summaryrefslogtreecommitdiff
path: root/net/socket.c (plain)
blob: 68b1bba36bc8af77822af89df1d3e275483304e9
1/*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/if_bridge.h>
73#include <linux/if_frad.h>
74#include <linux/if_vlan.h>
75#include <linux/ptp_classify.h>
76#include <linux/init.h>
77#include <linux/poll.h>
78#include <linux/cache.h>
79#include <linux/module.h>
80#include <linux/highmem.h>
81#include <linux/mount.h>
82#include <linux/security.h>
83#include <linux/syscalls.h>
84#include <linux/compat.h>
85#include <linux/kmod.h>
86#include <linux/audit.h>
87#include <linux/wireless.h>
88#include <linux/nsproxy.h>
89#include <linux/magic.h>
90#include <linux/slab.h>
91#include <linux/xattr.h>
92#include <linux/nospec.h>
93
94#include <asm/uaccess.h>
95#include <asm/unistd.h>
96
97#include <net/compat.h>
98#include <net/wext.h>
99#include <net/cls_cgroup.h>
100
101#include <net/sock.h>
102#include <linux/netfilter.h>
103
104#include <linux/if_tun.h>
105#include <linux/ipv6_route.h>
106#include <linux/route.h>
107#include <linux/sockios.h>
108#include <linux/atalk.h>
109#include <net/busy_poll.h>
110#include <linux/errqueue.h>
111
112#ifdef CONFIG_NET_RX_BUSY_POLL
113unsigned int sysctl_net_busy_read __read_mostly;
114unsigned int sysctl_net_busy_poll __read_mostly;
115#endif
116
117static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
118static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
119static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120
121static int sock_close(struct inode *inode, struct file *file);
122static unsigned int sock_poll(struct file *file,
123 struct poll_table_struct *wait);
124static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125#ifdef CONFIG_COMPAT
126static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
128#endif
129static int sock_fasync(int fd, struct file *filp, int on);
130static ssize_t sock_sendpage(struct file *file, struct page *page,
131 int offset, size_t size, loff_t *ppos, int more);
132static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
135
136/*
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
139 */
140
141static const struct file_operations socket_file_ops = {
142 .owner = THIS_MODULE,
143 .llseek = no_llseek,
144 .read_iter = sock_read_iter,
145 .write_iter = sock_write_iter,
146 .poll = sock_poll,
147 .unlocked_ioctl = sock_ioctl,
148#ifdef CONFIG_COMPAT
149 .compat_ioctl = compat_sock_ioctl,
150#endif
151 .mmap = sock_mmap,
152 .release = sock_close,
153 .fasync = sock_fasync,
154 .sendpage = sock_sendpage,
155 .splice_write = generic_splice_sendpage,
156 .splice_read = sock_splice_read,
157};
158
159/*
160 * The protocol list. Each protocol is registered in here.
161 */
162
163static DEFINE_SPINLOCK(net_family_lock);
164static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
165
166/*
167 * Statistics counters of the socket lists
168 */
169
170static DEFINE_PER_CPU(int, sockets_in_use);
171
172/*
173 * Support routines.
174 * Move socket addresses back and forth across the kernel/user
175 * divide and look after the messy bits.
176 */
177
178/**
179 * move_addr_to_kernel - copy a socket address into kernel space
180 * @uaddr: Address in user space
181 * @kaddr: Address in kernel space
182 * @ulen: Length in user space
183 *
184 * The address is copied into kernel space. If the provided address is
185 * too long an error code of -EINVAL is returned. If the copy gives
186 * invalid addresses -EFAULT is returned. On a success 0 is returned.
187 */
188
189int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
190{
191 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
192 return -EINVAL;
193 if (ulen == 0)
194 return 0;
195 if (copy_from_user(kaddr, uaddr, ulen))
196 return -EFAULT;
197 return audit_sockaddr(ulen, kaddr);
198}
199
200/**
201 * move_addr_to_user - copy an address to user space
202 * @kaddr: kernel space address
203 * @klen: length of address in kernel
204 * @uaddr: user space address
205 * @ulen: pointer to user length field
206 *
207 * The value pointed to by ulen on entry is the buffer length available.
208 * This is overwritten with the buffer space used. -EINVAL is returned
209 * if an overlong buffer is specified or a negative buffer size. -EFAULT
210 * is returned if either the buffer or the length field are not
211 * accessible.
212 * After copying the data up to the limit the user specifies, the true
213 * length of the data is written over the length limit the user
214 * specified. Zero is returned for a success.
215 */
216
217static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
218 void __user *uaddr, int __user *ulen)
219{
220 int err;
221 int len;
222
223 BUG_ON(klen > sizeof(struct sockaddr_storage));
224 err = get_user(len, ulen);
225 if (err)
226 return err;
227 if (len > klen)
228 len = klen;
229 if (len < 0)
230 return -EINVAL;
231 if (len) {
232 if (audit_sockaddr(klen, kaddr))
233 return -ENOMEM;
234 if (copy_to_user(uaddr, kaddr, len))
235 return -EFAULT;
236 }
237 /*
238 * "fromlen shall refer to the value before truncation.."
239 * 1003.1g
240 */
241 return __put_user(klen, ulen);
242}
243
244static struct kmem_cache *sock_inode_cachep __read_mostly;
245
246static struct inode *sock_alloc_inode(struct super_block *sb)
247{
248 struct socket_alloc *ei;
249 struct socket_wq *wq;
250
251 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
252 if (!ei)
253 return NULL;
254 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 if (!wq) {
256 kmem_cache_free(sock_inode_cachep, ei);
257 return NULL;
258 }
259 init_waitqueue_head(&wq->wait);
260 wq->fasync_list = NULL;
261 wq->flags = 0;
262 RCU_INIT_POINTER(ei->socket.wq, wq);
263
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
269
270 return &ei->vfs_inode;
271}
272
273static void sock_destroy_inode(struct inode *inode)
274{
275 struct socket_alloc *ei;
276 struct socket_wq *wq;
277
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kfree_rcu(wq, rcu);
281 kmem_cache_free(sock_inode_cachep, ei);
282}
283
284static void init_once(void *foo)
285{
286 struct socket_alloc *ei = (struct socket_alloc *)foo;
287
288 inode_init_once(&ei->vfs_inode);
289}
290
291static int init_inodecache(void)
292{
293 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc),
295 0,
296 (SLAB_HWCACHE_ALIGN |
297 SLAB_RECLAIM_ACCOUNT |
298 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
299 init_once);
300 if (sock_inode_cachep == NULL)
301 return -ENOMEM;
302 return 0;
303}
304
305static const struct super_operations sockfs_ops = {
306 .alloc_inode = sock_alloc_inode,
307 .destroy_inode = sock_destroy_inode,
308 .statfs = simple_statfs,
309};
310
311/*
312 * sockfs_dname() is called from d_path().
313 */
314static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315{
316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 d_inode(dentry)->i_ino);
318}
319
320static const struct dentry_operations sockfs_dentry_operations = {
321 .d_dname = sockfs_dname,
322};
323
324static int sockfs_xattr_get(const struct xattr_handler *handler,
325 struct dentry *dentry, struct inode *inode,
326 const char *suffix, void *value, size_t size)
327{
328 if (value) {
329 if (dentry->d_name.len + 1 > size)
330 return -ERANGE;
331 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
332 }
333 return dentry->d_name.len + 1;
334}
335
336#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
337#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
338#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
339
340static const struct xattr_handler sockfs_xattr_handler = {
341 .name = XATTR_NAME_SOCKPROTONAME,
342 .get = sockfs_xattr_get,
343};
344
345static int sockfs_security_xattr_set(const struct xattr_handler *handler,
346 struct dentry *dentry, struct inode *inode,
347 const char *suffix, const void *value,
348 size_t size, int flags)
349{
350 /* Handled by LSM. */
351 return -EAGAIN;
352}
353
354static const struct xattr_handler sockfs_security_xattr_handler = {
355 .prefix = XATTR_SECURITY_PREFIX,
356 .set = sockfs_security_xattr_set,
357};
358
359static const struct xattr_handler *sockfs_xattr_handlers[] = {
360 &sockfs_xattr_handler,
361 &sockfs_security_xattr_handler,
362 NULL
363};
364
365static struct dentry *sockfs_mount(struct file_system_type *fs_type,
366 int flags, const char *dev_name, void *data)
367{
368 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
369 sockfs_xattr_handlers,
370 &sockfs_dentry_operations, SOCKFS_MAGIC);
371}
372
373static struct vfsmount *sock_mnt __read_mostly;
374
375static struct file_system_type sock_fs_type = {
376 .name = "sockfs",
377 .mount = sockfs_mount,
378 .kill_sb = kill_anon_super,
379};
380
381/*
382 * Obtains the first available file descriptor and sets it up for use.
383 *
384 * These functions create file structures and maps them to fd space
385 * of the current process. On success it returns file descriptor
386 * and file struct implicitly stored in sock->file.
387 * Note that another thread may close file descriptor before we return
388 * from this function. We use the fact that now we do not refer
389 * to socket after mapping. If one day we will need it, this
390 * function will increment ref. count on file by 1.
391 *
392 * In any case returned fd MAY BE not valid!
393 * This race condition is unavoidable
394 * with shared fd spaces, we cannot solve it inside kernel,
395 * but we take care of internal coherence yet.
396 */
397
398struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
399{
400 struct qstr name = { .name = "" };
401 struct path path;
402 struct file *file;
403
404 if (dname) {
405 name.name = dname;
406 name.len = strlen(name.name);
407 } else if (sock->sk) {
408 name.name = sock->sk->sk_prot_creator->name;
409 name.len = strlen(name.name);
410 }
411 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
412 if (unlikely(!path.dentry))
413 return ERR_PTR(-ENOMEM);
414 path.mnt = mntget(sock_mnt);
415
416 d_instantiate(path.dentry, SOCK_INODE(sock));
417
418 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
419 &socket_file_ops);
420 if (IS_ERR(file)) {
421 /* drop dentry, keep inode */
422 ihold(d_inode(path.dentry));
423 path_put(&path);
424 return file;
425 }
426
427 sock->file = file;
428 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
429 file->private_data = sock;
430 return file;
431}
432EXPORT_SYMBOL(sock_alloc_file);
433
434static int sock_map_fd(struct socket *sock, int flags)
435{
436 struct file *newfile;
437 int fd = get_unused_fd_flags(flags);
438 if (unlikely(fd < 0))
439 return fd;
440
441 newfile = sock_alloc_file(sock, flags, NULL);
442 if (likely(!IS_ERR(newfile))) {
443 fd_install(fd, newfile);
444 return fd;
445 }
446
447 put_unused_fd(fd);
448 return PTR_ERR(newfile);
449}
450
451struct socket *sock_from_file(struct file *file, int *err)
452{
453 if (file->f_op == &socket_file_ops)
454 return file->private_data; /* set in sock_map_fd */
455
456 *err = -ENOTSOCK;
457 return NULL;
458}
459EXPORT_SYMBOL(sock_from_file);
460
461/**
462 * sockfd_lookup - Go from a file number to its socket slot
463 * @fd: file handle
464 * @err: pointer to an error code return
465 *
466 * The file handle passed in is locked and the socket it is bound
467 * too is returned. If an error occurs the err pointer is overwritten
468 * with a negative errno code and NULL is returned. The function checks
469 * for both invalid handles and passing a handle which is not a socket.
470 *
471 * On a success the socket object pointer is returned.
472 */
473
474struct socket *sockfd_lookup(int fd, int *err)
475{
476 struct file *file;
477 struct socket *sock;
478
479 file = fget(fd);
480 if (!file) {
481 *err = -EBADF;
482 return NULL;
483 }
484
485 sock = sock_from_file(file, err);
486 if (!sock)
487 fput(file);
488 return sock;
489}
490EXPORT_SYMBOL(sockfd_lookup);
491
492static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
493{
494 struct fd f = fdget(fd);
495 struct socket *sock;
496
497 *err = -EBADF;
498 if (f.file) {
499 sock = sock_from_file(f.file, err);
500 if (likely(sock)) {
501 *fput_needed = f.flags;
502 return sock;
503 }
504 fdput(f);
505 }
506 return NULL;
507}
508
509static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
510 size_t size)
511{
512 ssize_t len;
513 ssize_t used = 0;
514
515 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
516 if (len < 0)
517 return len;
518 used += len;
519 if (buffer) {
520 if (size < used)
521 return -ERANGE;
522 buffer += len;
523 }
524
525 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
526 used += len;
527 if (buffer) {
528 if (size < used)
529 return -ERANGE;
530 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
531 buffer += len;
532 }
533
534 return used;
535}
536
537static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
538{
539 int err = simple_setattr(dentry, iattr);
540
541 if (!err && (iattr->ia_valid & ATTR_UID)) {
542 struct socket *sock = SOCKET_I(d_inode(dentry));
543
544 if (sock->sk)
545 sock->sk->sk_uid = iattr->ia_uid;
546 else
547 err = -ENOENT;
548 }
549
550 return err;
551}
552
553static const struct inode_operations sockfs_inode_ops = {
554 .listxattr = sockfs_listxattr,
555 .setattr = sockfs_setattr,
556};
557
558/**
559 * sock_alloc - allocate a socket
560 *
561 * Allocate a new inode and socket object. The two are bound together
562 * and initialised. The socket is then returned. If we are out of inodes
563 * NULL is returned.
564 */
565
566struct socket *sock_alloc(void)
567{
568 struct inode *inode;
569 struct socket *sock;
570
571 inode = new_inode_pseudo(sock_mnt->mnt_sb);
572 if (!inode)
573 return NULL;
574
575 sock = SOCKET_I(inode);
576
577 kmemcheck_annotate_bitfield(sock, type);
578 inode->i_ino = get_next_ino();
579 inode->i_mode = S_IFSOCK | S_IRWXUGO;
580 inode->i_uid = current_fsuid();
581 inode->i_gid = current_fsgid();
582 inode->i_op = &sockfs_inode_ops;
583
584 this_cpu_add(sockets_in_use, 1);
585 return sock;
586}
587EXPORT_SYMBOL(sock_alloc);
588
589/**
590 * sock_release - close a socket
591 * @sock: socket to close
592 *
593 * The socket is released from the protocol stack if it has a release
594 * callback, and the inode is then released if the socket is bound to
595 * an inode not a file.
596 */
597
598static void __sock_release(struct socket *sock, struct inode *inode)
599{
600 if (sock->ops) {
601 struct module *owner = sock->ops->owner;
602
603 if (inode)
604 inode_lock(inode);
605 sock->ops->release(sock);
606 sock->sk = NULL;
607 if (inode)
608 inode_unlock(inode);
609 sock->ops = NULL;
610 module_put(owner);
611 }
612
613 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
614 pr_err("%s: fasync list not empty!\n", __func__);
615
616 this_cpu_sub(sockets_in_use, 1);
617 if (!sock->file) {
618 iput(SOCK_INODE(sock));
619 return;
620 }
621 sock->file = NULL;
622}
623
624void sock_release(struct socket *sock)
625{
626 __sock_release(sock, NULL);
627}
628EXPORT_SYMBOL(sock_release);
629
630void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
631{
632 u8 flags = *tx_flags;
633
634 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
635 flags |= SKBTX_HW_TSTAMP;
636
637 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
638 flags |= SKBTX_SW_TSTAMP;
639
640 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
641 flags |= SKBTX_SCHED_TSTAMP;
642
643 *tx_flags = flags;
644}
645EXPORT_SYMBOL(__sock_tx_timestamp);
646
647static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
648{
649 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
650 BUG_ON(ret == -EIOCBQUEUED);
651 return ret;
652}
653
654int sock_sendmsg(struct socket *sock, struct msghdr *msg)
655{
656 int err = security_socket_sendmsg(sock, msg,
657 msg_data_left(msg));
658
659 return err ?: sock_sendmsg_nosec(sock, msg);
660}
661EXPORT_SYMBOL(sock_sendmsg);
662
663int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
664 struct kvec *vec, size_t num, size_t size)
665{
666 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
667 return sock_sendmsg(sock, msg);
668}
669EXPORT_SYMBOL(kernel_sendmsg);
670
671/*
672 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
673 */
674void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
675 struct sk_buff *skb)
676{
677 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
678 struct scm_timestamping tss;
679 int empty = 1;
680 struct skb_shared_hwtstamps *shhwtstamps =
681 skb_hwtstamps(skb);
682
683 /* Race occurred between timestamp enabling and packet
684 receiving. Fill in the current time for now. */
685 if (need_software_tstamp && skb->tstamp.tv64 == 0)
686 __net_timestamp(skb);
687
688 if (need_software_tstamp) {
689 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
690 struct timeval tv;
691 skb_get_timestamp(skb, &tv);
692 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
693 sizeof(tv), &tv);
694 } else {
695 struct timespec ts;
696 skb_get_timestampns(skb, &ts);
697 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
698 sizeof(ts), &ts);
699 }
700 }
701
702 memset(&tss, 0, sizeof(tss));
703 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
704 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
705 empty = 0;
706 if (shhwtstamps &&
707 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
708 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
709 empty = 0;
710 if (!empty)
711 put_cmsg(msg, SOL_SOCKET,
712 SCM_TIMESTAMPING, sizeof(tss), &tss);
713}
714EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
715
716void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
717 struct sk_buff *skb)
718{
719 int ack;
720
721 if (!sock_flag(sk, SOCK_WIFI_STATUS))
722 return;
723 if (!skb->wifi_acked_valid)
724 return;
725
726 ack = skb->wifi_acked;
727
728 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
729}
730EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
731
732static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
733 struct sk_buff *skb)
734{
735 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
736 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
737 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
738}
739
740void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
741 struct sk_buff *skb)
742{
743 sock_recv_timestamp(msg, sk, skb);
744 sock_recv_drops(msg, sk, skb);
745}
746EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
747
748static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
749 int flags)
750{
751 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
752}
753
754int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
755{
756 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
757
758 return err ?: sock_recvmsg_nosec(sock, msg, flags);
759}
760EXPORT_SYMBOL(sock_recvmsg);
761
762/**
763 * kernel_recvmsg - Receive a message from a socket (kernel space)
764 * @sock: The socket to receive the message from
765 * @msg: Received message
766 * @vec: Input s/g array for message data
767 * @num: Size of input s/g array
768 * @size: Number of bytes to read
769 * @flags: Message flags (MSG_DONTWAIT, etc...)
770 *
771 * On return the msg structure contains the scatter/gather array passed in the
772 * vec argument. The array is modified so that it consists of the unfilled
773 * portion of the original array.
774 *
775 * The returned value is the total number of bytes received, or an error.
776 */
777int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
778 struct kvec *vec, size_t num, size_t size, int flags)
779{
780 mm_segment_t oldfs = get_fs();
781 int result;
782
783 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
784 set_fs(KERNEL_DS);
785 result = sock_recvmsg(sock, msg, flags);
786 set_fs(oldfs);
787 return result;
788}
789EXPORT_SYMBOL(kernel_recvmsg);
790
791static ssize_t sock_sendpage(struct file *file, struct page *page,
792 int offset, size_t size, loff_t *ppos, int more)
793{
794 struct socket *sock;
795 int flags;
796
797 sock = file->private_data;
798
799 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
800 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
801 flags |= more;
802
803 return kernel_sendpage(sock, page, offset, size, flags);
804}
805
806static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
807 struct pipe_inode_info *pipe, size_t len,
808 unsigned int flags)
809{
810 struct socket *sock = file->private_data;
811
812 if (unlikely(!sock->ops->splice_read))
813 return -EINVAL;
814
815 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
816}
817
818static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
819{
820 struct file *file = iocb->ki_filp;
821 struct socket *sock = file->private_data;
822 struct msghdr msg = {.msg_iter = *to,
823 .msg_iocb = iocb};
824 ssize_t res;
825
826 if (file->f_flags & O_NONBLOCK)
827 msg.msg_flags = MSG_DONTWAIT;
828
829 if (iocb->ki_pos != 0)
830 return -ESPIPE;
831
832 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
833 return 0;
834
835 res = sock_recvmsg(sock, &msg, msg.msg_flags);
836 *to = msg.msg_iter;
837 return res;
838}
839
840static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
841{
842 struct file *file = iocb->ki_filp;
843 struct socket *sock = file->private_data;
844 struct msghdr msg = {.msg_iter = *from,
845 .msg_iocb = iocb};
846 ssize_t res;
847
848 if (iocb->ki_pos != 0)
849 return -ESPIPE;
850
851 if (file->f_flags & O_NONBLOCK)
852 msg.msg_flags = MSG_DONTWAIT;
853
854 if (sock->type == SOCK_SEQPACKET)
855 msg.msg_flags |= MSG_EOR;
856
857 res = sock_sendmsg(sock, &msg);
858 *from = msg.msg_iter;
859 return res;
860}
861
862/*
863 * Atomic setting of ioctl hooks to avoid race
864 * with module unload.
865 */
866
867static DEFINE_MUTEX(br_ioctl_mutex);
868static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
869
870void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
871{
872 mutex_lock(&br_ioctl_mutex);
873 br_ioctl_hook = hook;
874 mutex_unlock(&br_ioctl_mutex);
875}
876EXPORT_SYMBOL(brioctl_set);
877
878static DEFINE_MUTEX(vlan_ioctl_mutex);
879static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
880
881void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
882{
883 mutex_lock(&vlan_ioctl_mutex);
884 vlan_ioctl_hook = hook;
885 mutex_unlock(&vlan_ioctl_mutex);
886}
887EXPORT_SYMBOL(vlan_ioctl_set);
888
889static DEFINE_MUTEX(dlci_ioctl_mutex);
890static int (*dlci_ioctl_hook) (unsigned int, void __user *);
891
892void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
893{
894 mutex_lock(&dlci_ioctl_mutex);
895 dlci_ioctl_hook = hook;
896 mutex_unlock(&dlci_ioctl_mutex);
897}
898EXPORT_SYMBOL(dlci_ioctl_set);
899
900static long sock_do_ioctl(struct net *net, struct socket *sock,
901 unsigned int cmd, unsigned long arg)
902{
903 int err;
904 void __user *argp = (void __user *)arg;
905
906 err = sock->ops->ioctl(sock, cmd, arg);
907
908 /*
909 * If this ioctl is unknown try to hand it down
910 * to the NIC driver.
911 */
912 if (err == -ENOIOCTLCMD)
913 err = dev_ioctl(net, cmd, argp);
914
915 return err;
916}
917
918/*
919 * With an ioctl, arg may well be a user mode pointer, but we don't know
920 * what to do with it - that's up to the protocol still.
921 */
922
923static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
924{
925 struct socket *sock;
926 struct sock *sk;
927 void __user *argp = (void __user *)arg;
928 int pid, err;
929 struct net *net;
930
931 sock = file->private_data;
932 sk = sock->sk;
933 net = sock_net(sk);
934 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
935 err = dev_ioctl(net, cmd, argp);
936 } else
937#ifdef CONFIG_WEXT_CORE
938 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
939 err = dev_ioctl(net, cmd, argp);
940 } else
941#endif
942 switch (cmd) {
943 case FIOSETOWN:
944 case SIOCSPGRP:
945 err = -EFAULT;
946 if (get_user(pid, (int __user *)argp))
947 break;
948 f_setown(sock->file, pid, 1);
949 err = 0;
950 break;
951 case FIOGETOWN:
952 case SIOCGPGRP:
953 err = put_user(f_getown(sock->file),
954 (int __user *)argp);
955 break;
956 case SIOCGIFBR:
957 case SIOCSIFBR:
958 case SIOCBRADDBR:
959 case SIOCBRDELBR:
960 err = -ENOPKG;
961 if (!br_ioctl_hook)
962 request_module("bridge");
963
964 mutex_lock(&br_ioctl_mutex);
965 if (br_ioctl_hook)
966 err = br_ioctl_hook(net, cmd, argp);
967 mutex_unlock(&br_ioctl_mutex);
968 break;
969 case SIOCGIFVLAN:
970 case SIOCSIFVLAN:
971 err = -ENOPKG;
972 if (!vlan_ioctl_hook)
973 request_module("8021q");
974
975 mutex_lock(&vlan_ioctl_mutex);
976 if (vlan_ioctl_hook)
977 err = vlan_ioctl_hook(net, argp);
978 mutex_unlock(&vlan_ioctl_mutex);
979 break;
980 case SIOCADDDLCI:
981 case SIOCDELDLCI:
982 err = -ENOPKG;
983 if (!dlci_ioctl_hook)
984 request_module("dlci");
985
986 mutex_lock(&dlci_ioctl_mutex);
987 if (dlci_ioctl_hook)
988 err = dlci_ioctl_hook(cmd, argp);
989 mutex_unlock(&dlci_ioctl_mutex);
990 break;
991 default:
992 err = sock_do_ioctl(net, sock, cmd, arg);
993 break;
994 }
995 return err;
996}
997
998int sock_create_lite(int family, int type, int protocol, struct socket **res)
999{
1000 int err;
1001 struct socket *sock = NULL;
1002
1003 err = security_socket_create(family, type, protocol, 1);
1004 if (err)
1005 goto out;
1006
1007 sock = sock_alloc();
1008 if (!sock) {
1009 err = -ENOMEM;
1010 goto out;
1011 }
1012
1013 sock->type = type;
1014 err = security_socket_post_create(sock, family, type, protocol, 1);
1015 if (err)
1016 goto out_release;
1017
1018out:
1019 *res = sock;
1020 return err;
1021out_release:
1022 sock_release(sock);
1023 sock = NULL;
1024 goto out;
1025}
1026EXPORT_SYMBOL(sock_create_lite);
1027
1028/* No kernel lock held - perfect */
1029static unsigned int sock_poll(struct file *file, poll_table *wait)
1030{
1031 unsigned int busy_flag = 0;
1032 struct socket *sock;
1033
1034 /*
1035 * We can't return errors to poll, so it's either yes or no.
1036 */
1037 sock = file->private_data;
1038
1039 if (sk_can_busy_loop(sock->sk)) {
1040 /* this socket can poll_ll so tell the system call */
1041 busy_flag = POLL_BUSY_LOOP;
1042
1043 /* once, only if requested by syscall */
1044 if (wait && (wait->_key & POLL_BUSY_LOOP))
1045 sk_busy_loop(sock->sk, 1);
1046 }
1047
1048 return busy_flag | sock->ops->poll(file, sock, wait);
1049}
1050
1051static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1052{
1053 struct socket *sock = file->private_data;
1054
1055 return sock->ops->mmap(file, sock, vma);
1056}
1057
1058static int sock_close(struct inode *inode, struct file *filp)
1059{
1060 __sock_release(SOCKET_I(inode), inode);
1061 return 0;
1062}
1063
1064/*
1065 * Update the socket async list
1066 *
1067 * Fasync_list locking strategy.
1068 *
1069 * 1. fasync_list is modified only under process context socket lock
1070 * i.e. under semaphore.
1071 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1072 * or under socket lock
1073 */
1074
1075static int sock_fasync(int fd, struct file *filp, int on)
1076{
1077 struct socket *sock = filp->private_data;
1078 struct sock *sk = sock->sk;
1079 struct socket_wq *wq;
1080
1081 if (sk == NULL)
1082 return -EINVAL;
1083
1084 lock_sock(sk);
1085 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1086 fasync_helper(fd, filp, on, &wq->fasync_list);
1087
1088 if (!wq->fasync_list)
1089 sock_reset_flag(sk, SOCK_FASYNC);
1090 else
1091 sock_set_flag(sk, SOCK_FASYNC);
1092
1093 release_sock(sk);
1094 return 0;
1095}
1096
1097/* This function may be called only under rcu_lock */
1098
1099int sock_wake_async(struct socket_wq *wq, int how, int band)
1100{
1101 if (!wq || !wq->fasync_list)
1102 return -1;
1103
1104 switch (how) {
1105 case SOCK_WAKE_WAITD:
1106 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1107 break;
1108 goto call_kill;
1109 case SOCK_WAKE_SPACE:
1110 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1111 break;
1112 /* fall through */
1113 case SOCK_WAKE_IO:
1114call_kill:
1115 kill_fasync(&wq->fasync_list, SIGIO, band);
1116 break;
1117 case SOCK_WAKE_URG:
1118 kill_fasync(&wq->fasync_list, SIGURG, band);
1119 }
1120
1121 return 0;
1122}
1123EXPORT_SYMBOL(sock_wake_async);
1124
1125int __sock_create(struct net *net, int family, int type, int protocol,
1126 struct socket **res, int kern)
1127{
1128 int err;
1129 struct socket *sock;
1130 const struct net_proto_family *pf;
1131
1132 /*
1133 * Check protocol is in range
1134 */
1135 if (family < 0 || family >= NPROTO)
1136 return -EAFNOSUPPORT;
1137 if (type < 0 || type >= SOCK_MAX)
1138 return -EINVAL;
1139
1140 /* Compatibility.
1141
1142 This uglymoron is moved from INET layer to here to avoid
1143 deadlock in module load.
1144 */
1145 if (family == PF_INET && type == SOCK_PACKET) {
1146 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1147 current->comm);
1148 family = PF_PACKET;
1149 }
1150
1151 err = security_socket_create(family, type, protocol, kern);
1152 if (err)
1153 return err;
1154
1155 /*
1156 * Allocate the socket and allow the family to set things up. if
1157 * the protocol is 0, the family is instructed to select an appropriate
1158 * default.
1159 */
1160 sock = sock_alloc();
1161 if (!sock) {
1162 net_warn_ratelimited("socket: no more sockets\n");
1163 return -ENFILE; /* Not exactly a match, but its the
1164 closest posix thing */
1165 }
1166
1167 sock->type = type;
1168
1169#ifdef CONFIG_MODULES
1170 /* Attempt to load a protocol module if the find failed.
1171 *
1172 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1173 * requested real, full-featured networking support upon configuration.
1174 * Otherwise module support will break!
1175 */
1176 if (rcu_access_pointer(net_families[family]) == NULL)
1177 request_module("net-pf-%d", family);
1178#endif
1179
1180 rcu_read_lock();
1181 pf = rcu_dereference(net_families[family]);
1182 err = -EAFNOSUPPORT;
1183 if (!pf)
1184 goto out_release;
1185
1186 /*
1187 * We will call the ->create function, that possibly is in a loadable
1188 * module, so we have to bump that loadable module refcnt first.
1189 */
1190 if (!try_module_get(pf->owner))
1191 goto out_release;
1192
1193 /* Now protected by module ref count */
1194 rcu_read_unlock();
1195
1196 err = pf->create(net, sock, protocol, kern);
1197 if (err < 0)
1198 goto out_module_put;
1199
1200 /*
1201 * Now to bump the refcnt of the [loadable] module that owns this
1202 * socket at sock_release time we decrement its refcnt.
1203 */
1204 if (!try_module_get(sock->ops->owner))
1205 goto out_module_busy;
1206
1207 /*
1208 * Now that we're done with the ->create function, the [loadable]
1209 * module can have its refcnt decremented
1210 */
1211 module_put(pf->owner);
1212 err = security_socket_post_create(sock, family, type, protocol, kern);
1213 if (err)
1214 goto out_sock_release;
1215 *res = sock;
1216
1217 return 0;
1218
1219out_module_busy:
1220 err = -EAFNOSUPPORT;
1221out_module_put:
1222 sock->ops = NULL;
1223 module_put(pf->owner);
1224out_sock_release:
1225 sock_release(sock);
1226 return err;
1227
1228out_release:
1229 rcu_read_unlock();
1230 goto out_sock_release;
1231}
1232EXPORT_SYMBOL(__sock_create);
1233
1234int sock_create(int family, int type, int protocol, struct socket **res)
1235{
1236 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1237}
1238EXPORT_SYMBOL(sock_create);
1239
1240int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1241{
1242 return __sock_create(net, family, type, protocol, res, 1);
1243}
1244EXPORT_SYMBOL(sock_create_kern);
1245
1246SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1247{
1248 int retval;
1249 struct socket *sock;
1250 int flags;
1251
1252 /* Check the SOCK_* constants for consistency. */
1253 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1254 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1255 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1256 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1257
1258 flags = type & ~SOCK_TYPE_MASK;
1259 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1260 return -EINVAL;
1261 type &= SOCK_TYPE_MASK;
1262
1263 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1264 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1265
1266 retval = sock_create(family, type, protocol, &sock);
1267 if (retval < 0)
1268 goto out;
1269
1270 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1271 if (retval < 0)
1272 goto out_release;
1273
1274out:
1275 /* It may be already another descriptor 8) Not kernel problem. */
1276 return retval;
1277
1278out_release:
1279 sock_release(sock);
1280 return retval;
1281}
1282
1283/*
1284 * Create a pair of connected sockets.
1285 */
1286
1287SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1288 int __user *, usockvec)
1289{
1290 struct socket *sock1, *sock2;
1291 int fd1, fd2, err;
1292 struct file *newfile1, *newfile2;
1293 int flags;
1294
1295 flags = type & ~SOCK_TYPE_MASK;
1296 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1297 return -EINVAL;
1298 type &= SOCK_TYPE_MASK;
1299
1300 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1301 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1302
1303 /*
1304 * Obtain the first socket and check if the underlying protocol
1305 * supports the socketpair call.
1306 */
1307
1308 err = sock_create(family, type, protocol, &sock1);
1309 if (err < 0)
1310 goto out;
1311
1312 err = sock_create(family, type, protocol, &sock2);
1313 if (err < 0)
1314 goto out_release_1;
1315
1316 err = sock1->ops->socketpair(sock1, sock2);
1317 if (err < 0)
1318 goto out_release_both;
1319
1320 fd1 = get_unused_fd_flags(flags);
1321 if (unlikely(fd1 < 0)) {
1322 err = fd1;
1323 goto out_release_both;
1324 }
1325
1326 fd2 = get_unused_fd_flags(flags);
1327 if (unlikely(fd2 < 0)) {
1328 err = fd2;
1329 goto out_put_unused_1;
1330 }
1331
1332 newfile1 = sock_alloc_file(sock1, flags, NULL);
1333 if (IS_ERR(newfile1)) {
1334 err = PTR_ERR(newfile1);
1335 goto out_put_unused_both;
1336 }
1337
1338 newfile2 = sock_alloc_file(sock2, flags, NULL);
1339 if (IS_ERR(newfile2)) {
1340 err = PTR_ERR(newfile2);
1341 goto out_fput_1;
1342 }
1343
1344 err = put_user(fd1, &usockvec[0]);
1345 if (err)
1346 goto out_fput_both;
1347
1348 err = put_user(fd2, &usockvec[1]);
1349 if (err)
1350 goto out_fput_both;
1351
1352 audit_fd_pair(fd1, fd2);
1353
1354 fd_install(fd1, newfile1);
1355 fd_install(fd2, newfile2);
1356 /* fd1 and fd2 may be already another descriptors.
1357 * Not kernel problem.
1358 */
1359
1360 return 0;
1361
1362out_fput_both:
1363 fput(newfile2);
1364 fput(newfile1);
1365 put_unused_fd(fd2);
1366 put_unused_fd(fd1);
1367 goto out;
1368
1369out_fput_1:
1370 fput(newfile1);
1371 put_unused_fd(fd2);
1372 put_unused_fd(fd1);
1373 sock_release(sock2);
1374 goto out;
1375
1376out_put_unused_both:
1377 put_unused_fd(fd2);
1378out_put_unused_1:
1379 put_unused_fd(fd1);
1380out_release_both:
1381 sock_release(sock2);
1382out_release_1:
1383 sock_release(sock1);
1384out:
1385 return err;
1386}
1387
1388/*
1389 * Bind a name to a socket. Nothing much to do here since it's
1390 * the protocol's responsibility to handle the local address.
1391 *
1392 * We move the socket address to kernel space before we call
1393 * the protocol layer (having also checked the address is ok).
1394 */
1395
1396SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1397{
1398 struct socket *sock;
1399 struct sockaddr_storage address;
1400 int err, fput_needed;
1401
1402 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1403 if (sock) {
1404 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1405 if (err >= 0) {
1406 err = security_socket_bind(sock,
1407 (struct sockaddr *)&address,
1408 addrlen);
1409 if (!err)
1410 err = sock->ops->bind(sock,
1411 (struct sockaddr *)
1412 &address, addrlen);
1413 }
1414 fput_light(sock->file, fput_needed);
1415 }
1416 return err;
1417}
1418
1419/*
1420 * Perform a listen. Basically, we allow the protocol to do anything
1421 * necessary for a listen, and if that works, we mark the socket as
1422 * ready for listening.
1423 */
1424
1425SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1426{
1427 struct socket *sock;
1428 int err, fput_needed;
1429 int somaxconn;
1430
1431 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1432 if (sock) {
1433 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1434 if ((unsigned int)backlog > somaxconn)
1435 backlog = somaxconn;
1436
1437 err = security_socket_listen(sock, backlog);
1438 if (!err)
1439 err = sock->ops->listen(sock, backlog);
1440
1441 fput_light(sock->file, fput_needed);
1442 }
1443 return err;
1444}
1445
1446/*
1447 * For accept, we attempt to create a new socket, set up the link
1448 * with the client, wake up the client, then return the new
1449 * connected fd. We collect the address of the connector in kernel
1450 * space and move it to user at the very end. This is unclean because
1451 * we open the socket then return an error.
1452 *
1453 * 1003.1g adds the ability to recvmsg() to query connection pending
1454 * status to recvmsg. We need to add that support in a way thats
1455 * clean when we restucture accept also.
1456 */
1457
1458SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1459 int __user *, upeer_addrlen, int, flags)
1460{
1461 struct socket *sock, *newsock;
1462 struct file *newfile;
1463 int err, len, newfd, fput_needed;
1464 struct sockaddr_storage address;
1465
1466 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1467 return -EINVAL;
1468
1469 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1470 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1471
1472 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1473 if (!sock)
1474 goto out;
1475
1476 err = -ENFILE;
1477 newsock = sock_alloc();
1478 if (!newsock)
1479 goto out_put;
1480
1481 newsock->type = sock->type;
1482 newsock->ops = sock->ops;
1483
1484 /*
1485 * We don't need try_module_get here, as the listening socket (sock)
1486 * has the protocol module (sock->ops->owner) held.
1487 */
1488 __module_get(newsock->ops->owner);
1489
1490 newfd = get_unused_fd_flags(flags);
1491 if (unlikely(newfd < 0)) {
1492 err = newfd;
1493 sock_release(newsock);
1494 goto out_put;
1495 }
1496 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1497 if (IS_ERR(newfile)) {
1498 err = PTR_ERR(newfile);
1499 put_unused_fd(newfd);
1500 sock_release(newsock);
1501 goto out_put;
1502 }
1503
1504 err = security_socket_accept(sock, newsock);
1505 if (err)
1506 goto out_fd;
1507
1508 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1509 if (err < 0)
1510 goto out_fd;
1511
1512 if (upeer_sockaddr) {
1513 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1514 &len, 2) < 0) {
1515 err = -ECONNABORTED;
1516 goto out_fd;
1517 }
1518 err = move_addr_to_user(&address,
1519 len, upeer_sockaddr, upeer_addrlen);
1520 if (err < 0)
1521 goto out_fd;
1522 }
1523
1524 /* File flags are not inherited via accept() unlike another OSes. */
1525
1526 fd_install(newfd, newfile);
1527 err = newfd;
1528
1529out_put:
1530 fput_light(sock->file, fput_needed);
1531out:
1532 return err;
1533out_fd:
1534 fput(newfile);
1535 put_unused_fd(newfd);
1536 goto out_put;
1537}
1538
1539SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1540 int __user *, upeer_addrlen)
1541{
1542 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1543}
1544
1545/*
1546 * Attempt to connect to a socket with the server address. The address
1547 * is in user space so we verify it is OK and move it to kernel space.
1548 *
1549 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1550 * break bindings
1551 *
1552 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1553 * other SEQPACKET protocols that take time to connect() as it doesn't
1554 * include the -EINPROGRESS status for such sockets.
1555 */
1556
1557SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1558 int, addrlen)
1559{
1560 struct socket *sock;
1561 struct sockaddr_storage address;
1562 int err, fput_needed;
1563
1564 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1565 if (!sock)
1566 goto out;
1567 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1568 if (err < 0)
1569 goto out_put;
1570
1571 err =
1572 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1573 if (err)
1574 goto out_put;
1575
1576 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1577 sock->file->f_flags);
1578out_put:
1579 fput_light(sock->file, fput_needed);
1580out:
1581 return err;
1582}
1583
1584/*
1585 * Get the local address ('name') of a socket object. Move the obtained
1586 * name to user space.
1587 */
1588
1589SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1590 int __user *, usockaddr_len)
1591{
1592 struct socket *sock;
1593 struct sockaddr_storage address;
1594 int len, err, fput_needed;
1595
1596 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1597 if (!sock)
1598 goto out;
1599
1600 err = security_socket_getsockname(sock);
1601 if (err)
1602 goto out_put;
1603
1604 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1605 if (err)
1606 goto out_put;
1607 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1608
1609out_put:
1610 fput_light(sock->file, fput_needed);
1611out:
1612 return err;
1613}
1614
1615/*
1616 * Get the remote address ('name') of a socket object. Move the obtained
1617 * name to user space.
1618 */
1619
1620SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1621 int __user *, usockaddr_len)
1622{
1623 struct socket *sock;
1624 struct sockaddr_storage address;
1625 int len, err, fput_needed;
1626
1627 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1628 if (sock != NULL) {
1629 err = security_socket_getpeername(sock);
1630 if (err) {
1631 fput_light(sock->file, fput_needed);
1632 return err;
1633 }
1634
1635 err =
1636 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1637 1);
1638 if (!err)
1639 err = move_addr_to_user(&address, len, usockaddr,
1640 usockaddr_len);
1641 fput_light(sock->file, fput_needed);
1642 }
1643 return err;
1644}
1645
1646/*
1647 * Send a datagram to a given address. We move the address into kernel
1648 * space and check the user space data area is readable before invoking
1649 * the protocol.
1650 */
1651
1652SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1653 unsigned int, flags, struct sockaddr __user *, addr,
1654 int, addr_len)
1655{
1656 struct socket *sock;
1657 struct sockaddr_storage address;
1658 int err;
1659 struct msghdr msg;
1660 struct iovec iov;
1661 int fput_needed;
1662
1663 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1664 if (unlikely(err))
1665 return err;
1666 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1667 if (!sock)
1668 goto out;
1669
1670 msg.msg_name = NULL;
1671 msg.msg_control = NULL;
1672 msg.msg_controllen = 0;
1673 msg.msg_namelen = 0;
1674 if (addr) {
1675 err = move_addr_to_kernel(addr, addr_len, &address);
1676 if (err < 0)
1677 goto out_put;
1678 msg.msg_name = (struct sockaddr *)&address;
1679 msg.msg_namelen = addr_len;
1680 }
1681 if (sock->file->f_flags & O_NONBLOCK)
1682 flags |= MSG_DONTWAIT;
1683 msg.msg_flags = flags;
1684 err = sock_sendmsg(sock, &msg);
1685
1686out_put:
1687 fput_light(sock->file, fput_needed);
1688out:
1689 return err;
1690}
1691
1692/*
1693 * Send a datagram down a socket.
1694 */
1695
1696SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1697 unsigned int, flags)
1698{
1699 return sys_sendto(fd, buff, len, flags, NULL, 0);
1700}
1701
1702/*
1703 * Receive a frame from the socket and optionally record the address of the
1704 * sender. We verify the buffers are writable and if needed move the
1705 * sender address from kernel to user space.
1706 */
1707
1708SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1709 unsigned int, flags, struct sockaddr __user *, addr,
1710 int __user *, addr_len)
1711{
1712 struct socket *sock;
1713 struct iovec iov;
1714 struct msghdr msg;
1715 struct sockaddr_storage address;
1716 int err, err2;
1717 int fput_needed;
1718
1719 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1720 if (unlikely(err))
1721 return err;
1722 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1723 if (!sock)
1724 goto out;
1725
1726 msg.msg_control = NULL;
1727 msg.msg_controllen = 0;
1728 /* Save some cycles and don't copy the address if not needed */
1729 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1730 /* We assume all kernel code knows the size of sockaddr_storage */
1731 msg.msg_namelen = 0;
1732 msg.msg_iocb = NULL;
1733 msg.msg_flags = 0;
1734 if (sock->file->f_flags & O_NONBLOCK)
1735 flags |= MSG_DONTWAIT;
1736 err = sock_recvmsg(sock, &msg, flags);
1737
1738 if (err >= 0 && addr != NULL) {
1739 err2 = move_addr_to_user(&address,
1740 msg.msg_namelen, addr, addr_len);
1741 if (err2 < 0)
1742 err = err2;
1743 }
1744
1745 fput_light(sock->file, fput_needed);
1746out:
1747 return err;
1748}
1749
1750/*
1751 * Receive a datagram from a socket.
1752 */
1753
1754SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1755 unsigned int, flags)
1756{
1757 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1758}
1759
1760/*
1761 * Set a socket option. Because we don't know the option lengths we have
1762 * to pass the user mode parameter for the protocols to sort out.
1763 */
1764
1765SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1766 char __user *, optval, int, optlen)
1767{
1768 int err, fput_needed;
1769 struct socket *sock;
1770
1771 if (optlen < 0)
1772 return -EINVAL;
1773
1774 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1775 if (sock != NULL) {
1776 err = security_socket_setsockopt(sock, level, optname);
1777 if (err)
1778 goto out_put;
1779
1780 if (level == SOL_SOCKET)
1781 err =
1782 sock_setsockopt(sock, level, optname, optval,
1783 optlen);
1784 else
1785 err =
1786 sock->ops->setsockopt(sock, level, optname, optval,
1787 optlen);
1788out_put:
1789 fput_light(sock->file, fput_needed);
1790 }
1791 return err;
1792}
1793
1794/*
1795 * Get a socket option. Because we don't know the option lengths we have
1796 * to pass a user mode parameter for the protocols to sort out.
1797 */
1798
1799SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1800 char __user *, optval, int __user *, optlen)
1801{
1802 int err, fput_needed;
1803 struct socket *sock;
1804
1805 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806 if (sock != NULL) {
1807 err = security_socket_getsockopt(sock, level, optname);
1808 if (err)
1809 goto out_put;
1810
1811 if (level == SOL_SOCKET)
1812 err =
1813 sock_getsockopt(sock, level, optname, optval,
1814 optlen);
1815 else
1816 err =
1817 sock->ops->getsockopt(sock, level, optname, optval,
1818 optlen);
1819out_put:
1820 fput_light(sock->file, fput_needed);
1821 }
1822 return err;
1823}
1824
1825/*
1826 * Shutdown a socket.
1827 */
1828
1829SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1830{
1831 int err, fput_needed;
1832 struct socket *sock;
1833
1834 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1835 if (sock != NULL) {
1836 err = security_socket_shutdown(sock, how);
1837 if (!err)
1838 err = sock->ops->shutdown(sock, how);
1839 fput_light(sock->file, fput_needed);
1840 }
1841 return err;
1842}
1843
1844/* A couple of helpful macros for getting the address of the 32/64 bit
1845 * fields which are the same type (int / unsigned) on our platforms.
1846 */
1847#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1848#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1849#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1850
1851struct used_address {
1852 struct sockaddr_storage name;
1853 unsigned int name_len;
1854};
1855
1856static int copy_msghdr_from_user(struct msghdr *kmsg,
1857 struct user_msghdr __user *umsg,
1858 struct sockaddr __user **save_addr,
1859 struct iovec **iov)
1860{
1861 struct sockaddr __user *uaddr;
1862 struct iovec __user *uiov;
1863 size_t nr_segs;
1864 ssize_t err;
1865
1866 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1867 __get_user(uaddr, &umsg->msg_name) ||
1868 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1869 __get_user(uiov, &umsg->msg_iov) ||
1870 __get_user(nr_segs, &umsg->msg_iovlen) ||
1871 __get_user(kmsg->msg_control, &umsg->msg_control) ||
1872 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1873 __get_user(kmsg->msg_flags, &umsg->msg_flags))
1874 return -EFAULT;
1875
1876 if (!uaddr)
1877 kmsg->msg_namelen = 0;
1878
1879 if (kmsg->msg_namelen < 0)
1880 return -EINVAL;
1881
1882 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1883 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1884
1885 if (save_addr)
1886 *save_addr = uaddr;
1887
1888 if (uaddr && kmsg->msg_namelen) {
1889 if (!save_addr) {
1890 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1891 kmsg->msg_name);
1892 if (err < 0)
1893 return err;
1894 }
1895 } else {
1896 kmsg->msg_name = NULL;
1897 kmsg->msg_namelen = 0;
1898 }
1899
1900 if (nr_segs > UIO_MAXIOV)
1901 return -EMSGSIZE;
1902
1903 kmsg->msg_iocb = NULL;
1904
1905 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1906 UIO_FASTIOV, iov, &kmsg->msg_iter);
1907}
1908
1909static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1910 struct msghdr *msg_sys, unsigned int flags,
1911 struct used_address *used_address,
1912 unsigned int allowed_msghdr_flags)
1913{
1914 struct compat_msghdr __user *msg_compat =
1915 (struct compat_msghdr __user *)msg;
1916 struct sockaddr_storage address;
1917 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1918 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1919 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1920 /* 20 is size of ipv6_pktinfo */
1921 unsigned char *ctl_buf = ctl;
1922 int ctl_len;
1923 ssize_t err;
1924
1925 msg_sys->msg_name = &address;
1926
1927 if (MSG_CMSG_COMPAT & flags)
1928 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1929 else
1930 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1931 if (err < 0)
1932 return err;
1933
1934 err = -ENOBUFS;
1935
1936 if (msg_sys->msg_controllen > INT_MAX)
1937 goto out_freeiov;
1938 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1939 ctl_len = msg_sys->msg_controllen;
1940 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1941 err =
1942 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1943 sizeof(ctl));
1944 if (err)
1945 goto out_freeiov;
1946 ctl_buf = msg_sys->msg_control;
1947 ctl_len = msg_sys->msg_controllen;
1948 } else if (ctl_len) {
1949 if (ctl_len > sizeof(ctl)) {
1950 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1951 if (ctl_buf == NULL)
1952 goto out_freeiov;
1953 }
1954 err = -EFAULT;
1955 /*
1956 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1957 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1958 * checking falls down on this.
1959 */
1960 if (copy_from_user(ctl_buf,
1961 (void __user __force *)msg_sys->msg_control,
1962 ctl_len))
1963 goto out_freectl;
1964 msg_sys->msg_control = ctl_buf;
1965 }
1966 msg_sys->msg_flags = flags;
1967
1968 if (sock->file->f_flags & O_NONBLOCK)
1969 msg_sys->msg_flags |= MSG_DONTWAIT;
1970 /*
1971 * If this is sendmmsg() and current destination address is same as
1972 * previously succeeded address, omit asking LSM's decision.
1973 * used_address->name_len is initialized to UINT_MAX so that the first
1974 * destination address never matches.
1975 */
1976 if (used_address && msg_sys->msg_name &&
1977 used_address->name_len == msg_sys->msg_namelen &&
1978 !memcmp(&used_address->name, msg_sys->msg_name,
1979 used_address->name_len)) {
1980 err = sock_sendmsg_nosec(sock, msg_sys);
1981 goto out_freectl;
1982 }
1983 err = sock_sendmsg(sock, msg_sys);
1984 /*
1985 * If this is sendmmsg() and sending to current destination address was
1986 * successful, remember it.
1987 */
1988 if (used_address && err >= 0) {
1989 used_address->name_len = msg_sys->msg_namelen;
1990 if (msg_sys->msg_name)
1991 memcpy(&used_address->name, msg_sys->msg_name,
1992 used_address->name_len);
1993 }
1994
1995out_freectl:
1996 if (ctl_buf != ctl)
1997 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1998out_freeiov:
1999 kfree(iov);
2000 return err;
2001}
2002
2003/*
2004 * BSD sendmsg interface
2005 */
2006
2007long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2008{
2009 int fput_needed, err;
2010 struct msghdr msg_sys;
2011 struct socket *sock;
2012
2013 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2014 if (!sock)
2015 goto out;
2016
2017 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2018
2019 fput_light(sock->file, fput_needed);
2020out:
2021 return err;
2022}
2023
2024SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2025{
2026 if (flags & MSG_CMSG_COMPAT)
2027 return -EINVAL;
2028 return __sys_sendmsg(fd, msg, flags);
2029}
2030
2031/*
2032 * Linux sendmmsg interface
2033 */
2034
2035int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2036 unsigned int flags)
2037{
2038 int fput_needed, err, datagrams;
2039 struct socket *sock;
2040 struct mmsghdr __user *entry;
2041 struct compat_mmsghdr __user *compat_entry;
2042 struct msghdr msg_sys;
2043 struct used_address used_address;
2044 unsigned int oflags = flags;
2045
2046 if (vlen > UIO_MAXIOV)
2047 vlen = UIO_MAXIOV;
2048
2049 datagrams = 0;
2050
2051 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2052 if (!sock)
2053 return err;
2054
2055 used_address.name_len = UINT_MAX;
2056 entry = mmsg;
2057 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2058 err = 0;
2059 flags |= MSG_BATCH;
2060
2061 while (datagrams < vlen) {
2062 if (datagrams == vlen - 1)
2063 flags = oflags;
2064
2065 if (MSG_CMSG_COMPAT & flags) {
2066 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2067 &msg_sys, flags, &used_address, MSG_EOR);
2068 if (err < 0)
2069 break;
2070 err = __put_user(err, &compat_entry->msg_len);
2071 ++compat_entry;
2072 } else {
2073 err = ___sys_sendmsg(sock,
2074 (struct user_msghdr __user *)entry,
2075 &msg_sys, flags, &used_address, MSG_EOR);
2076 if (err < 0)
2077 break;
2078 err = put_user(err, &entry->msg_len);
2079 ++entry;
2080 }
2081
2082 if (err)
2083 break;
2084 ++datagrams;
2085 if (msg_data_left(&msg_sys))
2086 break;
2087 cond_resched();
2088 }
2089
2090 fput_light(sock->file, fput_needed);
2091
2092 /* We only return an error if no datagrams were able to be sent */
2093 if (datagrams != 0)
2094 return datagrams;
2095
2096 return err;
2097}
2098
2099SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2100 unsigned int, vlen, unsigned int, flags)
2101{
2102 if (flags & MSG_CMSG_COMPAT)
2103 return -EINVAL;
2104 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2105}
2106
2107static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2108 struct msghdr *msg_sys, unsigned int flags, int nosec)
2109{
2110 struct compat_msghdr __user *msg_compat =
2111 (struct compat_msghdr __user *)msg;
2112 struct iovec iovstack[UIO_FASTIOV];
2113 struct iovec *iov = iovstack;
2114 unsigned long cmsg_ptr;
2115 int len;
2116 ssize_t err;
2117
2118 /* kernel mode address */
2119 struct sockaddr_storage addr;
2120
2121 /* user mode address pointers */
2122 struct sockaddr __user *uaddr;
2123 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2124
2125 msg_sys->msg_name = &addr;
2126
2127 if (MSG_CMSG_COMPAT & flags)
2128 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2129 else
2130 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2131 if (err < 0)
2132 return err;
2133
2134 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2135 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2136
2137 /* We assume all kernel code knows the size of sockaddr_storage */
2138 msg_sys->msg_namelen = 0;
2139
2140 if (sock->file->f_flags & O_NONBLOCK)
2141 flags |= MSG_DONTWAIT;
2142 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2143 if (err < 0)
2144 goto out_freeiov;
2145 len = err;
2146
2147 if (uaddr != NULL) {
2148 err = move_addr_to_user(&addr,
2149 msg_sys->msg_namelen, uaddr,
2150 uaddr_len);
2151 if (err < 0)
2152 goto out_freeiov;
2153 }
2154 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2155 COMPAT_FLAGS(msg));
2156 if (err)
2157 goto out_freeiov;
2158 if (MSG_CMSG_COMPAT & flags)
2159 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2160 &msg_compat->msg_controllen);
2161 else
2162 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2163 &msg->msg_controllen);
2164 if (err)
2165 goto out_freeiov;
2166 err = len;
2167
2168out_freeiov:
2169 kfree(iov);
2170 return err;
2171}
2172
2173/*
2174 * BSD recvmsg interface
2175 */
2176
2177long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2178{
2179 int fput_needed, err;
2180 struct msghdr msg_sys;
2181 struct socket *sock;
2182
2183 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2184 if (!sock)
2185 goto out;
2186
2187 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2188
2189 fput_light(sock->file, fput_needed);
2190out:
2191 return err;
2192}
2193
2194SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2195 unsigned int, flags)
2196{
2197 if (flags & MSG_CMSG_COMPAT)
2198 return -EINVAL;
2199 return __sys_recvmsg(fd, msg, flags);
2200}
2201
2202/*
2203 * Linux recvmmsg interface
2204 */
2205
2206int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2207 unsigned int flags, struct timespec *timeout)
2208{
2209 int fput_needed, err, datagrams;
2210 struct socket *sock;
2211 struct mmsghdr __user *entry;
2212 struct compat_mmsghdr __user *compat_entry;
2213 struct msghdr msg_sys;
2214 struct timespec64 end_time;
2215 struct timespec64 timeout64;
2216
2217 if (timeout &&
2218 poll_select_set_timeout(&end_time, timeout->tv_sec,
2219 timeout->tv_nsec))
2220 return -EINVAL;
2221
2222 datagrams = 0;
2223
2224 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2225 if (!sock)
2226 return err;
2227
2228 err = sock_error(sock->sk);
2229 if (err) {
2230 datagrams = err;
2231 goto out_put;
2232 }
2233
2234 entry = mmsg;
2235 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2236
2237 while (datagrams < vlen) {
2238 /*
2239 * No need to ask LSM for more than the first datagram.
2240 */
2241 if (MSG_CMSG_COMPAT & flags) {
2242 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2243 &msg_sys, flags & ~MSG_WAITFORONE,
2244 datagrams);
2245 if (err < 0)
2246 break;
2247 err = __put_user(err, &compat_entry->msg_len);
2248 ++compat_entry;
2249 } else {
2250 err = ___sys_recvmsg(sock,
2251 (struct user_msghdr __user *)entry,
2252 &msg_sys, flags & ~MSG_WAITFORONE,
2253 datagrams);
2254 if (err < 0)
2255 break;
2256 err = put_user(err, &entry->msg_len);
2257 ++entry;
2258 }
2259
2260 if (err)
2261 break;
2262 ++datagrams;
2263
2264 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2265 if (flags & MSG_WAITFORONE)
2266 flags |= MSG_DONTWAIT;
2267
2268 if (timeout) {
2269 ktime_get_ts64(&timeout64);
2270 *timeout = timespec64_to_timespec(
2271 timespec64_sub(end_time, timeout64));
2272 if (timeout->tv_sec < 0) {
2273 timeout->tv_sec = timeout->tv_nsec = 0;
2274 break;
2275 }
2276
2277 /* Timeout, return less than vlen datagrams */
2278 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2279 break;
2280 }
2281
2282 /* Out of band data, return right away */
2283 if (msg_sys.msg_flags & MSG_OOB)
2284 break;
2285 cond_resched();
2286 }
2287
2288 if (err == 0)
2289 goto out_put;
2290
2291 if (datagrams == 0) {
2292 datagrams = err;
2293 goto out_put;
2294 }
2295
2296 /*
2297 * We may return less entries than requested (vlen) if the
2298 * sock is non block and there aren't enough datagrams...
2299 */
2300 if (err != -EAGAIN) {
2301 /*
2302 * ... or if recvmsg returns an error after we
2303 * received some datagrams, where we record the
2304 * error to return on the next call or if the
2305 * app asks about it using getsockopt(SO_ERROR).
2306 */
2307 sock->sk->sk_err = -err;
2308 }
2309out_put:
2310 fput_light(sock->file, fput_needed);
2311
2312 return datagrams;
2313}
2314
2315SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2316 unsigned int, vlen, unsigned int, flags,
2317 struct timespec __user *, timeout)
2318{
2319 int datagrams;
2320 struct timespec timeout_sys;
2321
2322 if (flags & MSG_CMSG_COMPAT)
2323 return -EINVAL;
2324
2325 if (!timeout)
2326 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2327
2328 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2329 return -EFAULT;
2330
2331 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2332
2333 if (datagrams > 0 &&
2334 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2335 datagrams = -EFAULT;
2336
2337 return datagrams;
2338}
2339
2340#ifdef __ARCH_WANT_SYS_SOCKETCALL
2341/* Argument list sizes for sys_socketcall */
2342#define AL(x) ((x) * sizeof(unsigned long))
2343static const unsigned char nargs[21] = {
2344 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2345 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2346 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2347 AL(4), AL(5), AL(4)
2348};
2349
2350#undef AL
2351
2352/*
2353 * System call vectors.
2354 *
2355 * Argument checking cleaned up. Saved 20% in size.
2356 * This function doesn't need to set the kernel lock because
2357 * it is set by the callees.
2358 */
2359
2360SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2361{
2362 unsigned long a[AUDITSC_ARGS];
2363 unsigned long a0, a1;
2364 int err;
2365 unsigned int len;
2366
2367 if (call < 1 || call > SYS_SENDMMSG)
2368 return -EINVAL;
2369 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2370
2371 len = nargs[call];
2372 if (len > sizeof(a))
2373 return -EINVAL;
2374
2375 /* copy_from_user should be SMP safe. */
2376 if (copy_from_user(a, args, len))
2377 return -EFAULT;
2378
2379 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2380 if (err)
2381 return err;
2382
2383 a0 = a[0];
2384 a1 = a[1];
2385
2386 switch (call) {
2387 case SYS_SOCKET:
2388 err = sys_socket(a0, a1, a[2]);
2389 break;
2390 case SYS_BIND:
2391 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2392 break;
2393 case SYS_CONNECT:
2394 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2395 break;
2396 case SYS_LISTEN:
2397 err = sys_listen(a0, a1);
2398 break;
2399 case SYS_ACCEPT:
2400 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2401 (int __user *)a[2], 0);
2402 break;
2403 case SYS_GETSOCKNAME:
2404 err =
2405 sys_getsockname(a0, (struct sockaddr __user *)a1,
2406 (int __user *)a[2]);
2407 break;
2408 case SYS_GETPEERNAME:
2409 err =
2410 sys_getpeername(a0, (struct sockaddr __user *)a1,
2411 (int __user *)a[2]);
2412 break;
2413 case SYS_SOCKETPAIR:
2414 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2415 break;
2416 case SYS_SEND:
2417 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2418 break;
2419 case SYS_SENDTO:
2420 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2421 (struct sockaddr __user *)a[4], a[5]);
2422 break;
2423 case SYS_RECV:
2424 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2425 break;
2426 case SYS_RECVFROM:
2427 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2428 (struct sockaddr __user *)a[4],
2429 (int __user *)a[5]);
2430 break;
2431 case SYS_SHUTDOWN:
2432 err = sys_shutdown(a0, a1);
2433 break;
2434 case SYS_SETSOCKOPT:
2435 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2436 break;
2437 case SYS_GETSOCKOPT:
2438 err =
2439 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2440 (int __user *)a[4]);
2441 break;
2442 case SYS_SENDMSG:
2443 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2444 break;
2445 case SYS_SENDMMSG:
2446 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2447 break;
2448 case SYS_RECVMSG:
2449 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2450 break;
2451 case SYS_RECVMMSG:
2452 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2453 (struct timespec __user *)a[4]);
2454 break;
2455 case SYS_ACCEPT4:
2456 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2457 (int __user *)a[2], a[3]);
2458 break;
2459 default:
2460 err = -EINVAL;
2461 break;
2462 }
2463 return err;
2464}
2465
2466#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2467
2468/**
2469 * sock_register - add a socket protocol handler
2470 * @ops: description of protocol
2471 *
2472 * This function is called by a protocol handler that wants to
2473 * advertise its address family, and have it linked into the
2474 * socket interface. The value ops->family corresponds to the
2475 * socket system call protocol family.
2476 */
2477int sock_register(const struct net_proto_family *ops)
2478{
2479 int err;
2480
2481 if (ops->family >= NPROTO) {
2482 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2483 return -ENOBUFS;
2484 }
2485
2486 spin_lock(&net_family_lock);
2487 if (rcu_dereference_protected(net_families[ops->family],
2488 lockdep_is_held(&net_family_lock)))
2489 err = -EEXIST;
2490 else {
2491 rcu_assign_pointer(net_families[ops->family], ops);
2492 err = 0;
2493 }
2494 spin_unlock(&net_family_lock);
2495
2496 pr_info("NET: Registered protocol family %d\n", ops->family);
2497 return err;
2498}
2499EXPORT_SYMBOL(sock_register);
2500
2501/**
2502 * sock_unregister - remove a protocol handler
2503 * @family: protocol family to remove
2504 *
2505 * This function is called by a protocol handler that wants to
2506 * remove its address family, and have it unlinked from the
2507 * new socket creation.
2508 *
2509 * If protocol handler is a module, then it can use module reference
2510 * counts to protect against new references. If protocol handler is not
2511 * a module then it needs to provide its own protection in
2512 * the ops->create routine.
2513 */
2514void sock_unregister(int family)
2515{
2516 BUG_ON(family < 0 || family >= NPROTO);
2517
2518 spin_lock(&net_family_lock);
2519 RCU_INIT_POINTER(net_families[family], NULL);
2520 spin_unlock(&net_family_lock);
2521
2522 synchronize_rcu();
2523
2524 pr_info("NET: Unregistered protocol family %d\n", family);
2525}
2526EXPORT_SYMBOL(sock_unregister);
2527
2528static int __init sock_init(void)
2529{
2530 int err;
2531 /*
2532 * Initialize the network sysctl infrastructure.
2533 */
2534 err = net_sysctl_init();
2535 if (err)
2536 goto out;
2537
2538 /*
2539 * Initialize skbuff SLAB cache
2540 */
2541 skb_init();
2542
2543 /*
2544 * Initialize the protocols module.
2545 */
2546
2547 init_inodecache();
2548
2549 err = register_filesystem(&sock_fs_type);
2550 if (err)
2551 goto out_fs;
2552 sock_mnt = kern_mount(&sock_fs_type);
2553 if (IS_ERR(sock_mnt)) {
2554 err = PTR_ERR(sock_mnt);
2555 goto out_mount;
2556 }
2557
2558 /* The real protocol initialization is performed in later initcalls.
2559 */
2560
2561#ifdef CONFIG_NETFILTER
2562 err = netfilter_init();
2563 if (err)
2564 goto out;
2565#endif
2566
2567 ptp_classifier_init();
2568
2569out:
2570 return err;
2571
2572out_mount:
2573 unregister_filesystem(&sock_fs_type);
2574out_fs:
2575 goto out;
2576}
2577
2578core_initcall(sock_init); /* early initcall */
2579
2580static int __init jit_init(void)
2581{
2582#ifdef CONFIG_BPF_JIT_ALWAYS_ON
2583 bpf_jit_enable = 1;
2584#endif
2585 return 0;
2586}
2587pure_initcall(jit_init);
2588
2589#ifdef CONFIG_PROC_FS
2590void socket_seq_show(struct seq_file *seq)
2591{
2592 int cpu;
2593 int counter = 0;
2594
2595 for_each_possible_cpu(cpu)
2596 counter += per_cpu(sockets_in_use, cpu);
2597
2598 /* It can be negative, by the way. 8) */
2599 if (counter < 0)
2600 counter = 0;
2601
2602 seq_printf(seq, "sockets: used %d\n", counter);
2603}
2604#endif /* CONFIG_PROC_FS */
2605
2606#ifdef CONFIG_COMPAT
2607static int do_siocgstamp(struct net *net, struct socket *sock,
2608 unsigned int cmd, void __user *up)
2609{
2610 mm_segment_t old_fs = get_fs();
2611 struct timeval ktv;
2612 int err;
2613
2614 set_fs(KERNEL_DS);
2615 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2616 set_fs(old_fs);
2617 if (!err)
2618 err = compat_put_timeval(&ktv, up);
2619
2620 return err;
2621}
2622
2623static int do_siocgstampns(struct net *net, struct socket *sock,
2624 unsigned int cmd, void __user *up)
2625{
2626 mm_segment_t old_fs = get_fs();
2627 struct timespec kts;
2628 int err;
2629
2630 set_fs(KERNEL_DS);
2631 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2632 set_fs(old_fs);
2633 if (!err)
2634 err = compat_put_timespec(&kts, up);
2635
2636 return err;
2637}
2638
2639static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2640{
2641 struct ifreq __user *uifr;
2642 int err;
2643
2644 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2645 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2646 return -EFAULT;
2647
2648 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2649 if (err)
2650 return err;
2651
2652 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2653 return -EFAULT;
2654
2655 return 0;
2656}
2657
2658static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2659{
2660 struct compat_ifconf ifc32;
2661 struct ifconf ifc;
2662 struct ifconf __user *uifc;
2663 struct compat_ifreq __user *ifr32;
2664 struct ifreq __user *ifr;
2665 unsigned int i, j;
2666 int err;
2667
2668 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2669 return -EFAULT;
2670
2671 memset(&ifc, 0, sizeof(ifc));
2672 if (ifc32.ifcbuf == 0) {
2673 ifc32.ifc_len = 0;
2674 ifc.ifc_len = 0;
2675 ifc.ifc_req = NULL;
2676 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2677 } else {
2678 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2679 sizeof(struct ifreq);
2680 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2681 ifc.ifc_len = len;
2682 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2683 ifr32 = compat_ptr(ifc32.ifcbuf);
2684 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2685 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2686 return -EFAULT;
2687 ifr++;
2688 ifr32++;
2689 }
2690 }
2691 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2692 return -EFAULT;
2693
2694 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2695 if (err)
2696 return err;
2697
2698 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2699 return -EFAULT;
2700
2701 ifr = ifc.ifc_req;
2702 ifr32 = compat_ptr(ifc32.ifcbuf);
2703 for (i = 0, j = 0;
2704 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2705 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2706 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2707 return -EFAULT;
2708 ifr32++;
2709 ifr++;
2710 }
2711
2712 if (ifc32.ifcbuf == 0) {
2713 /* Translate from 64-bit structure multiple to
2714 * a 32-bit one.
2715 */
2716 i = ifc.ifc_len;
2717 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2718 ifc32.ifc_len = i;
2719 } else {
2720 ifc32.ifc_len = i;
2721 }
2722 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2723 return -EFAULT;
2724
2725 return 0;
2726}
2727
2728static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2729{
2730 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2731 bool convert_in = false, convert_out = false;
2732 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2733 struct ethtool_rxnfc __user *rxnfc;
2734 struct ifreq __user *ifr;
2735 u32 rule_cnt = 0, actual_rule_cnt;
2736 u32 ethcmd;
2737 u32 data;
2738 int ret;
2739
2740 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2741 return -EFAULT;
2742
2743 compat_rxnfc = compat_ptr(data);
2744
2745 if (get_user(ethcmd, &compat_rxnfc->cmd))
2746 return -EFAULT;
2747
2748 /* Most ethtool structures are defined without padding.
2749 * Unfortunately struct ethtool_rxnfc is an exception.
2750 */
2751 switch (ethcmd) {
2752 default:
2753 break;
2754 case ETHTOOL_GRXCLSRLALL:
2755 /* Buffer size is variable */
2756 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2757 return -EFAULT;
2758 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2759 return -ENOMEM;
2760 buf_size += rule_cnt * sizeof(u32);
2761 /* fall through */
2762 case ETHTOOL_GRXRINGS:
2763 case ETHTOOL_GRXCLSRLCNT:
2764 case ETHTOOL_GRXCLSRULE:
2765 case ETHTOOL_SRXCLSRLINS:
2766 convert_out = true;
2767 /* fall through */
2768 case ETHTOOL_SRXCLSRLDEL:
2769 buf_size += sizeof(struct ethtool_rxnfc);
2770 convert_in = true;
2771 break;
2772 }
2773
2774 ifr = compat_alloc_user_space(buf_size);
2775 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2776
2777 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2778 return -EFAULT;
2779
2780 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2781 &ifr->ifr_ifru.ifru_data))
2782 return -EFAULT;
2783
2784 if (convert_in) {
2785 /* We expect there to be holes between fs.m_ext and
2786 * fs.ring_cookie and at the end of fs, but nowhere else.
2787 */
2788 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2789 sizeof(compat_rxnfc->fs.m_ext) !=
2790 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2791 sizeof(rxnfc->fs.m_ext));
2792 BUILD_BUG_ON(
2793 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2794 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2795 offsetof(struct ethtool_rxnfc, fs.location) -
2796 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2797
2798 if (copy_in_user(rxnfc, compat_rxnfc,
2799 (void __user *)(&rxnfc->fs.m_ext + 1) -
2800 (void __user *)rxnfc) ||
2801 copy_in_user(&rxnfc->fs.ring_cookie,
2802 &compat_rxnfc->fs.ring_cookie,
2803 (void __user *)(&rxnfc->fs.location + 1) -
2804 (void __user *)&rxnfc->fs.ring_cookie))
2805 return -EFAULT;
2806 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2807 if (put_user(rule_cnt, &rxnfc->rule_cnt))
2808 return -EFAULT;
2809 } else if (copy_in_user(&rxnfc->rule_cnt,
2810 &compat_rxnfc->rule_cnt,
2811 sizeof(rxnfc->rule_cnt)))
2812 return -EFAULT;
2813 }
2814
2815 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2816 if (ret)
2817 return ret;
2818
2819 if (convert_out) {
2820 if (copy_in_user(compat_rxnfc, rxnfc,
2821 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2822 (const void __user *)rxnfc) ||
2823 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2824 &rxnfc->fs.ring_cookie,
2825 (const void __user *)(&rxnfc->fs.location + 1) -
2826 (const void __user *)&rxnfc->fs.ring_cookie) ||
2827 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2828 sizeof(rxnfc->rule_cnt)))
2829 return -EFAULT;
2830
2831 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2832 /* As an optimisation, we only copy the actual
2833 * number of rules that the underlying
2834 * function returned. Since Mallory might
2835 * change the rule count in user memory, we
2836 * check that it is less than the rule count
2837 * originally given (as the user buffer size),
2838 * which has been range-checked.
2839 */
2840 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2841 return -EFAULT;
2842 if (actual_rule_cnt < rule_cnt)
2843 rule_cnt = actual_rule_cnt;
2844 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2845 &rxnfc->rule_locs[0],
2846 rule_cnt * sizeof(u32)))
2847 return -EFAULT;
2848 }
2849 }
2850
2851 return 0;
2852}
2853
2854static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2855{
2856 void __user *uptr;
2857 compat_uptr_t uptr32;
2858 struct ifreq __user *uifr;
2859
2860 uifr = compat_alloc_user_space(sizeof(*uifr));
2861 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2862 return -EFAULT;
2863
2864 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2865 return -EFAULT;
2866
2867 uptr = compat_ptr(uptr32);
2868
2869 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2870 return -EFAULT;
2871
2872 return dev_ioctl(net, SIOCWANDEV, uifr);
2873}
2874
2875static int bond_ioctl(struct net *net, unsigned int cmd,
2876 struct compat_ifreq __user *ifr32)
2877{
2878 struct ifreq kifr;
2879 mm_segment_t old_fs;
2880 int err;
2881
2882 switch (cmd) {
2883 case SIOCBONDENSLAVE:
2884 case SIOCBONDRELEASE:
2885 case SIOCBONDSETHWADDR:
2886 case SIOCBONDCHANGEACTIVE:
2887 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2888 return -EFAULT;
2889
2890 old_fs = get_fs();
2891 set_fs(KERNEL_DS);
2892 err = dev_ioctl(net, cmd,
2893 (struct ifreq __user __force *) &kifr);
2894 set_fs(old_fs);
2895
2896 return err;
2897 default:
2898 return -ENOIOCTLCMD;
2899 }
2900}
2901
2902/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2903static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2904 struct compat_ifreq __user *u_ifreq32)
2905{
2906 struct ifreq __user *u_ifreq64;
2907 char tmp_buf[IFNAMSIZ];
2908 void __user *data64;
2909 u32 data32;
2910
2911 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2912 IFNAMSIZ))
2913 return -EFAULT;
2914 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2915 return -EFAULT;
2916 data64 = compat_ptr(data32);
2917
2918 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2919
2920 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2921 IFNAMSIZ))
2922 return -EFAULT;
2923 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2924 return -EFAULT;
2925
2926 return dev_ioctl(net, cmd, u_ifreq64);
2927}
2928
2929static int dev_ifsioc(struct net *net, struct socket *sock,
2930 unsigned int cmd, struct compat_ifreq __user *uifr32)
2931{
2932 struct ifreq __user *uifr;
2933 int err;
2934
2935 uifr = compat_alloc_user_space(sizeof(*uifr));
2936 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2937 return -EFAULT;
2938
2939 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2940
2941 if (!err) {
2942 switch (cmd) {
2943 case SIOCGIFFLAGS:
2944 case SIOCGIFMETRIC:
2945 case SIOCGIFMTU:
2946 case SIOCGIFMEM:
2947 case SIOCGIFHWADDR:
2948 case SIOCGIFINDEX:
2949 case SIOCGIFADDR:
2950 case SIOCGIFBRDADDR:
2951 case SIOCGIFDSTADDR:
2952 case SIOCGIFNETMASK:
2953 case SIOCGIFPFLAGS:
2954 case SIOCGIFTXQLEN:
2955 case SIOCGMIIPHY:
2956 case SIOCGMIIREG:
2957 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2958 err = -EFAULT;
2959 break;
2960 }
2961 }
2962 return err;
2963}
2964
2965static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2966 struct compat_ifreq __user *uifr32)
2967{
2968 struct ifreq ifr;
2969 struct compat_ifmap __user *uifmap32;
2970 mm_segment_t old_fs;
2971 int err;
2972
2973 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2974 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2975 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2976 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2977 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2978 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2979 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2980 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2981 if (err)
2982 return -EFAULT;
2983
2984 old_fs = get_fs();
2985 set_fs(KERNEL_DS);
2986 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
2987 set_fs(old_fs);
2988
2989 if (cmd == SIOCGIFMAP && !err) {
2990 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2991 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2992 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2993 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2994 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2995 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2996 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2997 if (err)
2998 err = -EFAULT;
2999 }
3000 return err;
3001}
3002
3003struct rtentry32 {
3004 u32 rt_pad1;
3005 struct sockaddr rt_dst; /* target address */
3006 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3007 struct sockaddr rt_genmask; /* target network mask (IP) */
3008 unsigned short rt_flags;
3009 short rt_pad2;
3010 u32 rt_pad3;
3011 unsigned char rt_tos;
3012 unsigned char rt_class;
3013 short rt_pad4;
3014 short rt_metric; /* +1 for binary compatibility! */
3015 /* char * */ u32 rt_dev; /* forcing the device at add */
3016 u32 rt_mtu; /* per route MTU/Window */
3017 u32 rt_window; /* Window clamping */
3018 unsigned short rt_irtt; /* Initial RTT */
3019};
3020
3021struct in6_rtmsg32 {
3022 struct in6_addr rtmsg_dst;
3023 struct in6_addr rtmsg_src;
3024 struct in6_addr rtmsg_gateway;
3025 u32 rtmsg_type;
3026 u16 rtmsg_dst_len;
3027 u16 rtmsg_src_len;
3028 u32 rtmsg_metric;
3029 u32 rtmsg_info;
3030 u32 rtmsg_flags;
3031 s32 rtmsg_ifindex;
3032};
3033
3034static int routing_ioctl(struct net *net, struct socket *sock,
3035 unsigned int cmd, void __user *argp)
3036{
3037 int ret;
3038 void *r = NULL;
3039 struct in6_rtmsg r6;
3040 struct rtentry r4;
3041 char devname[16];
3042 u32 rtdev;
3043 mm_segment_t old_fs = get_fs();
3044
3045 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3046 struct in6_rtmsg32 __user *ur6 = argp;
3047 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3048 3 * sizeof(struct in6_addr));
3049 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3050 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3051 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3052 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3053 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3054 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3055 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3056
3057 r = (void *) &r6;
3058 } else { /* ipv4 */
3059 struct rtentry32 __user *ur4 = argp;
3060 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3061 3 * sizeof(struct sockaddr));
3062 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3063 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3064 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3065 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3066 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3067 ret |= get_user(rtdev, &(ur4->rt_dev));
3068 if (rtdev) {
3069 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3070 r4.rt_dev = (char __user __force *)devname;
3071 devname[15] = 0;
3072 } else
3073 r4.rt_dev = NULL;
3074
3075 r = (void *) &r4;
3076 }
3077
3078 if (ret) {
3079 ret = -EFAULT;
3080 goto out;
3081 }
3082
3083 set_fs(KERNEL_DS);
3084 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3085 set_fs(old_fs);
3086
3087out:
3088 return ret;
3089}
3090
3091/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3092 * for some operations; this forces use of the newer bridge-utils that
3093 * use compatible ioctls
3094 */
3095static int old_bridge_ioctl(compat_ulong_t __user *argp)
3096{
3097 compat_ulong_t tmp;
3098
3099 if (get_user(tmp, argp))
3100 return -EFAULT;
3101 if (tmp == BRCTL_GET_VERSION)
3102 return BRCTL_VERSION + 1;
3103 return -EINVAL;
3104}
3105
3106static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3107 unsigned int cmd, unsigned long arg)
3108{
3109 void __user *argp = compat_ptr(arg);
3110 struct sock *sk = sock->sk;
3111 struct net *net = sock_net(sk);
3112
3113 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3114 return compat_ifr_data_ioctl(net, cmd, argp);
3115
3116 switch (cmd) {
3117 case SIOCSIFBR:
3118 case SIOCGIFBR:
3119 return old_bridge_ioctl(argp);
3120 case SIOCGIFNAME:
3121 return dev_ifname32(net, argp);
3122 case SIOCGIFCONF:
3123 return dev_ifconf(net, argp);
3124 case SIOCETHTOOL:
3125 return ethtool_ioctl(net, argp);
3126 case SIOCWANDEV:
3127 return compat_siocwandev(net, argp);
3128 case SIOCGIFMAP:
3129 case SIOCSIFMAP:
3130 return compat_sioc_ifmap(net, cmd, argp);
3131 case SIOCBONDENSLAVE:
3132 case SIOCBONDRELEASE:
3133 case SIOCBONDSETHWADDR:
3134 case SIOCBONDCHANGEACTIVE:
3135 return bond_ioctl(net, cmd, argp);
3136 case SIOCADDRT:
3137 case SIOCDELRT:
3138 return routing_ioctl(net, sock, cmd, argp);
3139 case SIOCGSTAMP:
3140 return do_siocgstamp(net, sock, cmd, argp);
3141 case SIOCGSTAMPNS:
3142 return do_siocgstampns(net, sock, cmd, argp);
3143 case SIOCBONDSLAVEINFOQUERY:
3144 case SIOCBONDINFOQUERY:
3145 case SIOCSHWTSTAMP:
3146 case SIOCGHWTSTAMP:
3147 return compat_ifr_data_ioctl(net, cmd, argp);
3148
3149 case FIOSETOWN:
3150 case SIOCSPGRP:
3151 case FIOGETOWN:
3152 case SIOCGPGRP:
3153 case SIOCBRADDBR:
3154 case SIOCBRDELBR:
3155 case SIOCGIFVLAN:
3156 case SIOCSIFVLAN:
3157 case SIOCADDDLCI:
3158 case SIOCDELDLCI:
3159 return sock_ioctl(file, cmd, arg);
3160
3161 case SIOCGIFFLAGS:
3162 case SIOCSIFFLAGS:
3163 case SIOCGIFMETRIC:
3164 case SIOCSIFMETRIC:
3165 case SIOCGIFMTU:
3166 case SIOCSIFMTU:
3167 case SIOCGIFMEM:
3168 case SIOCSIFMEM:
3169 case SIOCGIFHWADDR:
3170 case SIOCSIFHWADDR:
3171 case SIOCADDMULTI:
3172 case SIOCDELMULTI:
3173 case SIOCGIFINDEX:
3174 case SIOCGIFADDR:
3175 case SIOCSIFADDR:
3176 case SIOCSIFHWBROADCAST:
3177 case SIOCDIFADDR:
3178 case SIOCGIFBRDADDR:
3179 case SIOCSIFBRDADDR:
3180 case SIOCGIFDSTADDR:
3181 case SIOCSIFDSTADDR:
3182 case SIOCGIFNETMASK:
3183 case SIOCSIFNETMASK:
3184 case SIOCSIFPFLAGS:
3185 case SIOCGIFPFLAGS:
3186 case SIOCGIFTXQLEN:
3187 case SIOCSIFTXQLEN:
3188 case SIOCBRADDIF:
3189 case SIOCBRDELIF:
3190 case SIOCSIFNAME:
3191 case SIOCGMIIPHY:
3192 case SIOCGMIIREG:
3193 case SIOCSMIIREG:
3194 return dev_ifsioc(net, sock, cmd, argp);
3195
3196 case SIOCSARP:
3197 case SIOCGARP:
3198 case SIOCDARP:
3199 case SIOCATMARK:
3200 return sock_do_ioctl(net, sock, cmd, arg);
3201 }
3202
3203 return -ENOIOCTLCMD;
3204}
3205
3206static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3207 unsigned long arg)
3208{
3209 struct socket *sock = file->private_data;
3210 int ret = -ENOIOCTLCMD;
3211 struct sock *sk;
3212 struct net *net;
3213
3214 sk = sock->sk;
3215 net = sock_net(sk);
3216
3217 if (sock->ops->compat_ioctl)
3218 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3219
3220 if (ret == -ENOIOCTLCMD &&
3221 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3222 ret = compat_wext_handle_ioctl(net, cmd, arg);
3223
3224 if (ret == -ENOIOCTLCMD)
3225 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3226
3227 return ret;
3228}
3229#endif
3230
3231int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3232{
3233 return sock->ops->bind(sock, addr, addrlen);
3234}
3235EXPORT_SYMBOL(kernel_bind);
3236
3237int kernel_listen(struct socket *sock, int backlog)
3238{
3239 return sock->ops->listen(sock, backlog);
3240}
3241EXPORT_SYMBOL(kernel_listen);
3242
3243int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3244{
3245 struct sock *sk = sock->sk;
3246 int err;
3247
3248 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3249 newsock);
3250 if (err < 0)
3251 goto done;
3252
3253 err = sock->ops->accept(sock, *newsock, flags);
3254 if (err < 0) {
3255 sock_release(*newsock);
3256 *newsock = NULL;
3257 goto done;
3258 }
3259
3260 (*newsock)->ops = sock->ops;
3261 __module_get((*newsock)->ops->owner);
3262
3263done:
3264 return err;
3265}
3266EXPORT_SYMBOL(kernel_accept);
3267
3268int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3269 int flags)
3270{
3271 return sock->ops->connect(sock, addr, addrlen, flags);
3272}
3273EXPORT_SYMBOL(kernel_connect);
3274
3275int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3276 int *addrlen)
3277{
3278 return sock->ops->getname(sock, addr, addrlen, 0);
3279}
3280EXPORT_SYMBOL(kernel_getsockname);
3281
3282int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3283 int *addrlen)
3284{
3285 return sock->ops->getname(sock, addr, addrlen, 1);
3286}
3287EXPORT_SYMBOL(kernel_getpeername);
3288
3289int kernel_getsockopt(struct socket *sock, int level, int optname,
3290 char *optval, int *optlen)
3291{
3292 mm_segment_t oldfs = get_fs();
3293 char __user *uoptval;
3294 int __user *uoptlen;
3295 int err;
3296
3297 uoptval = (char __user __force *) optval;
3298 uoptlen = (int __user __force *) optlen;
3299
3300 set_fs(KERNEL_DS);
3301 if (level == SOL_SOCKET)
3302 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3303 else
3304 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3305 uoptlen);
3306 set_fs(oldfs);
3307 return err;
3308}
3309EXPORT_SYMBOL(kernel_getsockopt);
3310
3311int kernel_setsockopt(struct socket *sock, int level, int optname,
3312 char *optval, unsigned int optlen)
3313{
3314 mm_segment_t oldfs = get_fs();
3315 char __user *uoptval;
3316 int err;
3317
3318 uoptval = (char __user __force *) optval;
3319
3320 set_fs(KERNEL_DS);
3321 if (level == SOL_SOCKET)
3322 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3323 else
3324 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3325 optlen);
3326 set_fs(oldfs);
3327 return err;
3328}
3329EXPORT_SYMBOL(kernel_setsockopt);
3330
3331int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3332 size_t size, int flags)
3333{
3334 if (sock->ops->sendpage)
3335 return sock->ops->sendpage(sock, page, offset, size, flags);
3336
3337 return sock_no_sendpage(sock, page, offset, size, flags);
3338}
3339EXPORT_SYMBOL(kernel_sendpage);
3340
3341int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3342{
3343 mm_segment_t oldfs = get_fs();
3344 int err;
3345
3346 set_fs(KERNEL_DS);
3347 err = sock->ops->ioctl(sock, cmd, arg);
3348 set_fs(oldfs);
3349
3350 return err;
3351}
3352EXPORT_SYMBOL(kernel_sock_ioctl);
3353
3354int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3355{
3356 return sock->ops->shutdown(sock, how);
3357}
3358EXPORT_SYMBOL(kernel_sock_shutdown);
3359