp,
1404 struct shmem_inode_info *info, pgoff_t index)
1405{
1406 struct vm_area_struct pvma;
1407 struct inode *inode = &info->vfs_inode;
1408 struct address_space *mapping = inode->i_mapping;
1409 pgoff_t idx, hindex;
1410 void __rcu **results;
1411 struct page *page;
1412
1413 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1414 return NULL;
1415
1416 hindex = round_down(index, HPAGE_PMD_NR);
1417 rcu_read_lock();
1418 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1419 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1420 rcu_read_unlock();
1421 return NULL;
1422 }
1423 rcu_read_unlock();
1424
1425 shmem_pseudo_vma_init(&pvma, info, hindex);
1426 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1427 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1428 shmem_pseudo_vma_destroy(&pvma);
1429 if (page)
1430 prep_transhuge_page(page);
1431 return page;
1432}
1433
1434static struct page *shmem_alloc_page(gfp_t gfp,
1435 struct shmem_inode_info *info, pgoff_t index)
1436{
1437 struct vm_area_struct pvma;
1438 struct page *page;
1439
1440 shmem_pseudo_vma_init(&pvma, info, index);
1441#ifdef CONFIG_AMLOGIC_CMA
1442 page = alloc_page_vma(gfp | __GFP_BDEV, &pvma, 0);
1443#else
1444 page = alloc_page_vma(gfp, &pvma, 0);
1445#endif
1446 shmem_pseudo_vma_destroy(&pvma);
1447
1448 return page;
1449}
1450
1451static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1452 struct inode *inode,
1453 pgoff_t index, bool huge)
1454{
1455 struct shmem_inode_info *info = SHMEM_I(inode);
1456 struct page *page;
1457 int nr;
1458 int err = -ENOSPC;
1459
1460 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1461 huge = false;
1462 nr = huge ? HPAGE_PMD_NR : 1;
1463
1464 if (!shmem_inode_acct_block(inode, nr))
1465 goto failed;
1466
1467 if (huge)
1468 page = shmem_alloc_hugepage(gfp, info, index);
1469 else
1470 page = shmem_alloc_page(gfp, info, index);
1471 if (page) {
1472 __SetPageLocked(page);
1473 __SetPageSwapBacked(page);
1474 return page;
1475 }
1476
1477 err = -ENOMEM;
1478 shmem_inode_unacct_blocks(inode, nr);
1479failed:
1480 return ERR_PTR(err);
1481}
1482
1483/*
1484 * When a page is moved from swapcache to shmem filecache (either by the
1485 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1486 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1487 * ignorance of the mapping it belongs to. If that mapping has special
1488 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1489 * we may need to copy to a suitable page before moving to filecache.
1490 *
1491 * In a future release, this may well be extended to respect cpuset and
1492 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1493 * but for now it is a simple matter of zone.
1494 */
1495static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1496{
1497 return page_zonenum(page) > gfp_zone(gfp);
1498}
1499
1500static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1501 struct shmem_inode_info *info, pgoff_t index)
1502{
1503 struct page *oldpage, *newpage;
1504 struct address_space *swap_mapping;
1505 swp_entry_t entry;
1506 pgoff_t swap_index;
1507 int error;
1508
1509 oldpage = *pagep;
1510 entry.val = page_private(oldpage);
1511 swap_index = swp_offset(entry);
1512 swap_mapping = page_mapping(oldpage);
1513
1514 /*
1515 * We have arrived here because our zones are constrained, so don't
1516 * limit chance of success by further cpuset and node constraints.
1517 */
1518 gfp &= ~GFP_CONSTRAINT_MASK;
1519 newpage = shmem_alloc_page(gfp, info, index);
1520 if (!newpage)
1521 return -ENOMEM;
1522
1523 get_page(newpage);
1524 copy_highpage(newpage, oldpage);
1525 flush_dcache_page(newpage);
1526
1527 __SetPageLocked(newpage);
1528 __SetPageSwapBacked(newpage);
1529 SetPageUptodate(newpage);
1530 set_page_private(newpage, entry.val);
1531 SetPageSwapCache(newpage);
1532
1533 /*
1534 * Our caller will very soon move newpage out of swapcache, but it's
1535 * a nice clean interface for us to replace oldpage by newpage there.
1536 */
1537 spin_lock_irq(&swap_mapping->tree_lock);
1538 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1539 newpage);
1540 if (!error) {
1541 __inc_node_page_state(newpage, NR_FILE_PAGES);
1542 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1543 }
1544 spin_unlock_irq(&swap_mapping->tree_lock);
1545
1546 if (unlikely(error)) {
1547 /*
1548 * Is this possible? I think not, now that our callers check
1549 * both PageSwapCache and page_private after getting page lock;
1550 * but be defensive. Reverse old to newpage for clear and free.
1551 */
1552 oldpage = newpage;
1553 } else {
1554 mem_cgroup_migrate(oldpage, newpage);
1555 lru_cache_add_anon(newpage);
1556 *pagep = newpage;
1557 }
1558
1559 ClearPageSwapCache(oldpage);
1560 set_page_private(oldpage, 0);
1561
1562 unlock_page(oldpage);
1563 put_page(oldpage);
1564 put_page(oldpage);
1565 return error;
1566}
1567
1568/*
1569 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1570 *
1571 * If we allocate a new one we do not mark it dirty. That's up to the
1572 * vm. If we swap it in we mark it dirty since we also free the swap
1573 * entry since a page cannot live in both the swap and page cache.
1574 *
1575 * fault_mm and fault_type are only supplied by shmem_fault:
1576 * otherwise they are NULL.
1577 */
1578static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1579 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1580 struct mm_struct *fault_mm, int *fault_type)
1581{
1582 struct address_space *mapping = inode->i_mapping;
1583 struct shmem_inode_info *info = SHMEM_I(inode);
1584 struct shmem_sb_info *sbinfo;
1585 struct mm_struct *charge_mm;
1586 struct mem_cgroup *memcg;
1587 struct page *page;
1588 swp_entry_t swap;
1589 enum sgp_type sgp_huge = sgp;
1590 pgoff_t hindex = index;
1591 int error;
1592 int once = 0;
1593 int alloced = 0;
1594
1595 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1596 return -EFBIG;
1597 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1598 sgp = SGP_CACHE;
1599repeat:
1600 swap.val = 0;
1601 page = find_lock_entry(mapping, index);
1602 if (radix_tree_exceptional_entry(page)) {
1603 swap = radix_to_swp_entry(page);
1604 page = NULL;
1605 }
1606
1607 if (sgp <= SGP_CACHE &&
1608 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1609 error = -EINVAL;
1610 goto unlock;
1611 }
1612
1613 if (page && sgp == SGP_WRITE)
1614 mark_page_accessed(page);
1615
1616 /* fallocated page? */
1617 if (page && !PageUptodate(page)) {
1618 if (sgp != SGP_READ)
1619 goto clear;
1620 unlock_page(page);
1621 put_page(page);
1622 page = NULL;
1623 }
1624 if (page || (sgp == SGP_READ && !swap.val)) {
1625 *pagep = page;
1626 return 0;
1627 }
1628
1629 /*
1630 * Fast cache lookup did not find it:
1631 * bring it back from swap or allocate.
1632 */
1633 sbinfo = SHMEM_SB(inode->i_sb);
1634 charge_mm = fault_mm ? : current->mm;
1635
1636 if (swap.val) {
1637 /* Look it up and read it in.. */
1638 page = lookup_swap_cache(swap);
1639 if (!page) {
1640 /* Or update major stats only when swapin succeeds?? */
1641 if (fault_type) {
1642 *fault_type |= VM_FAULT_MAJOR;
1643 count_vm_event(PGMAJFAULT);
1644 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1645 }
1646 /* Here we actually start the io */
1647 page = shmem_swapin(swap, gfp, info, index);
1648 if (!page) {
1649 error = -ENOMEM;
1650 goto failed;
1651 }
1652 }
1653
1654 /* We have to do this with page locked to prevent races */
1655 lock_page(page);
1656 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1657 !shmem_confirm_swap(mapping, index, swap)) {
1658 error = -EEXIST; /* try again */
1659 goto unlock;
1660 }
1661 if (!PageUptodate(page)) {
1662 error = -EIO;
1663 goto failed;
1664 }
1665 wait_on_page_writeback(page);
1666
1667 if (shmem_should_replace_page(page, gfp)) {
1668 error = shmem_replace_page(&page, gfp, info, index);
1669 if (error)
1670 goto failed;
1671 }
1672
1673 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1674 false);
1675 if (!error) {
1676 error = shmem_add_to_page_cache(page, mapping, index,
1677 swp_to_radix_entry(swap));
1678 /*
1679 * We already confirmed swap under page lock, and make
1680 * no memory allocation here, so usually no possibility
1681 * of error; but free_swap_and_cache() only trylocks a
1682 * page, so it is just possible that the entry has been
1683 * truncated or holepunched since swap was confirmed.
1684 * shmem_undo_range() will have done some of the
1685 * unaccounting, now delete_from_swap_cache() will do
1686 * the rest.
1687 * Reset swap.val? No, leave it so "failed" goes back to
1688 * "repeat": reading a hole and writing should succeed.
1689 */
1690 if (error) {
1691 mem_cgroup_cancel_charge(page, memcg, false);
1692 delete_from_swap_cache(page);
1693 }
1694 }
1695 if (error)
1696 goto failed;
1697
1698 mem_cgroup_commit_charge(page, memcg, true, false);
1699
1700 spin_lock_irq(&info->lock);
1701 info->swapped--;
1702 shmem_recalc_inode(inode);
1703 spin_unlock_irq(&info->lock);
1704
1705 if (sgp == SGP_WRITE)
1706 mark_page_accessed(page);
1707
1708 delete_from_swap_cache(page);
1709 set_page_dirty(page);
1710 swap_free(swap);
1711
1712 } else {
1713 /* shmem_symlink() */
1714 if (mapping->a_ops != &shmem_aops)
1715 goto alloc_nohuge;
1716 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1717 goto alloc_nohuge;
1718 if (shmem_huge == SHMEM_HUGE_FORCE)
1719 goto alloc_huge;
1720 switch (sbinfo->huge) {
1721 loff_t i_size;
1722 pgoff_t off;
1723 case SHMEM_HUGE_NEVER:
1724 goto alloc_nohuge;
1725 case SHMEM_HUGE_WITHIN_SIZE:
1726 off = round_up(index, HPAGE_PMD_NR);
1727 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1728 if (i_size >= HPAGE_PMD_SIZE &&
1729 i_size >> PAGE_SHIFT >= off)
1730 goto alloc_huge;
1731 /* fallthrough */
1732 case SHMEM_HUGE_ADVISE:
1733 if (sgp_huge == SGP_HUGE)
1734 goto alloc_huge;
1735 /* TODO: implement fadvise() hints */
1736 goto alloc_nohuge;
1737 }
1738
1739alloc_huge:
1740 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1741 if (IS_ERR(page)) {
1742alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1743 index, false);
1744 }
1745 if (IS_ERR(page)) {
1746 int retry = 5;
1747 error = PTR_ERR(page);
1748 page = NULL;
1749 if (error != -ENOSPC)
1750 goto failed;
1751 /*
1752 * Try to reclaim some spece by splitting a huge page
1753 * beyond i_size on the filesystem.
1754 */
1755 while (retry--) {
1756 int ret;
1757 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1758 if (ret == SHRINK_STOP)
1759 break;
1760 if (ret)
1761 goto alloc_nohuge;
1762 }
1763 goto failed;
1764 }
1765
1766 if (PageTransHuge(page))
1767 hindex = round_down(index, HPAGE_PMD_NR);
1768 else
1769 hindex = index;
1770
1771 if (sgp == SGP_WRITE)
1772 __SetPageReferenced(page);
1773
1774 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1775 PageTransHuge(page));
1776 if (error)
1777 goto unacct;
1778 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1779 compound_order(page));
1780 if (!error) {
1781 error = shmem_add_to_page_cache(page, mapping, hindex,
1782 NULL);
1783 radix_tree_preload_end();
1784 }
1785 if (error) {
1786 mem_cgroup_cancel_charge(page, memcg,
1787 PageTransHuge(page));
1788 goto unacct;
1789 }
1790 mem_cgroup_commit_charge(page, memcg, false,
1791 PageTransHuge(page));
1792 lru_cache_add_anon(page);
1793
1794 spin_lock_irq(&info->lock);
1795 info->alloced += 1 << compound_order(page);
1796 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1797 shmem_recalc_inode(inode);
1798 spin_unlock_irq(&info->lock);
1799 alloced = true;
1800
1801 if (PageTransHuge(page) &&
1802 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1803 hindex + HPAGE_PMD_NR - 1) {
1804 /*
1805 * Part of the huge page is beyond i_size: subject
1806 * to shrink under memory pressure.
1807 */
1808 spin_lock(&sbinfo->shrinklist_lock);
1809 /*
1810 * _careful to defend against unlocked access to
1811 * ->shrink_list in shmem_unused_huge_shrink()
1812 */
1813 if (list_empty_careful(&info->shrinklist)) {
1814 list_add_tail(&info->shrinklist,
1815 &sbinfo->shrinklist);
1816 sbinfo->shrinklist_len++;
1817 }
1818 spin_unlock(&sbinfo->shrinklist_lock);
1819 }
1820
1821 /*
1822 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1823 */
1824 if (sgp == SGP_FALLOC)
1825 sgp = SGP_WRITE;
1826clear:
1827 /*
1828 * Let SGP_WRITE caller clear ends if write does not fill page;
1829 * but SGP_FALLOC on a page fallocated earlier must initialize
1830 * it now, lest undo on failure cancel our earlier guarantee.
1831 */
1832 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1833 struct page *head = compound_head(page);
1834 int i;
1835
1836 for (i = 0; i < (1 << compound_order(head)); i++) {
1837 clear_highpage(head + i);
1838 flush_dcache_page(head + i);
1839 }
1840 SetPageUptodate(head);
1841 }
1842 }
1843
1844 /* Perhaps the file has been truncated since we checked */
1845 if (sgp <= SGP_CACHE &&
1846 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1847 if (alloced) {
1848 ClearPageDirty(page);
1849 delete_from_page_cache(page);
1850 spin_lock_irq(&info->lock);
1851 shmem_recalc_inode(inode);
1852 spin_unlock_irq(&info->lock);
1853 }
1854 error = -EINVAL;
1855 goto unlock;
1856 }
1857 *pagep = page + index - hindex;
1858 return 0;
1859
1860 /*
1861 * Error recovery.
1862 */
1863unacct:
1864 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1865
1866 if (PageTransHuge(page)) {
1867 unlock_page(page);
1868 put_page(page);
1869 goto alloc_nohuge;
1870 }
1871failed:
1872 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1873 error = -EEXIST;
1874unlock:
1875 if (page) {
1876 unlock_page(page);
1877 put_page(page);
1878 }
1879 if (error == -ENOSPC && !once++) {
1880 spin_lock_irq(&info->lock);
1881 shmem_recalc_inode(inode);
1882 spin_unlock_irq(&info->lock);
1883 goto repeat;
1884 }
1885 if (error == -EEXIST) /* from above or from radix_tree_insert */
1886 goto repeat;
1887 return error;
1888}
1889
1890/*
1891 * This is like autoremove_wake_function, but it removes the wait queue
1892 * entry unconditionally - even if something else had already woken the
1893 * target.
1894 */
1895static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1896{
1897 int ret = default_wake_function(wait, mode, sync, key);
1898 list_del_init(&wait->task_list);
1899 return ret;
1900}
1901
1902static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1903{
1904 struct inode *inode = file_inode(vma->vm_file);
1905 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1906 enum sgp_type sgp;
1907 int error;
1908 int ret = VM_FAULT_LOCKED;
1909
1910 /*
1911 * Trinity finds that probing a hole which tmpfs is punching can
1912 * prevent the hole-punch from ever completing: which in turn
1913 * locks writers out with its hold on i_mutex. So refrain from
1914 * faulting pages into the hole while it's being punched. Although
1915 * shmem_undo_range() does remove the additions, it may be unable to
1916 * keep up, as each new page needs its own unmap_mapping_range() call,
1917 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1918 *
1919 * It does not matter if we sometimes reach this check just before the
1920 * hole-punch begins, so that one fault then races with the punch:
1921 * we just need to make racing faults a rare case.
1922 *
1923 * The implementation below would be much simpler if we just used a
1924 * standard mutex or completion: but we cannot take i_mutex in fault,
1925 * and bloating every shmem inode for this unlikely case would be sad.
1926 */
1927 if (unlikely(inode->i_private)) {
1928 struct shmem_falloc *shmem_falloc;
1929
1930 spin_lock(&inode->i_lock);
1931 shmem_falloc = inode->i_private;
1932 if (shmem_falloc &&
1933 shmem_falloc->waitq &&
1934 vmf->pgoff >= shmem_falloc->start &&
1935 vmf->pgoff < shmem_falloc->next) {
1936 wait_queue_head_t *shmem_falloc_waitq;
1937 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1938
1939 ret = VM_FAULT_NOPAGE;
1940 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1941 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1942 /* It's polite to up mmap_sem if we can */
1943 up_read(&vma->vm_mm->mmap_sem);
1944 ret = VM_FAULT_RETRY;
1945 }
1946
1947 shmem_falloc_waitq = shmem_falloc->waitq;
1948 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1949 TASK_UNINTERRUPTIBLE);
1950 spin_unlock(&inode->i_lock);
1951 schedule();
1952
1953 /*
1954 * shmem_falloc_waitq points into the shmem_fallocate()
1955 * stack of the hole-punching task: shmem_falloc_waitq
1956 * is usually invalid by the time we reach here, but
1957 * finish_wait() does not dereference it in that case;
1958 * though i_lock needed lest racing with wake_up_all().
1959 */
1960 spin_lock(&inode->i_lock);
1961 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1962 spin_unlock(&inode->i_lock);
1963 return ret;
1964 }
1965 spin_unlock(&inode->i_lock);
1966 }
1967
1968 sgp = SGP_CACHE;
1969 if (vma->vm_flags & VM_HUGEPAGE)
1970 sgp = SGP_HUGE;
1971 else if (vma->vm_flags & VM_NOHUGEPAGE)
1972 sgp = SGP_NOHUGE;
1973
1974 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1975 gfp, vma->vm_mm, &ret);
1976 if (error)
1977 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1978 return ret;
1979}
1980
1981unsigned long shmem_get_unmapped_area(struct file *file,
1982 unsigned long uaddr, unsigned long len,
1983 unsigned long pgoff, unsigned long flags)
1984{
1985 unsigned long (*get_area)(struct file *,
1986 unsigned long, unsigned long, unsigned long, unsigned long);
1987 unsigned long addr;
1988 unsigned long offset;
1989 unsigned long inflated_len;
1990 unsigned long inflated_addr;
1991 unsigned long inflated_offset;
1992
1993 if (len > TASK_SIZE)
1994 return -ENOMEM;
1995
1996 get_area = current->mm->get_unmapped_area;
1997 addr = get_area(file, uaddr, len, pgoff, flags);
1998
1999 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2000 return addr;
2001 if (IS_ERR_VALUE(addr))
2002 return addr;
2003 if (addr & ~PAGE_MASK)
2004 return addr;
2005 if (addr > TASK_SIZE - len)
2006 return addr;
2007
2008 if (shmem_huge == SHMEM_HUGE_DENY)
2009 return addr;
2010 if (len < HPAGE_PMD_SIZE)
2011 return addr;
2012 if (flags & MAP_FIXED)
2013 return addr;
2014 /*
2015 * Our priority is to support MAP_SHARED mapped hugely;
2016 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2017 * But if caller specified an address hint, respect that as before.
2018 */
2019 if (uaddr)
2020 return addr;
2021
2022 if (shmem_huge != SHMEM_HUGE_FORCE) {
2023 struct super_block *sb;
2024
2025 if (file) {
2026 VM_BUG_ON(file->f_op != &shmem_file_operations);
2027 sb = file_inode(file)->i_sb;
2028 } else {
2029 /*
2030 * Called directly from mm/mmap.c, or drivers/char/mem.c
2031 * for "/dev/zero", to create a shared anonymous object.
2032 */
2033 if (IS_ERR(shm_mnt))
2034 return addr;
2035 sb = shm_mnt->mnt_sb;
2036 }
2037 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2038 return addr;
2039 }
2040
2041 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2042 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2043 return addr;
2044 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2045 return addr;
2046
2047 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2048 if (inflated_len > TASK_SIZE)
2049 return addr;
2050 if (inflated_len < len)
2051 return addr;
2052
2053 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2054 if (IS_ERR_VALUE(inflated_addr))
2055 return addr;
2056 if (inflated_addr & ~PAGE_MASK)
2057 return addr;
2058
2059 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2060 inflated_addr += offset - inflated_offset;
2061 if (inflated_offset > offset)
2062 inflated_addr += HPAGE_PMD_SIZE;
2063
2064 if (inflated_addr > TASK_SIZE - len)
2065 return addr;
2066 return inflated_addr;
2067}
2068
2069#ifdef CONFIG_NUMA
2070static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2071{
2072 struct inode *inode = file_inode(vma->vm_file);
2073 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2074}
2075
2076static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2077 unsigned long addr)
2078{
2079 struct inode *inode = file_inode(vma->vm_file);
2080 pgoff_t index;
2081
2082 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2083 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2084}
2085#endif
2086
2087int shmem_lock(struct file *file, int lock, struct user_struct *user)
2088{
2089 struct inode *inode = file_inode(file);
2090 struct shmem_inode_info *info = SHMEM_I(inode);
2091 int retval = -ENOMEM;
2092
2093 spin_lock_irq(&info->lock);
2094 if (lock && !(info->flags & VM_LOCKED)) {
2095 if (!user_shm_lock(inode->i_size, user))
2096 goto out_nomem;
2097 info->flags |= VM_LOCKED;
2098 mapping_set_unevictable(file->f_mapping);
2099 }
2100 if (!lock && (info->flags & VM_LOCKED) && user) {
2101 user_shm_unlock(inode->i_size, user);
2102 info->flags &= ~VM_LOCKED;
2103 mapping_clear_unevictable(file->f_mapping);
2104 }
2105 retval = 0;
2106
2107out_nomem:
2108 spin_unlock_irq(&info->lock);
2109 return retval;
2110}
2111
2112static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2113{
2114 file_accessed(file);
2115 vma->vm_ops = &shmem_vm_ops;
2116 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2117 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2118 (vma->vm_end & HPAGE_PMD_MASK)) {
2119 khugepaged_enter(vma, vma->vm_flags);
2120 }
2121 return 0;
2122}
2123
2124static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2125 umode_t mode, dev_t dev, unsigned long flags)
2126{
2127 struct inode *inode;
2128 struct shmem_inode_info *info;
2129 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2130
2131 if (shmem_reserve_inode(sb))
2132 return NULL;
2133
2134 inode = new_inode(sb);
2135 if (inode) {
2136 inode->i_ino = get_next_ino();
2137 inode_init_owner(inode, dir, mode);
2138 inode->i_blocks = 0;
2139 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2140 inode->i_generation = get_seconds();
2141 info = SHMEM_I(inode);
2142 memset(info, 0, (char *)inode - (char *)info);
2143 spin_lock_init(&info->lock);
2144 info->seals = F_SEAL_SEAL;
2145 info->flags = flags & VM_NORESERVE;
2146 INIT_LIST_HEAD(&info->shrinklist);
2147 INIT_LIST_HEAD(&info->swaplist);
2148 simple_xattrs_init(&info->xattrs);
2149 cache_no_acl(inode);
2150
2151 switch (mode & S_IFMT) {
2152 default:
2153 inode->i_op = &shmem_special_inode_operations;
2154 init_special_inode(inode, mode, dev);
2155 break;
2156 case S_IFREG:
2157 inode->i_mapping->a_ops = &shmem_aops;
2158 inode->i_op = &shmem_inode_operations;
2159 inode->i_fop = &shmem_file_operations;
2160 mpol_shared_policy_init(&info->policy,
2161 shmem_get_sbmpol(sbinfo));
2162 break;
2163 case S_IFDIR:
2164 inc_nlink(inode);
2165 /* Some things misbehave if size == 0 on a directory */
2166 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2167 inode->i_op = &shmem_dir_inode_operations;
2168 inode->i_fop = &simple_dir_operations;
2169 break;
2170 case S_IFLNK:
2171 /*
2172 * Must not load anything in the rbtree,
2173 * mpol_free_shared_policy will not be called.
2174 */
2175 mpol_shared_policy_init(&info->policy, NULL);
2176 break;
2177 }
2178
2179 lockdep_annotate_inode_mutex_key(inode);
2180 } else
2181 shmem_free_inode(sb);
2182 return inode;
2183}
2184
2185bool shmem_mapping(struct address_space *mapping)
2186{
2187 if (!mapping->host)
2188 return false;
2189
2190 return mapping->host->i_sb->s_op == &shmem_ops;
2191}
2192
2193#ifdef CONFIG_TMPFS
2194static const struct inode_operations shmem_symlink_inode_operations;
2195static const struct inode_operations shmem_short_symlink_operations;
2196
2197#ifdef CONFIG_TMPFS_XATTR
2198static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2199#else
2200#define shmem_initxattrs NULL
2201#endif
2202
2203static int
2204shmem_write_begin(struct file *file, struct address_space *mapping,
2205 loff_t pos, unsigned len, unsigned flags,
2206 struct page **pagep, void **fsdata)
2207{
2208 struct inode *inode = mapping->host;
2209 struct shmem_inode_info *info = SHMEM_I(inode);
2210 pgoff_t index = pos >> PAGE_SHIFT;
2211
2212 /* i_mutex is held by caller */
2213 if (unlikely(info->seals)) {
2214 if (info->seals & F_SEAL_WRITE)
2215 return -EPERM;
2216 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2217 return -EPERM;
2218 }
2219
2220 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2221}
2222
2223static int
2224shmem_write_end(struct file *file, struct address_space *mapping,
2225 loff_t pos, unsigned len, unsigned copied,
2226 struct page *page, void *fsdata)
2227{
2228 struct inode *inode = mapping->host;
2229
2230 if (pos + copied > inode->i_size)
2231 i_size_write(inode, pos + copied);
2232
2233 if (!PageUptodate(page)) {
2234 struct page *head = compound_head(page);
2235 if (PageTransCompound(page)) {
2236 int i;
2237
2238 for (i = 0; i < HPAGE_PMD_NR; i++) {
2239 if (head + i == page)
2240 continue;
2241 clear_highpage(head + i);
2242 flush_dcache_page(head + i);
2243 }
2244 }
2245 if (copied < PAGE_SIZE) {
2246 unsigned from = pos & (PAGE_SIZE - 1);
2247 zero_user_segments(page, 0, from,
2248 from + copied, PAGE_SIZE);
2249 }
2250 SetPageUptodate(head);
2251 }
2252 set_page_dirty(page);
2253 unlock_page(page);
2254 put_page(page);
2255
2256 return copied;
2257}
2258
2259static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2260{
2261 struct file *file = iocb->ki_filp;
2262 struct inode *inode = file_inode(file);
2263 struct address_space *mapping = inode->i_mapping;
2264 pgoff_t index;
2265 unsigned long offset;
2266 enum sgp_type sgp = SGP_READ;
2267 int error = 0;
2268 ssize_t retval = 0;
2269 loff_t *ppos = &iocb->ki_pos;
2270
2271 /*
2272 * Might this read be for a stacking filesystem? Then when reading
2273 * holes of a sparse file, we actually need to allocate those pages,
2274 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2275 */
2276 if (!iter_is_iovec(to))
2277 sgp = SGP_CACHE;
2278
2279 index = *ppos >> PAGE_SHIFT;
2280 offset = *ppos & ~PAGE_MASK;
2281
2282 for (;;) {
2283 struct page *page = NULL;
2284 pgoff_t end_index;
2285 unsigned long nr, ret;
2286 loff_t i_size = i_size_read(inode);
2287
2288 end_index = i_size >> PAGE_SHIFT;
2289 if (index > end_index)
2290 break;
2291 if (index == end_index) {
2292 nr = i_size & ~PAGE_MASK;
2293 if (nr <= offset)
2294 break;
2295 }
2296
2297 error = shmem_getpage(inode, index, &page, sgp);
2298 if (error) {
2299 if (error == -EINVAL)
2300 error = 0;
2301 break;
2302 }
2303 if (page) {
2304 if (sgp == SGP_CACHE)
2305 set_page_dirty(page);
2306 unlock_page(page);
2307 }
2308
2309 /*
2310 * We must evaluate after, since reads (unlike writes)
2311 * are called without i_mutex protection against truncate
2312 */
2313 nr = PAGE_SIZE;
2314 i_size = i_size_read(inode);
2315 end_index = i_size >> PAGE_SHIFT;
2316 if (index == end_index) {
2317 nr = i_size & ~PAGE_MASK;
2318 if (nr <= offset) {
2319 if (page)
2320 put_page(page);
2321 break;
2322 }
2323 }
2324 nr -= offset;
2325
2326 if (page) {
2327 /*
2328 * If users can be writing to this page using arbitrary
2329 * virtual addresses, take care about potential aliasing
2330 * before reading the page on the kernel side.
2331 */
2332 if (mapping_writably_mapped(mapping))
2333 flush_dcache_page(page);
2334 /*
2335 * Mark the page accessed if we read the beginning.
2336 */
2337 if (!offset)
2338 mark_page_accessed(page);
2339 } else {
2340 page = ZERO_PAGE(0);
2341 get_page(page);
2342 }
2343
2344 /*
2345 * Ok, we have the page, and it's up-to-date, so
2346 * now we can copy it to user space...
2347 */
2348 ret = copy_page_to_iter(page, offset, nr, to);
2349 retval += ret;
2350 offset += ret;
2351 index += offset >> PAGE_SHIFT;
2352 offset &= ~PAGE_MASK;
2353
2354 put_page(page);
2355 if (!iov_iter_count(to))
2356 break;
2357 if (ret < nr) {
2358 error = -EFAULT;
2359 break;
2360 }
2361 cond_resched();
2362 }
2363
2364 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2365 file_accessed(file);
2366 return retval ? retval : error;
2367}
2368
2369/*
2370 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2371 */
2372static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2373 pgoff_t index, pgoff_t end, int whence)
2374{
2375 struct page *page;
2376 struct pagevec pvec;
2377 pgoff_t indices[PAGEVEC_SIZE];
2378 bool done = false;
2379 int i;
2380
2381 pagevec_init(&pvec, 0);
2382 pvec.nr = 1; /* start small: we may be there already */
2383 while (!done) {
2384 pvec.nr = find_get_entries(mapping, index,
2385 pvec.nr, pvec.pages, indices);
2386 if (!pvec.nr) {
2387 if (whence == SEEK_DATA)
2388 index = end;
2389 break;
2390 }
2391 for (i = 0; i < pvec.nr; i++, index++) {
2392 if (index < indices[i]) {
2393 if (whence == SEEK_HOLE) {
2394 done = true;
2395 break;
2396 }
2397 index = indices[i];
2398 }
2399 page = pvec.pages[i];
2400 if (page && !radix_tree_exceptional_entry(page)) {
2401 if (!PageUptodate(page))
2402 page = NULL;
2403 }
2404 if (index >= end ||
2405 (page && whence == SEEK_DATA) ||
2406 (!page && whence == SEEK_HOLE)) {
2407 done = true;
2408 break;
2409 }
2410 }
2411 pagevec_remove_exceptionals(&pvec);
2412 pagevec_release(&pvec);
2413 pvec.nr = PAGEVEC_SIZE;
2414 cond_resched();
2415 }
2416 return index;
2417}
2418
2419static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2420{
2421 struct address_space *mapping = file->f_mapping;
2422 struct inode *inode = mapping->host;
2423 pgoff_t start, end;
2424 loff_t new_offset;
2425
2426 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2427 return generic_file_llseek_size(file, offset, whence,
2428 MAX_LFS_FILESIZE, i_size_read(inode));
2429 inode_lock(inode);
2430 /* We're holding i_mutex so we can access i_size directly */
2431
2432 if (offset < 0 || offset >= inode->i_size)
2433 offset = -ENXIO;
2434 else {
2435 start = offset >> PAGE_SHIFT;
2436 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2437 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2438 new_offset <<= PAGE_SHIFT;
2439 if (new_offset > offset) {
2440 if (new_offset < inode->i_size)
2441 offset = new_offset;
2442 else if (whence == SEEK_DATA)
2443 offset = -ENXIO;
2444 else
2445 offset = inode->i_size;
2446 }
2447 }
2448
2449 if (offset >= 0)
2450 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2451 inode_unlock(inode);
2452 return offset;
2453}
2454
2455/*
2456 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2457 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2458 */
2459#define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2460#define LAST_SCAN 4 /* about 150ms max */
2461
2462static void shmem_tag_pins(struct address_space *mapping)
2463{
2464 struct radix_tree_iter iter;
2465 void **slot;
2466 pgoff_t start;
2467 struct page *page;
2468
2469 lru_add_drain();
2470 start = 0;
2471 rcu_read_lock();
2472
2473 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2474 page = radix_tree_deref_slot(slot);
2475 if (!page || radix_tree_exception(page)) {
2476 if (radix_tree_deref_retry(page)) {
2477 slot = radix_tree_iter_retry(&iter);
2478 continue;
2479 }
2480 } else if (page_count(page) - page_mapcount(page) > 1) {
2481 spin_lock_irq(&mapping->tree_lock);
2482 radix_tree_tag_set(&mapping->page_tree, iter.index,
2483 SHMEM_TAG_PINNED);
2484 spin_unlock_irq(&mapping->tree_lock);
2485 }
2486
2487 if (need_resched()) {
2488 cond_resched_rcu();
2489 slot = radix_tree_iter_next(&iter);
2490 }
2491 }
2492 rcu_read_unlock();
2493}
2494
2495/*
2496 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2497 * via get_user_pages(), drivers might have some pending I/O without any active
2498 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2499 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2500 * them to be dropped.
2501 * The caller must guarantee that no new user will acquire writable references
2502 * to those pages to avoid races.
2503 */
2504static int shmem_wait_for_pins(struct address_space *mapping)
2505{
2506 struct radix_tree_iter iter;
2507 void **slot;
2508 pgoff_t start;
2509 struct page *page;
2510 int error, scan;
2511
2512 shmem_tag_pins(mapping);
2513
2514 error = 0;
2515 for (scan = 0; scan <= LAST_SCAN; scan++) {
2516 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2517 break;
2518
2519 if (!scan)
2520 lru_add_drain_all();
2521 else if (schedule_timeout_killable((HZ << scan) / 200))
2522 scan = LAST_SCAN;
2523
2524 start = 0;
2525 rcu_read_lock();
2526 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2527 start, SHMEM_TAG_PINNED) {
2528
2529 page = radix_tree_deref_slot(slot);
2530 if (radix_tree_exception(page)) {
2531 if (radix_tree_deref_retry(page)) {
2532 slot = radix_tree_iter_retry(&iter);
2533 continue;
2534 }
2535
2536 page = NULL;
2537 }
2538
2539 if (page &&
2540 page_count(page) - page_mapcount(page) != 1) {
2541 if (scan < LAST_SCAN)
2542 goto continue_resched;
2543
2544 /*
2545 * On the last scan, we clean up all those tags
2546 * we inserted; but make a note that we still
2547 * found pages pinned.
2548 */
2549 error = -EBUSY;
2550 }
2551
2552 spin_lock_irq(&mapping->tree_lock);
2553 radix_tree_tag_clear(&mapping->page_tree,
2554 iter.index, SHMEM_TAG_PINNED);
2555 spin_unlock_irq(&mapping->tree_lock);
2556continue_resched:
2557 if (need_resched()) {
2558 cond_resched_rcu();
2559 slot = radix_tree_iter_next(&iter);
2560 }
2561 }
2562 rcu_read_unlock();
2563 }
2564
2565 return error;
2566}
2567
2568#define F_ALL_SEALS (F_SEAL_SEAL | \
2569 F_SEAL_SHRINK | \
2570 F_SEAL_GROW | \
2571 F_SEAL_WRITE)
2572
2573int shmem_add_seals(struct file *file, unsigned int seals)
2574{
2575 struct inode *inode = file_inode(file);
2576 struct shmem_inode_info *info = SHMEM_I(inode);
2577 int error;
2578
2579 /*
2580 * SEALING
2581 * Sealing allows multiple parties to share a shmem-file but restrict
2582 * access to a specific subset of file operations. Seals can only be
2583 * added, but never removed. This way, mutually untrusted parties can
2584 * share common memory regions with a well-defined policy. A malicious
2585 * peer can thus never perform unwanted operations on a shared object.
2586 *
2587 * Seals are only supported on special shmem-files and always affect
2588 * the whole underlying inode. Once a seal is set, it may prevent some
2589 * kinds of access to the file. Currently, the following seals are
2590 * defined:
2591 * SEAL_SEAL: Prevent further seals from being set on this file
2592 * SEAL_SHRINK: Prevent the file from shrinking
2593 * SEAL_GROW: Prevent the file from growing
2594 * SEAL_WRITE: Prevent write access to the file
2595 *
2596 * As we don't require any trust relationship between two parties, we
2597 * must prevent seals from being removed. Therefore, sealing a file
2598 * only adds a given set of seals to the file, it never touches
2599 * existing seals. Furthermore, the "setting seals"-operation can be
2600 * sealed itself, which basically prevents any further seal from being
2601 * added.
2602 *
2603 * Semantics of sealing are only defined on volatile files. Only
2604 * anonymous shmem files support sealing. More importantly, seals are
2605 * never written to disk. Therefore, there's no plan to support it on
2606 * other file types.
2607 */
2608
2609 if (file->f_op != &shmem_file_operations)
2610 return -EINVAL;
2611 if (!(file->f_mode & FMODE_WRITE))
2612 return -EPERM;
2613 if (seals & ~(unsigned int)F_ALL_SEALS)
2614 return -EINVAL;
2615
2616 inode_lock(inode);
2617
2618 if (info->seals & F_SEAL_SEAL) {
2619 error = -EPERM;
2620 goto unlock;
2621 }
2622
2623 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2624 error = mapping_deny_writable(file->f_mapping);
2625 if (error)
2626 goto unlock;
2627
2628 error = shmem_wait_for_pins(file->f_mapping);
2629 if (error) {
2630 mapping_allow_writable(file->f_mapping);
2631 goto unlock;
2632 }
2633 }
2634
2635 info->seals |= seals;
2636 error = 0;
2637
2638unlock:
2639 inode_unlock(inode);
2640 return error;
2641}
2642EXPORT_SYMBOL_GPL(shmem_add_seals);
2643
2644int shmem_get_seals(struct file *file)
2645{
2646 if (file->f_op != &shmem_file_operations)
2647 return -EINVAL;
2648
2649 return SHMEM_I(file_inode(file))->seals;
2650}
2651EXPORT_SYMBOL_GPL(shmem_get_seals);
2652
2653long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2654{
2655 long error;
2656
2657 switch (cmd) {
2658 case F_ADD_SEALS:
2659 /* disallow upper 32bit */
2660 if (arg > UINT_MAX)
2661 return -EINVAL;
2662
2663 error = shmem_add_seals(file, arg);
2664 break;
2665 case F_GET_SEALS:
2666 error = shmem_get_seals(file);
2667 break;
2668 default:
2669 error = -EINVAL;
2670 break;
2671 }
2672
2673 return error;
2674}
2675
2676static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2677 loff_t len)
2678{
2679 struct inode *inode = file_inode(file);
2680 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2681 struct shmem_inode_info *info = SHMEM_I(inode);
2682 struct shmem_falloc shmem_falloc;
2683 pgoff_t start, index, end;
2684 int error;
2685
2686 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2687 return -EOPNOTSUPP;
2688
2689 inode_lock(inode);
2690
2691 if (mode & FALLOC_FL_PUNCH_HOLE) {
2692 struct address_space *mapping = file->f_mapping;
2693 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2694 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2695 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2696
2697 /* protected by i_mutex */
2698 if (info->seals & F_SEAL_WRITE) {
2699 error = -EPERM;
2700 goto out;
2701 }
2702
2703 shmem_falloc.waitq = &shmem_falloc_waitq;
2704 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2705 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2706 spin_lock(&inode->i_lock);
2707 inode->i_private = &shmem_falloc;
2708 spin_unlock(&inode->i_lock);
2709
2710 if ((u64)unmap_end > (u64)unmap_start)
2711 unmap_mapping_range(mapping, unmap_start,
2712 1 + unmap_end - unmap_start, 0);
2713 shmem_truncate_range(inode, offset, offset + len - 1);
2714 /* No need to unmap again: hole-punching leaves COWed pages */
2715
2716 spin_lock(&inode->i_lock);
2717 inode->i_private = NULL;
2718 wake_up_all(&shmem_falloc_waitq);
2719 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2720 spin_unlock(&inode->i_lock);
2721 error = 0;
2722 goto out;
2723 }
2724
2725 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2726 error = inode_newsize_ok(inode, offset + len);
2727 if (error)
2728 goto out;
2729
2730 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2731 error = -EPERM;
2732 goto out;
2733 }
2734
2735 start = offset >> PAGE_SHIFT;
2736 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2737 /* Try to avoid a swapstorm if len is impossible to satisfy */
2738 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2739 error = -ENOSPC;
2740 goto out;
2741 }
2742
2743 shmem_falloc.waitq = NULL;
2744 shmem_falloc.start = start;
2745 shmem_falloc.next = start;
2746 shmem_falloc.nr_falloced = 0;
2747 shmem_falloc.nr_unswapped = 0;
2748 spin_lock(&inode->i_lock);
2749 inode->i_private = &shmem_falloc;
2750 spin_unlock(&inode->i_lock);
2751
2752 for (index = start; index < end; index++) {
2753 struct page *page;
2754
2755 /*
2756 * Good, the fallocate(2) manpage permits EINTR: we may have
2757 * been interrupted because we are using up too much memory.
2758 */
2759 if (signal_pending(current))
2760 error = -EINTR;
2761 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2762 error = -ENOMEM;
2763 else
2764 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2765 if (error) {
2766 /* Remove the !PageUptodate pages we added */
2767 if (index > start) {
2768 shmem_undo_range(inode,
2769 (loff_t)start << PAGE_SHIFT,
2770 ((loff_t)index << PAGE_SHIFT) - 1, true);
2771 }
2772 goto undone;
2773 }
2774
2775 /*
2776 * Inform shmem_writepage() how far we have reached.
2777 * No need for lock or barrier: we have the page lock.
2778 */
2779 shmem_falloc.next++;
2780 if (!PageUptodate(page))
2781 shmem_falloc.nr_falloced++;
2782
2783 /*
2784 * If !PageUptodate, leave it that way so that freeable pages
2785 * can be recognized if we need to rollback on error later.
2786 * But set_page_dirty so that memory pressure will swap rather
2787 * than free the pages we are allocating (and SGP_CACHE pages
2788 * might still be clean: we now need to mark those dirty too).
2789 */
2790 set_page_dirty(page);
2791 unlock_page(page);
2792 put_page(page);
2793 cond_resched();
2794 }
2795
2796 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2797 i_size_write(inode, offset + len);
2798 inode->i_ctime = current_time(inode);
2799undone:
2800 spin_lock(&inode->i_lock);
2801 inode->i_private = NULL;
2802 spin_unlock(&inode->i_lock);
2803out:
2804 inode_unlock(inode);
2805 return error;
2806}
2807
2808static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2809{
2810 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2811
2812 buf->f_type = TMPFS_MAGIC;
2813 buf->f_bsize = PAGE_SIZE;
2814 buf->f_namelen = NAME_MAX;
2815 if (sbinfo->max_blocks) {
2816 buf->f_blocks = sbinfo->max_blocks;
2817 buf->f_bavail =
2818 buf->f_bfree = sbinfo->max_blocks -
2819 percpu_counter_sum(&sbinfo->used_blocks);
2820 }
2821 if (sbinfo->max_inodes) {
2822 buf->f_files = sbinfo->max_inodes;
2823 buf->f_ffree = sbinfo->free_inodes;
2824 }
2825 /* else leave those fields 0 like simple_statfs */
2826 return 0;
2827}
2828
2829/*
2830 * File creation. Allocate an inode, and we're done..
2831 */
2832static int
2833shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2834{
2835 struct inode *inode;
2836 int error = -ENOSPC;
2837
2838 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2839 if (inode) {
2840 error = simple_acl_create(dir, inode);
2841 if (error)
2842 goto out_iput;
2843 error = security_inode_init_security(inode, dir,
2844 &dentry->d_name,
2845 shmem_initxattrs, NULL);
2846 if (error && error != -EOPNOTSUPP)
2847 goto out_iput;
2848
2849 error = 0;
2850 dir->i_size += BOGO_DIRENT_SIZE;
2851 dir->i_ctime = dir->i_mtime = current_time(dir);
2852 d_instantiate(dentry, inode);
2853 dget(dentry); /* Extra count - pin the dentry in core */
2854 }
2855 return error;
2856out_iput:
2857 iput(inode);
2858 return error;
2859}
2860
2861static int
2862shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2863{
2864 struct inode *inode;
2865 int error = -ENOSPC;
2866
2867 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2868 if (inode) {
2869 error = security_inode_init_security(inode, dir,
2870 NULL,
2871 shmem_initxattrs, NULL);
2872 if (error && error != -EOPNOTSUPP)
2873 goto out_iput;
2874 error = simple_acl_create(dir, inode);
2875 if (error)
2876 goto out_iput;
2877 d_tmpfile(dentry, inode);
2878 }
2879 return error;
2880out_iput:
2881 iput(inode);
2882 return error;
2883}
2884
2885static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2886{
2887 int error;
2888
2889 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2890 return error;
2891 inc_nlink(dir);
2892 return 0;
2893}
2894
2895static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2896 bool excl)
2897{
2898 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2899}
2900
2901/*
2902 * Link a file..
2903 */
2904static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2905{
2906 struct inode *inode = d_inode(old_dentry);
2907 int ret = 0;
2908
2909 /*
2910 * No ordinary (disk based) filesystem counts links as inodes;
2911 * but each new link needs a new dentry, pinning lowmem, and
2912 * tmpfs dentries cannot be pruned until they are unlinked.
2913 * But if an O_TMPFILE file is linked into the tmpfs, the
2914 * first link must skip that, to get the accounting right.
2915 */
2916 if (inode->i_nlink) {
2917 ret = shmem_reserve_inode(inode->i_sb);
2918 if (ret)
2919 goto out;
2920 }
2921
2922 dir->i_size += BOGO_DIRENT_SIZE;
2923 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2924 inc_nlink(inode);
2925 ihold(inode); /* New dentry reference */
2926 dget(dentry); /* Extra pinning count for the created dentry */
2927 d_instantiate(dentry, inode);
2928out:
2929 return ret;
2930}
2931
2932static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2933{
2934 struct inode *inode = d_inode(dentry);
2935
2936 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2937 shmem_free_inode(inode->i_sb);
2938
2939 dir->i_size -= BOGO_DIRENT_SIZE;
2940 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2941 drop_nlink(inode);
2942 dput(dentry); /* Undo the count from "create" - this does all the work */
2943 return 0;
2944}
2945
2946static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2947{
2948 if (!simple_empty(dentry))
2949 return -ENOTEMPTY;
2950
2951 drop_nlink(d_inode(dentry));
2952 drop_nlink(dir);
2953 return shmem_unlink(dir, dentry);
2954}
2955
2956static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2957{
2958 bool old_is_dir = d_is_dir(old_dentry);
2959 bool new_is_dir = d_is_dir(new_dentry);
2960
2961 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2962 if (old_is_dir) {
2963 drop_nlink(old_dir);
2964 inc_nlink(new_dir);
2965 } else {
2966 drop_nlink(new_dir);
2967 inc_nlink(old_dir);
2968 }
2969 }
2970 old_dir->i_ctime = old_dir->i_mtime =
2971 new_dir->i_ctime = new_dir->i_mtime =
2972 d_inode(old_dentry)->i_ctime =
2973 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2974
2975 return 0;
2976}
2977
2978static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2979{
2980 struct dentry *whiteout;
2981 int error;
2982
2983 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2984 if (!whiteout)
2985 return -ENOMEM;
2986
2987 error = shmem_mknod(old_dir, whiteout,
2988 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2989 dput(whiteout);
2990 if (error)
2991 return error;
2992
2993 /*
2994 * Cheat and hash the whiteout while the old dentry is still in
2995 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2996 *
2997 * d_lookup() will consistently find one of them at this point,
2998 * not sure which one, but that isn't even important.
2999 */
3000 d_rehash(whiteout);
3001 return 0;
3002}
3003
3004/*
3005 * The VFS layer already does all the dentry stuff for rename,
3006 * we just have to decrement the usage count for the target if
3007 * it exists so that the VFS layer correctly free's it when it
3008 * gets overwritten.
3009 */
3010static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3011{
3012 struct inode *inode = d_inode(old_dentry);
3013 int they_are_dirs = S_ISDIR(inode->i_mode);
3014
3015 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3016 return -EINVAL;
3017
3018 if (flags & RENAME_EXCHANGE)
3019 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3020
3021 if (!simple_empty(new_dentry))
3022 return -ENOTEMPTY;
3023
3024 if (flags & RENAME_WHITEOUT) {
3025 int error;
3026
3027 error = shmem_whiteout(old_dir, old_dentry);
3028 if (error)
3029 return error;
3030 }
3031
3032 if (d_really_is_positive(new_dentry)) {
3033 (void) shmem_unlink(new_dir, new_dentry);
3034 if (they_are_dirs) {
3035 drop_nlink(d_inode(new_dentry));
3036 drop_nlink(old_dir);
3037 }
3038 } else if (they_are_dirs) {
3039 drop_nlink(old_dir);
3040 inc_nlink(new_dir);
3041 }
3042
3043 old_dir->i_size -= BOGO_DIRENT_SIZE;
3044 new_dir->i_size += BOGO_DIRENT_SIZE;
3045 old_dir->i_ctime = old_dir->i_mtime =
3046 new_dir->i_ctime = new_dir->i_mtime =
3047 inode->i_ctime = current_time(old_dir);
3048 return 0;
3049}
3050
3051static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3052{
3053 int error;
3054 int len;
3055 struct inode *inode;
3056 struct page *page;
3057 struct shmem_inode_info *info;
3058
3059 len = strlen(symname) + 1;
3060 if (len > PAGE_SIZE)
3061 return -ENAMETOOLONG;
3062
3063 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3064 if (!inode)
3065 return -ENOSPC;
3066
3067 error = security_inode_init_security(inode, dir, &dentry->d_name,
3068 shmem_initxattrs, NULL);
3069 if (error) {
3070 if (error != -EOPNOTSUPP) {
3071 iput(inode);
3072 return error;
3073 }
3074 error = 0;
3075 }
3076
3077 info = SHMEM_I(inode);
3078 inode->i_size = len-1;
3079 if (len <= SHORT_SYMLINK_LEN) {
3080 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3081 if (!inode->i_link) {
3082 iput(inode);
3083 return -ENOMEM;
3084 }
3085 inode->i_op = &shmem_short_symlink_operations;
3086 } else {
3087 inode_nohighmem(inode);
3088 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3089 if (error) {
3090 iput(inode);
3091 return error;
3092 }
3093 inode->i_mapping->a_ops = &shmem_aops;
3094 inode->i_op = &shmem_symlink_inode_operations;
3095 memcpy(page_address(page), symname, len);
3096 SetPageUptodate(page);
3097 set_page_dirty(page);
3098 unlock_page(page);
3099 put_page(page);
3100 }
3101 dir->i_size += BOGO_DIRENT_SIZE;
3102 dir->i_ctime = dir->i_mtime = current_time(dir);
3103 d_instantiate(dentry, inode);
3104 dget(dentry);
3105 return 0;
3106}
3107
3108static void shmem_put_link(void *arg)
3109{
3110 mark_page_accessed(arg);
3111 put_page(arg);
3112}
3113
3114static const char *shmem_get_link(struct dentry *dentry,
3115 struct inode *inode,
3116 struct delayed_call *done)
3117{
3118 struct page *page = NULL;
3119 int error;
3120 if (!dentry) {
3121 page = find_get_page(inode->i_mapping, 0);
3122 if (!page)
3123 return ERR_PTR(-ECHILD);
3124 if (!PageUptodate(page)) {
3125 put_page(page);
3126 return ERR_PTR(-ECHILD);
3127 }
3128 } else {
3129 error = shmem_getpage(inode, 0, &page, SGP_READ);
3130 if (error)
3131 return ERR_PTR(error);
3132 unlock_page(page);
3133 }
3134 set_delayed_call(done, shmem_put_link, page);
3135 return page_address(page);
3136}
3137
3138#ifdef CONFIG_TMPFS_XATTR
3139/*
3140 * Superblocks without xattr inode operations may get some security.* xattr
3141 * support from the LSM "for free". As soon as we have any other xattrs
3142 * like ACLs, we also need to implement the security.* handlers at
3143 * filesystem level, though.
3144 */
3145
3146/*
3147 * Callback for security_inode_init_security() for acquiring xattrs.
3148 */
3149static int shmem_initxattrs(struct inode *inode,
3150 const struct xattr *xattr_array,
3151 void *fs_info)
3152{
3153 struct shmem_inode_info *info = SHMEM_I(inode);
3154 const struct xattr *xattr;
3155 struct simple_xattr *new_xattr;
3156 size_t len;
3157
3158 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3159 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3160 if (!new_xattr)
3161 return -ENOMEM;
3162
3163 len = strlen(xattr->name) + 1;
3164 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3165 GFP_KERNEL);
3166 if (!new_xattr->name) {
3167 kfree(new_xattr);
3168 return -ENOMEM;
3169 }
3170
3171 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3172 XATTR_SECURITY_PREFIX_LEN);
3173 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3174 xattr->name, len);
3175
3176 simple_xattr_list_add(&info->xattrs, new_xattr);
3177 }
3178
3179 return 0;
3180}
3181
3182static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3183 struct dentry *unused, struct inode *inode,
3184 const char *name, void *buffer, size_t size)
3185{
3186 struct shmem_inode_info *info = SHMEM_I(inode);
3187
3188 name = xattr_full_name(handler, name);
3189 return simple_xattr_get(&info->xattrs, name, buffer, size);
3190}
3191
3192static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3193 struct dentry *unused, struct inode *inode,
3194 const char *name, const void *value,
3195 size_t size, int flags)
3196{
3197 struct shmem_inode_info *info = SHMEM_I(inode);
3198
3199 name = xattr_full_name(handler, name);
3200 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3201}
3202
3203static const struct xattr_handler shmem_security_xattr_handler = {
3204 .prefix = XATTR_SECURITY_PREFIX,
3205 .get = shmem_xattr_handler_get,
3206 .set = shmem_xattr_handler_set,
3207};
3208
3209static const struct xattr_handler shmem_trusted_xattr_handler = {
3210 .prefix = XATTR_TRUSTED_PREFIX,
3211 .get = shmem_xattr_handler_get,
3212 .set = shmem_xattr_handler_set,
3213};
3214
3215static const struct xattr_handler *shmem_xattr_handlers[] = {
3216#ifdef CONFIG_TMPFS_POSIX_ACL
3217 &posix_acl_access_xattr_handler,
3218 &posix_acl_default_xattr_handler,
3219#endif
3220 &shmem_security_xattr_handler,
3221 &shmem_trusted_xattr_handler,
3222 NULL
3223};
3224
3225static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3226{
3227 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3228 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3229}
3230#endif /* CONFIG_TMPFS_XATTR */
3231
3232static const struct inode_operations shmem_short_symlink_operations = {
3233 .readlink = generic_readlink,
3234 .get_link = simple_get_link,
3235#ifdef CONFIG_TMPFS_XATTR
3236 .listxattr = shmem_listxattr,
3237#endif
3238};
3239
3240static const struct inode_operations shmem_symlink_inode_operations = {
3241 .readlink = generic_readlink,
3242 .get_link = shmem_get_link,
3243#ifdef CONFIG_TMPFS_XATTR
3244 .listxattr = shmem_listxattr,
3245#endif
3246};
3247
3248static struct dentry *shmem_get_parent(struct dentry *child)
3249{
3250 return ERR_PTR(-ESTALE);
3251}
3252
3253static int shmem_match(struct inode *ino, void *vfh)
3254{
3255 __u32 *fh = vfh;
3256 __u64 inum = fh[2];
3257 inum = (inum << 32) | fh[1];
3258 return ino->i_ino == inum && fh[0] == ino->i_generation;
3259}
3260
3261static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3262 struct fid *fid, int fh_len, int fh_type)
3263{
3264 struct inode *inode;
3265 struct dentry *dentry = NULL;
3266 u64 inum;
3267
3268 if (fh_len < 3)
3269 return NULL;
3270
3271 inum = fid->raw[2];
3272 inum = (inum << 32) | fid->raw[1];
3273
3274 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3275 shmem_match, fid->raw);
3276 if (inode) {
3277 dentry = d_find_alias(inode);
3278 iput(inode);
3279 }
3280
3281 return dentry;
3282}
3283
3284static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3285 struct inode *parent)
3286{
3287 if (*len < 3) {
3288 *len = 3;
3289 return FILEID_INVALID;
3290 }
3291
3292 if (inode_unhashed(inode)) {
3293 /* Unfortunately insert_inode_hash is not idempotent,
3294 * so as we hash inodes here rather than at creation
3295 * time, we need a lock to ensure we only try
3296 * to do it once
3297 */
3298 static DEFINE_SPINLOCK(lock);
3299 spin_lock(&lock);
3300 if (inode_unhashed(inode))
3301 __insert_inode_hash(inode,
3302 inode->i_ino + inode->i_generation);
3303 spin_unlock(&lock);
3304 }
3305
3306 fh[0] = inode->i_generation;
3307 fh[1] = inode->i_ino;
3308 fh[2] = ((__u64)inode->i_ino) >> 32;
3309
3310 *len = 3;
3311 return 1;
3312}
3313
3314static const struct export_operations shmem_export_ops = {
3315 .get_parent = shmem_get_parent,
3316 .encode_fh = shmem_encode_fh,
3317 .fh_to_dentry = shmem_fh_to_dentry,
3318};
3319
3320static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3321 bool remount)
3322{
3323 char *this_char, *value, *rest;
3324 struct mempolicy *mpol = NULL;
3325 uid_t uid;
3326 gid_t gid;
3327
3328 while (options != NULL) {
3329 this_char = options;
3330 for (;;) {
3331 /*
3332 * NUL-terminate this option: unfortunately,
3333 * mount options form a comma-separated list,
3334 * but mpol's nodelist may also contain commas.
3335 */
3336 options = strchr(options, ',');
3337 if (options == NULL)
3338 break;
3339 options++;
3340 if (!isdigit(*options)) {
3341 options[-1] = '\0';
3342 break;
3343 }
3344 }
3345 if (!*this_char)
3346 continue;
3347 if ((value = strchr(this_char,'=')) != NULL) {
3348 *value++ = 0;
3349 } else {
3350 pr_err("tmpfs: No value for mount option '%s'\n",
3351 this_char);
3352 goto error;
3353 }
3354
3355 if (!strcmp(this_char,"size")) {
3356 unsigned long long size;
3357 size = memparse(value,&rest);
3358 if (*rest == '%') {
3359 size <<= PAGE_SHIFT;
3360 size *= totalram_pages;
3361 do_div(size, 100);
3362 rest++;
3363 }
3364 if (*rest)
3365 goto bad_val;
3366 sbinfo->max_blocks =
3367 DIV_ROUND_UP(size, PAGE_SIZE);
3368 } else if (!strcmp(this_char,"nr_blocks")) {
3369 sbinfo->max_blocks = memparse(value, &rest);
3370 if (*rest)
3371 goto bad_val;
3372 } else if (!strcmp(this_char,"nr_inodes")) {
3373 sbinfo->max_inodes = memparse(value, &rest);
3374 if (*rest)
3375 goto bad_val;
3376 } else if (!strcmp(this_char,"mode")) {
3377 if (remount)
3378 continue;
3379 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3380 if (*rest)
3381 goto bad_val;
3382 } else if (!strcmp(this_char,"uid")) {
3383 if (remount)
3384 continue;
3385 uid = simple_strtoul(value, &rest, 0);
3386 if (*rest)
3387 goto bad_val;
3388 sbinfo->uid = make_kuid(current_user_ns(), uid);
3389 if (!uid_valid(sbinfo->uid))
3390 goto bad_val;
3391 } else if (!strcmp(this_char,"gid")) {
3392 if (remount)
3393 continue;
3394 gid = simple_strtoul(value, &rest, 0);
3395 if (*rest)
3396 goto bad_val;
3397 sbinfo->gid = make_kgid(current_user_ns(), gid);
3398 if (!gid_valid(sbinfo->gid))
3399 goto bad_val;
3400#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3401 } else if (!strcmp(this_char, "huge")) {
3402 int huge;
3403 huge = shmem_parse_huge(value);
3404 if (huge < 0)
3405 goto bad_val;
3406 if (!has_transparent_hugepage() &&
3407 huge != SHMEM_HUGE_NEVER)
3408 goto bad_val;
3409 sbinfo->huge = huge;
3410#endif
3411#ifdef CONFIG_NUMA
3412 } else if (!strcmp(this_char,"mpol")) {
3413 mpol_put(mpol);
3414 mpol = NULL;
3415 if (mpol_parse_str(value, &mpol))
3416 goto bad_val;
3417#endif
3418 } else {
3419 pr_err("tmpfs: Bad mount option %s\n", this_char);
3420 goto error;
3421 }
3422 }
3423 sbinfo->mpol = mpol;
3424 return 0;
3425
3426bad_val:
3427 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3428 value, this_char);
3429error:
3430 mpol_put(mpol);
3431 return 1;
3432
3433}
3434
3435static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3436{
3437 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3438 struct shmem_sb_info config = *sbinfo;
3439 unsigned long inodes;
3440 int error = -EINVAL;
3441
3442 config.mpol = NULL;
3443 if (shmem_parse_options(data, &config, true))
3444 return error;
3445
3446 spin_lock(&sbinfo->stat_lock);
3447 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3448 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3449 goto out;
3450 if (config.max_inodes < inodes)
3451 goto out;
3452 /*
3453 * Those tests disallow limited->unlimited while any are in use;
3454 * but we must separately disallow unlimited->limited, because
3455 * in that case we have no record of how much is already in use.
3456 */
3457 if (config.max_blocks && !sbinfo->max_blocks)
3458 goto out;
3459 if (config.max_inodes && !sbinfo->max_inodes)
3460 goto out;
3461
3462 error = 0;
3463 sbinfo->huge = config.huge;
3464 sbinfo->max_blocks = config.max_blocks;
3465 sbinfo->max_inodes = config.max_inodes;
3466 sbinfo->free_inodes = config.max_inodes - inodes;
3467
3468 /*
3469 * Preserve previous mempolicy unless mpol remount option was specified.
3470 */
3471 if (config.mpol) {
3472 mpol_put(sbinfo->mpol);
3473 sbinfo->mpol = config.mpol; /* transfers initial ref */
3474 }
3475out:
3476 spin_unlock(&sbinfo->stat_lock);
3477 return error;
3478}
3479
3480static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3481{
3482 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3483
3484 if (sbinfo->max_blocks != shmem_default_max_blocks())
3485 seq_printf(seq, ",size=%luk",
3486 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3487 if (sbinfo->max_inodes != shmem_default_max_inodes())
3488 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3489 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3490 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3491 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3492 seq_printf(seq, ",uid=%u",
3493 from_kuid_munged(&init_user_ns, sbinfo->uid));
3494 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3495 seq_printf(seq, ",gid=%u",
3496 from_kgid_munged(&init_user_ns, sbinfo->gid));
3497#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3498 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3499 if (sbinfo->huge)
3500 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3501#endif
3502 shmem_show_mpol(seq, sbinfo->mpol);
3503 return 0;
3504}
3505
3506#define MFD_NAME_PREFIX "memfd:"
3507#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3508#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3509
3510#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3511
3512SYSCALL_DEFINE2(memfd_create,
3513 const char __user *, uname,
3514 unsigned int, flags)
3515{
3516 struct shmem_inode_info *info;
3517 struct file *file;
3518 int fd, error;
3519 char *name;
3520 long len;
3521
3522 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3523 return -EINVAL;
3524
3525 /* length includes terminating zero */
3526 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3527 if (len <= 0)
3528 return -EFAULT;
3529 if (len > MFD_NAME_MAX_LEN + 1)
3530 return -EINVAL;
3531
3532 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3533 if (!name)
3534 return -ENOMEM;
3535
3536 strcpy(name, MFD_NAME_PREFIX);
3537 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3538 error = -EFAULT;
3539 goto err_name;
3540 }
3541
3542 /* terminating-zero may have changed after strnlen_user() returned */
3543 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3544 error = -EFAULT;
3545 goto err_name;
3546 }
3547
3548 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3549 if (fd < 0) {
3550 error = fd;
3551 goto err_name;
3552 }
3553
3554 file = shmem_file_setup(name, 0, VM_NORESERVE);
3555 if (IS_ERR(file)) {
3556 error = PTR_ERR(file);
3557 goto err_fd;
3558 }
3559 info = SHMEM_I(file_inode(file));
3560 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3561 file->f_flags |= O_RDWR | O_LARGEFILE;
3562 if (flags & MFD_ALLOW_SEALING)
3563 info->seals &= ~F_SEAL_SEAL;
3564
3565 fd_install(fd, file);
3566 kfree(name);
3567 return fd;
3568
3569err_fd:
3570 put_unused_fd(fd);
3571err_name:
3572 kfree(name);
3573 return error;
3574}
3575
3576#endif /* CONFIG_TMPFS */
3577
3578static void shmem_put_super(struct super_block *sb)
3579{
3580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3581
3582 percpu_counter_destroy(&sbinfo->used_blocks);
3583 mpol_put(sbinfo->mpol);
3584 kfree(sbinfo);
3585 sb->s_fs_info = NULL;
3586}
3587
3588int shmem_fill_super(struct super_block *sb, void *data, int silent)
3589{
3590 struct inode *inode;
3591 struct shmem_sb_info *sbinfo;
3592 int err = -ENOMEM;
3593
3594 /* Round up to L1_CACHE_BYTES to resist false sharing */
3595 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3596 L1_CACHE_BYTES), GFP_KERNEL);
3597 if (!sbinfo)
3598 return -ENOMEM;
3599
3600 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3601 sbinfo->uid = current_fsuid();
3602 sbinfo->gid = current_fsgid();
3603 sb->s_fs_info = sbinfo;
3604
3605#ifdef CONFIG_TMPFS
3606 /*
3607 * Per default we only allow half of the physical ram per
3608 * tmpfs instance, limiting inodes to one per page of lowmem;
3609 * but the internal instance is left unlimited.
3610 */
3611 if (!(sb->s_flags & MS_KERNMOUNT)) {
3612 sbinfo->max_blocks = shmem_default_max_blocks();
3613 sbinfo->max_inodes = shmem_default_max_inodes();
3614 if (shmem_parse_options(data, sbinfo, false)) {
3615 err = -EINVAL;
3616 goto failed;
3617 }
3618 } else {
3619 sb->s_flags |= MS_NOUSER;
3620 }
3621 sb->s_export_op = &shmem_export_ops;
3622 sb->s_flags |= MS_NOSEC;
3623#else
3624 sb->s_flags |= MS_NOUSER;
3625#endif
3626
3627 spin_lock_init(&sbinfo->stat_lock);
3628 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3629 goto failed;
3630 sbinfo->free_inodes = sbinfo->max_inodes;
3631 spin_lock_init(&sbinfo->shrinklist_lock);
3632 INIT_LIST_HEAD(&sbinfo->shrinklist);
3633
3634 sb->s_maxbytes = MAX_LFS_FILESIZE;
3635 sb->s_blocksize = PAGE_SIZE;
3636 sb->s_blocksize_bits = PAGE_SHIFT;
3637 sb->s_magic = TMPFS_MAGIC;
3638 sb->s_op = &shmem_ops;
3639 sb->s_time_gran = 1;
3640#ifdef CONFIG_TMPFS_XATTR
3641 sb->s_xattr = shmem_xattr_handlers;
3642#endif
3643#ifdef CONFIG_TMPFS_POSIX_ACL
3644 sb->s_flags |= MS_POSIXACL;
3645#endif
3646
3647 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3648 if (!inode)
3649 goto failed;
3650 inode->i_uid = sbinfo->uid;
3651 inode->i_gid = sbinfo->gid;
3652 sb->s_root = d_make_root(inode);
3653 if (!sb->s_root)
3654 goto failed;
3655 return 0;
3656
3657failed:
3658 shmem_put_super(sb);
3659 return err;
3660}
3661
3662static struct kmem_cache *shmem_inode_cachep;
3663
3664static struct inode *shmem_alloc_inode(struct super_block *sb)
3665{
3666 struct shmem_inode_info *info;
3667 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3668 if (!info)
3669 return NULL;
3670 return &info->vfs_inode;
3671}
3672
3673static void shmem_destroy_callback(struct rcu_head *head)
3674{
3675 struct inode *inode = container_of(head, struct inode, i_rcu);
3676 if (S_ISLNK(inode->i_mode))
3677 kfree(inode->i_link);
3678 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3679}
3680
3681static void shmem_destroy_inode(struct inode *inode)
3682{
3683 if (S_ISREG(inode->i_mode))
3684 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3685 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3686}
3687
3688static void shmem_init_inode(void *foo)
3689{
3690 struct shmem_inode_info *info = foo;
3691 inode_init_once(&info->vfs_inode);
3692}
3693
3694static int shmem_init_inodecache(void)
3695{
3696 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3697 sizeof(struct shmem_inode_info),
3698 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3699 return 0;
3700}
3701
3702static void shmem_destroy_inodecache(void)
3703{
3704 kmem_cache_destroy(shmem_inode_cachep);
3705}
3706
3707static const struct address_space_operations shmem_aops = {
3708 .writepage = shmem_writepage,
3709 .set_page_dirty = __set_page_dirty_no_writeback,
3710#ifdef CONFIG_TMPFS
3711 .write_begin = shmem_write_begin,
3712 .write_end = shmem_write_end,
3713#endif
3714#ifdef CONFIG_MIGRATION
3715 .migratepage = migrate_page,
3716#endif
3717 .error_remove_page = generic_error_remove_page,
3718};
3719
3720static const struct file_operations shmem_file_operations = {
3721 .mmap = shmem_mmap,
3722 .get_unmapped_area = shmem_get_unmapped_area,
3723#ifdef CONFIG_TMPFS
3724 .llseek = shmem_file_llseek,
3725 .read_iter = shmem_file_read_iter,
3726 .write_iter = generic_file_write_iter,
3727 .fsync = noop_fsync,
3728 .splice_read = generic_file_splice_read,
3729 .splice_write = iter_file_splice_write,
3730 .fallocate = shmem_fallocate,
3731#endif
3732};
3733
3734static const struct inode_operations shmem_inode_operations = {
3735 .getattr = shmem_getattr,
3736 .setattr = shmem_setattr,
3737#ifdef CONFIG_TMPFS_XATTR
3738 .listxattr = shmem_listxattr,
3739 .set_acl = simple_set_acl,
3740#endif
3741};
3742
3743static const struct inode_operations shmem_dir_inode_operations = {
3744#ifdef CONFIG_TMPFS
3745 .create = shmem_create,
3746 .lookup = simple_lookup,
3747 .link = shmem_link,
3748 .unlink = shmem_unlink,
3749 .symlink = shmem_symlink,
3750 .mkdir = shmem_mkdir,
3751 .rmdir = shmem_rmdir,
3752 .mknod = shmem_mknod,
3753 .rename = shmem_rename2,
3754 .tmpfile = shmem_tmpfile,
3755#endif
3756#ifdef CONFIG_TMPFS_XATTR
3757 .listxattr = shmem_listxattr,
3758#endif
3759#ifdef CONFIG_TMPFS_POSIX_ACL
3760 .setattr = shmem_setattr,
3761 .set_acl = simple_set_acl,
3762#endif
3763};
3764
3765static const struct inode_operations shmem_special_inode_operations = {
3766#ifdef CONFIG_TMPFS_XATTR
3767 .listxattr = shmem_listxattr,
3768#endif
3769#ifdef CONFIG_TMPFS_POSIX_ACL
3770 .setattr = shmem_setattr,
3771 .set_acl = simple_set_acl,
3772#endif
3773};
3774
3775static const struct super_operations shmem_ops = {
3776 .alloc_inode = shmem_alloc_inode,
3777 .destroy_inode = shmem_destroy_inode,
3778#ifdef CONFIG_TMPFS
3779 .statfs = shmem_statfs,
3780 .remount_fs = shmem_remount_fs,
3781 .show_options = shmem_show_options,
3782#endif
3783 .evict_inode = shmem_evict_inode,
3784 .drop_inode = generic_delete_inode,
3785 .put_super = shmem_put_super,
3786#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3787 .nr_cached_objects = shmem_unused_huge_count,
3788 .free_cached_objects = shmem_unused_huge_scan,
3789#endif
3790};
3791
3792static const struct vm_operations_struct shmem_vm_ops = {
3793 .fault = shmem_fault,
3794 .map_pages = filemap_map_pages,
3795#ifdef CONFIG_NUMA
3796 .set_policy = shmem_set_policy,
3797 .get_policy = shmem_get_policy,
3798#endif
3799};
3800
3801static struct dentry *shmem_mount(struct file_system_type *fs_type,
3802 int flags, const char *dev_name, void *data)
3803{
3804 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3805}
3806
3807static struct file_system_type shmem_fs_type = {
3808 .owner = THIS_MODULE,
3809 .name = "tmpfs",
3810 .mount = shmem_mount,
3811 .kill_sb = kill_litter_super,
3812 .fs_flags = FS_USERNS_MOUNT,
3813};
3814
3815int __init shmem_init(void)
3816{
3817 int error;
3818
3819 /* If rootfs called this, don't re-init */
3820 if (shmem_inode_cachep)
3821 return 0;
3822
3823 error = shmem_init_inodecache();
3824 if (error)
3825 goto out3;
3826
3827 error = register_filesystem(&shmem_fs_type);
3828 if (error) {
3829 pr_err("Could not register tmpfs\n");
3830 goto out2;
3831 }
3832
3833 shm_mnt = kern_mount(&shmem_fs_type);
3834 if (IS_ERR(shm_mnt)) {
3835 error = PTR_ERR(shm_mnt);
3836 pr_err("Could not kern_mount tmpfs\n");
3837 goto out1;
3838 }
3839
3840#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3841 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3842 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3843 else
3844 shmem_huge = 0; /* just in case it was patched */
3845#endif
3846 return 0;
3847
3848out1:
3849 unregister_filesystem(&shmem_fs_type);
3850out2:
3851 shmem_destroy_inodecache();
3852out3:
3853 shm_mnt = ERR_PTR(error);
3854 return error;
3855}
3856
3857#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3858static ssize_t shmem_enabled_show(struct kobject *kobj,
3859 struct kobj_attribute *attr, char *buf)
3860{
3861 int values[] = {
3862 SHMEM_HUGE_ALWAYS,
3863 SHMEM_HUGE_WITHIN_SIZE,
3864 SHMEM_HUGE_ADVISE,
3865 SHMEM_HUGE_NEVER,
3866 SHMEM_HUGE_DENY,
3867 SHMEM_HUGE_FORCE,
3868 };
3869 int i, count;
3870
3871 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3872 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3873
3874 count += sprintf(buf + count, fmt,
3875 shmem_format_huge(values[i]));
3876 }
3877 buf[count - 1] = '\n';
3878 return count;
3879}
3880
3881static ssize_t shmem_enabled_store(struct kobject *kobj,
3882 struct kobj_attribute *attr, const char *buf, size_t count)
3883{
3884 char tmp[16];
3885 int huge;
3886
3887 if (count + 1 > sizeof(tmp))
3888 return -EINVAL;
3889 memcpy(tmp, buf, count);
3890 tmp[count] = '\0';
3891 if (count && tmp[count - 1] == '\n')
3892 tmp[count - 1] = '\0';
3893
3894 huge = shmem_parse_huge(tmp);
3895 if (huge == -EINVAL)
3896 return -EINVAL;
3897 if (!has_transparent_hugepage() &&
3898 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3899 return -EINVAL;
3900
3901 shmem_huge = huge;
3902 if (shmem_huge > SHMEM_HUGE_DENY)
3903 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3904 return count;
3905}
3906
3907struct kobj_attribute shmem_enabled_attr =
3908 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3909#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3910
3911#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3912bool shmem_huge_enabled(struct vm_area_struct *vma)
3913{
3914 struct inode *inode = file_inode(vma->vm_file);
3915 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3916 loff_t i_size;
3917 pgoff_t off;
3918
3919 if (shmem_huge == SHMEM_HUGE_FORCE)
3920 return true;
3921 if (shmem_huge == SHMEM_HUGE_DENY)
3922 return false;
3923 switch (sbinfo->huge) {
3924 case SHMEM_HUGE_NEVER:
3925 return false;
3926 case SHMEM_HUGE_ALWAYS:
3927 return true;
3928 case SHMEM_HUGE_WITHIN_SIZE:
3929 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3930 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3931 if (i_size >= HPAGE_PMD_SIZE &&
3932 i_size >> PAGE_SHIFT >= off)
3933 return true;
3934 case SHMEM_HUGE_ADVISE:
3935 /* TODO: implement fadvise() hints */
3936 return (vma->vm_flags & VM_HUGEPAGE);
3937 default:
3938 VM_BUG_ON(1);
3939 return false;
3940 }
3941}
3942#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3943
3944#else /* !CONFIG_SHMEM */
3945
3946/*
3947 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3948 *
3949 * This is intended for small system where the benefits of the full
3950 * shmem code (swap-backed and resource-limited) are outweighed by
3951 * their complexity. On systems without swap this code should be
3952 * effectively equivalent, but much lighter weight.
3953 */
3954
3955static struct file_system_type shmem_fs_type = {
3956 .name = "tmpfs",
3957 .mount = ramfs_mount,
3958 .kill_sb = kill_litter_super,
3959 .fs_flags = FS_USERNS_MOUNT,
3960};
3961
3962int __init shmem_init(void)
3963{
3964 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3965
3966 shm_mnt = kern_mount(&shmem_fs_type);
3967 BUG_ON(IS_ERR(shm_mnt));
3968
3969 return 0;
3970}
3971
3972int shmem_unuse(swp_entry_t swap, struct page *page)
3973{
3974 return 0;
3975}
3976
3977int shmem_lock(struct file *file, int lock, struct user_struct *user)
3978{
3979 return 0;
3980}
3981
3982void shmem_unlock_mapping(struct address_space *mapping)
3983{
3984}
3985
3986#ifdef CONFIG_MMU
3987unsigned long shmem_get_unmapped_area(struct file *file,
3988 unsigned long addr, unsigned long len,
3989 unsigned long pgoff, unsigned long flags)
3990{
3991 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3992}
3993#endif
3994
3995void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3996{
3997 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3998}
3999EXPORT_SYMBOL_GPL(shmem_truncate_range);
4000
4001#define shmem_vm_ops generic_file_vm_ops
4002#define shmem_file_operations ramfs_file_operations
4003#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4004#define shmem_acct_size(flags, size) 0
4005#define shmem_unacct_size(flags, size) do {} while (0)
4006
4007#endif /* CONFIG_SHMEM */
4008
4009/* common code */
4010
4011static const struct dentry_operations anon_ops = {
4012 .d_dname = simple_dname
4013};
4014
4015static struct file *__shmem_file_setup(const char *name, loff_t size,
4016 unsigned long flags, unsigned int i_flags)
4017{
4018 struct file *res;
4019 struct inode *inode;
4020 struct path path;
4021 struct super_block *sb;
4022 struct qstr this;
4023
4024 if (IS_ERR(shm_mnt))
4025 return ERR_CAST(shm_mnt);
4026
4027 if (size < 0 || size > MAX_LFS_FILESIZE)
4028 return ERR_PTR(-EINVAL);
4029
4030 if (shmem_acct_size(flags, size))
4031 return ERR_PTR(-ENOMEM);
4032
4033 res = ERR_PTR(-ENOMEM);
4034 this.name = name;
4035 this.len = strlen(name);
4036 this.hash = 0; /* will go */
4037 sb = shm_mnt->mnt_sb;
4038 path.mnt = mntget(shm_mnt);
4039 path.dentry = d_alloc_pseudo(sb, &this);
4040 if (!path.dentry)
4041 goto put_memory;
4042 d_set_d_op(path.dentry, &anon_ops);
4043
4044 res = ERR_PTR(-ENOSPC);
4045 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4046 if (!inode)
4047 goto put_memory;
4048
4049 inode->i_flags |= i_flags;
4050 d_instantiate(path.dentry, inode);
4051 inode->i_size = size;
4052 clear_nlink(inode); /* It is unlinked */
4053 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4054 if (IS_ERR(res))
4055 goto put_path;
4056
4057 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4058 &shmem_file_operations);
4059 if (IS_ERR(res))
4060 goto put_path;
4061
4062 return res;
4063
4064put_memory:
4065 shmem_unacct_size(flags, size);
4066put_path:
4067 path_put(&path);
4068 return res;
4069}
4070
4071/**
4072 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4073 * kernel internal. There will be NO LSM permission checks against the
4074 * underlying inode. So users of this interface must do LSM checks at a
4075 * higher layer. The users are the big_key and shm implementations. LSM
4076 * checks are provided at the key or shm level rather than the inode.
4077 * @name: name for dentry (to be seen in /proc/<pid>/maps
4078 * @size: size to be set for the file
4079 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4080 */
4081struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4082{
4083 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4084}
4085
4086/**
4087 * shmem_file_setup - get an unlinked file living in tmpfs
4088 * @name: name for dentry (to be seen in /proc/<pid>/maps
4089 * @size: size to be set for the file
4090 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4091 */
4092struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4093{
4094 return __shmem_file_setup(name, size, flags, 0);
4095}
4096EXPORT_SYMBOL_GPL(shmem_file_setup);
4097
4098void shmem_set_file(struct vm_area_struct *vma, struct file *file)
4099{
4100 if (vma->vm_file)
4101 fput(vma->vm_file);
4102 vma->vm_file = file;
4103 vma->vm_ops = &shmem_vm_ops;
4104}
4105
4106/**
4107 * shmem_zero_setup - setup a shared anonymous mapping
4108 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4109 */
4110int shmem_zero_setup(struct vm_area_struct *vma)
4111{
4112 struct file *file;
4113 loff_t size = vma->vm_end - vma->vm_start;
4114
4115 /*
4116 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4117 * between XFS directory reading and selinux: since this file is only
4118 * accessible to the user through its mapping, use S_PRIVATE flag to
4119 * bypass file security, in the same way as shmem_kernel_file_setup().
4120 */
4121 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4122 if (IS_ERR(file))
4123 return PTR_ERR(file);
4124
4125 shmem_set_file(vma, file);
4126
4127 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4128 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4129 (vma->vm_end & HPAGE_PMD_MASK)) {
4130 khugepaged_enter(vma, vma->vm_flags);
4131 }
4132
4133 return 0;
4134}
4135
4136/**
4137 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4138 * @mapping: the page's address_space
4139 * @index: the page index
4140 * @gfp: the page allocator flags to use if allocating
4141 *
4142 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4143 * with any new page allocations done using the specified allocation flags.
4144 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4145 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4146 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4147 *
4148 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4149 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4150 */
4151struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4152 pgoff_t index, gfp_t gfp)
4153{
4154#ifdef CONFIG_SHMEM
4155 struct inode *inode = mapping->host;
4156 struct page *page;
4157 int error;
4158
4159 BUG_ON(mapping->a_ops != &shmem_aops);
4160 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4161 gfp, NULL, NULL);
4162 if (error)
4163 page = ERR_PTR(error);
4164 else
4165 unlock_page(page);
4166 return page;
4167#else
4168 /*
4169 * The tiny !SHMEM case uses ramfs without swap
4170 */
4171 return read_cache_page_gfp(mapping, index, gfp);
4172#endif
4173}
4174EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4175