summaryrefslogtreecommitdiff
path: root/libbb/hash_md5_sha.c (plain)
blob: 7e7d8da2f9922c53d4067a1b711783b989e4be0c
1/* vi: set sw=4 ts=4: */
2/*
3 * Utility routines.
4 *
5 * Copyright (C) 2010 Denys Vlasenko
6 *
7 * Licensed under GPLv2 or later, see file LICENSE in this source tree.
8 */
9
10#include "libbb.h"
11
12/* gcc 4.2.1 optimizes rotr64 better with inline than with macro
13 * (for rotX32, there is no difference). Why? My guess is that
14 * macro requires clever common subexpression elimination heuristics
15 * in gcc, while inline basically forces it to happen.
16 */
17//#define rotl32(x,n) (((x) << (n)) | ((x) >> (32 - (n))))
18static ALWAYS_INLINE uint32_t rotl32(uint32_t x, unsigned n)
19{
20 return (x << n) | (x >> (32 - n));
21}
22//#define rotr32(x,n) (((x) >> (n)) | ((x) << (32 - (n))))
23static ALWAYS_INLINE uint32_t rotr32(uint32_t x, unsigned n)
24{
25 return (x >> n) | (x << (32 - n));
26}
27/* rotr64 in needed for sha512 only: */
28//#define rotr64(x,n) (((x) >> (n)) | ((x) << (64 - (n))))
29static ALWAYS_INLINE uint64_t rotr64(uint64_t x, unsigned n)
30{
31 return (x >> n) | (x << (64 - n));
32}
33
34/* rotl64 only used for sha3 currently */
35static ALWAYS_INLINE uint64_t rotl64(uint64_t x, unsigned n)
36{
37 return (x << n) | (x >> (64 - n));
38}
39
40/* Feed data through a temporary buffer.
41 * The internal buffer remembers previous data until it has 64
42 * bytes worth to pass on.
43 */
44static void FAST_FUNC common64_hash(md5_ctx_t *ctx, const void *buffer, size_t len)
45{
46 unsigned bufpos = ctx->total64 & 63;
47
48 ctx->total64 += len;
49
50 while (1) {
51 unsigned remaining = 64 - bufpos;
52 if (remaining > len)
53 remaining = len;
54 /* Copy data into aligned buffer */
55 memcpy(ctx->wbuffer + bufpos, buffer, remaining);
56 len -= remaining;
57 buffer = (const char *)buffer + remaining;
58 bufpos += remaining;
59 /* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */
60 bufpos -= 64;
61 if (bufpos != 0)
62 break;
63 /* Buffer is filled up, process it */
64 ctx->process_block(ctx);
65 /*bufpos = 0; - already is */
66 }
67}
68
69/* Process the remaining bytes in the buffer */
70static void FAST_FUNC common64_end(md5_ctx_t *ctx, int swap_needed)
71{
72 unsigned bufpos = ctx->total64 & 63;
73 /* Pad the buffer to the next 64-byte boundary with 0x80,0,0,0... */
74 ctx->wbuffer[bufpos++] = 0x80;
75
76 /* This loop iterates either once or twice, no more, no less */
77 while (1) {
78 unsigned remaining = 64 - bufpos;
79 memset(ctx->wbuffer + bufpos, 0, remaining);
80 /* Do we have enough space for the length count? */
81 if (remaining >= 8) {
82 /* Store the 64-bit counter of bits in the buffer */
83 uint64_t t = ctx->total64 << 3;
84 if (swap_needed)
85 t = bb_bswap_64(t);
86 /* wbuffer is suitably aligned for this */
87 *(bb__aliased_uint64_t *) (&ctx->wbuffer[64 - 8]) = t;
88 }
89 ctx->process_block(ctx);
90 if (remaining >= 8)
91 break;
92 bufpos = 0;
93 }
94}
95
96
97/*
98 * Compute MD5 checksum of strings according to the
99 * definition of MD5 in RFC 1321 from April 1992.
100 *
101 * Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
102 *
103 * Copyright (C) 1995-1999 Free Software Foundation, Inc.
104 * Copyright (C) 2001 Manuel Novoa III
105 * Copyright (C) 2003 Glenn L. McGrath
106 * Copyright (C) 2003 Erik Andersen
107 *
108 * Licensed under GPLv2 or later, see file LICENSE in this source tree.
109 */
110
111/* 0: fastest, 3: smallest */
112#if CONFIG_MD5_SMALL < 0
113# define MD5_SMALL 0
114#elif CONFIG_MD5_SMALL > 3
115# define MD5_SMALL 3
116#else
117# define MD5_SMALL CONFIG_MD5_SMALL
118#endif
119
120/* These are the four functions used in the four steps of the MD5 algorithm
121 * and defined in the RFC 1321. The first function is a little bit optimized
122 * (as found in Colin Plumbs public domain implementation).
123 * #define FF(b, c, d) ((b & c) | (~b & d))
124 */
125#undef FF
126#undef FG
127#undef FH
128#undef FI
129#define FF(b, c, d) (d ^ (b & (c ^ d)))
130#define FG(b, c, d) FF(d, b, c)
131#define FH(b, c, d) (b ^ c ^ d)
132#define FI(b, c, d) (c ^ (b | ~d))
133
134/* Hash a single block, 64 bytes long and 4-byte aligned */
135static void FAST_FUNC md5_process_block64(md5_ctx_t *ctx)
136{
137#if MD5_SMALL > 0
138 /* Before we start, one word to the strange constants.
139 They are defined in RFC 1321 as
140 T[i] = (int)(2^32 * fabs(sin(i))), i=1..64
141 */
142 static const uint32_t C_array[] = {
143 /* round 1 */
144 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
145 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
146 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
147 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
148 /* round 2 */
149 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
150 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
151 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
152 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
153 /* round 3 */
154 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
155 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
156 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
157 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
158 /* round 4 */
159 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
160 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
161 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
162 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
163 };
164 static const char P_array[] ALIGN1 = {
165# if MD5_SMALL > 1
166 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */
167# endif
168 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */
169 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */
170 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */
171 };
172#endif
173 uint32_t *words = (void*) ctx->wbuffer;
174 uint32_t A = ctx->hash[0];
175 uint32_t B = ctx->hash[1];
176 uint32_t C = ctx->hash[2];
177 uint32_t D = ctx->hash[3];
178
179#if MD5_SMALL >= 2 /* 2 or 3 */
180
181 static const char S_array[] ALIGN1 = {
182 7, 12, 17, 22,
183 5, 9, 14, 20,
184 4, 11, 16, 23,
185 6, 10, 15, 21
186 };
187 const uint32_t *pc;
188 const char *pp;
189 const char *ps;
190 int i;
191 uint32_t temp;
192
193 if (BB_BIG_ENDIAN)
194 for (i = 0; i < 16; i++)
195 words[i] = SWAP_LE32(words[i]);
196
197# if MD5_SMALL == 3
198 pc = C_array;
199 pp = P_array;
200 ps = S_array - 4;
201
202 for (i = 0; i < 64; i++) {
203 if ((i & 0x0f) == 0)
204 ps += 4;
205 temp = A;
206 switch (i >> 4) {
207 case 0:
208 temp += FF(B, C, D);
209 break;
210 case 1:
211 temp += FG(B, C, D);
212 break;
213 case 2:
214 temp += FH(B, C, D);
215 break;
216 default: /* case 3 */
217 temp += FI(B, C, D);
218 }
219 temp += words[(int) (*pp++)] + *pc++;
220 temp = rotl32(temp, ps[i & 3]);
221 temp += B;
222 A = D;
223 D = C;
224 C = B;
225 B = temp;
226 }
227# else /* MD5_SMALL == 2 */
228 pc = C_array;
229 pp = P_array;
230 ps = S_array;
231
232 for (i = 0; i < 16; i++) {
233 temp = A + FF(B, C, D) + words[(int) (*pp++)] + *pc++;
234 temp = rotl32(temp, ps[i & 3]);
235 temp += B;
236 A = D;
237 D = C;
238 C = B;
239 B = temp;
240 }
241 ps += 4;
242 for (i = 0; i < 16; i++) {
243 temp = A + FG(B, C, D) + words[(int) (*pp++)] + *pc++;
244 temp = rotl32(temp, ps[i & 3]);
245 temp += B;
246 A = D;
247 D = C;
248 C = B;
249 B = temp;
250 }
251 ps += 4;
252 for (i = 0; i < 16; i++) {
253 temp = A + FH(B, C, D) + words[(int) (*pp++)] + *pc++;
254 temp = rotl32(temp, ps[i & 3]);
255 temp += B;
256 A = D;
257 D = C;
258 C = B;
259 B = temp;
260 }
261 ps += 4;
262 for (i = 0; i < 16; i++) {
263 temp = A + FI(B, C, D) + words[(int) (*pp++)] + *pc++;
264 temp = rotl32(temp, ps[i & 3]);
265 temp += B;
266 A = D;
267 D = C;
268 C = B;
269 B = temp;
270 }
271# endif
272 /* Add checksum to the starting values */
273 ctx->hash[0] += A;
274 ctx->hash[1] += B;
275 ctx->hash[2] += C;
276 ctx->hash[3] += D;
277
278#else /* MD5_SMALL == 0 or 1 */
279
280# if MD5_SMALL == 1
281 const uint32_t *pc;
282 const char *pp;
283 int i;
284# endif
285
286 /* First round: using the given function, the context and a constant
287 the next context is computed. Because the algorithm's processing
288 unit is a 32-bit word and it is determined to work on words in
289 little endian byte order we perhaps have to change the byte order
290 before the computation. To reduce the work for the next steps
291 we save swapped words in WORDS array. */
292# undef OP
293# define OP(a, b, c, d, s, T) \
294 do { \
295 a += FF(b, c, d) + (*words IF_BIG_ENDIAN(= SWAP_LE32(*words))) + T; \
296 words++; \
297 a = rotl32(a, s); \
298 a += b; \
299 } while (0)
300
301 /* Round 1 */
302# if MD5_SMALL == 1
303 pc = C_array;
304 for (i = 0; i < 4; i++) {
305 OP(A, B, C, D, 7, *pc++);
306 OP(D, A, B, C, 12, *pc++);
307 OP(C, D, A, B, 17, *pc++);
308 OP(B, C, D, A, 22, *pc++);
309 }
310# else
311 OP(A, B, C, D, 7, 0xd76aa478);
312 OP(D, A, B, C, 12, 0xe8c7b756);
313 OP(C, D, A, B, 17, 0x242070db);
314 OP(B, C, D, A, 22, 0xc1bdceee);
315 OP(A, B, C, D, 7, 0xf57c0faf);
316 OP(D, A, B, C, 12, 0x4787c62a);
317 OP(C, D, A, B, 17, 0xa8304613);
318 OP(B, C, D, A, 22, 0xfd469501);
319 OP(A, B, C, D, 7, 0x698098d8);
320 OP(D, A, B, C, 12, 0x8b44f7af);
321 OP(C, D, A, B, 17, 0xffff5bb1);
322 OP(B, C, D, A, 22, 0x895cd7be);
323 OP(A, B, C, D, 7, 0x6b901122);
324 OP(D, A, B, C, 12, 0xfd987193);
325 OP(C, D, A, B, 17, 0xa679438e);
326 OP(B, C, D, A, 22, 0x49b40821);
327# endif
328 words -= 16;
329
330 /* For the second to fourth round we have the possibly swapped words
331 in WORDS. Redefine the macro to take an additional first
332 argument specifying the function to use. */
333# undef OP
334# define OP(f, a, b, c, d, k, s, T) \
335 do { \
336 a += f(b, c, d) + words[k] + T; \
337 a = rotl32(a, s); \
338 a += b; \
339 } while (0)
340
341 /* Round 2 */
342# if MD5_SMALL == 1
343 pp = P_array;
344 for (i = 0; i < 4; i++) {
345 OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++);
346 OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++);
347 OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++);
348 OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++);
349 }
350# else
351 OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
352 OP(FG, D, A, B, C, 6, 9, 0xc040b340);
353 OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
354 OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
355 OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
356 OP(FG, D, A, B, C, 10, 9, 0x02441453);
357 OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
358 OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
359 OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
360 OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
361 OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
362 OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
363 OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
364 OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
365 OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
366 OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
367# endif
368
369 /* Round 3 */
370# if MD5_SMALL == 1
371 for (i = 0; i < 4; i++) {
372 OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++);
373 OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++);
374 OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++);
375 OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++);
376 }
377# else
378 OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
379 OP(FH, D, A, B, C, 8, 11, 0x8771f681);
380 OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
381 OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
382 OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
383 OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
384 OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
385 OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
386 OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
387 OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
388 OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
389 OP(FH, B, C, D, A, 6, 23, 0x04881d05);
390 OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
391 OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
392 OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
393 OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
394# endif
395
396 /* Round 4 */
397# if MD5_SMALL == 1
398 for (i = 0; i < 4; i++) {
399 OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++);
400 OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++);
401 OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++);
402 OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++);
403 }
404# else
405 OP(FI, A, B, C, D, 0, 6, 0xf4292244);
406 OP(FI, D, A, B, C, 7, 10, 0x432aff97);
407 OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
408 OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
409 OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
410 OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
411 OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
412 OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
413 OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
414 OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
415 OP(FI, C, D, A, B, 6, 15, 0xa3014314);
416 OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
417 OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
418 OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
419 OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
420 OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
421# undef OP
422# endif
423 /* Add checksum to the starting values */
424 ctx->hash[0] += A;
425 ctx->hash[1] += B;
426 ctx->hash[2] += C;
427 ctx->hash[3] += D;
428#endif
429}
430#undef FF
431#undef FG
432#undef FH
433#undef FI
434
435/* Initialize structure containing state of computation.
436 * (RFC 1321, 3.3: Step 3)
437 */
438void FAST_FUNC md5_begin(md5_ctx_t *ctx)
439{
440 ctx->hash[0] = 0x67452301;
441 ctx->hash[1] = 0xefcdab89;
442 ctx->hash[2] = 0x98badcfe;
443 ctx->hash[3] = 0x10325476;
444 ctx->total64 = 0;
445 ctx->process_block = md5_process_block64;
446}
447
448/* Used also for sha1 and sha256 */
449void FAST_FUNC md5_hash(md5_ctx_t *ctx, const void *buffer, size_t len)
450{
451 common64_hash(ctx, buffer, len);
452}
453
454/* Process the remaining bytes in the buffer and put result from CTX
455 * in first 16 bytes following RESBUF. The result is always in little
456 * endian byte order, so that a byte-wise output yields to the wanted
457 * ASCII representation of the message digest.
458 */
459void FAST_FUNC md5_end(md5_ctx_t *ctx, void *resbuf)
460{
461 /* MD5 stores total in LE, need to swap on BE arches: */
462 common64_end(ctx, /*swap_needed:*/ BB_BIG_ENDIAN);
463
464 /* The MD5 result is in little endian byte order */
465 if (BB_BIG_ENDIAN) {
466 ctx->hash[0] = SWAP_LE32(ctx->hash[0]);
467 ctx->hash[1] = SWAP_LE32(ctx->hash[1]);
468 ctx->hash[2] = SWAP_LE32(ctx->hash[2]);
469 ctx->hash[3] = SWAP_LE32(ctx->hash[3]);
470 }
471
472 memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * 4);
473}
474
475
476/*
477 * SHA1 part is:
478 * Copyright 2007 Rob Landley <rob@landley.net>
479 *
480 * Based on the public domain SHA-1 in C by Steve Reid <steve@edmweb.com>
481 * from http://www.mirrors.wiretapped.net/security/cryptography/hashes/sha1/
482 *
483 * Licensed under GPLv2, see file LICENSE in this source tree.
484 *
485 * ---------------------------------------------------------------------------
486 *
487 * SHA256 and SHA512 parts are:
488 * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
489 * Shrank by Denys Vlasenko.
490 *
491 * ---------------------------------------------------------------------------
492 *
493 * The best way to test random blocksizes is to go to coreutils/md5_sha1_sum.c
494 * and replace "4096" with something like "2000 + time(NULL) % 2097",
495 * then rebuild and compare "shaNNNsum bigfile" results.
496 */
497
498static void FAST_FUNC sha1_process_block64(sha1_ctx_t *ctx)
499{
500 static const uint32_t rconsts[] = {
501 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6
502 };
503 int i, j;
504 int cnt;
505 uint32_t W[16+16];
506 uint32_t a, b, c, d, e;
507
508 /* On-stack work buffer frees up one register in the main loop
509 * which otherwise will be needed to hold ctx pointer */
510 for (i = 0; i < 16; i++)
511 W[i] = W[i+16] = SWAP_BE32(((uint32_t*)ctx->wbuffer)[i]);
512
513 a = ctx->hash[0];
514 b = ctx->hash[1];
515 c = ctx->hash[2];
516 d = ctx->hash[3];
517 e = ctx->hash[4];
518
519 /* 4 rounds of 20 operations each */
520 cnt = 0;
521 for (i = 0; i < 4; i++) {
522 j = 19;
523 do {
524 uint32_t work;
525
526 work = c ^ d;
527 if (i == 0) {
528 work = (work & b) ^ d;
529 if (j <= 3)
530 goto ge16;
531 /* Used to do SWAP_BE32 here, but this
532 * requires ctx (see comment above) */
533 work += W[cnt];
534 } else {
535 if (i == 2)
536 work = ((b | c) & d) | (b & c);
537 else /* i = 1 or 3 */
538 work ^= b;
539 ge16:
540 W[cnt] = W[cnt+16] = rotl32(W[cnt+13] ^ W[cnt+8] ^ W[cnt+2] ^ W[cnt], 1);
541 work += W[cnt];
542 }
543 work += e + rotl32(a, 5) + rconsts[i];
544
545 /* Rotate by one for next time */
546 e = d;
547 d = c;
548 c = /* b = */ rotl32(b, 30);
549 b = a;
550 a = work;
551 cnt = (cnt + 1) & 15;
552 } while (--j >= 0);
553 }
554
555 ctx->hash[0] += a;
556 ctx->hash[1] += b;
557 ctx->hash[2] += c;
558 ctx->hash[3] += d;
559 ctx->hash[4] += e;
560}
561
562/* Constants for SHA512 from FIPS 180-2:4.2.3.
563 * SHA256 constants from FIPS 180-2:4.2.2
564 * are the most significant half of first 64 elements
565 * of the same array.
566 */
567static const uint64_t sha_K[80] = {
568 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
569 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
570 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
571 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
572 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
573 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
574 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
575 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
576 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
577 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
578 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
579 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
580 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
581 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
582 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
583 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
584 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
585 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
586 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
587 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
588 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
589 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
590 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
591 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
592 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
593 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
594 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
595 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
596 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
597 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
598 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
599 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
600 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, /* [64]+ are used for sha512 only */
601 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
602 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
603 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
604 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
605 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
606 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
607 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
608};
609
610#undef Ch
611#undef Maj
612#undef S0
613#undef S1
614#undef R0
615#undef R1
616
617static void FAST_FUNC sha256_process_block64(sha256_ctx_t *ctx)
618{
619 unsigned t;
620 uint32_t W[64], a, b, c, d, e, f, g, h;
621 const uint32_t *words = (uint32_t*) ctx->wbuffer;
622
623 /* Operators defined in FIPS 180-2:4.1.2. */
624#define Ch(x, y, z) ((x & y) ^ (~x & z))
625#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
626#define S0(x) (rotr32(x, 2) ^ rotr32(x, 13) ^ rotr32(x, 22))
627#define S1(x) (rotr32(x, 6) ^ rotr32(x, 11) ^ rotr32(x, 25))
628#define R0(x) (rotr32(x, 7) ^ rotr32(x, 18) ^ (x >> 3))
629#define R1(x) (rotr32(x, 17) ^ rotr32(x, 19) ^ (x >> 10))
630
631 /* Compute the message schedule according to FIPS 180-2:6.2.2 step 2. */
632 for (t = 0; t < 16; ++t)
633 W[t] = SWAP_BE32(words[t]);
634 for (/*t = 16*/; t < 64; ++t)
635 W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
636
637 a = ctx->hash[0];
638 b = ctx->hash[1];
639 c = ctx->hash[2];
640 d = ctx->hash[3];
641 e = ctx->hash[4];
642 f = ctx->hash[5];
643 g = ctx->hash[6];
644 h = ctx->hash[7];
645
646 /* The actual computation according to FIPS 180-2:6.2.2 step 3. */
647 for (t = 0; t < 64; ++t) {
648 /* Need to fetch upper half of sha_K[t]
649 * (I hope compiler is clever enough to just fetch
650 * upper half)
651 */
652 uint32_t K_t = sha_K[t] >> 32;
653 uint32_t T1 = h + S1(e) + Ch(e, f, g) + K_t + W[t];
654 uint32_t T2 = S0(a) + Maj(a, b, c);
655 h = g;
656 g = f;
657 f = e;
658 e = d + T1;
659 d = c;
660 c = b;
661 b = a;
662 a = T1 + T2;
663 }
664#undef Ch
665#undef Maj
666#undef S0
667#undef S1
668#undef R0
669#undef R1
670 /* Add the starting values of the context according to FIPS 180-2:6.2.2
671 step 4. */
672 ctx->hash[0] += a;
673 ctx->hash[1] += b;
674 ctx->hash[2] += c;
675 ctx->hash[3] += d;
676 ctx->hash[4] += e;
677 ctx->hash[5] += f;
678 ctx->hash[6] += g;
679 ctx->hash[7] += h;
680}
681
682static void FAST_FUNC sha512_process_block128(sha512_ctx_t *ctx)
683{
684 unsigned t;
685 uint64_t W[80];
686 /* On i386, having assignments here (not later as sha256 does)
687 * produces 99 bytes smaller code with gcc 4.3.1
688 */
689 uint64_t a = ctx->hash[0];
690 uint64_t b = ctx->hash[1];
691 uint64_t c = ctx->hash[2];
692 uint64_t d = ctx->hash[3];
693 uint64_t e = ctx->hash[4];
694 uint64_t f = ctx->hash[5];
695 uint64_t g = ctx->hash[6];
696 uint64_t h = ctx->hash[7];
697 const uint64_t *words = (uint64_t*) ctx->wbuffer;
698
699 /* Operators defined in FIPS 180-2:4.1.2. */
700#define Ch(x, y, z) ((x & y) ^ (~x & z))
701#define Maj(x, y, z) ((x & y) ^ (x & z) ^ (y & z))
702#define S0(x) (rotr64(x, 28) ^ rotr64(x, 34) ^ rotr64(x, 39))
703#define S1(x) (rotr64(x, 14) ^ rotr64(x, 18) ^ rotr64(x, 41))
704#define R0(x) (rotr64(x, 1) ^ rotr64(x, 8) ^ (x >> 7))
705#define R1(x) (rotr64(x, 19) ^ rotr64(x, 61) ^ (x >> 6))
706
707 /* Compute the message schedule according to FIPS 180-2:6.3.2 step 2. */
708 for (t = 0; t < 16; ++t)
709 W[t] = SWAP_BE64(words[t]);
710 for (/*t = 16*/; t < 80; ++t)
711 W[t] = R1(W[t - 2]) + W[t - 7] + R0(W[t - 15]) + W[t - 16];
712
713 /* The actual computation according to FIPS 180-2:6.3.2 step 3. */
714 for (t = 0; t < 80; ++t) {
715 uint64_t T1 = h + S1(e) + Ch(e, f, g) + sha_K[t] + W[t];
716 uint64_t T2 = S0(a) + Maj(a, b, c);
717 h = g;
718 g = f;
719 f = e;
720 e = d + T1;
721 d = c;
722 c = b;
723 b = a;
724 a = T1 + T2;
725 }
726#undef Ch
727#undef Maj
728#undef S0
729#undef S1
730#undef R0
731#undef R1
732 /* Add the starting values of the context according to FIPS 180-2:6.3.2
733 step 4. */
734 ctx->hash[0] += a;
735 ctx->hash[1] += b;
736 ctx->hash[2] += c;
737 ctx->hash[3] += d;
738 ctx->hash[4] += e;
739 ctx->hash[5] += f;
740 ctx->hash[6] += g;
741 ctx->hash[7] += h;
742}
743
744
745void FAST_FUNC sha1_begin(sha1_ctx_t *ctx)
746{
747 ctx->hash[0] = 0x67452301;
748 ctx->hash[1] = 0xefcdab89;
749 ctx->hash[2] = 0x98badcfe;
750 ctx->hash[3] = 0x10325476;
751 ctx->hash[4] = 0xc3d2e1f0;
752 ctx->total64 = 0;
753 ctx->process_block = sha1_process_block64;
754}
755
756static const uint32_t init256[] = {
757 0,
758 0,
759 0x6a09e667,
760 0xbb67ae85,
761 0x3c6ef372,
762 0xa54ff53a,
763 0x510e527f,
764 0x9b05688c,
765 0x1f83d9ab,
766 0x5be0cd19,
767};
768static const uint32_t init512_lo[] = {
769 0,
770 0,
771 0xf3bcc908,
772 0x84caa73b,
773 0xfe94f82b,
774 0x5f1d36f1,
775 0xade682d1,
776 0x2b3e6c1f,
777 0xfb41bd6b,
778 0x137e2179,
779};
780
781/* Initialize structure containing state of computation.
782 (FIPS 180-2:5.3.2) */
783void FAST_FUNC sha256_begin(sha256_ctx_t *ctx)
784{
785 memcpy(&ctx->total64, init256, sizeof(init256));
786 /*ctx->total64 = 0; - done by prepending two 32-bit zeros to init256 */
787 ctx->process_block = sha256_process_block64;
788}
789
790/* Initialize structure containing state of computation.
791 (FIPS 180-2:5.3.3) */
792void FAST_FUNC sha512_begin(sha512_ctx_t *ctx)
793{
794 int i;
795 /* Two extra iterations zero out ctx->total64[2] */
796 uint64_t *tp = ctx->total64;
797 for (i = 0; i < 2+8; i++)
798 tp[i] = ((uint64_t)(init256[i]) << 32) + init512_lo[i];
799 /*ctx->total64[0] = ctx->total64[1] = 0; - already done */
800}
801
802void FAST_FUNC sha512_hash(sha512_ctx_t *ctx, const void *buffer, size_t len)
803{
804 unsigned bufpos = ctx->total64[0] & 127;
805 unsigned remaining;
806
807 /* First increment the byte count. FIPS 180-2 specifies the possible
808 length of the file up to 2^128 _bits_.
809 We compute the number of _bytes_ and convert to bits later. */
810 ctx->total64[0] += len;
811 if (ctx->total64[0] < len)
812 ctx->total64[1]++;
813#if 0
814 remaining = 128 - bufpos;
815
816 /* Hash whole blocks */
817 while (len >= remaining) {
818 memcpy(ctx->wbuffer + bufpos, buffer, remaining);
819 buffer = (const char *)buffer + remaining;
820 len -= remaining;
821 remaining = 128;
822 bufpos = 0;
823 sha512_process_block128(ctx);
824 }
825
826 /* Save last, partial blosk */
827 memcpy(ctx->wbuffer + bufpos, buffer, len);
828#else
829 while (1) {
830 remaining = 128 - bufpos;
831 if (remaining > len)
832 remaining = len;
833 /* Copy data into aligned buffer */
834 memcpy(ctx->wbuffer + bufpos, buffer, remaining);
835 len -= remaining;
836 buffer = (const char *)buffer + remaining;
837 bufpos += remaining;
838 /* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */
839 bufpos -= 128;
840 if (bufpos != 0)
841 break;
842 /* Buffer is filled up, process it */
843 sha512_process_block128(ctx);
844 /*bufpos = 0; - already is */
845 }
846#endif
847}
848
849/* Used also for sha256 */
850void FAST_FUNC sha1_end(sha1_ctx_t *ctx, void *resbuf)
851{
852 unsigned hash_size;
853
854 /* SHA stores total in BE, need to swap on LE arches: */
855 common64_end(ctx, /*swap_needed:*/ BB_LITTLE_ENDIAN);
856
857 hash_size = (ctx->process_block == sha1_process_block64) ? 5 : 8;
858 /* This way we do not impose alignment constraints on resbuf: */
859 if (BB_LITTLE_ENDIAN) {
860 unsigned i;
861 for (i = 0; i < hash_size; ++i)
862 ctx->hash[i] = SWAP_BE32(ctx->hash[i]);
863 }
864 memcpy(resbuf, ctx->hash, sizeof(ctx->hash[0]) * hash_size);
865}
866
867void FAST_FUNC sha512_end(sha512_ctx_t *ctx, void *resbuf)
868{
869 unsigned bufpos = ctx->total64[0] & 127;
870
871 /* Pad the buffer to the next 128-byte boundary with 0x80,0,0,0... */
872 ctx->wbuffer[bufpos++] = 0x80;
873
874 while (1) {
875 unsigned remaining = 128 - bufpos;
876 memset(ctx->wbuffer + bufpos, 0, remaining);
877 if (remaining >= 16) {
878 /* Store the 128-bit counter of bits in the buffer in BE format */
879 uint64_t t;
880 t = ctx->total64[0] << 3;
881 t = SWAP_BE64(t);
882 *(bb__aliased_uint64_t *) (&ctx->wbuffer[128 - 8]) = t;
883 t = (ctx->total64[1] << 3) | (ctx->total64[0] >> 61);
884 t = SWAP_BE64(t);
885 *(bb__aliased_uint64_t *) (&ctx->wbuffer[128 - 16]) = t;
886 }
887 sha512_process_block128(ctx);
888 if (remaining >= 16)
889 break;
890 bufpos = 0;
891 }
892
893 if (BB_LITTLE_ENDIAN) {
894 unsigned i;
895 for (i = 0; i < ARRAY_SIZE(ctx->hash); ++i)
896 ctx->hash[i] = SWAP_BE64(ctx->hash[i]);
897 }
898 memcpy(resbuf, ctx->hash, sizeof(ctx->hash));
899}
900
901
902/*
903 * The Keccak sponge function, designed by Guido Bertoni, Joan Daemen,
904 * Michael Peeters and Gilles Van Assche. For more information, feedback or
905 * questions, please refer to our website: http://keccak.noekeon.org/
906 *
907 * Implementation by Ronny Van Keer,
908 * hereby denoted as "the implementer".
909 *
910 * To the extent possible under law, the implementer has waived all copyright
911 * and related or neighboring rights to the source code in this file.
912 * http://creativecommons.org/publicdomain/zero/1.0/
913 *
914 * Busybox modifications (C) Lauri Kasanen, under the GPLv2.
915 */
916
917#if CONFIG_SHA3_SMALL < 0
918# define SHA3_SMALL 0
919#elif CONFIG_SHA3_SMALL > 1
920# define SHA3_SMALL 1
921#else
922# define SHA3_SMALL CONFIG_SHA3_SMALL
923#endif
924
925#define OPTIMIZE_SHA3_FOR_32 0
926/*
927 * SHA3 can be optimized for 32-bit CPUs with bit-slicing:
928 * every 64-bit word of state[] can be split into two 32-bit words
929 * by even/odd bits. In this form, all rotations of sha3 round
930 * are 32-bit - and there are lots of them.
931 * However, it requires either splitting/combining state words
932 * before/after sha3 round (code does this now)
933 * or shuffling bits before xor'ing them into state and in sha3_end.
934 * Without shuffling, bit-slicing results in -130 bytes of code
935 * and marginal speedup (but of course it gives wrong result).
936 * With shuffling it works, but +260 code bytes, and slower.
937 * Disabled for now:
938 */
939#if 0 /* LONG_MAX == 0x7fffffff */
940# undef OPTIMIZE_SHA3_FOR_32
941# define OPTIMIZE_SHA3_FOR_32 1
942#endif
943
944#if OPTIMIZE_SHA3_FOR_32
945/* This splits every 64-bit word into a pair of 32-bit words,
946 * even bits go into first word, odd bits go to second one.
947 * The conversion is done in-place.
948 */
949static void split_halves(uint64_t *state)
950{
951 /* Credit: Henry S. Warren, Hacker's Delight, Addison-Wesley, 2002 */
952 uint32_t *s32 = (uint32_t*)state;
953 uint32_t t, x0, x1;
954 int i;
955 for (i = 24; i >= 0; --i) {
956 x0 = s32[0];
957 t = (x0 ^ (x0 >> 1)) & 0x22222222; x0 = x0 ^ t ^ (t << 1);
958 t = (x0 ^ (x0 >> 2)) & 0x0C0C0C0C; x0 = x0 ^ t ^ (t << 2);
959 t = (x0 ^ (x0 >> 4)) & 0x00F000F0; x0 = x0 ^ t ^ (t << 4);
960 t = (x0 ^ (x0 >> 8)) & 0x0000FF00; x0 = x0 ^ t ^ (t << 8);
961 x1 = s32[1];
962 t = (x1 ^ (x1 >> 1)) & 0x22222222; x1 = x1 ^ t ^ (t << 1);
963 t = (x1 ^ (x1 >> 2)) & 0x0C0C0C0C; x1 = x1 ^ t ^ (t << 2);
964 t = (x1 ^ (x1 >> 4)) & 0x00F000F0; x1 = x1 ^ t ^ (t << 4);
965 t = (x1 ^ (x1 >> 8)) & 0x0000FF00; x1 = x1 ^ t ^ (t << 8);
966 *s32++ = (x0 & 0x0000FFFF) | (x1 << 16);
967 *s32++ = (x0 >> 16) | (x1 & 0xFFFF0000);
968 }
969}
970/* The reverse operation */
971static void combine_halves(uint64_t *state)
972{
973 uint32_t *s32 = (uint32_t*)state;
974 uint32_t t, x0, x1;
975 int i;
976 for (i = 24; i >= 0; --i) {
977 x0 = s32[0];
978 x1 = s32[1];
979 t = (x0 & 0x0000FFFF) | (x1 << 16);
980 x1 = (x0 >> 16) | (x1 & 0xFFFF0000);
981 x0 = t;
982 t = (x0 ^ (x0 >> 8)) & 0x0000FF00; x0 = x0 ^ t ^ (t << 8);
983 t = (x0 ^ (x0 >> 4)) & 0x00F000F0; x0 = x0 ^ t ^ (t << 4);
984 t = (x0 ^ (x0 >> 2)) & 0x0C0C0C0C; x0 = x0 ^ t ^ (t << 2);
985 t = (x0 ^ (x0 >> 1)) & 0x22222222; x0 = x0 ^ t ^ (t << 1);
986 *s32++ = x0;
987 t = (x1 ^ (x1 >> 8)) & 0x0000FF00; x1 = x1 ^ t ^ (t << 8);
988 t = (x1 ^ (x1 >> 4)) & 0x00F000F0; x1 = x1 ^ t ^ (t << 4);
989 t = (x1 ^ (x1 >> 2)) & 0x0C0C0C0C; x1 = x1 ^ t ^ (t << 2);
990 t = (x1 ^ (x1 >> 1)) & 0x22222222; x1 = x1 ^ t ^ (t << 1);
991 *s32++ = x1;
992 }
993}
994#endif
995
996/*
997 * In the crypto literature this function is usually called Keccak-f().
998 */
999static void sha3_process_block72(uint64_t *state)
1000{
1001 enum { NROUNDS = 24 };
1002
1003#if OPTIMIZE_SHA3_FOR_32
1004 /*
1005 static const uint32_t IOTA_CONST_0[NROUNDS] = {
1006 0x00000001UL,
1007 0x00000000UL,
1008 0x00000000UL,
1009 0x00000000UL,
1010 0x00000001UL,
1011 0x00000001UL,
1012 0x00000001UL,
1013 0x00000001UL,
1014 0x00000000UL,
1015 0x00000000UL,
1016 0x00000001UL,
1017 0x00000000UL,
1018 0x00000001UL,
1019 0x00000001UL,
1020 0x00000001UL,
1021 0x00000001UL,
1022 0x00000000UL,
1023 0x00000000UL,
1024 0x00000000UL,
1025 0x00000000UL,
1026 0x00000001UL,
1027 0x00000000UL,
1028 0x00000001UL,
1029 0x00000000UL,
1030 };
1031 ** bits are in lsb: 0101 0000 1111 0100 1111 0001
1032 */
1033 uint32_t IOTA_CONST_0bits = (uint32_t)(0x0050f4f1);
1034 static const uint32_t IOTA_CONST_1[NROUNDS] = {
1035 0x00000000UL,
1036 0x00000089UL,
1037 0x8000008bUL,
1038 0x80008080UL,
1039 0x0000008bUL,
1040 0x00008000UL,
1041 0x80008088UL,
1042 0x80000082UL,
1043 0x0000000bUL,
1044 0x0000000aUL,
1045 0x00008082UL,
1046 0x00008003UL,
1047 0x0000808bUL,
1048 0x8000000bUL,
1049 0x8000008aUL,
1050 0x80000081UL,
1051 0x80000081UL,
1052 0x80000008UL,
1053 0x00000083UL,
1054 0x80008003UL,
1055 0x80008088UL,
1056 0x80000088UL,
1057 0x00008000UL,
1058 0x80008082UL,
1059 };
1060
1061 uint32_t *const s32 = (uint32_t*)state;
1062 unsigned round;
1063
1064 split_halves(state);
1065
1066 for (round = 0; round < NROUNDS; round++) {
1067 unsigned x;
1068
1069 /* Theta */
1070 {
1071 uint32_t BC[20];
1072 for (x = 0; x < 10; ++x) {
1073 BC[x+10] = BC[x] = s32[x]^s32[x+10]^s32[x+20]^s32[x+30]^s32[x+40];
1074 }
1075 for (x = 0; x < 10; x += 2) {
1076 uint32_t ta, tb;
1077 ta = BC[x+8] ^ rotl32(BC[x+3], 1);
1078 tb = BC[x+9] ^ BC[x+2];
1079 s32[x+0] ^= ta;
1080 s32[x+1] ^= tb;
1081 s32[x+10] ^= ta;
1082 s32[x+11] ^= tb;
1083 s32[x+20] ^= ta;
1084 s32[x+21] ^= tb;
1085 s32[x+30] ^= ta;
1086 s32[x+31] ^= tb;
1087 s32[x+40] ^= ta;
1088 s32[x+41] ^= tb;
1089 }
1090 }
1091 /* RhoPi */
1092 {
1093 uint32_t t0a,t0b, t1a,t1b;
1094 t1a = s32[1*2+0];
1095 t1b = s32[1*2+1];
1096
1097#define RhoPi(PI_LANE, ROT_CONST) \
1098 t0a = s32[PI_LANE*2+0];\
1099 t0b = s32[PI_LANE*2+1];\
1100 if (ROT_CONST & 1) {\
1101 s32[PI_LANE*2+0] = rotl32(t1b, ROT_CONST/2+1);\
1102 s32[PI_LANE*2+1] = ROT_CONST == 1 ? t1a : rotl32(t1a, ROT_CONST/2+0);\
1103 } else {\
1104 s32[PI_LANE*2+0] = rotl32(t1a, ROT_CONST/2);\
1105 s32[PI_LANE*2+1] = rotl32(t1b, ROT_CONST/2);\
1106 }\
1107 t1a = t0a; t1b = t0b;
1108
1109 RhoPi(10, 1)
1110 RhoPi( 7, 3)
1111 RhoPi(11, 6)
1112 RhoPi(17,10)
1113 RhoPi(18,15)
1114 RhoPi( 3,21)
1115 RhoPi( 5,28)
1116 RhoPi(16,36)
1117 RhoPi( 8,45)
1118 RhoPi(21,55)
1119 RhoPi(24, 2)
1120 RhoPi( 4,14)
1121 RhoPi(15,27)
1122 RhoPi(23,41)
1123 RhoPi(19,56)
1124 RhoPi(13, 8)
1125 RhoPi(12,25)
1126 RhoPi( 2,43)
1127 RhoPi(20,62)
1128 RhoPi(14,18)
1129 RhoPi(22,39)
1130 RhoPi( 9,61)
1131 RhoPi( 6,20)
1132 RhoPi( 1,44)
1133#undef RhoPi
1134 }
1135 /* Chi */
1136 for (x = 0; x <= 40;) {
1137 uint32_t BC0, BC1, BC2, BC3, BC4;
1138 BC0 = s32[x + 0*2];
1139 BC1 = s32[x + 1*2];
1140 BC2 = s32[x + 2*2];
1141 s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
1142 BC3 = s32[x + 3*2];
1143 s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
1144 BC4 = s32[x + 4*2];
1145 s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
1146 s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
1147 s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
1148 x++;
1149 BC0 = s32[x + 0*2];
1150 BC1 = s32[x + 1*2];
1151 BC2 = s32[x + 2*2];
1152 s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
1153 BC3 = s32[x + 3*2];
1154 s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
1155 BC4 = s32[x + 4*2];
1156 s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
1157 s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
1158 s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
1159 x += 9;
1160 }
1161 /* Iota */
1162 s32[0] ^= IOTA_CONST_0bits & 1;
1163 IOTA_CONST_0bits >>= 1;
1164 s32[1] ^= IOTA_CONST_1[round];
1165 }
1166
1167 combine_halves(state);
1168#else
1169 /* Native 64-bit algorithm */
1170 static const uint16_t IOTA_CONST[NROUNDS] = {
1171 /* Elements should be 64-bit, but top half is always zero
1172 * or 0x80000000. We encode 63rd bits in a separate word below.
1173 * Same is true for 31th bits, which lets us use 16-bit table
1174 * instead of 64-bit. The speed penalty is lost in the noise.
1175 */
1176 0x0001,
1177 0x8082,
1178 0x808a,
1179 0x8000,
1180 0x808b,
1181 0x0001,
1182 0x8081,
1183 0x8009,
1184 0x008a,
1185 0x0088,
1186 0x8009,
1187 0x000a,
1188 0x808b,
1189 0x008b,
1190 0x8089,
1191 0x8003,
1192 0x8002,
1193 0x0080,
1194 0x800a,
1195 0x000a,
1196 0x8081,
1197 0x8080,
1198 0x0001,
1199 0x8008,
1200 };
1201 /* bit for CONST[0] is in msb: 0011 0011 0000 0111 1101 1101 */
1202 const uint32_t IOTA_CONST_bit63 = (uint32_t)(0x3307dd00);
1203 /* bit for CONST[0] is in msb: 0001 0110 0011 1000 0001 1011 */
1204 const uint32_t IOTA_CONST_bit31 = (uint32_t)(0x16381b00);
1205
1206 static const uint8_t ROT_CONST[24] = {
1207 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
1208 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44,
1209 };
1210 static const uint8_t PI_LANE[24] = {
1211 10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
1212 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1,
1213 };
1214 /*static const uint8_t MOD5[10] = { 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, };*/
1215
1216 unsigned x;
1217 unsigned round;
1218
1219 if (BB_BIG_ENDIAN) {
1220 for (x = 0; x < 25; x++) {
1221 state[x] = SWAP_LE64(state[x]);
1222 }
1223 }
1224
1225 for (round = 0; round < NROUNDS; ++round) {
1226 /* Theta */
1227 {
1228 uint64_t BC[10];
1229 for (x = 0; x < 5; ++x) {
1230 BC[x + 5] = BC[x] = state[x]
1231 ^ state[x + 5] ^ state[x + 10]
1232 ^ state[x + 15] ^ state[x + 20];
1233 }
1234 /* Using 2x5 vector above eliminates the need to use
1235 * BC[MOD5[x+N]] trick below to fetch BC[(x+N) % 5],
1236 * and the code is a bit _smaller_.
1237 */
1238 for (x = 0; x < 5; ++x) {
1239 uint64_t temp = BC[x + 4] ^ rotl64(BC[x + 1], 1);
1240 state[x] ^= temp;
1241 state[x + 5] ^= temp;
1242 state[x + 10] ^= temp;
1243 state[x + 15] ^= temp;
1244 state[x + 20] ^= temp;
1245 }
1246 }
1247
1248 /* Rho Pi */
1249 if (SHA3_SMALL) {
1250 uint64_t t1 = state[1];
1251 for (x = 0; x < 24; ++x) {
1252 uint64_t t0 = state[PI_LANE[x]];
1253 state[PI_LANE[x]] = rotl64(t1, ROT_CONST[x]);
1254 t1 = t0;
1255 }
1256 } else {
1257 /* Especially large benefit for 32-bit arch (75% faster):
1258 * 64-bit rotations by non-constant usually are SLOW on those.
1259 * We resort to unrolling here.
1260 * This optimizes out PI_LANE[] and ROT_CONST[],
1261 * but generates 300-500 more bytes of code.
1262 */
1263 uint64_t t0;
1264 uint64_t t1 = state[1];
1265#define RhoPi_twice(x) \
1266 t0 = state[PI_LANE[x ]]; \
1267 state[PI_LANE[x ]] = rotl64(t1, ROT_CONST[x ]); \
1268 t1 = state[PI_LANE[x+1]]; \
1269 state[PI_LANE[x+1]] = rotl64(t0, ROT_CONST[x+1]);
1270 RhoPi_twice(0); RhoPi_twice(2);
1271 RhoPi_twice(4); RhoPi_twice(6);
1272 RhoPi_twice(8); RhoPi_twice(10);
1273 RhoPi_twice(12); RhoPi_twice(14);
1274 RhoPi_twice(16); RhoPi_twice(18);
1275 RhoPi_twice(20); RhoPi_twice(22);
1276#undef RhoPi_twice
1277 }
1278 /* Chi */
1279# if LONG_MAX > 0x7fffffff
1280 for (x = 0; x <= 20; x += 5) {
1281 uint64_t BC0, BC1, BC2, BC3, BC4;
1282 BC0 = state[x + 0];
1283 BC1 = state[x + 1];
1284 BC2 = state[x + 2];
1285 state[x + 0] = BC0 ^ ((~BC1) & BC2);
1286 BC3 = state[x + 3];
1287 state[x + 1] = BC1 ^ ((~BC2) & BC3);
1288 BC4 = state[x + 4];
1289 state[x + 2] = BC2 ^ ((~BC3) & BC4);
1290 state[x + 3] = BC3 ^ ((~BC4) & BC0);
1291 state[x + 4] = BC4 ^ ((~BC0) & BC1);
1292 }
1293# else
1294 /* Reduced register pressure version
1295 * for register-starved 32-bit arches
1296 * (i386: -95 bytes, and it is _faster_)
1297 */
1298 for (x = 0; x <= 40;) {
1299 uint32_t BC0, BC1, BC2, BC3, BC4;
1300 uint32_t *const s32 = (uint32_t*)state;
1301# if SHA3_SMALL
1302 do_half:
1303# endif
1304 BC0 = s32[x + 0*2];
1305 BC1 = s32[x + 1*2];
1306 BC2 = s32[x + 2*2];
1307 s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
1308 BC3 = s32[x + 3*2];
1309 s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
1310 BC4 = s32[x + 4*2];
1311 s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
1312 s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
1313 s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
1314 x++;
1315# if SHA3_SMALL
1316 if (x & 1)
1317 goto do_half;
1318 x += 8;
1319# else
1320 BC0 = s32[x + 0*2];
1321 BC1 = s32[x + 1*2];
1322 BC2 = s32[x + 2*2];
1323 s32[x + 0*2] = BC0 ^ ((~BC1) & BC2);
1324 BC3 = s32[x + 3*2];
1325 s32[x + 1*2] = BC1 ^ ((~BC2) & BC3);
1326 BC4 = s32[x + 4*2];
1327 s32[x + 2*2] = BC2 ^ ((~BC3) & BC4);
1328 s32[x + 3*2] = BC3 ^ ((~BC4) & BC0);
1329 s32[x + 4*2] = BC4 ^ ((~BC0) & BC1);
1330 x += 9;
1331# endif
1332 }
1333# endif /* long is 32-bit */
1334 /* Iota */
1335 state[0] ^= IOTA_CONST[round]
1336 | (uint32_t)((IOTA_CONST_bit31 << round) & 0x80000000)
1337 | (uint64_t)((IOTA_CONST_bit63 << round) & 0x80000000) << 32;
1338 }
1339
1340 if (BB_BIG_ENDIAN) {
1341 for (x = 0; x < 25; x++) {
1342 state[x] = SWAP_LE64(state[x]);
1343 }
1344 }
1345#endif
1346}
1347
1348void FAST_FUNC sha3_begin(sha3_ctx_t *ctx)
1349{
1350 memset(ctx, 0, sizeof(*ctx));
1351 /* SHA3-512, user can override */
1352 ctx->input_block_bytes = (1600 - 512*2) / 8; /* 72 bytes */
1353}
1354
1355void FAST_FUNC sha3_hash(sha3_ctx_t *ctx, const void *buffer, size_t len)
1356{
1357#if SHA3_SMALL
1358 const uint8_t *data = buffer;
1359 unsigned bufpos = ctx->bytes_queued;
1360
1361 while (1) {
1362 unsigned remaining = ctx->input_block_bytes - bufpos;
1363 if (remaining > len)
1364 remaining = len;
1365 len -= remaining;
1366 /* XOR data into buffer */
1367 while (remaining != 0) {
1368 uint8_t *buf = (uint8_t*)ctx->state;
1369 buf[bufpos] ^= *data++;
1370 bufpos++;
1371 remaining--;
1372 }
1373 /* Clever way to do "if (bufpos != N) break; ... ; bufpos = 0;" */
1374 bufpos -= ctx->input_block_bytes;
1375 if (bufpos != 0)
1376 break;
1377 /* Buffer is filled up, process it */
1378 sha3_process_block72(ctx->state);
1379 /*bufpos = 0; - already is */
1380 }
1381 ctx->bytes_queued = bufpos + ctx->input_block_bytes;
1382#else
1383 /* +50 bytes code size, but a bit faster because of long-sized XORs */
1384 const uint8_t *data = buffer;
1385 unsigned bufpos = ctx->bytes_queued;
1386 unsigned iblk_bytes = ctx->input_block_bytes;
1387
1388 /* If already data in queue, continue queuing first */
1389 if (bufpos != 0) {
1390 while (len != 0) {
1391 uint8_t *buf = (uint8_t*)ctx->state;
1392 buf[bufpos] ^= *data++;
1393 len--;
1394 bufpos++;
1395 if (bufpos == iblk_bytes) {
1396 bufpos = 0;
1397 goto do_block;
1398 }
1399 }
1400 }
1401
1402 /* Absorb complete blocks */
1403 while (len >= iblk_bytes) {
1404 /* XOR data onto beginning of state[].
1405 * We try to be efficient - operate one word at a time, not byte.
1406 * Careful wrt unaligned access: can't just use "*(long*)data"!
1407 */
1408 unsigned count = iblk_bytes / sizeof(long);
1409 long *buf = (long*)ctx->state;
1410 do {
1411 long v;
1412 move_from_unaligned_long(v, (long*)data);
1413 *buf++ ^= v;
1414 data += sizeof(long);
1415 } while (--count);
1416 len -= iblk_bytes;
1417 do_block:
1418 sha3_process_block72(ctx->state);
1419 }
1420
1421 /* Queue remaining data bytes */
1422 while (len != 0) {
1423 uint8_t *buf = (uint8_t*)ctx->state;
1424 buf[bufpos] ^= *data++;
1425 bufpos++;
1426 len--;
1427 }
1428
1429 ctx->bytes_queued = bufpos;
1430#endif
1431}
1432
1433void FAST_FUNC sha3_end(sha3_ctx_t *ctx, void *resbuf)
1434{
1435 /* Padding */
1436 uint8_t *buf = (uint8_t*)ctx->state;
1437 /*
1438 * Keccak block padding is: add 1 bit after last bit of input,
1439 * then add zero bits until the end of block, and add the last 1 bit
1440 * (the last bit in the block) - the "10*1" pattern.
1441 * SHA3 standard appends additional two bits, 01, before that padding:
1442 *
1443 * SHA3-224(M) = KECCAK[448](M||01, 224)
1444 * SHA3-256(M) = KECCAK[512](M||01, 256)
1445 * SHA3-384(M) = KECCAK[768](M||01, 384)
1446 * SHA3-512(M) = KECCAK[1024](M||01, 512)
1447 * (M is the input, || is bit concatenation)
1448 *
1449 * The 6 below contains 01 "SHA3" bits and the first 1 "Keccak" bit:
1450 */
1451 buf[ctx->bytes_queued] ^= 6; /* bit pattern 00000110 */
1452 buf[ctx->input_block_bytes - 1] ^= 0x80;
1453
1454 sha3_process_block72(ctx->state);
1455
1456 /* Output */
1457 memcpy(resbuf, ctx->state, 64);
1458}
1459