summaryrefslogtreecommitdiff
path: root/mm/vmalloc.c (plain)
blob: 532310229a36ed1ed9c7ed5f241de0287c3330a0
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
10
11#include <linux/vmalloc.h>
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/sched.h>
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
19#include <linux/proc_fs.h>
20#include <linux/seq_file.h>
21#include <linux/debugobjects.h>
22#include <linux/kallsyms.h>
23#include <linux/list.h>
24#include <linux/notifier.h>
25#include <linux/rbtree.h>
26#include <linux/radix-tree.h>
27#include <linux/rcupdate.h>
28#include <linux/pfn.h>
29#include <linux/kmemleak.h>
30#include <linux/atomic.h>
31#include <linux/compiler.h>
32#include <linux/llist.h>
33#include <linux/bitops.h>
34
35#include <asm/uaccess.h>
36#include <asm/tlbflush.h>
37#include <asm/shmparam.h>
38
39#include "internal.h"
40
41struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44};
45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47static void __vunmap(const void *, int);
48
49static void free_work(struct work_struct *w)
50{
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *llnode = llist_del_all(&p->list);
53 while (llnode) {
54 void *p = llnode;
55 llnode = llist_next(llnode);
56 __vunmap(p, 1);
57 }
58}
59
60/*** Page table manipulation functions ***/
61
62static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63{
64 pte_t *pte;
65
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
71}
72
73static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74{
75 pmd_t *pmd;
76 unsigned long next;
77
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
81 if (pmd_clear_huge(pmd))
82 continue;
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
87}
88
89static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
90{
91 pud_t *pud;
92 unsigned long next;
93
94 pud = pud_offset(pgd, addr);
95 do {
96 next = pud_addr_end(addr, end);
97 if (pud_clear_huge(pud))
98 continue;
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
103}
104
105static void vunmap_page_range(unsigned long addr, unsigned long end)
106{
107 pgd_t *pgd;
108 unsigned long next;
109
110 BUG_ON(addr >= end);
111 pgd = pgd_offset_k(addr);
112 do {
113 next = pgd_addr_end(addr, end);
114 if (pgd_none_or_clear_bad(pgd))
115 continue;
116 vunmap_pud_range(pgd, addr, next);
117 } while (pgd++, addr = next, addr != end);
118}
119
120static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
121 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
122{
123 pte_t *pte;
124
125 /*
126 * nr is a running index into the array which helps higher level
127 * callers keep track of where we're up to.
128 */
129
130 pte = pte_alloc_kernel(pmd, addr);
131 if (!pte)
132 return -ENOMEM;
133 do {
134 struct page *page = pages[*nr];
135
136 if (WARN_ON(!pte_none(*pte)))
137 return -EBUSY;
138 if (WARN_ON(!page))
139 return -ENOMEM;
140 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
141 (*nr)++;
142 } while (pte++, addr += PAGE_SIZE, addr != end);
143 return 0;
144}
145
146static int vmap_pmd_range(pud_t *pud, unsigned long addr,
147 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
148{
149 pmd_t *pmd;
150 unsigned long next;
151
152 pmd = pmd_alloc(&init_mm, pud, addr);
153 if (!pmd)
154 return -ENOMEM;
155 do {
156 next = pmd_addr_end(addr, end);
157 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
158 return -ENOMEM;
159 } while (pmd++, addr = next, addr != end);
160 return 0;
161}
162
163static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165{
166 pud_t *pud;
167 unsigned long next;
168
169 pud = pud_alloc(&init_mm, pgd, addr);
170 if (!pud)
171 return -ENOMEM;
172 do {
173 next = pud_addr_end(addr, end);
174 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
175 return -ENOMEM;
176 } while (pud++, addr = next, addr != end);
177 return 0;
178}
179
180/*
181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182 * will have pfns corresponding to the "pages" array.
183 *
184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185 */
186static int vmap_page_range_noflush(unsigned long start, unsigned long end,
187 pgprot_t prot, struct page **pages)
188{
189 pgd_t *pgd;
190 unsigned long next;
191 unsigned long addr = start;
192 int err = 0;
193 int nr = 0;
194
195 BUG_ON(addr >= end);
196 pgd = pgd_offset_k(addr);
197 do {
198 next = pgd_addr_end(addr, end);
199 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
200 if (err)
201 return err;
202 } while (pgd++, addr = next, addr != end);
203
204 return nr;
205}
206
207static int vmap_page_range(unsigned long start, unsigned long end,
208 pgprot_t prot, struct page **pages)
209{
210 int ret;
211
212 ret = vmap_page_range_noflush(start, end, prot, pages);
213 flush_cache_vmap(start, end);
214 return ret;
215}
216
217int is_vmalloc_or_module_addr(const void *x)
218{
219 /*
220 * ARM, x86-64 and sparc64 put modules in a special place,
221 * and fall back on vmalloc() if that fails. Others
222 * just put it in the vmalloc space.
223 */
224#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 unsigned long addr = (unsigned long)x;
226 if (addr >= MODULES_VADDR && addr < MODULES_END)
227 return 1;
228#endif
229 return is_vmalloc_addr(x);
230}
231
232/*
233 * Walk a vmap address to the struct page it maps.
234 */
235struct page *vmalloc_to_page(const void *vmalloc_addr)
236{
237 unsigned long addr = (unsigned long) vmalloc_addr;
238 struct page *page = NULL;
239 pgd_t *pgd = pgd_offset_k(addr);
240
241 /*
242 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 * architectures that do not vmalloc module space
244 */
245 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
246
247 /*
248 * Don't dereference bad PUD or PMD (below) entries. This will also
249 * identify huge mappings, which we may encounter on architectures
250 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
251 * identified as vmalloc addresses by is_vmalloc_addr(), but are
252 * not [unambiguously] associated with a struct page, so there is
253 * no correct value to return for them.
254 */
255 if (!pgd_none(*pgd)) {
256 pud_t *pud = pud_offset(pgd, addr);
257#ifndef CONFIG_AMLOGIC_MODIFY
258 WARN_ON_ONCE(pud_bad(*pud));
259#endif
260 if (!pud_none(*pud) && !pud_bad(*pud)) {
261 pmd_t *pmd = pmd_offset(pud, addr);
262#ifndef CONFIG_AMLOGIC_MODIFY
263 WARN_ON_ONCE(pmd_bad(*pmd));
264#endif
265 if (!pmd_none(*pmd) && !pmd_bad(*pmd)) {
266 pte_t *ptep, pte;
267
268 ptep = pte_offset_map(pmd, addr);
269 pte = *ptep;
270 if (pte_present(pte))
271 page = pte_page(pte);
272 pte_unmap(ptep);
273 }
274 }
275 }
276 return page;
277}
278EXPORT_SYMBOL(vmalloc_to_page);
279
280/*
281 * Map a vmalloc()-space virtual address to the physical page frame number.
282 */
283unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
284{
285 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
286}
287EXPORT_SYMBOL(vmalloc_to_pfn);
288
289
290/*** Global kva allocator ***/
291
292#define VM_VM_AREA 0x04
293
294static DEFINE_SPINLOCK(vmap_area_lock);
295/* Export for kexec only */
296LIST_HEAD(vmap_area_list);
297static LLIST_HEAD(vmap_purge_list);
298static struct rb_root vmap_area_root = RB_ROOT;
299
300/* The vmap cache globals are protected by vmap_area_lock */
301static struct rb_node *free_vmap_cache;
302static unsigned long cached_hole_size;
303static unsigned long cached_vstart;
304static unsigned long cached_align;
305
306static unsigned long vmap_area_pcpu_hole;
307
308static struct vmap_area *__find_vmap_area(unsigned long addr)
309{
310 struct rb_node *n = vmap_area_root.rb_node;
311
312 while (n) {
313 struct vmap_area *va;
314
315 va = rb_entry(n, struct vmap_area, rb_node);
316 if (addr < va->va_start)
317 n = n->rb_left;
318 else if (addr >= va->va_end)
319 n = n->rb_right;
320 else
321 return va;
322 }
323
324 return NULL;
325}
326
327static void __insert_vmap_area(struct vmap_area *va)
328{
329 struct rb_node **p = &vmap_area_root.rb_node;
330 struct rb_node *parent = NULL;
331 struct rb_node *tmp;
332
333 while (*p) {
334 struct vmap_area *tmp_va;
335
336 parent = *p;
337 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
338 if (va->va_start < tmp_va->va_end)
339 p = &(*p)->rb_left;
340 else if (va->va_end > tmp_va->va_start)
341 p = &(*p)->rb_right;
342 else
343 BUG();
344 }
345
346 rb_link_node(&va->rb_node, parent, p);
347 rb_insert_color(&va->rb_node, &vmap_area_root);
348
349 /* address-sort this list */
350 tmp = rb_prev(&va->rb_node);
351 if (tmp) {
352 struct vmap_area *prev;
353 prev = rb_entry(tmp, struct vmap_area, rb_node);
354 list_add_rcu(&va->list, &prev->list);
355 } else
356 list_add_rcu(&va->list, &vmap_area_list);
357}
358
359static void purge_vmap_area_lazy(void);
360
361static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
362
363#ifdef CONFIG_AMLOGIC_MODIFY
364static void dump_vmalloc(void)
365{
366 struct vmap_area *va, *next;
367
368 spin_lock(&vmap_area_lock);
369 list_for_each_entry_safe(va, next, &vmap_area_list, list) {
370 pr_info("%s, va:%lx-%lx, size:%08ld KB, alloc:%pf\n",
371 __func__, va->va_start, va->va_end,
372 (va->va_end - va->va_start) >> 10, va->vm->caller);
373 }
374 spin_unlock(&vmap_area_lock);
375}
376#endif
377
378/*
379 * Allocate a region of KVA of the specified size and alignment, within the
380 * vstart and vend.
381 */
382static struct vmap_area *alloc_vmap_area(unsigned long size,
383 unsigned long align,
384 unsigned long vstart, unsigned long vend,
385 int node, gfp_t gfp_mask)
386{
387 struct vmap_area *va;
388 struct rb_node *n;
389 unsigned long addr;
390 int purged = 0;
391 struct vmap_area *first;
392
393 BUG_ON(!size);
394 BUG_ON(offset_in_page(size));
395 BUG_ON(!is_power_of_2(align));
396
397 might_sleep_if(gfpflags_allow_blocking(gfp_mask));
398
399 va = kmalloc_node(sizeof(struct vmap_area),
400 gfp_mask & GFP_RECLAIM_MASK, node);
401 if (unlikely(!va))
402 return ERR_PTR(-ENOMEM);
403
404 /*
405 * Only scan the relevant parts containing pointers to other objects
406 * to avoid false negatives.
407 */
408 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
409
410retry:
411 spin_lock(&vmap_area_lock);
412 /*
413 * Invalidate cache if we have more permissive parameters.
414 * cached_hole_size notes the largest hole noticed _below_
415 * the vmap_area cached in free_vmap_cache: if size fits
416 * into that hole, we want to scan from vstart to reuse
417 * the hole instead of allocating above free_vmap_cache.
418 * Note that __free_vmap_area may update free_vmap_cache
419 * without updating cached_hole_size or cached_align.
420 */
421 if (!free_vmap_cache ||
422 size < cached_hole_size ||
423 vstart < cached_vstart ||
424 align < cached_align) {
425nocache:
426 cached_hole_size = 0;
427 free_vmap_cache = NULL;
428 }
429 /* record if we encounter less permissive parameters */
430 cached_vstart = vstart;
431 cached_align = align;
432
433 /* find starting point for our search */
434 if (free_vmap_cache) {
435 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
436 addr = ALIGN(first->va_end, align);
437 if (addr < vstart)
438 goto nocache;
439 if (addr + size < addr)
440 goto overflow;
441
442 } else {
443 addr = ALIGN(vstart, align);
444 if (addr + size < addr)
445 goto overflow;
446
447 n = vmap_area_root.rb_node;
448 first = NULL;
449
450 while (n) {
451 struct vmap_area *tmp;
452 tmp = rb_entry(n, struct vmap_area, rb_node);
453 if (tmp->va_end >= addr) {
454 first = tmp;
455 if (tmp->va_start <= addr)
456 break;
457 n = n->rb_left;
458 } else
459 n = n->rb_right;
460 }
461
462 if (!first)
463 goto found;
464 }
465
466 /* from the starting point, walk areas until a suitable hole is found */
467 while (addr + size > first->va_start && addr + size <= vend) {
468 if (addr + cached_hole_size < first->va_start)
469 cached_hole_size = first->va_start - addr;
470 addr = ALIGN(first->va_end, align);
471 if (addr + size < addr)
472 goto overflow;
473
474 if (list_is_last(&first->list, &vmap_area_list))
475 goto found;
476
477 first = list_next_entry(first, list);
478 }
479
480found:
481 /*
482 * Check also calculated address against the vstart,
483 * because it can be 0 because of big align request.
484 */
485 if (addr + size > vend || addr < vstart)
486 goto overflow;
487
488 va->va_start = addr;
489 va->va_end = addr + size;
490 va->flags = 0;
491 __insert_vmap_area(va);
492 free_vmap_cache = &va->rb_node;
493 spin_unlock(&vmap_area_lock);
494
495 BUG_ON(!IS_ALIGNED(va->va_start, align));
496 BUG_ON(va->va_start < vstart);
497 BUG_ON(va->va_end > vend);
498
499 return va;
500
501overflow:
502 spin_unlock(&vmap_area_lock);
503 if (!purged) {
504 purge_vmap_area_lazy();
505 purged = 1;
506 goto retry;
507 }
508
509 if (gfpflags_allow_blocking(gfp_mask)) {
510 unsigned long freed = 0;
511 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
512 if (freed > 0) {
513 purged = 0;
514 goto retry;
515 }
516 }
517
518#ifdef CONFIG_AMLOGIC_MODIFY
519 dump_vmalloc();
520#endif
521 if (printk_ratelimit())
522 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
523 size);
524 kfree(va);
525 return ERR_PTR(-EBUSY);
526}
527
528int register_vmap_purge_notifier(struct notifier_block *nb)
529{
530 return blocking_notifier_chain_register(&vmap_notify_list, nb);
531}
532EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
533
534int unregister_vmap_purge_notifier(struct notifier_block *nb)
535{
536 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
537}
538EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
539
540static void __free_vmap_area(struct vmap_area *va)
541{
542 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
543
544 if (free_vmap_cache) {
545 if (va->va_end < cached_vstart) {
546 free_vmap_cache = NULL;
547 } else {
548 struct vmap_area *cache;
549 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
550 if (va->va_start <= cache->va_start) {
551 free_vmap_cache = rb_prev(&va->rb_node);
552 /*
553 * We don't try to update cached_hole_size or
554 * cached_align, but it won't go very wrong.
555 */
556 }
557 }
558 }
559 rb_erase(&va->rb_node, &vmap_area_root);
560 RB_CLEAR_NODE(&va->rb_node);
561 list_del_rcu(&va->list);
562
563 /*
564 * Track the highest possible candidate for pcpu area
565 * allocation. Areas outside of vmalloc area can be returned
566 * here too, consider only end addresses which fall inside
567 * vmalloc area proper.
568 */
569 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
570 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
571
572 kfree_rcu(va, rcu_head);
573}
574
575/*
576 * Free a region of KVA allocated by alloc_vmap_area
577 */
578static void free_vmap_area(struct vmap_area *va)
579{
580 spin_lock(&vmap_area_lock);
581 __free_vmap_area(va);
582 spin_unlock(&vmap_area_lock);
583}
584
585/*
586 * Clear the pagetable entries of a given vmap_area
587 */
588static void unmap_vmap_area(struct vmap_area *va)
589{
590 vunmap_page_range(va->va_start, va->va_end);
591}
592
593static void vmap_debug_free_range(unsigned long start, unsigned long end)
594{
595 /*
596 * Unmap page tables and force a TLB flush immediately if pagealloc
597 * debugging is enabled. This catches use after free bugs similarly to
598 * those in linear kernel virtual address space after a page has been
599 * freed.
600 *
601 * All the lazy freeing logic is still retained, in order to minimise
602 * intrusiveness of this debugging feature.
603 *
604 * This is going to be *slow* (linear kernel virtual address debugging
605 * doesn't do a broadcast TLB flush so it is a lot faster).
606 */
607 if (debug_pagealloc_enabled()) {
608 vunmap_page_range(start, end);
609 flush_tlb_kernel_range(start, end);
610 }
611}
612
613/*
614 * lazy_max_pages is the maximum amount of virtual address space we gather up
615 * before attempting to purge with a TLB flush.
616 *
617 * There is a tradeoff here: a larger number will cover more kernel page tables
618 * and take slightly longer to purge, but it will linearly reduce the number of
619 * global TLB flushes that must be performed. It would seem natural to scale
620 * this number up linearly with the number of CPUs (because vmapping activity
621 * could also scale linearly with the number of CPUs), however it is likely
622 * that in practice, workloads might be constrained in other ways that mean
623 * vmap activity will not scale linearly with CPUs. Also, I want to be
624 * conservative and not introduce a big latency on huge systems, so go with
625 * a less aggressive log scale. It will still be an improvement over the old
626 * code, and it will be simple to change the scale factor if we find that it
627 * becomes a problem on bigger systems.
628 */
629static unsigned long lazy_max_pages(void)
630{
631 unsigned int log;
632
633 log = fls(num_online_cpus());
634
635 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
636}
637
638static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
639
640/* for per-CPU blocks */
641static void purge_fragmented_blocks_allcpus(void);
642
643/*
644 * called before a call to iounmap() if the caller wants vm_area_struct's
645 * immediately freed.
646 */
647void set_iounmap_nonlazy(void)
648{
649 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
650}
651
652/*
653 * Purges all lazily-freed vmap areas.
654 *
655 * If sync is 0 then don't purge if there is already a purge in progress.
656 * If force_flush is 1, then flush kernel TLBs between *start and *end even
657 * if we found no lazy vmap areas to unmap (callers can use this to optimise
658 * their own TLB flushing).
659 * Returns with *start = min(*start, lowest purged address)
660 * *end = max(*end, highest purged address)
661 */
662static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
663 int sync, int force_flush)
664{
665 static DEFINE_SPINLOCK(purge_lock);
666 struct llist_node *valist;
667 struct vmap_area *va;
668 struct vmap_area *n_va;
669 int nr = 0;
670
671 /*
672 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
673 * should not expect such behaviour. This just simplifies locking for
674 * the case that isn't actually used at the moment anyway.
675 */
676 if (!sync && !force_flush) {
677 if (!spin_trylock(&purge_lock))
678 return;
679 } else
680 spin_lock(&purge_lock);
681
682 if (sync)
683 purge_fragmented_blocks_allcpus();
684
685 valist = llist_del_all(&vmap_purge_list);
686 llist_for_each_entry(va, valist, purge_list) {
687 if (va->va_start < *start)
688 *start = va->va_start;
689 if (va->va_end > *end)
690 *end = va->va_end;
691 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
692 }
693
694 if (nr)
695 atomic_sub(nr, &vmap_lazy_nr);
696
697 if (nr || force_flush)
698 flush_tlb_kernel_range(*start, *end);
699
700 if (nr) {
701 spin_lock(&vmap_area_lock);
702 llist_for_each_entry_safe(va, n_va, valist, purge_list)
703 __free_vmap_area(va);
704 spin_unlock(&vmap_area_lock);
705 }
706 spin_unlock(&purge_lock);
707}
708
709/*
710 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
711 * is already purging.
712 */
713static void try_purge_vmap_area_lazy(void)
714{
715 unsigned long start = ULONG_MAX, end = 0;
716
717 __purge_vmap_area_lazy(&start, &end, 0, 0);
718}
719
720/*
721 * Kick off a purge of the outstanding lazy areas.
722 */
723static void purge_vmap_area_lazy(void)
724{
725 unsigned long start = ULONG_MAX, end = 0;
726
727 __purge_vmap_area_lazy(&start, &end, 1, 0);
728}
729
730/*
731 * Free a vmap area, caller ensuring that the area has been unmapped
732 * and flush_cache_vunmap had been called for the correct range
733 * previously.
734 */
735static void free_vmap_area_noflush(struct vmap_area *va)
736{
737 int nr_lazy;
738
739 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
740 &vmap_lazy_nr);
741
742 /* After this point, we may free va at any time */
743 llist_add(&va->purge_list, &vmap_purge_list);
744
745 if (unlikely(nr_lazy > lazy_max_pages()))
746 try_purge_vmap_area_lazy();
747}
748
749/*
750 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
751 * called for the correct range previously.
752 */
753static void free_unmap_vmap_area_noflush(struct vmap_area *va)
754{
755 unmap_vmap_area(va);
756 free_vmap_area_noflush(va);
757}
758
759/*
760 * Free and unmap a vmap area
761 */
762static void free_unmap_vmap_area(struct vmap_area *va)
763{
764 flush_cache_vunmap(va->va_start, va->va_end);
765 free_unmap_vmap_area_noflush(va);
766}
767
768static struct vmap_area *find_vmap_area(unsigned long addr)
769{
770 struct vmap_area *va;
771
772 spin_lock(&vmap_area_lock);
773 va = __find_vmap_area(addr);
774 spin_unlock(&vmap_area_lock);
775
776 return va;
777}
778
779static void free_unmap_vmap_area_addr(unsigned long addr)
780{
781 struct vmap_area *va;
782
783 va = find_vmap_area(addr);
784 BUG_ON(!va);
785 free_unmap_vmap_area(va);
786}
787
788
789/*** Per cpu kva allocator ***/
790
791/*
792 * vmap space is limited especially on 32 bit architectures. Ensure there is
793 * room for at least 16 percpu vmap blocks per CPU.
794 */
795/*
796 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
797 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
798 * instead (we just need a rough idea)
799 */
800#if BITS_PER_LONG == 32
801#define VMALLOC_SPACE (128UL*1024*1024)
802#else
803#define VMALLOC_SPACE (128UL*1024*1024*1024)
804#endif
805
806#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
807#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
808#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
809#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
810#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
811#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
812#define VMAP_BBMAP_BITS \
813 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
814 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
815 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
816
817#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
818
819static bool vmap_initialized __read_mostly = false;
820
821struct vmap_block_queue {
822 spinlock_t lock;
823 struct list_head free;
824};
825
826struct vmap_block {
827 spinlock_t lock;
828 struct vmap_area *va;
829 unsigned long free, dirty;
830 unsigned long dirty_min, dirty_max; /*< dirty range */
831 struct list_head free_list;
832 struct rcu_head rcu_head;
833 struct list_head purge;
834};
835
836/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
837static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
838
839/*
840 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
841 * in the free path. Could get rid of this if we change the API to return a
842 * "cookie" from alloc, to be passed to free. But no big deal yet.
843 */
844static DEFINE_SPINLOCK(vmap_block_tree_lock);
845static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
846
847/*
848 * We should probably have a fallback mechanism to allocate virtual memory
849 * out of partially filled vmap blocks. However vmap block sizing should be
850 * fairly reasonable according to the vmalloc size, so it shouldn't be a
851 * big problem.
852 */
853
854static unsigned long addr_to_vb_idx(unsigned long addr)
855{
856 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
857 addr /= VMAP_BLOCK_SIZE;
858 return addr;
859}
860
861static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
862{
863 unsigned long addr;
864
865 addr = va_start + (pages_off << PAGE_SHIFT);
866 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
867 return (void *)addr;
868}
869
870/**
871 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
872 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
873 * @order: how many 2^order pages should be occupied in newly allocated block
874 * @gfp_mask: flags for the page level allocator
875 *
876 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
877 */
878static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
879{
880 struct vmap_block_queue *vbq;
881 struct vmap_block *vb;
882 struct vmap_area *va;
883 unsigned long vb_idx;
884 int node, err;
885 void *vaddr;
886
887 node = numa_node_id();
888
889 vb = kmalloc_node(sizeof(struct vmap_block),
890 gfp_mask & GFP_RECLAIM_MASK, node);
891 if (unlikely(!vb))
892 return ERR_PTR(-ENOMEM);
893
894 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
895 VMALLOC_START, VMALLOC_END,
896 node, gfp_mask);
897 if (IS_ERR(va)) {
898 kfree(vb);
899 return ERR_CAST(va);
900 }
901
902 err = radix_tree_preload(gfp_mask);
903 if (unlikely(err)) {
904 kfree(vb);
905 free_vmap_area(va);
906 return ERR_PTR(err);
907 }
908
909 vaddr = vmap_block_vaddr(va->va_start, 0);
910 spin_lock_init(&vb->lock);
911 vb->va = va;
912 /* At least something should be left free */
913 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
914 vb->free = VMAP_BBMAP_BITS - (1UL << order);
915 vb->dirty = 0;
916 vb->dirty_min = VMAP_BBMAP_BITS;
917 vb->dirty_max = 0;
918 INIT_LIST_HEAD(&vb->free_list);
919
920 vb_idx = addr_to_vb_idx(va->va_start);
921 spin_lock(&vmap_block_tree_lock);
922 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
923 spin_unlock(&vmap_block_tree_lock);
924 BUG_ON(err);
925 radix_tree_preload_end();
926
927 vbq = &get_cpu_var(vmap_block_queue);
928 spin_lock(&vbq->lock);
929 list_add_tail_rcu(&vb->free_list, &vbq->free);
930 spin_unlock(&vbq->lock);
931 put_cpu_var(vmap_block_queue);
932
933 return vaddr;
934}
935
936static void free_vmap_block(struct vmap_block *vb)
937{
938 struct vmap_block *tmp;
939 unsigned long vb_idx;
940
941 vb_idx = addr_to_vb_idx(vb->va->va_start);
942 spin_lock(&vmap_block_tree_lock);
943 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
944 spin_unlock(&vmap_block_tree_lock);
945 BUG_ON(tmp != vb);
946
947 free_vmap_area_noflush(vb->va);
948 kfree_rcu(vb, rcu_head);
949}
950
951static void purge_fragmented_blocks(int cpu)
952{
953 LIST_HEAD(purge);
954 struct vmap_block *vb;
955 struct vmap_block *n_vb;
956 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
957
958 rcu_read_lock();
959 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
960
961 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
962 continue;
963
964 spin_lock(&vb->lock);
965 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
966 vb->free = 0; /* prevent further allocs after releasing lock */
967 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
968 vb->dirty_min = 0;
969 vb->dirty_max = VMAP_BBMAP_BITS;
970 spin_lock(&vbq->lock);
971 list_del_rcu(&vb->free_list);
972 spin_unlock(&vbq->lock);
973 spin_unlock(&vb->lock);
974 list_add_tail(&vb->purge, &purge);
975 } else
976 spin_unlock(&vb->lock);
977 }
978 rcu_read_unlock();
979
980 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
981 list_del(&vb->purge);
982 free_vmap_block(vb);
983 }
984}
985
986static void purge_fragmented_blocks_allcpus(void)
987{
988 int cpu;
989
990 for_each_possible_cpu(cpu)
991 purge_fragmented_blocks(cpu);
992}
993
994static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
995{
996 struct vmap_block_queue *vbq;
997 struct vmap_block *vb;
998 void *vaddr = NULL;
999 unsigned int order;
1000
1001 BUG_ON(offset_in_page(size));
1002 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1003 if (WARN_ON(size == 0)) {
1004 /*
1005 * Allocating 0 bytes isn't what caller wants since
1006 * get_order(0) returns funny result. Just warn and terminate
1007 * early.
1008 */
1009 return NULL;
1010 }
1011 order = get_order(size);
1012
1013 rcu_read_lock();
1014 vbq = &get_cpu_var(vmap_block_queue);
1015 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1016 unsigned long pages_off;
1017
1018 spin_lock(&vb->lock);
1019 if (vb->free < (1UL << order)) {
1020 spin_unlock(&vb->lock);
1021 continue;
1022 }
1023
1024 pages_off = VMAP_BBMAP_BITS - vb->free;
1025 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1026 vb->free -= 1UL << order;
1027 if (vb->free == 0) {
1028 spin_lock(&vbq->lock);
1029 list_del_rcu(&vb->free_list);
1030 spin_unlock(&vbq->lock);
1031 }
1032
1033 spin_unlock(&vb->lock);
1034 break;
1035 }
1036
1037 put_cpu_var(vmap_block_queue);
1038 rcu_read_unlock();
1039
1040 /* Allocate new block if nothing was found */
1041 if (!vaddr)
1042 vaddr = new_vmap_block(order, gfp_mask);
1043
1044 return vaddr;
1045}
1046
1047static void vb_free(const void *addr, unsigned long size)
1048{
1049 unsigned long offset;
1050 unsigned long vb_idx;
1051 unsigned int order;
1052 struct vmap_block *vb;
1053
1054 BUG_ON(offset_in_page(size));
1055 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1056
1057 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1058
1059 order = get_order(size);
1060
1061 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1062 offset >>= PAGE_SHIFT;
1063
1064 vb_idx = addr_to_vb_idx((unsigned long)addr);
1065 rcu_read_lock();
1066 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1067 rcu_read_unlock();
1068 BUG_ON(!vb);
1069
1070 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1071
1072 spin_lock(&vb->lock);
1073
1074 /* Expand dirty range */
1075 vb->dirty_min = min(vb->dirty_min, offset);
1076 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1077
1078 vb->dirty += 1UL << order;
1079 if (vb->dirty == VMAP_BBMAP_BITS) {
1080 BUG_ON(vb->free);
1081 spin_unlock(&vb->lock);
1082 free_vmap_block(vb);
1083 } else
1084 spin_unlock(&vb->lock);
1085}
1086
1087/**
1088 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1089 *
1090 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1091 * to amortize TLB flushing overheads. What this means is that any page you
1092 * have now, may, in a former life, have been mapped into kernel virtual
1093 * address by the vmap layer and so there might be some CPUs with TLB entries
1094 * still referencing that page (additional to the regular 1:1 kernel mapping).
1095 *
1096 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1097 * be sure that none of the pages we have control over will have any aliases
1098 * from the vmap layer.
1099 */
1100void vm_unmap_aliases(void)
1101{
1102 unsigned long start = ULONG_MAX, end = 0;
1103 int cpu;
1104 int flush = 0;
1105
1106 if (unlikely(!vmap_initialized))
1107 return;
1108
1109 for_each_possible_cpu(cpu) {
1110 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1111 struct vmap_block *vb;
1112
1113 rcu_read_lock();
1114 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1115 spin_lock(&vb->lock);
1116 if (vb->dirty) {
1117 unsigned long va_start = vb->va->va_start;
1118 unsigned long s, e;
1119
1120 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1121 e = va_start + (vb->dirty_max << PAGE_SHIFT);
1122
1123 start = min(s, start);
1124 end = max(e, end);
1125
1126 flush = 1;
1127 }
1128 spin_unlock(&vb->lock);
1129 }
1130 rcu_read_unlock();
1131 }
1132
1133 __purge_vmap_area_lazy(&start, &end, 1, flush);
1134}
1135EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1136
1137/**
1138 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1139 * @mem: the pointer returned by vm_map_ram
1140 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1141 */
1142void vm_unmap_ram(const void *mem, unsigned int count)
1143{
1144 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1145 unsigned long addr = (unsigned long)mem;
1146
1147 BUG_ON(!addr);
1148 BUG_ON(addr < VMALLOC_START);
1149 BUG_ON(addr > VMALLOC_END);
1150 BUG_ON(!PAGE_ALIGNED(addr));
1151
1152 debug_check_no_locks_freed(mem, size);
1153 vmap_debug_free_range(addr, addr+size);
1154
1155 if (likely(count <= VMAP_MAX_ALLOC))
1156 vb_free(mem, size);
1157 else
1158 free_unmap_vmap_area_addr(addr);
1159}
1160EXPORT_SYMBOL(vm_unmap_ram);
1161
1162/**
1163 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1164 * @pages: an array of pointers to the pages to be mapped
1165 * @count: number of pages
1166 * @node: prefer to allocate data structures on this node
1167 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1168 *
1169 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1170 * faster than vmap so it's good. But if you mix long-life and short-life
1171 * objects with vm_map_ram(), it could consume lots of address space through
1172 * fragmentation (especially on a 32bit machine). You could see failures in
1173 * the end. Please use this function for short-lived objects.
1174 *
1175 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1176 */
1177void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1178{
1179 unsigned long size = (unsigned long)count << PAGE_SHIFT;
1180 unsigned long addr;
1181 void *mem;
1182
1183 if (likely(count <= VMAP_MAX_ALLOC)) {
1184 mem = vb_alloc(size, GFP_KERNEL);
1185 if (IS_ERR(mem))
1186 return NULL;
1187 addr = (unsigned long)mem;
1188 } else {
1189 struct vmap_area *va;
1190 va = alloc_vmap_area(size, PAGE_SIZE,
1191 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1192 if (IS_ERR(va))
1193 return NULL;
1194
1195 addr = va->va_start;
1196 mem = (void *)addr;
1197 }
1198 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1199 vm_unmap_ram(mem, count);
1200 return NULL;
1201 }
1202 return mem;
1203}
1204EXPORT_SYMBOL(vm_map_ram);
1205
1206static struct vm_struct *vmlist __initdata;
1207/**
1208 * vm_area_add_early - add vmap area early during boot
1209 * @vm: vm_struct to add
1210 *
1211 * This function is used to add fixed kernel vm area to vmlist before
1212 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1213 * should contain proper values and the other fields should be zero.
1214 *
1215 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1216 */
1217void __init vm_area_add_early(struct vm_struct *vm)
1218{
1219 struct vm_struct *tmp, **p;
1220
1221 BUG_ON(vmap_initialized);
1222 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1223 if (tmp->addr >= vm->addr) {
1224 BUG_ON(tmp->addr < vm->addr + vm->size);
1225 break;
1226 } else
1227 BUG_ON(tmp->addr + tmp->size > vm->addr);
1228 }
1229 vm->next = *p;
1230 *p = vm;
1231}
1232
1233/**
1234 * vm_area_register_early - register vmap area early during boot
1235 * @vm: vm_struct to register
1236 * @align: requested alignment
1237 *
1238 * This function is used to register kernel vm area before
1239 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1240 * proper values on entry and other fields should be zero. On return,
1241 * vm->addr contains the allocated address.
1242 *
1243 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1244 */
1245void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1246{
1247 static size_t vm_init_off __initdata;
1248 unsigned long addr;
1249
1250 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1251 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1252
1253 vm->addr = (void *)addr;
1254
1255 vm_area_add_early(vm);
1256}
1257
1258void __init vmalloc_init(void)
1259{
1260 struct vmap_area *va;
1261 struct vm_struct *tmp;
1262 int i;
1263
1264 for_each_possible_cpu(i) {
1265 struct vmap_block_queue *vbq;
1266 struct vfree_deferred *p;
1267
1268 vbq = &per_cpu(vmap_block_queue, i);
1269 spin_lock_init(&vbq->lock);
1270 INIT_LIST_HEAD(&vbq->free);
1271 p = &per_cpu(vfree_deferred, i);
1272 init_llist_head(&p->list);
1273 INIT_WORK(&p->wq, free_work);
1274 }
1275
1276 /* Import existing vmlist entries. */
1277 for (tmp = vmlist; tmp; tmp = tmp->next) {
1278 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1279 va->flags = VM_VM_AREA;
1280 va->va_start = (unsigned long)tmp->addr;
1281 va->va_end = va->va_start + tmp->size;
1282 va->vm = tmp;
1283 __insert_vmap_area(va);
1284 }
1285
1286 vmap_area_pcpu_hole = VMALLOC_END;
1287
1288 vmap_initialized = true;
1289}
1290
1291/**
1292 * map_kernel_range_noflush - map kernel VM area with the specified pages
1293 * @addr: start of the VM area to map
1294 * @size: size of the VM area to map
1295 * @prot: page protection flags to use
1296 * @pages: pages to map
1297 *
1298 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1299 * specify should have been allocated using get_vm_area() and its
1300 * friends.
1301 *
1302 * NOTE:
1303 * This function does NOT do any cache flushing. The caller is
1304 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1305 * before calling this function.
1306 *
1307 * RETURNS:
1308 * The number of pages mapped on success, -errno on failure.
1309 */
1310int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1311 pgprot_t prot, struct page **pages)
1312{
1313 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1314}
1315
1316/**
1317 * unmap_kernel_range_noflush - unmap kernel VM area
1318 * @addr: start of the VM area to unmap
1319 * @size: size of the VM area to unmap
1320 *
1321 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1322 * specify should have been allocated using get_vm_area() and its
1323 * friends.
1324 *
1325 * NOTE:
1326 * This function does NOT do any cache flushing. The caller is
1327 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1328 * before calling this function and flush_tlb_kernel_range() after.
1329 */
1330void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1331{
1332 vunmap_page_range(addr, addr + size);
1333}
1334EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1335
1336/**
1337 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1338 * @addr: start of the VM area to unmap
1339 * @size: size of the VM area to unmap
1340 *
1341 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1342 * the unmapping and tlb after.
1343 */
1344void unmap_kernel_range(unsigned long addr, unsigned long size)
1345{
1346 unsigned long end = addr + size;
1347
1348 flush_cache_vunmap(addr, end);
1349 vunmap_page_range(addr, end);
1350 flush_tlb_kernel_range(addr, end);
1351}
1352EXPORT_SYMBOL_GPL(unmap_kernel_range);
1353
1354int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1355{
1356 unsigned long addr = (unsigned long)area->addr;
1357 unsigned long end = addr + get_vm_area_size(area);
1358 int err;
1359
1360 err = vmap_page_range(addr, end, prot, pages);
1361
1362 return err > 0 ? 0 : err;
1363}
1364EXPORT_SYMBOL_GPL(map_vm_area);
1365
1366static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1367 unsigned long flags, const void *caller)
1368{
1369 spin_lock(&vmap_area_lock);
1370 vm->flags = flags;
1371 vm->addr = (void *)va->va_start;
1372 vm->size = va->va_end - va->va_start;
1373 vm->caller = caller;
1374 va->vm = vm;
1375 va->flags |= VM_VM_AREA;
1376 spin_unlock(&vmap_area_lock);
1377}
1378
1379static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1380{
1381 /*
1382 * Before removing VM_UNINITIALIZED,
1383 * we should make sure that vm has proper values.
1384 * Pair with smp_rmb() in show_numa_info().
1385 */
1386 smp_wmb();
1387 vm->flags &= ~VM_UNINITIALIZED;
1388}
1389
1390#ifdef CONFIG_AMLOGIC_VMAP
1391struct vm_struct *__get_vm_area_node(unsigned long size,
1392 unsigned long align, unsigned long flags, unsigned long start,
1393 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1394#else
1395static struct vm_struct *__get_vm_area_node(unsigned long size,
1396 unsigned long align, unsigned long flags, unsigned long start,
1397 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1398#endif
1399{
1400 struct vmap_area *va;
1401 struct vm_struct *area;
1402
1403 BUG_ON(in_interrupt());
1404 size = PAGE_ALIGN(size);
1405 if (unlikely(!size))
1406 return NULL;
1407
1408 if (flags & VM_IOREMAP)
1409 align = 1ul << clamp_t(int, get_count_order_long(size),
1410 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1411
1412 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1413 if (unlikely(!area))
1414 return NULL;
1415
1416 if (!(flags & VM_NO_GUARD))
1417 size += PAGE_SIZE;
1418
1419 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1420 if (IS_ERR(va)) {
1421 kfree(area);
1422 return NULL;
1423 }
1424
1425 setup_vmalloc_vm(area, va, flags, caller);
1426
1427 return area;
1428}
1429
1430struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1431 unsigned long start, unsigned long end)
1432{
1433 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1434 GFP_KERNEL, __builtin_return_address(0));
1435}
1436EXPORT_SYMBOL_GPL(__get_vm_area);
1437
1438struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1439 unsigned long start, unsigned long end,
1440 const void *caller)
1441{
1442 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1443 GFP_KERNEL, caller);
1444}
1445
1446/**
1447 * get_vm_area - reserve a contiguous kernel virtual area
1448 * @size: size of the area
1449 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1450 *
1451 * Search an area of @size in the kernel virtual mapping area,
1452 * and reserved it for out purposes. Returns the area descriptor
1453 * on success or %NULL on failure.
1454 */
1455struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1456{
1457 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1458 NUMA_NO_NODE, GFP_KERNEL,
1459 __builtin_return_address(0));
1460}
1461
1462struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1463 const void *caller)
1464{
1465 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1466 NUMA_NO_NODE, GFP_KERNEL, caller);
1467}
1468
1469/**
1470 * find_vm_area - find a continuous kernel virtual area
1471 * @addr: base address
1472 *
1473 * Search for the kernel VM area starting at @addr, and return it.
1474 * It is up to the caller to do all required locking to keep the returned
1475 * pointer valid.
1476 */
1477struct vm_struct *find_vm_area(const void *addr)
1478{
1479 struct vmap_area *va;
1480
1481 va = find_vmap_area((unsigned long)addr);
1482 if (va && va->flags & VM_VM_AREA)
1483 return va->vm;
1484
1485 return NULL;
1486}
1487
1488/**
1489 * remove_vm_area - find and remove a continuous kernel virtual area
1490 * @addr: base address
1491 *
1492 * Search for the kernel VM area starting at @addr, and remove it.
1493 * This function returns the found VM area, but using it is NOT safe
1494 * on SMP machines, except for its size or flags.
1495 */
1496struct vm_struct *remove_vm_area(const void *addr)
1497{
1498 struct vmap_area *va;
1499
1500 va = find_vmap_area((unsigned long)addr);
1501 if (va && va->flags & VM_VM_AREA) {
1502 struct vm_struct *vm = va->vm;
1503
1504 spin_lock(&vmap_area_lock);
1505 va->vm = NULL;
1506 va->flags &= ~VM_VM_AREA;
1507 spin_unlock(&vmap_area_lock);
1508
1509 vmap_debug_free_range(va->va_start, va->va_end);
1510 kasan_free_shadow(vm);
1511 free_unmap_vmap_area(va);
1512
1513 return vm;
1514 }
1515 return NULL;
1516}
1517
1518static void __vunmap(const void *addr, int deallocate_pages)
1519{
1520 struct vm_struct *area;
1521
1522 if (!addr)
1523 return;
1524
1525 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1526 addr))
1527 return;
1528
1529 area = find_vmap_area((unsigned long)addr)->vm;
1530 if (unlikely(!area)) {
1531 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1532 addr);
1533 return;
1534 }
1535
1536 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1537 debug_check_no_obj_freed(addr, get_vm_area_size(area));
1538
1539 remove_vm_area(addr);
1540 if (deallocate_pages) {
1541 int i;
1542
1543 for (i = 0; i < area->nr_pages; i++) {
1544 struct page *page = area->pages[i];
1545
1546 BUG_ON(!page);
1547 __free_pages(page, 0);
1548 }
1549
1550 kvfree(area->pages);
1551 }
1552
1553 kfree(area);
1554 return;
1555}
1556
1557/**
1558 * vfree - release memory allocated by vmalloc()
1559 * @addr: memory base address
1560 *
1561 * Free the virtually continuous memory area starting at @addr, as
1562 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1563 * NULL, no operation is performed.
1564 *
1565 * Must not be called in NMI context (strictly speaking, only if we don't
1566 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1567 * conventions for vfree() arch-depenedent would be a really bad idea)
1568 *
1569 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1570 */
1571void vfree(const void *addr)
1572{
1573 BUG_ON(in_nmi());
1574
1575 kmemleak_free(addr);
1576
1577 if (!addr)
1578 return;
1579 if (unlikely(in_interrupt())) {
1580 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1581 if (llist_add((struct llist_node *)addr, &p->list))
1582 schedule_work(&p->wq);
1583 } else
1584 __vunmap(addr, 1);
1585}
1586EXPORT_SYMBOL(vfree);
1587
1588/**
1589 * vunmap - release virtual mapping obtained by vmap()
1590 * @addr: memory base address
1591 *
1592 * Free the virtually contiguous memory area starting at @addr,
1593 * which was created from the page array passed to vmap().
1594 *
1595 * Must not be called in interrupt context.
1596 */
1597void vunmap(const void *addr)
1598{
1599 BUG_ON(in_interrupt());
1600 might_sleep();
1601 if (addr)
1602 __vunmap(addr, 0);
1603}
1604EXPORT_SYMBOL(vunmap);
1605
1606/**
1607 * vmap - map an array of pages into virtually contiguous space
1608 * @pages: array of page pointers
1609 * @count: number of pages to map
1610 * @flags: vm_area->flags
1611 * @prot: page protection for the mapping
1612 *
1613 * Maps @count pages from @pages into contiguous kernel virtual
1614 * space.
1615 */
1616void *vmap(struct page **pages, unsigned int count,
1617 unsigned long flags, pgprot_t prot)
1618{
1619 struct vm_struct *area;
1620 unsigned long size; /* In bytes */
1621
1622 might_sleep();
1623
1624 if (count > totalram_pages)
1625 return NULL;
1626
1627 size = (unsigned long)count << PAGE_SHIFT;
1628 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1629 if (!area)
1630 return NULL;
1631
1632 if (map_vm_area(area, prot, pages)) {
1633 vunmap(area->addr);
1634 return NULL;
1635 }
1636
1637 return area->addr;
1638}
1639EXPORT_SYMBOL(vmap);
1640
1641static void *__vmalloc_node(unsigned long size, unsigned long align,
1642 gfp_t gfp_mask, pgprot_t prot,
1643 int node, const void *caller);
1644static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1645 pgprot_t prot, int node)
1646{
1647 struct page **pages;
1648 unsigned int nr_pages, array_size, i;
1649 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1650 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1651
1652 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1653 array_size = (nr_pages * sizeof(struct page *));
1654
1655 area->nr_pages = nr_pages;
1656 /* Please note that the recursion is strictly bounded. */
1657 if (array_size > PAGE_SIZE) {
1658 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1659 PAGE_KERNEL, node, area->caller);
1660 } else {
1661 pages = kmalloc_node(array_size, nested_gfp, node);
1662 }
1663 area->pages = pages;
1664 if (!area->pages) {
1665 remove_vm_area(area->addr);
1666 kfree(area);
1667 return NULL;
1668 }
1669
1670 for (i = 0; i < area->nr_pages; i++) {
1671 struct page *page;
1672
1673 if (node == NUMA_NO_NODE)
1674 page = alloc_page(alloc_mask);
1675 else
1676 page = alloc_pages_node(node, alloc_mask, 0);
1677
1678 if (unlikely(!page)) {
1679 /* Successfully allocated i pages, free them in __vunmap() */
1680 area->nr_pages = i;
1681 goto fail;
1682 }
1683 area->pages[i] = page;
1684 if (gfpflags_allow_blocking(gfp_mask))
1685 cond_resched();
1686 }
1687
1688 if (map_vm_area(area, prot, pages))
1689 goto fail;
1690 return area->addr;
1691
1692fail:
1693 warn_alloc(gfp_mask,
1694 "vmalloc: allocation failure, allocated %ld of %ld bytes",
1695 (area->nr_pages*PAGE_SIZE), area->size);
1696 vfree(area->addr);
1697 return NULL;
1698}
1699
1700/**
1701 * __vmalloc_node_range - allocate virtually contiguous memory
1702 * @size: allocation size
1703 * @align: desired alignment
1704 * @start: vm area range start
1705 * @end: vm area range end
1706 * @gfp_mask: flags for the page level allocator
1707 * @prot: protection mask for the allocated pages
1708 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1709 * @node: node to use for allocation or NUMA_NO_NODE
1710 * @caller: caller's return address
1711 *
1712 * Allocate enough pages to cover @size from the page level
1713 * allocator with @gfp_mask flags. Map them into contiguous
1714 * kernel virtual space, using a pagetable protection of @prot.
1715 */
1716void *__vmalloc_node_range(unsigned long size, unsigned long align,
1717 unsigned long start, unsigned long end, gfp_t gfp_mask,
1718 pgprot_t prot, unsigned long vm_flags, int node,
1719 const void *caller)
1720{
1721 struct vm_struct *area;
1722 void *addr;
1723 unsigned long real_size = size;
1724
1725 size = PAGE_ALIGN(size);
1726 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1727 goto fail;
1728
1729 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1730 vm_flags, start, end, node, gfp_mask, caller);
1731 if (!area)
1732 goto fail;
1733
1734 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1735 if (!addr)
1736 return NULL;
1737
1738 /*
1739 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1740 * flag. It means that vm_struct is not fully initialized.
1741 * Now, it is fully initialized, so remove this flag here.
1742 */
1743 clear_vm_uninitialized_flag(area);
1744
1745 /*
1746 * A ref_count = 2 is needed because vm_struct allocated in
1747 * __get_vm_area_node() contains a reference to the virtual address of
1748 * the vmalloc'ed block.
1749 */
1750 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1751
1752 return addr;
1753
1754fail:
1755 warn_alloc(gfp_mask,
1756 "vmalloc: allocation failure: %lu bytes", real_size);
1757 return NULL;
1758}
1759
1760/**
1761 * __vmalloc_node - allocate virtually contiguous memory
1762 * @size: allocation size
1763 * @align: desired alignment
1764 * @gfp_mask: flags for the page level allocator
1765 * @prot: protection mask for the allocated pages
1766 * @node: node to use for allocation or NUMA_NO_NODE
1767 * @caller: caller's return address
1768 *
1769 * Allocate enough pages to cover @size from the page level
1770 * allocator with @gfp_mask flags. Map them into contiguous
1771 * kernel virtual space, using a pagetable protection of @prot.
1772 */
1773static void *__vmalloc_node(unsigned long size, unsigned long align,
1774 gfp_t gfp_mask, pgprot_t prot,
1775 int node, const void *caller)
1776{
1777 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1778 gfp_mask, prot, 0, node, caller);
1779}
1780
1781void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1782{
1783 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1784 __builtin_return_address(0));
1785}
1786EXPORT_SYMBOL(__vmalloc);
1787
1788static inline void *__vmalloc_node_flags(unsigned long size,
1789 int node, gfp_t flags)
1790{
1791 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1792 node, __builtin_return_address(0));
1793}
1794
1795/**
1796 * vmalloc - allocate virtually contiguous memory
1797 * @size: allocation size
1798 * Allocate enough pages to cover @size from the page level
1799 * allocator and map them into contiguous kernel virtual space.
1800 *
1801 * For tight control over page level allocator and protection flags
1802 * use __vmalloc() instead.
1803 */
1804void *vmalloc(unsigned long size)
1805{
1806 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1807 GFP_KERNEL | __GFP_HIGHMEM);
1808}
1809EXPORT_SYMBOL(vmalloc);
1810
1811/**
1812 * vzalloc - allocate virtually contiguous memory with zero fill
1813 * @size: allocation size
1814 * Allocate enough pages to cover @size from the page level
1815 * allocator and map them into contiguous kernel virtual space.
1816 * The memory allocated is set to zero.
1817 *
1818 * For tight control over page level allocator and protection flags
1819 * use __vmalloc() instead.
1820 */
1821void *vzalloc(unsigned long size)
1822{
1823 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1824 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1825}
1826EXPORT_SYMBOL(vzalloc);
1827
1828/**
1829 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1830 * @size: allocation size
1831 *
1832 * The resulting memory area is zeroed so it can be mapped to userspace
1833 * without leaking data.
1834 */
1835void *vmalloc_user(unsigned long size)
1836{
1837 struct vm_struct *area;
1838 void *ret;
1839
1840 ret = __vmalloc_node(size, SHMLBA,
1841 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1842 PAGE_KERNEL, NUMA_NO_NODE,
1843 __builtin_return_address(0));
1844 if (ret) {
1845 area = find_vm_area(ret);
1846 area->flags |= VM_USERMAP;
1847 }
1848 return ret;
1849}
1850EXPORT_SYMBOL(vmalloc_user);
1851
1852/**
1853 * vmalloc_node - allocate memory on a specific node
1854 * @size: allocation size
1855 * @node: numa node
1856 *
1857 * Allocate enough pages to cover @size from the page level
1858 * allocator and map them into contiguous kernel virtual space.
1859 *
1860 * For tight control over page level allocator and protection flags
1861 * use __vmalloc() instead.
1862 */
1863void *vmalloc_node(unsigned long size, int node)
1864{
1865 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1866 node, __builtin_return_address(0));
1867}
1868EXPORT_SYMBOL(vmalloc_node);
1869
1870/**
1871 * vzalloc_node - allocate memory on a specific node with zero fill
1872 * @size: allocation size
1873 * @node: numa node
1874 *
1875 * Allocate enough pages to cover @size from the page level
1876 * allocator and map them into contiguous kernel virtual space.
1877 * The memory allocated is set to zero.
1878 *
1879 * For tight control over page level allocator and protection flags
1880 * use __vmalloc_node() instead.
1881 */
1882void *vzalloc_node(unsigned long size, int node)
1883{
1884 return __vmalloc_node_flags(size, node,
1885 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1886}
1887EXPORT_SYMBOL(vzalloc_node);
1888
1889#ifndef PAGE_KERNEL_EXEC
1890# define PAGE_KERNEL_EXEC PAGE_KERNEL
1891#endif
1892
1893/**
1894 * vmalloc_exec - allocate virtually contiguous, executable memory
1895 * @size: allocation size
1896 *
1897 * Kernel-internal function to allocate enough pages to cover @size
1898 * the page level allocator and map them into contiguous and
1899 * executable kernel virtual space.
1900 *
1901 * For tight control over page level allocator and protection flags
1902 * use __vmalloc() instead.
1903 */
1904
1905void *vmalloc_exec(unsigned long size)
1906{
1907 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1908 NUMA_NO_NODE, __builtin_return_address(0));
1909}
1910
1911#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1912#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1913#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1914#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1915#else
1916#define GFP_VMALLOC32 GFP_KERNEL
1917#endif
1918
1919/**
1920 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1921 * @size: allocation size
1922 *
1923 * Allocate enough 32bit PA addressable pages to cover @size from the
1924 * page level allocator and map them into contiguous kernel virtual space.
1925 */
1926void *vmalloc_32(unsigned long size)
1927{
1928 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1929 NUMA_NO_NODE, __builtin_return_address(0));
1930}
1931EXPORT_SYMBOL(vmalloc_32);
1932
1933/**
1934 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1935 * @size: allocation size
1936 *
1937 * The resulting memory area is 32bit addressable and zeroed so it can be
1938 * mapped to userspace without leaking data.
1939 */
1940void *vmalloc_32_user(unsigned long size)
1941{
1942 struct vm_struct *area;
1943 void *ret;
1944
1945 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1946 NUMA_NO_NODE, __builtin_return_address(0));
1947 if (ret) {
1948 area = find_vm_area(ret);
1949 area->flags |= VM_USERMAP;
1950 }
1951 return ret;
1952}
1953EXPORT_SYMBOL(vmalloc_32_user);
1954
1955/*
1956 * small helper routine , copy contents to buf from addr.
1957 * If the page is not present, fill zero.
1958 */
1959
1960static int aligned_vread(char *buf, char *addr, unsigned long count)
1961{
1962 struct page *p;
1963 int copied = 0;
1964
1965 while (count) {
1966 unsigned long offset, length;
1967
1968 offset = offset_in_page(addr);
1969 length = PAGE_SIZE - offset;
1970 if (length > count)
1971 length = count;
1972 p = vmalloc_to_page(addr);
1973 /*
1974 * To do safe access to this _mapped_ area, we need
1975 * lock. But adding lock here means that we need to add
1976 * overhead of vmalloc()/vfree() calles for this _debug_
1977 * interface, rarely used. Instead of that, we'll use
1978 * kmap() and get small overhead in this access function.
1979 */
1980 if (p) {
1981 /*
1982 * we can expect USER0 is not used (see vread/vwrite's
1983 * function description)
1984 */
1985 void *map = kmap_atomic(p);
1986 memcpy(buf, map + offset, length);
1987 kunmap_atomic(map);
1988 } else
1989 memset(buf, 0, length);
1990
1991 addr += length;
1992 buf += length;
1993 copied += length;
1994 count -= length;
1995 }
1996 return copied;
1997}
1998
1999static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2000{
2001 struct page *p;
2002 int copied = 0;
2003
2004 while (count) {
2005 unsigned long offset, length;
2006
2007 offset = offset_in_page(addr);
2008 length = PAGE_SIZE - offset;
2009 if (length > count)
2010 length = count;
2011 p = vmalloc_to_page(addr);
2012 /*
2013 * To do safe access to this _mapped_ area, we need
2014 * lock. But adding lock here means that we need to add
2015 * overhead of vmalloc()/vfree() calles for this _debug_
2016 * interface, rarely used. Instead of that, we'll use
2017 * kmap() and get small overhead in this access function.
2018 */
2019 if (p) {
2020 /*
2021 * we can expect USER0 is not used (see vread/vwrite's
2022 * function description)
2023 */
2024 void *map = kmap_atomic(p);
2025 memcpy(map + offset, buf, length);
2026 kunmap_atomic(map);
2027 }
2028 addr += length;
2029 buf += length;
2030 copied += length;
2031 count -= length;
2032 }
2033 return copied;
2034}
2035
2036/**
2037 * vread() - read vmalloc area in a safe way.
2038 * @buf: buffer for reading data
2039 * @addr: vm address.
2040 * @count: number of bytes to be read.
2041 *
2042 * Returns # of bytes which addr and buf should be increased.
2043 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
2044 * includes any intersect with alive vmalloc area.
2045 *
2046 * This function checks that addr is a valid vmalloc'ed area, and
2047 * copy data from that area to a given buffer. If the given memory range
2048 * of [addr...addr+count) includes some valid address, data is copied to
2049 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2050 * IOREMAP area is treated as memory hole and no copy is done.
2051 *
2052 * If [addr...addr+count) doesn't includes any intersects with alive
2053 * vm_struct area, returns 0. @buf should be kernel's buffer.
2054 *
2055 * Note: In usual ops, vread() is never necessary because the caller
2056 * should know vmalloc() area is valid and can use memcpy().
2057 * This is for routines which have to access vmalloc area without
2058 * any informaion, as /dev/kmem.
2059 *
2060 */
2061
2062long vread(char *buf, char *addr, unsigned long count)
2063{
2064 struct vmap_area *va;
2065 struct vm_struct *vm;
2066 char *vaddr, *buf_start = buf;
2067 unsigned long buflen = count;
2068 unsigned long n;
2069
2070 /* Don't allow overflow */
2071 if ((unsigned long) addr + count < count)
2072 count = -(unsigned long) addr;
2073
2074 spin_lock(&vmap_area_lock);
2075 list_for_each_entry(va, &vmap_area_list, list) {
2076 if (!count)
2077 break;
2078
2079 if (!(va->flags & VM_VM_AREA))
2080 continue;
2081
2082 vm = va->vm;
2083 vaddr = (char *) vm->addr;
2084 if (addr >= vaddr + get_vm_area_size(vm))
2085 continue;
2086 while (addr < vaddr) {
2087 if (count == 0)
2088 goto finished;
2089 *buf = '\0';
2090 buf++;
2091 addr++;
2092 count--;
2093 }
2094 n = vaddr + get_vm_area_size(vm) - addr;
2095 if (n > count)
2096 n = count;
2097 if (!(vm->flags & VM_IOREMAP))
2098 aligned_vread(buf, addr, n);
2099 else /* IOREMAP area is treated as memory hole */
2100 memset(buf, 0, n);
2101 buf += n;
2102 addr += n;
2103 count -= n;
2104 }
2105finished:
2106 spin_unlock(&vmap_area_lock);
2107
2108 if (buf == buf_start)
2109 return 0;
2110 /* zero-fill memory holes */
2111 if (buf != buf_start + buflen)
2112 memset(buf, 0, buflen - (buf - buf_start));
2113
2114 return buflen;
2115}
2116
2117/**
2118 * vwrite() - write vmalloc area in a safe way.
2119 * @buf: buffer for source data
2120 * @addr: vm address.
2121 * @count: number of bytes to be read.
2122 *
2123 * Returns # of bytes which addr and buf should be incresed.
2124 * (same number to @count).
2125 * If [addr...addr+count) doesn't includes any intersect with valid
2126 * vmalloc area, returns 0.
2127 *
2128 * This function checks that addr is a valid vmalloc'ed area, and
2129 * copy data from a buffer to the given addr. If specified range of
2130 * [addr...addr+count) includes some valid address, data is copied from
2131 * proper area of @buf. If there are memory holes, no copy to hole.
2132 * IOREMAP area is treated as memory hole and no copy is done.
2133 *
2134 * If [addr...addr+count) doesn't includes any intersects with alive
2135 * vm_struct area, returns 0. @buf should be kernel's buffer.
2136 *
2137 * Note: In usual ops, vwrite() is never necessary because the caller
2138 * should know vmalloc() area is valid and can use memcpy().
2139 * This is for routines which have to access vmalloc area without
2140 * any informaion, as /dev/kmem.
2141 */
2142
2143long vwrite(char *buf, char *addr, unsigned long count)
2144{
2145 struct vmap_area *va;
2146 struct vm_struct *vm;
2147 char *vaddr;
2148 unsigned long n, buflen;
2149 int copied = 0;
2150
2151 /* Don't allow overflow */
2152 if ((unsigned long) addr + count < count)
2153 count = -(unsigned long) addr;
2154 buflen = count;
2155
2156 spin_lock(&vmap_area_lock);
2157 list_for_each_entry(va, &vmap_area_list, list) {
2158 if (!count)
2159 break;
2160
2161 if (!(va->flags & VM_VM_AREA))
2162 continue;
2163
2164 vm = va->vm;
2165 vaddr = (char *) vm->addr;
2166 if (addr >= vaddr + get_vm_area_size(vm))
2167 continue;
2168 while (addr < vaddr) {
2169 if (count == 0)
2170 goto finished;
2171 buf++;
2172 addr++;
2173 count--;
2174 }
2175 n = vaddr + get_vm_area_size(vm) - addr;
2176 if (n > count)
2177 n = count;
2178 if (!(vm->flags & VM_IOREMAP)) {
2179 aligned_vwrite(buf, addr, n);
2180 copied++;
2181 }
2182 buf += n;
2183 addr += n;
2184 count -= n;
2185 }
2186finished:
2187 spin_unlock(&vmap_area_lock);
2188 if (!copied)
2189 return 0;
2190 return buflen;
2191}
2192
2193/**
2194 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2195 * @vma: vma to cover
2196 * @uaddr: target user address to start at
2197 * @kaddr: virtual address of vmalloc kernel memory
2198 * @size: size of map area
2199 *
2200 * Returns: 0 for success, -Exxx on failure
2201 *
2202 * This function checks that @kaddr is a valid vmalloc'ed area,
2203 * and that it is big enough to cover the range starting at
2204 * @uaddr in @vma. Will return failure if that criteria isn't
2205 * met.
2206 *
2207 * Similar to remap_pfn_range() (see mm/memory.c)
2208 */
2209int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2210 void *kaddr, unsigned long size)
2211{
2212 struct vm_struct *area;
2213
2214 size = PAGE_ALIGN(size);
2215
2216 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2217 return -EINVAL;
2218
2219 area = find_vm_area(kaddr);
2220 if (!area)
2221 return -EINVAL;
2222
2223 if (!(area->flags & VM_USERMAP))
2224 return -EINVAL;
2225
2226 if (kaddr + size > area->addr + get_vm_area_size(area))
2227 return -EINVAL;
2228
2229 do {
2230 struct page *page = vmalloc_to_page(kaddr);
2231 int ret;
2232
2233 ret = vm_insert_page(vma, uaddr, page);
2234 if (ret)
2235 return ret;
2236
2237 uaddr += PAGE_SIZE;
2238 kaddr += PAGE_SIZE;
2239 size -= PAGE_SIZE;
2240 } while (size > 0);
2241
2242 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2243
2244 return 0;
2245}
2246EXPORT_SYMBOL(remap_vmalloc_range_partial);
2247
2248/**
2249 * remap_vmalloc_range - map vmalloc pages to userspace
2250 * @vma: vma to cover (map full range of vma)
2251 * @addr: vmalloc memory
2252 * @pgoff: number of pages into addr before first page to map
2253 *
2254 * Returns: 0 for success, -Exxx on failure
2255 *
2256 * This function checks that addr is a valid vmalloc'ed area, and
2257 * that it is big enough to cover the vma. Will return failure if
2258 * that criteria isn't met.
2259 *
2260 * Similar to remap_pfn_range() (see mm/memory.c)
2261 */
2262int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2263 unsigned long pgoff)
2264{
2265 return remap_vmalloc_range_partial(vma, vma->vm_start,
2266 addr + (pgoff << PAGE_SHIFT),
2267 vma->vm_end - vma->vm_start);
2268}
2269EXPORT_SYMBOL(remap_vmalloc_range);
2270
2271/*
2272 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2273 * have one.
2274 */
2275void __weak vmalloc_sync_all(void)
2276{
2277}
2278
2279
2280static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2281{
2282 pte_t ***p = data;
2283
2284 if (p) {
2285 *(*p) = pte;
2286 (*p)++;
2287 }
2288 return 0;
2289}
2290
2291/**
2292 * alloc_vm_area - allocate a range of kernel address space
2293 * @size: size of the area
2294 * @ptes: returns the PTEs for the address space
2295 *
2296 * Returns: NULL on failure, vm_struct on success
2297 *
2298 * This function reserves a range of kernel address space, and
2299 * allocates pagetables to map that range. No actual mappings
2300 * are created.
2301 *
2302 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2303 * allocated for the VM area are returned.
2304 */
2305struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2306{
2307 struct vm_struct *area;
2308
2309 area = get_vm_area_caller(size, VM_IOREMAP,
2310 __builtin_return_address(0));
2311 if (area == NULL)
2312 return NULL;
2313
2314 /*
2315 * This ensures that page tables are constructed for this region
2316 * of kernel virtual address space and mapped into init_mm.
2317 */
2318 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2319 size, f, ptes ? &ptes : NULL)) {
2320 free_vm_area(area);
2321 return NULL;
2322 }
2323
2324 return area;
2325}
2326EXPORT_SYMBOL_GPL(alloc_vm_area);
2327
2328void free_vm_area(struct vm_struct *area)
2329{
2330 struct vm_struct *ret;
2331 ret = remove_vm_area(area->addr);
2332 BUG_ON(ret != area);
2333 kfree(area);
2334}
2335EXPORT_SYMBOL_GPL(free_vm_area);
2336
2337#ifdef CONFIG_SMP
2338static struct vmap_area *node_to_va(struct rb_node *n)
2339{
2340 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2341}
2342
2343/**
2344 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2345 * @end: target address
2346 * @pnext: out arg for the next vmap_area
2347 * @pprev: out arg for the previous vmap_area
2348 *
2349 * Returns: %true if either or both of next and prev are found,
2350 * %false if no vmap_area exists
2351 *
2352 * Find vmap_areas end addresses of which enclose @end. ie. if not
2353 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2354 */
2355static bool pvm_find_next_prev(unsigned long end,
2356 struct vmap_area **pnext,
2357 struct vmap_area **pprev)
2358{
2359 struct rb_node *n = vmap_area_root.rb_node;
2360 struct vmap_area *va = NULL;
2361
2362 while (n) {
2363 va = rb_entry(n, struct vmap_area, rb_node);
2364 if (end < va->va_end)
2365 n = n->rb_left;
2366 else if (end > va->va_end)
2367 n = n->rb_right;
2368 else
2369 break;
2370 }
2371
2372 if (!va)
2373 return false;
2374
2375 if (va->va_end > end) {
2376 *pnext = va;
2377 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2378 } else {
2379 *pprev = va;
2380 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2381 }
2382 return true;
2383}
2384
2385/**
2386 * pvm_determine_end - find the highest aligned address between two vmap_areas
2387 * @pnext: in/out arg for the next vmap_area
2388 * @pprev: in/out arg for the previous vmap_area
2389 * @align: alignment
2390 *
2391 * Returns: determined end address
2392 *
2393 * Find the highest aligned address between *@pnext and *@pprev below
2394 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2395 * down address is between the end addresses of the two vmap_areas.
2396 *
2397 * Please note that the address returned by this function may fall
2398 * inside *@pnext vmap_area. The caller is responsible for checking
2399 * that.
2400 */
2401static unsigned long pvm_determine_end(struct vmap_area **pnext,
2402 struct vmap_area **pprev,
2403 unsigned long align)
2404{
2405 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2406 unsigned long addr;
2407
2408 if (*pnext)
2409 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2410 else
2411 addr = vmalloc_end;
2412
2413 while (*pprev && (*pprev)->va_end > addr) {
2414 *pnext = *pprev;
2415 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2416 }
2417
2418 return addr;
2419}
2420
2421/**
2422 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2423 * @offsets: array containing offset of each area
2424 * @sizes: array containing size of each area
2425 * @nr_vms: the number of areas to allocate
2426 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2427 *
2428 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2429 * vm_structs on success, %NULL on failure
2430 *
2431 * Percpu allocator wants to use congruent vm areas so that it can
2432 * maintain the offsets among percpu areas. This function allocates
2433 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2434 * be scattered pretty far, distance between two areas easily going up
2435 * to gigabytes. To avoid interacting with regular vmallocs, these
2436 * areas are allocated from top.
2437 *
2438 * Despite its complicated look, this allocator is rather simple. It
2439 * does everything top-down and scans areas from the end looking for
2440 * matching slot. While scanning, if any of the areas overlaps with
2441 * existing vmap_area, the base address is pulled down to fit the
2442 * area. Scanning is repeated till all the areas fit and then all
2443 * necessary data structres are inserted and the result is returned.
2444 */
2445struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2446 const size_t *sizes, int nr_vms,
2447 size_t align)
2448{
2449 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2450 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2451 struct vmap_area **vas, *prev, *next;
2452 struct vm_struct **vms;
2453 int area, area2, last_area, term_area;
2454 unsigned long base, start, end, last_end;
2455 bool purged = false;
2456
2457 /* verify parameters and allocate data structures */
2458 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2459 for (last_area = 0, area = 0; area < nr_vms; area++) {
2460 start = offsets[area];
2461 end = start + sizes[area];
2462
2463 /* is everything aligned properly? */
2464 BUG_ON(!IS_ALIGNED(offsets[area], align));
2465 BUG_ON(!IS_ALIGNED(sizes[area], align));
2466
2467 /* detect the area with the highest address */
2468 if (start > offsets[last_area])
2469 last_area = area;
2470
2471 for (area2 = 0; area2 < nr_vms; area2++) {
2472 unsigned long start2 = offsets[area2];
2473 unsigned long end2 = start2 + sizes[area2];
2474
2475 if (area2 == area)
2476 continue;
2477
2478 BUG_ON(start2 >= start && start2 < end);
2479 BUG_ON(end2 <= end && end2 > start);
2480 }
2481 }
2482 last_end = offsets[last_area] + sizes[last_area];
2483
2484 if (vmalloc_end - vmalloc_start < last_end) {
2485 WARN_ON(true);
2486 return NULL;
2487 }
2488
2489 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2490 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2491 if (!vas || !vms)
2492 goto err_free2;
2493
2494 for (area = 0; area < nr_vms; area++) {
2495 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2496 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2497 if (!vas[area] || !vms[area])
2498 goto err_free;
2499 }
2500retry:
2501 spin_lock(&vmap_area_lock);
2502
2503 /* start scanning - we scan from the top, begin with the last area */
2504 area = term_area = last_area;
2505 start = offsets[area];
2506 end = start + sizes[area];
2507
2508 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2509 base = vmalloc_end - last_end;
2510 goto found;
2511 }
2512 base = pvm_determine_end(&next, &prev, align) - end;
2513
2514 while (true) {
2515 BUG_ON(next && next->va_end <= base + end);
2516 BUG_ON(prev && prev->va_end > base + end);
2517
2518 /*
2519 * base might have underflowed, add last_end before
2520 * comparing.
2521 */
2522 if (base + last_end < vmalloc_start + last_end) {
2523 spin_unlock(&vmap_area_lock);
2524 if (!purged) {
2525 purge_vmap_area_lazy();
2526 purged = true;
2527 goto retry;
2528 }
2529 goto err_free;
2530 }
2531
2532 /*
2533 * If next overlaps, move base downwards so that it's
2534 * right below next and then recheck.
2535 */
2536 if (next && next->va_start < base + end) {
2537 base = pvm_determine_end(&next, &prev, align) - end;
2538 term_area = area;
2539 continue;
2540 }
2541
2542 /*
2543 * If prev overlaps, shift down next and prev and move
2544 * base so that it's right below new next and then
2545 * recheck.
2546 */
2547 if (prev && prev->va_end > base + start) {
2548 next = prev;
2549 prev = node_to_va(rb_prev(&next->rb_node));
2550 base = pvm_determine_end(&next, &prev, align) - end;
2551 term_area = area;
2552 continue;
2553 }
2554
2555 /*
2556 * This area fits, move on to the previous one. If
2557 * the previous one is the terminal one, we're done.
2558 */
2559 area = (area + nr_vms - 1) % nr_vms;
2560 if (area == term_area)
2561 break;
2562 start = offsets[area];
2563 end = start + sizes[area];
2564 pvm_find_next_prev(base + end, &next, &prev);
2565 }
2566found:
2567 /* we've found a fitting base, insert all va's */
2568 for (area = 0; area < nr_vms; area++) {
2569 struct vmap_area *va = vas[area];
2570
2571 va->va_start = base + offsets[area];
2572 va->va_end = va->va_start + sizes[area];
2573 __insert_vmap_area(va);
2574 }
2575
2576 vmap_area_pcpu_hole = base + offsets[last_area];
2577
2578 spin_unlock(&vmap_area_lock);
2579
2580 /* insert all vm's */
2581 for (area = 0; area < nr_vms; area++)
2582 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2583 pcpu_get_vm_areas);
2584
2585 kfree(vas);
2586 return vms;
2587
2588err_free:
2589 for (area = 0; area < nr_vms; area++) {
2590 kfree(vas[area]);
2591 kfree(vms[area]);
2592 }
2593err_free2:
2594 kfree(vas);
2595 kfree(vms);
2596 return NULL;
2597}
2598
2599/**
2600 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2601 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2602 * @nr_vms: the number of allocated areas
2603 *
2604 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2605 */
2606void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2607{
2608 int i;
2609
2610 for (i = 0; i < nr_vms; i++)
2611 free_vm_area(vms[i]);
2612 kfree(vms);
2613}
2614#endif /* CONFIG_SMP */
2615
2616#ifdef CONFIG_PROC_FS
2617static void *s_start(struct seq_file *m, loff_t *pos)
2618 __acquires(&vmap_area_lock)
2619{
2620 loff_t n = *pos;
2621 struct vmap_area *va;
2622
2623 spin_lock(&vmap_area_lock);
2624 va = list_first_entry(&vmap_area_list, typeof(*va), list);
2625 while (n > 0 && &va->list != &vmap_area_list) {
2626 n--;
2627 va = list_next_entry(va, list);
2628 }
2629 if (!n && &va->list != &vmap_area_list)
2630 return va;
2631
2632 return NULL;
2633
2634}
2635
2636static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2637{
2638 struct vmap_area *va = p, *next;
2639
2640 ++*pos;
2641 next = list_next_entry(va, list);
2642 if (&next->list != &vmap_area_list)
2643 return next;
2644
2645 return NULL;
2646}
2647
2648static void s_stop(struct seq_file *m, void *p)
2649 __releases(&vmap_area_lock)
2650{
2651 spin_unlock(&vmap_area_lock);
2652}
2653
2654static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2655{
2656 if (IS_ENABLED(CONFIG_NUMA)) {
2657 unsigned int nr, *counters = m->private;
2658
2659 if (!counters)
2660 return;
2661
2662 if (v->flags & VM_UNINITIALIZED)
2663 return;
2664 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2665 smp_rmb();
2666
2667 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2668
2669 for (nr = 0; nr < v->nr_pages; nr++)
2670 counters[page_to_nid(v->pages[nr])]++;
2671
2672 for_each_node_state(nr, N_HIGH_MEMORY)
2673 if (counters[nr])
2674 seq_printf(m, " N%u=%u", nr, counters[nr]);
2675 }
2676}
2677
2678static int s_show(struct seq_file *m, void *p)
2679{
2680 struct vmap_area *va = p;
2681 struct vm_struct *v;
2682
2683 /*
2684 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2685 * behalf of vmap area is being tear down or vm_map_ram allocation.
2686 */
2687 if (!(va->flags & VM_VM_AREA))
2688 return 0;
2689
2690 v = va->vm;
2691
2692 seq_printf(m, "0x%pK-0x%pK %7ld",
2693 v->addr, v->addr + v->size, v->size);
2694
2695 if (v->caller)
2696 seq_printf(m, " %pS", v->caller);
2697
2698 if (v->nr_pages)
2699 seq_printf(m, " pages=%d", v->nr_pages);
2700
2701 if (v->phys_addr)
2702 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2703
2704 if (v->flags & VM_IOREMAP)
2705 seq_puts(m, " ioremap");
2706
2707 if (v->flags & VM_ALLOC)
2708 seq_puts(m, " vmalloc");
2709
2710 if (v->flags & VM_MAP)
2711 seq_puts(m, " vmap");
2712
2713 if (v->flags & VM_USERMAP)
2714 seq_puts(m, " user");
2715
2716 if (is_vmalloc_addr(v->pages))
2717 seq_puts(m, " vpages");
2718
2719 show_numa_info(m, v);
2720 seq_putc(m, '\n');
2721 return 0;
2722}
2723
2724static const struct seq_operations vmalloc_op = {
2725 .start = s_start,
2726 .next = s_next,
2727 .stop = s_stop,
2728 .show = s_show,
2729};
2730
2731static int vmalloc_open(struct inode *inode, struct file *file)
2732{
2733 if (IS_ENABLED(CONFIG_NUMA))
2734 return seq_open_private(file, &vmalloc_op,
2735 nr_node_ids * sizeof(unsigned int));
2736 else
2737 return seq_open(file, &vmalloc_op);
2738}
2739
2740static const struct file_operations proc_vmalloc_operations = {
2741 .open = vmalloc_open,
2742 .read = seq_read,
2743 .llseek = seq_lseek,
2744 .release = seq_release_private,
2745};
2746
2747static int __init proc_vmalloc_init(void)
2748{
2749 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2750 return 0;
2751}
2752module_init(proc_vmalloc_init);
2753
2754#endif
2755
2756