summaryrefslogtreecommitdiff
path: root/networking/ntpd.c (plain)
blob: 1c1c38f536dc35591008931e6d664bf3e4615ca3
1/*
2 * NTP client/server, based on OpenNTPD 3.9p1
3 *
4 * Author: Adam Tkac <vonsch@gmail.com>
5 *
6 * Licensed under GPLv2, see file LICENSE in this source tree.
7 *
8 * Parts of OpenNTPD clock syncronization code is replaced by
9 * code which is based on ntp-4.2.6, whuch carries the following
10 * copyright notice:
11 *
12 ***********************************************************************
13 * *
14 * Copyright (c) University of Delaware 1992-2009 *
15 * *
16 * Permission to use, copy, modify, and distribute this software and *
17 * its documentation for any purpose with or without fee is hereby *
18 * granted, provided that the above copyright notice appears in all *
19 * copies and that both the copyright notice and this permission *
20 * notice appear in supporting documentation, and that the name *
21 * University of Delaware not be used in advertising or publicity *
22 * pertaining to distribution of the software without specific, *
23 * written prior permission. The University of Delaware makes no *
24 * representations about the suitability this software for any *
25 * purpose. It is provided "as is" without express or implied *
26 * warranty. *
27 * *
28 ***********************************************************************
29 */
30
31//usage:#define ntpd_trivial_usage
32//usage: "[-dnqNw"IF_FEATURE_NTPD_SERVER("l")"] [-S PROG] [-p PEER]..."
33//usage:#define ntpd_full_usage "\n\n"
34//usage: "NTP client/server\n"
35//usage: "\n -d Verbose"
36//usage: "\n -n Do not daemonize"
37//usage: "\n -q Quit after clock is set"
38//usage: "\n -N Run at high priority"
39//usage: "\n -w Do not set time (only query peers), implies -n"
40//usage: IF_FEATURE_NTPD_SERVER(
41//usage: "\n -l Run as server on port 123"
42//usage: )
43//usage: "\n -S PROG Run PROG after stepping time, stratum change, and every 11 mins"
44//usage: "\n -p PEER Obtain time from PEER (may be repeated)"
45
46#include "libbb.h"
47#include <math.h>
48#include <netinet/ip.h> /* For IPTOS_LOWDELAY definition */
49#include <sys/resource.h> /* setpriority */
50
51#ifdef __BIONIC__
52#include <linux/timex.h>
53extern int adjtimex (struct timex *);
54#else
55#include <sys/timex.h>
56#endif
57#ifndef IPTOS_LOWDELAY
58# define IPTOS_LOWDELAY 0x10
59#endif
60#ifndef IP_PKTINFO
61# error "Sorry, your kernel has to support IP_PKTINFO"
62#endif
63
64
65/* Verbosity control (max level of -dddd options accepted).
66 * max 6 is very talkative (and bloated). 3 is non-bloated,
67 * production level setting.
68 */
69#define MAX_VERBOSE 3
70
71
72/* High-level description of the algorithm:
73 *
74 * We start running with very small poll_exp, BURSTPOLL,
75 * in order to quickly accumulate INITIAL_SAMPLES datapoints
76 * for each peer. Then, time is stepped if the offset is larger
77 * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge
78 * poll_exp to MINPOLL and enter frequency measurement step:
79 * we collect new datapoints but ignore them for WATCH_THRESHOLD
80 * seconds. After WATCH_THRESHOLD seconds we look at accumulated
81 * offset and estimate frequency drift.
82 *
83 * (frequency measurement step seems to not be strictly needed,
84 * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION
85 * define set to 0)
86 *
87 * After this, we enter "steady state": we collect a datapoint,
88 * we select the best peer, if this datapoint is not a new one
89 * (IOW: if this datapoint isn't for selected peer), sleep
90 * and collect another one; otherwise, use its offset to update
91 * frequency drift, if offset is somewhat large, reduce poll_exp,
92 * otherwise increase poll_exp.
93 *
94 * If offset is larger than STEP_THRESHOLD, which shouldn't normally
95 * happen, we assume that something "bad" happened (computer
96 * was hibernated, someone set totally wrong date, etc),
97 * then the time is stepped, all datapoints are discarded,
98 * and we go back to steady state.
99 *
100 * Made some changes to speed up re-syncing after our clock goes bad
101 * (tested with suspending my laptop):
102 * - if largish offset (>= STEP_THRESHOLD * 8 == 1 sec) is seen
103 * from a peer, schedule next query for this peer soon
104 * without drastically lowering poll interval for everybody.
105 * This makes us collect enough data for step much faster:
106 * e.g. at poll = 10 (1024 secs), step was done within 5 minutes
107 * after first reply which indicated that our clock is 14 seconds off.
108 * - on step, do not discard d_dispersion data of the existing datapoints,
109 * do not clear reachable_bits. This prevents discarding first ~8
110 * datapoints after the step.
111 */
112
113#define RETRY_INTERVAL 5 /* on error, retry in N secs */
114#define RESPONSE_INTERVAL 15 /* wait for reply up to N secs */
115#define INITIAL_SAMPLES 4 /* how many samples do we want for init */
116#define BAD_DELAY_GROWTH 4 /* drop packet if its delay grew by more than this */
117
118/* Clock discipline parameters and constants */
119
120/* Step threshold (sec). std ntpd uses 0.128.
121 * Using exact power of 2 (1/8) results in smaller code */
122#define STEP_THRESHOLD 0.125
123#define WATCH_THRESHOLD 128 /* stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */
124/* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
125//UNUSED: #define PANIC_THRESHOLD 1000 /* panic threshold (sec) */
126
127#define FREQ_TOLERANCE 0.000015 /* frequency tolerance (15 PPM) */
128#define BURSTPOLL 0 /* initial poll */
129#define MINPOLL 5 /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
130/* If we got largish offset from a peer, cap next query interval
131 * for this peer by this many seconds:
132 */
133#define BIGOFF_INTERVAL (1 << 6)
134/* If offset > discipline_jitter * POLLADJ_GATE, and poll interval is >= 2^BIGPOLL,
135 * then it is decreased _at once_. (If < 2^BIGPOLL, it will be decreased _eventually_).
136 */
137#define BIGPOLL 10 /* 2^10 sec ~= 17 min */
138#define MAXPOLL 12 /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
139/* Actively lower poll when we see such big offsets.
140 * With STEP_THRESHOLD = 0.125, it means we try to sync more aggressively
141 * if offset increases over ~0.04 sec */
142#define POLLDOWN_OFFSET (STEP_THRESHOLD / 3)
143#define MINDISP 0.01 /* minimum dispersion (sec) */
144#define MAXDISP 16 /* maximum dispersion (sec) */
145#define MAXSTRAT 16 /* maximum stratum (infinity metric) */
146#define MAXDIST 1 /* distance threshold (sec) */
147#define MIN_SELECTED 1 /* minimum intersection survivors */
148#define MIN_CLUSTERED 3 /* minimum cluster survivors */
149
150#define MAXDRIFT 0.000500 /* frequency drift we can correct (500 PPM) */
151
152/* Poll-adjust threshold.
153 * When we see that offset is small enough compared to discipline jitter,
154 * we grow a counter: += MINPOLL. When counter goes over POLLADJ_LIMIT,
155 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
156 * and when it goes below -POLLADJ_LIMIT, we poll_exp--.
157 * (Bumped from 30 to 40 since otherwise I often see poll_exp going *2* steps down)
158 */
159#define POLLADJ_LIMIT 40
160/* If offset < discipline_jitter * POLLADJ_GATE, then we decide to increase
161 * poll interval (we think we can't improve timekeeping
162 * by staying at smaller poll).
163 */
164#define POLLADJ_GATE 4
165#define TIMECONST_HACK_GATE 2
166/* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
167#define ALLAN 512
168/* PLL loop gain */
169#define PLL 65536
170/* FLL loop gain [why it depends on MAXPOLL??] */
171#define FLL (MAXPOLL + 1)
172/* Parameter averaging constant */
173#define AVG 4
174
175
176enum {
177 NTP_VERSION = 4,
178 NTP_MAXSTRATUM = 15,
179
180 NTP_DIGESTSIZE = 16,
181 NTP_MSGSIZE_NOAUTH = 48,
182 NTP_MSGSIZE = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE),
183
184 /* Status Masks */
185 MODE_MASK = (7 << 0),
186 VERSION_MASK = (7 << 3),
187 VERSION_SHIFT = 3,
188 LI_MASK = (3 << 6),
189
190 /* Leap Second Codes (high order two bits of m_status) */
191 LI_NOWARNING = (0 << 6), /* no warning */
192 LI_PLUSSEC = (1 << 6), /* add a second (61 seconds) */
193 LI_MINUSSEC = (2 << 6), /* minus a second (59 seconds) */
194 LI_ALARM = (3 << 6), /* alarm condition */
195
196 /* Mode values */
197 MODE_RES0 = 0, /* reserved */
198 MODE_SYM_ACT = 1, /* symmetric active */
199 MODE_SYM_PAS = 2, /* symmetric passive */
200 MODE_CLIENT = 3, /* client */
201 MODE_SERVER = 4, /* server */
202 MODE_BROADCAST = 5, /* broadcast */
203 MODE_RES1 = 6, /* reserved for NTP control message */
204 MODE_RES2 = 7, /* reserved for private use */
205};
206
207//TODO: better base selection
208#define OFFSET_1900_1970 2208988800UL /* 1970 - 1900 in seconds */
209
210#define NUM_DATAPOINTS 8
211
212typedef struct {
213 uint32_t int_partl;
214 uint32_t fractionl;
215} l_fixedpt_t;
216
217typedef struct {
218 uint16_t int_parts;
219 uint16_t fractions;
220} s_fixedpt_t;
221
222typedef struct {
223 uint8_t m_status; /* status of local clock and leap info */
224 uint8_t m_stratum;
225 uint8_t m_ppoll; /* poll value */
226 int8_t m_precision_exp;
227 s_fixedpt_t m_rootdelay;
228 s_fixedpt_t m_rootdisp;
229 uint32_t m_refid;
230 l_fixedpt_t m_reftime;
231 l_fixedpt_t m_orgtime;
232 l_fixedpt_t m_rectime;
233 l_fixedpt_t m_xmttime;
234 uint32_t m_keyid;
235 uint8_t m_digest[NTP_DIGESTSIZE];
236} msg_t;
237
238typedef struct {
239 double d_offset;
240 double d_recv_time;
241 double d_dispersion;
242} datapoint_t;
243
244typedef struct {
245 len_and_sockaddr *p_lsa;
246 char *p_dotted;
247 int p_fd;
248 int datapoint_idx;
249 uint32_t lastpkt_refid;
250 uint8_t lastpkt_status;
251 uint8_t lastpkt_stratum;
252 uint8_t reachable_bits;
253 /* when to send new query (if p_fd == -1)
254 * or when receive times out (if p_fd >= 0): */
255 double next_action_time;
256 double p_xmttime;
257 double lastpkt_recv_time;
258 double lastpkt_delay;
259 double lastpkt_rootdelay;
260 double lastpkt_rootdisp;
261 /* produced by filter algorithm: */
262 double filter_offset;
263 double filter_dispersion;
264 double filter_jitter;
265 datapoint_t filter_datapoint[NUM_DATAPOINTS];
266 /* last sent packet: */
267 msg_t p_xmt_msg;
268} peer_t;
269
270
271#define USING_KERNEL_PLL_LOOP 1
272#define USING_INITIAL_FREQ_ESTIMATION 0
273
274enum {
275 OPT_n = (1 << 0),
276 OPT_q = (1 << 1),
277 OPT_N = (1 << 2),
278 OPT_x = (1 << 3),
279 /* Insert new options above this line. */
280 /* Non-compat options: */
281 OPT_w = (1 << 4),
282 OPT_p = (1 << 5),
283 OPT_S = (1 << 6),
284 OPT_l = (1 << 7) * ENABLE_FEATURE_NTPD_SERVER,
285 /* We hijack some bits for other purposes */
286 OPT_qq = (1 << 31),
287};
288
289struct globals {
290 double cur_time;
291 /* total round trip delay to currently selected reference clock */
292 double rootdelay;
293 /* reference timestamp: time when the system clock was last set or corrected */
294 double reftime;
295 /* total dispersion to currently selected reference clock */
296 double rootdisp;
297
298 double last_script_run;
299 char *script_name;
300 llist_t *ntp_peers;
301#if ENABLE_FEATURE_NTPD_SERVER
302 int listen_fd;
303# define G_listen_fd (G.listen_fd)
304#else
305# define G_listen_fd (-1)
306#endif
307 unsigned verbose;
308 unsigned peer_cnt;
309 /* refid: 32-bit code identifying the particular server or reference clock
310 * in stratum 0 packets this is a four-character ASCII string,
311 * called the kiss code, used for debugging and monitoring
312 * in stratum 1 packets this is a four-character ASCII string
313 * assigned to the reference clock by IANA. Example: "GPS "
314 * in stratum 2+ packets, it's IPv4 address or 4 first bytes
315 * of MD5 hash of IPv6
316 */
317 uint32_t refid;
318 uint8_t ntp_status;
319 /* precision is defined as the larger of the resolution and time to
320 * read the clock, in log2 units. For instance, the precision of a
321 * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
322 * system clock hardware representation is to the nanosecond.
323 *
324 * Delays, jitters of various kinds are clamped down to precision.
325 *
326 * If precision_sec is too large, discipline_jitter gets clamped to it
327 * and if offset is smaller than discipline_jitter * POLLADJ_GATE, poll
328 * interval grows even though we really can benefit from staying at
329 * smaller one, collecting non-lagged datapoits and correcting offset.
330 * (Lagged datapoits exist when poll_exp is large but we still have
331 * systematic offset error - the time distance between datapoints
332 * is significant and older datapoints have smaller offsets.
333 * This makes our offset estimation a bit smaller than reality)
334 * Due to this effect, setting G_precision_sec close to
335 * STEP_THRESHOLD isn't such a good idea - offsets may grow
336 * too big and we will step. I observed it with -6.
337 *
338 * OTOH, setting precision_sec far too small would result in futile
339 * attempts to syncronize to an unachievable precision.
340 *
341 * -6 is 1/64 sec, -7 is 1/128 sec and so on.
342 * -8 is 1/256 ~= 0.003906 (worked well for me --vda)
343 * -9 is 1/512 ~= 0.001953 (let's try this for some time)
344 */
345#define G_precision_exp -9
346 /*
347 * G_precision_exp is used only for construction outgoing packets.
348 * It's ok to set G_precision_sec to a slightly different value
349 * (One which is "nicer looking" in logs).
350 * Exact value would be (1.0 / (1 << (- G_precision_exp))):
351 */
352#define G_precision_sec 0.002
353 uint8_t stratum;
354 /* Bool. After set to 1, never goes back to 0: */
355 smallint initial_poll_complete;
356
357#define STATE_NSET 0 /* initial state, "nothing is set" */
358//#define STATE_FSET 1 /* frequency set from file */
359//#define STATE_SPIK 2 /* spike detected */
360//#define STATE_FREQ 3 /* initial frequency */
361#define STATE_SYNC 4 /* clock synchronized (normal operation) */
362 uint8_t discipline_state; // doc calls it c.state
363 uint8_t poll_exp; // s.poll
364 int polladj_count; // c.count
365 long kernel_freq_drift;
366 peer_t *last_update_peer;
367 double last_update_offset; // c.last
368 double last_update_recv_time; // s.t
369 double discipline_jitter; // c.jitter
370 /* Since we only compare it with ints, can simplify code
371 * by not making this variable floating point:
372 */
373 unsigned offset_to_jitter_ratio;
374 //double cluster_offset; // s.offset
375 //double cluster_jitter; // s.jitter
376#if !USING_KERNEL_PLL_LOOP
377 double discipline_freq_drift; // c.freq
378 /* Maybe conditionally calculate wander? it's used only for logging */
379 double discipline_wander; // c.wander
380#endif
381};
382#define G (*ptr_to_globals)
383
384static const int const_IPTOS_LOWDELAY = IPTOS_LOWDELAY;
385
386
387#define VERB1 if (MAX_VERBOSE && G.verbose)
388#define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
389#define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
390#define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
391#define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
392#define VERB6 if (MAX_VERBOSE >= 6 && G.verbose >= 6)
393
394
395static double LOG2D(int a)
396{
397 if (a < 0)
398 return 1.0 / (1UL << -a);
399 return 1UL << a;
400}
401static ALWAYS_INLINE double SQUARE(double x)
402{
403 return x * x;
404}
405static ALWAYS_INLINE double MAXD(double a, double b)
406{
407 if (a > b)
408 return a;
409 return b;
410}
411static ALWAYS_INLINE double MIND(double a, double b)
412{
413 if (a < b)
414 return a;
415 return b;
416}
417static NOINLINE double my_SQRT(double X)
418{
419 union {
420 float f;
421 int32_t i;
422 } v;
423 double invsqrt;
424 double Xhalf = X * 0.5;
425
426 /* Fast and good approximation to 1/sqrt(X), black magic */
427 v.f = X;
428 /*v.i = 0x5f3759df - (v.i >> 1);*/
429 v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
430 invsqrt = v.f; /* better than 0.2% accuracy */
431
432 /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
433 * f(x) = 1/(x*x) - X (f==0 when x = 1/sqrt(X))
434 * f'(x) = -2/(x*x*x)
435 * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
436 * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
437 */
438 invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
439 /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
440 /* With 4 iterations, more than half results will be exact,
441 * at 6th iterations result stabilizes with about 72% results exact.
442 * We are well satisfied with 0.05% accuracy.
443 */
444
445 return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
446}
447static ALWAYS_INLINE double SQRT(double X)
448{
449 /* If this arch doesn't use IEEE 754 floats, fall back to using libm */
450 if (sizeof(float) != 4)
451 return sqrt(X);
452
453 /* This avoids needing libm, saves about 0.5k on x86-32 */
454 return my_SQRT(X);
455}
456
457static double
458gettime1900d(void)
459{
460 struct timeval tv;
461 gettimeofday(&tv, NULL); /* never fails */
462 G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
463 return G.cur_time;
464}
465
466static void
467d_to_tv(double d, struct timeval *tv)
468{
469 tv->tv_sec = (long)d;
470 tv->tv_usec = (d - tv->tv_sec) * 1000000;
471}
472
473static double
474lfp_to_d(l_fixedpt_t lfp)
475{
476 double ret;
477 lfp.int_partl = ntohl(lfp.int_partl);
478 lfp.fractionl = ntohl(lfp.fractionl);
479 ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
480 return ret;
481}
482static double
483sfp_to_d(s_fixedpt_t sfp)
484{
485 double ret;
486 sfp.int_parts = ntohs(sfp.int_parts);
487 sfp.fractions = ntohs(sfp.fractions);
488 ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
489 return ret;
490}
491#if ENABLE_FEATURE_NTPD_SERVER
492static l_fixedpt_t
493d_to_lfp(double d)
494{
495 l_fixedpt_t lfp;
496 lfp.int_partl = (uint32_t)d;
497 lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
498 lfp.int_partl = htonl(lfp.int_partl);
499 lfp.fractionl = htonl(lfp.fractionl);
500 return lfp;
501}
502static s_fixedpt_t
503d_to_sfp(double d)
504{
505 s_fixedpt_t sfp;
506 sfp.int_parts = (uint16_t)d;
507 sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
508 sfp.int_parts = htons(sfp.int_parts);
509 sfp.fractions = htons(sfp.fractions);
510 return sfp;
511}
512#endif
513
514static double
515dispersion(const datapoint_t *dp)
516{
517 return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
518}
519
520static double
521root_distance(peer_t *p)
522{
523 /* The root synchronization distance is the maximum error due to
524 * all causes of the local clock relative to the primary server.
525 * It is defined as half the total delay plus total dispersion
526 * plus peer jitter.
527 */
528 return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
529 + p->lastpkt_rootdisp
530 + p->filter_dispersion
531 + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
532 + p->filter_jitter;
533}
534
535static void
536set_next(peer_t *p, unsigned t)
537{
538 p->next_action_time = G.cur_time + t;
539}
540
541/*
542 * Peer clock filter and its helpers
543 */
544static void
545filter_datapoints(peer_t *p)
546{
547 int i, idx;
548 double sum, wavg;
549 datapoint_t *fdp;
550
551#if 0
552/* Simulations have shown that use of *averaged* offset for p->filter_offset
553 * is in fact worse than simply using last received one: with large poll intervals
554 * (>= 2048) averaging code uses offset values which are outdated by hours,
555 * and time/frequency correction goes totally wrong when fed essentially bogus offsets.
556 */
557 int got_newest;
558 double minoff, maxoff, w;
559 double x = x; /* for compiler */
560 double oldest_off = oldest_off;
561 double oldest_age = oldest_age;
562 double newest_off = newest_off;
563 double newest_age = newest_age;
564
565 fdp = p->filter_datapoint;
566
567 minoff = maxoff = fdp[0].d_offset;
568 for (i = 1; i < NUM_DATAPOINTS; i++) {
569 if (minoff > fdp[i].d_offset)
570 minoff = fdp[i].d_offset;
571 if (maxoff < fdp[i].d_offset)
572 maxoff = fdp[i].d_offset;
573 }
574
575 idx = p->datapoint_idx; /* most recent datapoint's index */
576 /* Average offset:
577 * Drop two outliers and take weighted average of the rest:
578 * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
579 * we use older6/32, not older6/64 since sum of weights should be 1:
580 * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
581 */
582 wavg = 0;
583 w = 0.5;
584 /* n-1
585 * --- dispersion(i)
586 * filter_dispersion = \ -------------
587 * / (i+1)
588 * --- 2
589 * i=0
590 */
591 got_newest = 0;
592 sum = 0;
593 for (i = 0; i < NUM_DATAPOINTS; i++) {
594 VERB5 {
595 bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
596 i,
597 fdp[idx].d_offset,
598 fdp[idx].d_dispersion, dispersion(&fdp[idx]),
599 G.cur_time - fdp[idx].d_recv_time,
600 (minoff == fdp[idx].d_offset || maxoff == fdp[idx].d_offset)
601 ? " (outlier by offset)" : ""
602 );
603 }
604
605 sum += dispersion(&fdp[idx]) / (2 << i);
606
607 if (minoff == fdp[idx].d_offset) {
608 minoff -= 1; /* so that we don't match it ever again */
609 } else
610 if (maxoff == fdp[idx].d_offset) {
611 maxoff += 1;
612 } else {
613 oldest_off = fdp[idx].d_offset;
614 oldest_age = G.cur_time - fdp[idx].d_recv_time;
615 if (!got_newest) {
616 got_newest = 1;
617 newest_off = oldest_off;
618 newest_age = oldest_age;
619 }
620 x = oldest_off * w;
621 wavg += x;
622 w /= 2;
623 }
624
625 idx = (idx - 1) & (NUM_DATAPOINTS - 1);
626 }
627 p->filter_dispersion = sum;
628 wavg += x; /* add another older6/64 to form older6/32 */
629 /* Fix systematic underestimation with large poll intervals.
630 * Imagine that we still have a bit of uncorrected drift,
631 * and poll interval is big (say, 100 sec). Offsets form a progression:
632 * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
633 * The algorithm above drops 0.0 and 0.7 as outliers,
634 * and then we have this estimation, ~25% off from 0.7:
635 * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
636 */
637 x = oldest_age - newest_age;
638 if (x != 0) {
639 x = newest_age / x; /* in above example, 100 / (600 - 100) */
640 if (x < 1) { /* paranoia check */
641 x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
642 wavg += x;
643 }
644 }
645 p->filter_offset = wavg;
646
647#else
648
649 fdp = p->filter_datapoint;
650 idx = p->datapoint_idx; /* most recent datapoint's index */
651
652 /* filter_offset: simply use the most recent value */
653 p->filter_offset = fdp[idx].d_offset;
654
655 /* n-1
656 * --- dispersion(i)
657 * filter_dispersion = \ -------------
658 * / (i+1)
659 * --- 2
660 * i=0
661 */
662 wavg = 0;
663 sum = 0;
664 for (i = 0; i < NUM_DATAPOINTS; i++) {
665 sum += dispersion(&fdp[idx]) / (2 << i);
666 wavg += fdp[idx].d_offset;
667 idx = (idx - 1) & (NUM_DATAPOINTS - 1);
668 }
669 wavg /= NUM_DATAPOINTS;
670 p->filter_dispersion = sum;
671#endif
672
673 /* +----- -----+ ^ 1/2
674 * | n-1 |
675 * | --- |
676 * | 1 \ 2 |
677 * filter_jitter = | --- * / (avg-offset_j) |
678 * | n --- |
679 * | j=0 |
680 * +----- -----+
681 * where n is the number of valid datapoints in the filter (n > 1);
682 * if filter_jitter < precision then filter_jitter = precision
683 */
684 sum = 0;
685 for (i = 0; i < NUM_DATAPOINTS; i++) {
686 sum += SQUARE(wavg - fdp[i].d_offset);
687 }
688 sum = SQRT(sum / NUM_DATAPOINTS);
689 p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
690
691 VERB4 bb_error_msg("filter offset:%+f disp:%f jitter:%f",
692 p->filter_offset,
693 p->filter_dispersion,
694 p->filter_jitter);
695}
696
697static void
698reset_peer_stats(peer_t *p, double offset)
699{
700 int i;
701 bool small_ofs = fabs(offset) < 16 * STEP_THRESHOLD;
702
703 /* Used to set p->filter_datapoint[i].d_dispersion = MAXDISP
704 * and clear reachable bits, but this proved to be too agressive:
705 * after step (tested with suspinding laptop for ~30 secs),
706 * this caused all previous data to be considered invalid,
707 * making us needing to collect full ~8 datapoins per peer
708 * after step in order to start trusting them.
709 * In turn, this was making poll interval decrease even after
710 * step was done. (Poll interval decreases already before step
711 * in this scenario, because we see large offsets and end up with
712 * no good peer to select).
713 */
714
715 for (i = 0; i < NUM_DATAPOINTS; i++) {
716 if (small_ofs) {
717 p->filter_datapoint[i].d_recv_time += offset;
718 if (p->filter_datapoint[i].d_offset != 0) {
719 p->filter_datapoint[i].d_offset -= offset;
720 //bb_error_msg("p->filter_datapoint[%d].d_offset %f -> %f",
721 // i,
722 // p->filter_datapoint[i].d_offset + offset,
723 // p->filter_datapoint[i].d_offset);
724 }
725 } else {
726 p->filter_datapoint[i].d_recv_time = G.cur_time;
727 p->filter_datapoint[i].d_offset = 0;
728 /*p->filter_datapoint[i].d_dispersion = MAXDISP;*/
729 }
730 }
731 if (small_ofs) {
732 p->lastpkt_recv_time += offset;
733 } else {
734 /*p->reachable_bits = 0;*/
735 p->lastpkt_recv_time = G.cur_time;
736 }
737 filter_datapoints(p); /* recalc p->filter_xxx */
738 VERB6 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
739}
740
741static void
742add_peers(char *s)
743{
744 peer_t *p;
745
746 p = xzalloc(sizeof(*p));
747 p->p_lsa = xhost2sockaddr(s, 123);
748 p->p_dotted = xmalloc_sockaddr2dotted_noport(&p->p_lsa->u.sa);
749 p->p_fd = -1;
750 p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
751 p->next_action_time = G.cur_time; /* = set_next(p, 0); */
752 reset_peer_stats(p, 16 * STEP_THRESHOLD);
753
754 llist_add_to(&G.ntp_peers, p);
755 G.peer_cnt++;
756}
757
758static int
759do_sendto(int fd,
760 const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
761 msg_t *msg, ssize_t len)
762{
763 ssize_t ret;
764
765 errno = 0;
766 if (!from) {
767 ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
768 } else {
769 ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
770 }
771 if (ret != len) {
772 bb_perror_msg("send failed");
773 return -1;
774 }
775 return 0;
776}
777
778static void
779send_query_to_peer(peer_t *p)
780{
781 /* Why do we need to bind()?
782 * See what happens when we don't bind:
783 *
784 * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
785 * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
786 * gettimeofday({1259071266, 327885}, NULL) = 0
787 * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
788 * ^^^ we sent it from some source port picked by kernel.
789 * time(NULL) = 1259071266
790 * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
791 * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
792 * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
793 * ^^^ this recv will receive packets to any local port!
794 *
795 * Uncomment this and use strace to see it in action:
796 */
797#define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
798
799 if (p->p_fd == -1) {
800 int fd, family;
801 len_and_sockaddr *local_lsa;
802
803 family = p->p_lsa->u.sa.sa_family;
804 p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
805 /* local_lsa has "null" address and port 0 now.
806 * bind() ensures we have a *particular port* selected by kernel
807 * and remembered in p->p_fd, thus later recv(p->p_fd)
808 * receives only packets sent to this port.
809 */
810 PROBE_LOCAL_ADDR
811 xbind(fd, &local_lsa->u.sa, local_lsa->len);
812 PROBE_LOCAL_ADDR
813#if ENABLE_FEATURE_IPV6
814 if (family == AF_INET)
815#endif
816 setsockopt(fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
817 free(local_lsa);
818 }
819
820 /* Emit message _before_ attempted send. Think of a very short
821 * roundtrip networks: we need to go back to recv loop ASAP,
822 * to reduce delay. Printing messages after send works against that.
823 */
824 VERB1 bb_error_msg("sending query to %s", p->p_dotted);
825
826 /*
827 * Send out a random 64-bit number as our transmit time. The NTP
828 * server will copy said number into the originate field on the
829 * response that it sends us. This is totally legal per the SNTP spec.
830 *
831 * The impact of this is two fold: we no longer send out the current
832 * system time for the world to see (which may aid an attacker), and
833 * it gives us a (not very secure) way of knowing that we're not
834 * getting spoofed by an attacker that can't capture our traffic
835 * but can spoof packets from the NTP server we're communicating with.
836 *
837 * Save the real transmit timestamp locally.
838 */
839 p->p_xmt_msg.m_xmttime.int_partl = random();
840 p->p_xmt_msg.m_xmttime.fractionl = random();
841 p->p_xmttime = gettime1900d();
842
843 /* Were doing it only if sendto worked, but
844 * loss of sync detection needs reachable_bits updated
845 * even if sending fails *locally*:
846 * "network is unreachable" because cable was pulled?
847 * We still need to declare "unsync" if this condition persists.
848 */
849 p->reachable_bits <<= 1;
850
851 if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
852 &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
853 ) {
854 close(p->p_fd);
855 p->p_fd = -1;
856 /*
857 * We know that we sent nothing.
858 * We can retry *soon* without fearing
859 * that we are flooding the peer.
860 */
861 set_next(p, RETRY_INTERVAL);
862 return;
863 }
864
865 set_next(p, RESPONSE_INTERVAL);
866}
867
868
869/* Note that there is no provision to prevent several run_scripts
870 * to be started in quick succession. In fact, it happens rather often
871 * if initial syncronization results in a step.
872 * You will see "step" and then "stratum" script runs, sometimes
873 * as close as only 0.002 seconds apart.
874 * Script should be ready to deal with this.
875 */
876static void run_script(const char *action, double offset)
877{
878 char *argv[3];
879 char *env1, *env2, *env3, *env4;
880
881 G.last_script_run = G.cur_time;
882
883 if (!G.script_name)
884 return;
885
886 argv[0] = (char*) G.script_name;
887 argv[1] = (char*) action;
888 argv[2] = NULL;
889
890 VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);
891
892 env1 = xasprintf("%s=%u", "stratum", G.stratum);
893 putenv(env1);
894 env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
895 putenv(env2);
896 env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
897 putenv(env3);
898 env4 = xasprintf("%s=%f", "offset", offset);
899 putenv(env4);
900 /* Other items of potential interest: selected peer,
901 * rootdelay, reftime, rootdisp, refid, ntp_status,
902 * last_update_offset, last_update_recv_time, discipline_jitter,
903 * how many peers have reachable_bits = 0?
904 */
905
906 /* Don't want to wait: it may run hwclock --systohc, and that
907 * may take some time (seconds): */
908 /*spawn_and_wait(argv);*/
909 spawn(argv);
910
911 unsetenv("stratum");
912 unsetenv("freq_drift_ppm");
913 unsetenv("poll_interval");
914 unsetenv("offset");
915 free(env1);
916 free(env2);
917 free(env3);
918 free(env4);
919}
920
921static NOINLINE void
922step_time(double offset)
923{
924 llist_t *item;
925 double dtime;
926 struct timeval tvc, tvn;
927 char buf[sizeof("yyyy-mm-dd hh:mm:ss") + /*paranoia:*/ 4];
928 time_t tval;
929
930 gettimeofday(&tvc, NULL); /* never fails */
931 dtime = tvc.tv_sec + (1.0e-6 * tvc.tv_usec) + offset;
932 d_to_tv(dtime, &tvn);
933 if (settimeofday(&tvn, NULL) == -1)
934 bb_perror_msg_and_die("settimeofday");
935
936 VERB2 {
937 tval = tvc.tv_sec;
938 strftime_YYYYMMDDHHMMSS(buf, sizeof(buf), &tval);
939 bb_error_msg("current time is %s.%06u", buf, (unsigned)tvc.tv_usec);
940 }
941 tval = tvn.tv_sec;
942 strftime_YYYYMMDDHHMMSS(buf, sizeof(buf), &tval);
943 bb_error_msg("setting time to %s.%06u (offset %+fs)", buf, (unsigned)tvn.tv_usec, offset);
944
945 /* Correct various fields which contain time-relative values: */
946
947 /* Globals: */
948 G.cur_time += offset;
949 G.last_update_recv_time += offset;
950 G.last_script_run += offset;
951
952 /* p->lastpkt_recv_time, p->next_action_time and such: */
953 for (item = G.ntp_peers; item != NULL; item = item->link) {
954 peer_t *pp = (peer_t *) item->data;
955 reset_peer_stats(pp, offset);
956 //bb_error_msg("offset:%+f pp->next_action_time:%f -> %f",
957 // offset, pp->next_action_time, pp->next_action_time + offset);
958 pp->next_action_time += offset;
959 if (pp->p_fd >= 0) {
960 /* We wait for reply from this peer too.
961 * But due to step we are doing, reply's data is no longer
962 * useful (in fact, it'll be bogus). Stop waiting for it.
963 */
964 close(pp->p_fd);
965 pp->p_fd = -1;
966 set_next(pp, RETRY_INTERVAL);
967 }
968 }
969}
970
971
972/*
973 * Selection and clustering, and their helpers
974 */
975typedef struct {
976 peer_t *p;
977 int type;
978 double edge;
979 double opt_rd; /* optimization */
980} point_t;
981static int
982compare_point_edge(const void *aa, const void *bb)
983{
984 const point_t *a = aa;
985 const point_t *b = bb;
986 if (a->edge < b->edge) {
987 return -1;
988 }
989 return (a->edge > b->edge);
990}
991typedef struct {
992 peer_t *p;
993 double metric;
994} survivor_t;
995static int
996compare_survivor_metric(const void *aa, const void *bb)
997{
998 const survivor_t *a = aa;
999 const survivor_t *b = bb;
1000 if (a->metric < b->metric) {
1001 return -1;
1002 }
1003 return (a->metric > b->metric);
1004}
1005static int
1006fit(peer_t *p, double rd)
1007{
1008 if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
1009 /* One or zero bits in reachable_bits */
1010 VERB4 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted);
1011 return 0;
1012 }
1013#if 0 /* we filter out such packets earlier */
1014 if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
1015 || p->lastpkt_stratum >= MAXSTRAT
1016 ) {
1017 VERB4 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted);
1018 return 0;
1019 }
1020#endif
1021 /* rd is root_distance(p) */
1022 if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
1023 VERB4 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted);
1024 return 0;
1025 }
1026//TODO
1027// /* Do we have a loop? */
1028// if (p->refid == p->dstaddr || p->refid == s.refid)
1029// return 0;
1030 return 1;
1031}
1032static peer_t*
1033select_and_cluster(void)
1034{
1035 peer_t *p;
1036 llist_t *item;
1037 int i, j;
1038 int size = 3 * G.peer_cnt;
1039 /* for selection algorithm */
1040 point_t point[size];
1041 int num_points, num_candidates;
1042 double low, high;
1043 int num_falsetickers;
1044 /* for cluster algorithm */
1045 survivor_t survivor[size];
1046 int num_survivors;
1047
1048 /* Selection */
1049
1050 num_points = 0;
1051 item = G.ntp_peers;
1052 if (G.initial_poll_complete) while (item != NULL) {
1053 double rd, offset;
1054
1055 p = (peer_t *) item->data;
1056 rd = root_distance(p);
1057 offset = p->filter_offset;
1058 if (!fit(p, rd)) {
1059 item = item->link;
1060 continue;
1061 }
1062
1063 VERB5 bb_error_msg("interval: [%f %f %f] %s",
1064 offset - rd,
1065 offset,
1066 offset + rd,
1067 p->p_dotted
1068 );
1069 point[num_points].p = p;
1070 point[num_points].type = -1;
1071 point[num_points].edge = offset - rd;
1072 point[num_points].opt_rd = rd;
1073 num_points++;
1074 point[num_points].p = p;
1075 point[num_points].type = 0;
1076 point[num_points].edge = offset;
1077 point[num_points].opt_rd = rd;
1078 num_points++;
1079 point[num_points].p = p;
1080 point[num_points].type = 1;
1081 point[num_points].edge = offset + rd;
1082 point[num_points].opt_rd = rd;
1083 num_points++;
1084 item = item->link;
1085 }
1086 num_candidates = num_points / 3;
1087 if (num_candidates == 0) {
1088 VERB3 bb_error_msg("no valid datapoints%s", ", no peer selected");
1089 return NULL;
1090 }
1091//TODO: sorting does not seem to be done in reference code
1092 qsort(point, num_points, sizeof(point[0]), compare_point_edge);
1093
1094 /* Start with the assumption that there are no falsetickers.
1095 * Attempt to find a nonempty intersection interval containing
1096 * the midpoints of all truechimers.
1097 * If a nonempty interval cannot be found, increase the number
1098 * of assumed falsetickers by one and try again.
1099 * If a nonempty interval is found and the number of falsetickers
1100 * is less than the number of truechimers, a majority has been found
1101 * and the midpoint of each truechimer represents
1102 * the candidates available to the cluster algorithm.
1103 */
1104 num_falsetickers = 0;
1105 while (1) {
1106 int c;
1107 int num_midpoints = 0;
1108
1109 low = 1 << 9;
1110 high = - (1 << 9);
1111 c = 0;
1112 for (i = 0; i < (int) num_points; i++) {
1113 /* We want to do:
1114 * if (point[i].type == -1) c++;
1115 * if (point[i].type == 1) c--;
1116 * and it's simpler to do it this way:
1117 */
1118 c -= point[i].type;
1119 if (c >= num_candidates - num_falsetickers) {
1120 /* If it was c++ and it got big enough... */
1121 low = point[i].edge;
1122 break;
1123 }
1124 if (point[i].type == 0)
1125 num_midpoints++;
1126 }
1127 c = 0;
1128 for (i = num_points-1; i >= 0; i--) {
1129 c += point[i].type;
1130 if (c >= num_candidates - num_falsetickers) {
1131 high = point[i].edge;
1132 break;
1133 }
1134 if (point[i].type == 0)
1135 num_midpoints++;
1136 }
1137 /* If the number of midpoints is greater than the number
1138 * of allowed falsetickers, the intersection contains at
1139 * least one truechimer with no midpoint - bad.
1140 * Also, interval should be nonempty.
1141 */
1142 if (num_midpoints <= num_falsetickers && low < high)
1143 break;
1144 num_falsetickers++;
1145 if (num_falsetickers * 2 >= num_candidates) {
1146 VERB3 bb_error_msg("falsetickers:%d, candidates:%d%s",
1147 num_falsetickers, num_candidates,
1148 ", no peer selected");
1149 return NULL;
1150 }
1151 }
1152 VERB4 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
1153 low, high, num_candidates, num_falsetickers);
1154
1155 /* Clustering */
1156
1157 /* Construct a list of survivors (p, metric)
1158 * from the chime list, where metric is dominated
1159 * first by stratum and then by root distance.
1160 * All other things being equal, this is the order of preference.
1161 */
1162 num_survivors = 0;
1163 for (i = 0; i < num_points; i++) {
1164 if (point[i].edge < low || point[i].edge > high)
1165 continue;
1166 p = point[i].p;
1167 survivor[num_survivors].p = p;
1168 /* x.opt_rd == root_distance(p); */
1169 survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
1170 VERB5 bb_error_msg("survivor[%d] metric:%f peer:%s",
1171 num_survivors, survivor[num_survivors].metric, p->p_dotted);
1172 num_survivors++;
1173 }
1174 /* There must be at least MIN_SELECTED survivors to satisfy the
1175 * correctness assertions. Ordinarily, the Byzantine criteria
1176 * require four survivors, but for the demonstration here, one
1177 * is acceptable.
1178 */
1179 if (num_survivors < MIN_SELECTED) {
1180 VERB3 bb_error_msg("survivors:%d%s",
1181 num_survivors,
1182 ", no peer selected");
1183 return NULL;
1184 }
1185
1186//looks like this is ONLY used by the fact that later we pick survivor[0].
1187//we can avoid sorting then, just find the minimum once!
1188 qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
1189
1190 /* For each association p in turn, calculate the selection
1191 * jitter p->sjitter as the square root of the sum of squares
1192 * (p->offset - q->offset) over all q associations. The idea is
1193 * to repeatedly discard the survivor with maximum selection
1194 * jitter until a termination condition is met.
1195 */
1196 while (1) {
1197 static int max_idx;
1198 double max_selection_jitter = max_selection_jitter;
1199 double min_jitter = min_jitter;
1200
1201 if (num_survivors <= MIN_CLUSTERED) {
1202 VERB4 bb_error_msg("num_survivors %d <= %d, not discarding more",
1203 num_survivors, MIN_CLUSTERED);
1204 break;
1205 }
1206
1207 /* To make sure a few survivors are left
1208 * for the clustering algorithm to chew on,
1209 * we stop if the number of survivors
1210 * is less than or equal to MIN_CLUSTERED (3).
1211 */
1212 for (i = 0; i < num_survivors; i++) {
1213 double selection_jitter_sq;
1214
1215 p = survivor[i].p;
1216 if (i == 0 || p->filter_jitter < min_jitter)
1217 min_jitter = p->filter_jitter;
1218
1219 selection_jitter_sq = 0;
1220 for (j = 0; j < num_survivors; j++) {
1221 peer_t *q = survivor[j].p;
1222 selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
1223 }
1224 if (i == 0 || selection_jitter_sq > max_selection_jitter) {
1225 max_selection_jitter = selection_jitter_sq;
1226 max_idx = i;
1227 }
1228 VERB6 bb_error_msg("survivor %d selection_jitter^2:%f",
1229 i, selection_jitter_sq);
1230 }
1231 max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
1232 VERB5 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
1233 max_idx, max_selection_jitter, min_jitter);
1234
1235 /* If the maximum selection jitter is less than the
1236 * minimum peer jitter, then tossing out more survivors
1237 * will not lower the minimum peer jitter, so we might
1238 * as well stop.
1239 */
1240 if (max_selection_jitter < min_jitter) {
1241 VERB4 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
1242 max_selection_jitter, min_jitter, num_survivors);
1243 break;
1244 }
1245
1246 /* Delete survivor[max_idx] from the list
1247 * and go around again.
1248 */
1249 VERB6 bb_error_msg("dropping survivor %d", max_idx);
1250 num_survivors--;
1251 while (max_idx < num_survivors) {
1252 survivor[max_idx] = survivor[max_idx + 1];
1253 max_idx++;
1254 }
1255 }
1256
1257 if (0) {
1258 /* Combine the offsets of the clustering algorithm survivors
1259 * using a weighted average with weight determined by the root
1260 * distance. Compute the selection jitter as the weighted RMS
1261 * difference between the first survivor and the remaining
1262 * survivors. In some cases the inherent clock jitter can be
1263 * reduced by not using this algorithm, especially when frequent
1264 * clockhopping is involved. bbox: thus we don't do it.
1265 */
1266 double x, y, z, w;
1267 y = z = w = 0;
1268 for (i = 0; i < num_survivors; i++) {
1269 p = survivor[i].p;
1270 x = root_distance(p);
1271 y += 1 / x;
1272 z += p->filter_offset / x;
1273 w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
1274 }
1275 //G.cluster_offset = z / y;
1276 //G.cluster_jitter = SQRT(w / y);
1277 }
1278
1279 /* Pick the best clock. If the old system peer is on the list
1280 * and at the same stratum as the first survivor on the list,
1281 * then don't do a clock hop. Otherwise, select the first
1282 * survivor on the list as the new system peer.
1283 */
1284 p = survivor[0].p;
1285 if (G.last_update_peer
1286 && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
1287 ) {
1288 /* Starting from 1 is ok here */
1289 for (i = 1; i < num_survivors; i++) {
1290 if (G.last_update_peer == survivor[i].p) {
1291 VERB5 bb_error_msg("keeping old synced peer");
1292 p = G.last_update_peer;
1293 goto keep_old;
1294 }
1295 }
1296 }
1297 G.last_update_peer = p;
1298 keep_old:
1299 VERB4 bb_error_msg("selected peer %s filter_offset:%+f age:%f",
1300 p->p_dotted,
1301 p->filter_offset,
1302 G.cur_time - p->lastpkt_recv_time
1303 );
1304 return p;
1305}
1306
1307
1308/*
1309 * Local clock discipline and its helpers
1310 */
1311static void
1312set_new_values(int disc_state, double offset, double recv_time)
1313{
1314 /* Enter new state and set state variables. Note we use the time
1315 * of the last clock filter sample, which must be earlier than
1316 * the current time.
1317 */
1318 VERB4 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
1319 disc_state, offset, recv_time);
1320 G.discipline_state = disc_state;
1321 G.last_update_offset = offset;
1322 G.last_update_recv_time = recv_time;
1323}
1324/* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
1325static NOINLINE int
1326update_local_clock(peer_t *p)
1327{
1328 int rc;
1329 struct timex tmx;
1330 /* Note: can use G.cluster_offset instead: */
1331 double offset = p->filter_offset;
1332 double recv_time = p->lastpkt_recv_time;
1333 double abs_offset;
1334#if !USING_KERNEL_PLL_LOOP
1335 double freq_drift;
1336#endif
1337 double since_last_update;
1338 double etemp, dtemp;
1339
1340 abs_offset = fabs(offset);
1341
1342#if 0
1343 /* If needed, -S script can do it by looking at $offset
1344 * env var and killing parent */
1345 /* If the offset is too large, give up and go home */
1346 if (abs_offset > PANIC_THRESHOLD) {
1347 bb_error_msg_and_die("offset %f far too big, exiting", offset);
1348 }
1349#endif
1350
1351 /* If this is an old update, for instance as the result
1352 * of a system peer change, avoid it. We never use
1353 * an old sample or the same sample twice.
1354 */
1355 if (recv_time <= G.last_update_recv_time) {
1356 VERB3 bb_error_msg("update from %s: same or older datapoint, not using it",
1357 p->p_dotted);
1358 return 0; /* "leave poll interval as is" */
1359 }
1360
1361 /* Clock state machine transition function. This is where the
1362 * action is and defines how the system reacts to large time
1363 * and frequency errors.
1364 */
1365 since_last_update = recv_time - G.reftime;
1366#if !USING_KERNEL_PLL_LOOP
1367 freq_drift = 0;
1368#endif
1369#if USING_INITIAL_FREQ_ESTIMATION
1370 if (G.discipline_state == STATE_FREQ) {
1371 /* Ignore updates until the stepout threshold */
1372 if (since_last_update < WATCH_THRESHOLD) {
1373 VERB4 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
1374 WATCH_THRESHOLD - since_last_update);
1375 return 0; /* "leave poll interval as is" */
1376 }
1377# if !USING_KERNEL_PLL_LOOP
1378 freq_drift = (offset - G.last_update_offset) / since_last_update;
1379# endif
1380 }
1381#endif
1382
1383 /* There are two main regimes: when the
1384 * offset exceeds the step threshold and when it does not.
1385 */
1386 if (abs_offset > STEP_THRESHOLD) {
1387#if 0
1388 double remains;
1389
1390// This "spike state" seems to be useless, peer selection already drops
1391// occassional "bad" datapoints. If we are here, there were _many_
1392// large offsets. When a few first large offsets are seen,
1393// we end up in "no valid datapoints, no peer selected" state.
1394// Only when enough of them are seen (which means it's not a fluke),
1395// we end up here. Looks like _our_ clock is off.
1396 switch (G.discipline_state) {
1397 case STATE_SYNC:
1398 /* The first outlyer: ignore it, switch to SPIK state */
1399 VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
1400 p->p_dotted, offset,
1401 "");
1402 G.discipline_state = STATE_SPIK;
1403 return -1; /* "decrease poll interval" */
1404
1405 case STATE_SPIK:
1406 /* Ignore succeeding outlyers until either an inlyer
1407 * is found or the stepout threshold is exceeded.
1408 */
1409 remains = WATCH_THRESHOLD - since_last_update;
1410 if (remains > 0) {
1411 VERB3 bb_error_msg("update from %s: offset:%+f, spike%s",
1412 p->p_dotted, offset,
1413 ", datapoint ignored");
1414 return -1; /* "decrease poll interval" */
1415 }
1416 /* fall through: we need to step */
1417 } /* switch */
1418#endif
1419
1420 /* Step the time and clamp down the poll interval.
1421 *
1422 * In NSET state an initial frequency correction is
1423 * not available, usually because the frequency file has
1424 * not yet been written. Since the time is outside the
1425 * capture range, the clock is stepped. The frequency
1426 * will be set directly following the stepout interval.
1427 *
1428 * In FSET state the initial frequency has been set
1429 * from the frequency file. Since the time is outside
1430 * the capture range, the clock is stepped immediately,
1431 * rather than after the stepout interval. Guys get
1432 * nervous if it takes 17 minutes to set the clock for
1433 * the first time.
1434 *
1435 * In SPIK state the stepout threshold has expired and
1436 * the phase is still above the step threshold. Note
1437 * that a single spike greater than the step threshold
1438 * is always suppressed, even at the longer poll
1439 * intervals.
1440 */
1441 VERB4 bb_error_msg("stepping time by %+f; poll_exp=MINPOLL", offset);
1442 step_time(offset);
1443 if (option_mask32 & OPT_q) {
1444 /* We were only asked to set time once. Done. */
1445 exit(0);
1446 }
1447
1448 G.polladj_count = 0;
1449 G.poll_exp = MINPOLL;
1450 G.stratum = MAXSTRAT;
1451
1452 run_script("step", offset);
1453
1454 recv_time += offset;
1455
1456#if USING_INITIAL_FREQ_ESTIMATION
1457 if (G.discipline_state == STATE_NSET) {
1458 set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
1459 return 1; /* "ok to increase poll interval" */
1460 }
1461#endif
1462 abs_offset = offset = 0;
1463 set_new_values(STATE_SYNC, offset, recv_time);
1464
1465 } else { /* abs_offset <= STEP_THRESHOLD */
1466
1467 if (G.poll_exp < MINPOLL && G.initial_poll_complete) {
1468 VERB4 bb_error_msg("small offset:%+f, disabling burst mode", offset);
1469 G.polladj_count = 0;
1470 G.poll_exp = MINPOLL;
1471 }
1472
1473 /* Compute the clock jitter as the RMS of exponentially
1474 * weighted offset differences. Used by the poll adjust code.
1475 */
1476 etemp = SQUARE(G.discipline_jitter);
1477 dtemp = SQUARE(offset - G.last_update_offset);
1478 G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
1479
1480 switch (G.discipline_state) {
1481 case STATE_NSET:
1482 if (option_mask32 & OPT_q) {
1483 /* We were only asked to set time once.
1484 * The clock is precise enough, no need to step.
1485 */
1486 exit(0);
1487 }
1488#if USING_INITIAL_FREQ_ESTIMATION
1489 /* This is the first update received and the frequency
1490 * has not been initialized. The first thing to do
1491 * is directly measure the oscillator frequency.
1492 */
1493 set_new_values(STATE_FREQ, offset, recv_time);
1494#else
1495 set_new_values(STATE_SYNC, offset, recv_time);
1496#endif
1497 VERB4 bb_error_msg("transitioning to FREQ, datapoint ignored");
1498 return 0; /* "leave poll interval as is" */
1499
1500#if 0 /* this is dead code for now */
1501 case STATE_FSET:
1502 /* This is the first update and the frequency
1503 * has been initialized. Adjust the phase, but
1504 * don't adjust the frequency until the next update.
1505 */
1506 set_new_values(STATE_SYNC, offset, recv_time);
1507 /* freq_drift remains 0 */
1508 break;
1509#endif
1510
1511#if USING_INITIAL_FREQ_ESTIMATION
1512 case STATE_FREQ:
1513 /* since_last_update >= WATCH_THRESHOLD, we waited enough.
1514 * Correct the phase and frequency and switch to SYNC state.
1515 * freq_drift was already estimated (see code above)
1516 */
1517 set_new_values(STATE_SYNC, offset, recv_time);
1518 break;
1519#endif
1520
1521 default:
1522#if !USING_KERNEL_PLL_LOOP
1523 /* Compute freq_drift due to PLL and FLL contributions.
1524 *
1525 * The FLL and PLL frequency gain constants
1526 * depend on the poll interval and Allan
1527 * intercept. The FLL is not used below one-half
1528 * the Allan intercept. Above that the loop gain
1529 * increases in steps to 1 / AVG.
1530 */
1531 if ((1 << G.poll_exp) > ALLAN / 2) {
1532 etemp = FLL - G.poll_exp;
1533 if (etemp < AVG)
1534 etemp = AVG;
1535 freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1536 }
1537 /* For the PLL the integration interval
1538 * (numerator) is the minimum of the update
1539 * interval and poll interval. This allows
1540 * oversampling, but not undersampling.
1541 */
1542 etemp = MIND(since_last_update, (1 << G.poll_exp));
1543 dtemp = (4 * PLL) << G.poll_exp;
1544 freq_drift += offset * etemp / SQUARE(dtemp);
1545#endif
1546 set_new_values(STATE_SYNC, offset, recv_time);
1547 break;
1548 }
1549 if (G.stratum != p->lastpkt_stratum + 1) {
1550 G.stratum = p->lastpkt_stratum + 1;
1551 run_script("stratum", offset);
1552 }
1553 }
1554
1555 if (G.discipline_jitter < G_precision_sec)
1556 G.discipline_jitter = G_precision_sec;
1557 G.offset_to_jitter_ratio = abs_offset / G.discipline_jitter;
1558
1559 G.reftime = G.cur_time;
1560 G.ntp_status = p->lastpkt_status;
1561 G.refid = p->lastpkt_refid;
1562 G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
1563 dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
1564 dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
1565 G.rootdisp = p->lastpkt_rootdisp + dtemp;
1566 VERB4 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1567
1568 /* We are in STATE_SYNC now, but did not do adjtimex yet.
1569 * (Any other state does not reach this, they all return earlier)
1570 * By this time, freq_drift and offset are set
1571 * to values suitable for adjtimex.
1572 */
1573#if !USING_KERNEL_PLL_LOOP
1574 /* Calculate the new frequency drift and frequency stability (wander).
1575 * Compute the clock wander as the RMS of exponentially weighted
1576 * frequency differences. This is not used directly, but can,
1577 * along with the jitter, be a highly useful monitoring and
1578 * debugging tool.
1579 */
1580 dtemp = G.discipline_freq_drift + freq_drift;
1581 G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
1582 etemp = SQUARE(G.discipline_wander);
1583 dtemp = SQUARE(dtemp);
1584 G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1585
1586 VERB4 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1587 G.discipline_freq_drift,
1588 (long)(G.discipline_freq_drift * 65536e6),
1589 freq_drift,
1590 G.discipline_wander);
1591#endif
1592 VERB4 {
1593 memset(&tmx, 0, sizeof(tmx));
1594 if (adjtimex(&tmx) < 0)
1595 bb_perror_msg_and_die("adjtimex");
1596 bb_error_msg("p adjtimex freq:%ld offset:%+ld status:0x%x tc:%ld",
1597 tmx.freq, tmx.offset, tmx.status, tmx.constant);
1598 }
1599
1600 memset(&tmx, 0, sizeof(tmx));
1601#if 0
1602//doesn't work, offset remains 0 (!) in kernel:
1603//ntpd: set adjtimex freq:1786097 tmx.offset:77487
1604//ntpd: prev adjtimex freq:1786097 tmx.offset:0
1605//ntpd: cur adjtimex freq:1786097 tmx.offset:0
1606 tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1607 /* 65536 is one ppm */
1608 tmx.freq = G.discipline_freq_drift * 65536e6;
1609#endif
1610 tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
1611 tmx.offset = (offset * 1000000); /* usec */
1612 tmx.status = STA_PLL;
1613 if (G.ntp_status & LI_PLUSSEC)
1614 tmx.status |= STA_INS;
1615 if (G.ntp_status & LI_MINUSSEC)
1616 tmx.status |= STA_DEL;
1617
1618 tmx.constant = G.poll_exp - 4;
1619 /* EXPERIMENTAL.
1620 * The below if statement should be unnecessary, but...
1621 * It looks like Linux kernel's PLL is far too gentle in changing
1622 * tmx.freq in response to clock offset. Offset keeps growing
1623 * and eventually we fall back to smaller poll intervals.
1624 * We can make correction more agressive (about x2) by supplying
1625 * PLL time constant which is one less than the real one.
1626 * To be on a safe side, let's do it only if offset is significantly
1627 * larger than jitter.
1628 */
1629 if (tmx.constant > 0 && G.offset_to_jitter_ratio >= TIMECONST_HACK_GATE)
1630 tmx.constant--;
1631
1632 //tmx.esterror = (uint32_t)(clock_jitter * 1e6);
1633 //tmx.maxerror = (uint32_t)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
1634 rc = adjtimex(&tmx);
1635 if (rc < 0)
1636 bb_perror_msg_and_die("adjtimex");
1637 /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1638 * Not sure why. Perhaps it is normal.
1639 */
1640 VERB4 bb_error_msg("adjtimex:%d freq:%ld offset:%+ld status:0x%x",
1641 rc, tmx.freq, tmx.offset, tmx.status);
1642 G.kernel_freq_drift = tmx.freq / 65536;
1643 VERB2 bb_error_msg("update from:%s offset:%+f jitter:%f clock drift:%+.3fppm tc:%d",
1644 p->p_dotted, offset, G.discipline_jitter, (double)tmx.freq / 65536, (int)tmx.constant);
1645
1646 return 1; /* "ok to increase poll interval" */
1647}
1648
1649
1650/*
1651 * We've got a new reply packet from a peer, process it
1652 * (helpers first)
1653 */
1654static unsigned
1655retry_interval(void)
1656{
1657 /* Local problem, want to retry soon */
1658 unsigned interval, r;
1659 interval = RETRY_INTERVAL;
1660 r = random();
1661 interval += r % (unsigned)(RETRY_INTERVAL / 4);
1662 VERB4 bb_error_msg("chose retry interval:%u", interval);
1663 return interval;
1664}
1665static unsigned
1666poll_interval(int exponent)
1667{
1668 unsigned interval, r;
1669 exponent = G.poll_exp + exponent;
1670 if (exponent < 0)
1671 exponent = 0;
1672 interval = 1 << exponent;
1673 r = random();
1674 interval += ((r & (interval-1)) >> 4) + ((r >> 8) & 1); /* + 1/16 of interval, max */
1675 VERB4 bb_error_msg("chose poll interval:%u (poll_exp:%d exp:%d)", interval, G.poll_exp, exponent);
1676 return interval;
1677}
1678static NOINLINE void
1679recv_and_process_peer_pkt(peer_t *p)
1680{
1681 int rc;
1682 ssize_t size;
1683 msg_t msg;
1684 double T1, T2, T3, T4;
1685 double dv, offset;
1686 unsigned interval;
1687 datapoint_t *datapoint;
1688 peer_t *q;
1689
1690 offset = 0;
1691
1692 /* We can recvfrom here and check from.IP, but some multihomed
1693 * ntp servers reply from their *other IP*.
1694 * TODO: maybe we should check at least what we can: from.port == 123?
1695 */
1696 size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
1697 if (size == -1) {
1698 bb_perror_msg("recv(%s) error", p->p_dotted);
1699 if (errno == EHOSTUNREACH || errno == EHOSTDOWN
1700 || errno == ENETUNREACH || errno == ENETDOWN
1701 || errno == ECONNREFUSED || errno == EADDRNOTAVAIL
1702 || errno == EAGAIN
1703 ) {
1704//TODO: always do this?
1705 interval = retry_interval();
1706 goto set_next_and_ret;
1707 }
1708 xfunc_die();
1709 }
1710
1711 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1712 bb_error_msg("malformed packet received from %s", p->p_dotted);
1713 return;
1714 }
1715
1716 if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
1717 || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
1718 ) {
1719 /* Somebody else's packet */
1720 return;
1721 }
1722
1723 /* We do not expect any more packets from this peer for now.
1724 * Closing the socket informs kernel about it.
1725 * We open a new socket when we send a new query.
1726 */
1727 close(p->p_fd);
1728 p->p_fd = -1;
1729
1730 if ((msg.m_status & LI_ALARM) == LI_ALARM
1731 || msg.m_stratum == 0
1732 || msg.m_stratum > NTP_MAXSTRATUM
1733 ) {
1734// TODO: stratum 0 responses may have commands in 32-bit m_refid field:
1735// "DENY", "RSTR" - peer does not like us at all
1736// "RATE" - peer is overloaded, reduce polling freq
1737 bb_error_msg("reply from %s: peer is unsynced", p->p_dotted);
1738 goto pick_normal_interval;
1739 }
1740
1741// /* Verify valid root distance */
1742// if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
1743// return; /* invalid header values */
1744
1745 p->lastpkt_status = msg.m_status;
1746 p->lastpkt_stratum = msg.m_stratum;
1747 p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
1748 p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
1749 p->lastpkt_refid = msg.m_refid;
1750
1751 /*
1752 * From RFC 2030 (with a correction to the delay math):
1753 *
1754 * Timestamp Name ID When Generated
1755 * ------------------------------------------------------------
1756 * Originate Timestamp T1 time request sent by client
1757 * Receive Timestamp T2 time request received by server
1758 * Transmit Timestamp T3 time reply sent by server
1759 * Destination Timestamp T4 time reply received by client
1760 *
1761 * The roundtrip delay and local clock offset are defined as
1762 *
1763 * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
1764 */
1765 T1 = p->p_xmttime;
1766 T2 = lfp_to_d(msg.m_rectime);
1767 T3 = lfp_to_d(msg.m_xmttime);
1768 T4 = G.cur_time;
1769
1770 p->lastpkt_recv_time = T4;
1771 VERB6 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
1772
1773 /* The delay calculation is a special case. In cases where the
1774 * server and client clocks are running at different rates and
1775 * with very fast networks, the delay can appear negative. In
1776 * order to avoid violating the Principle of Least Astonishment,
1777 * the delay is clamped not less than the system precision.
1778 */
1779 dv = p->lastpkt_delay;
1780 p->lastpkt_delay = (T4 - T1) - (T3 - T2);
1781 if (p->lastpkt_delay < G_precision_sec)
1782 p->lastpkt_delay = G_precision_sec;
1783 /*
1784 * If this packet's delay is much bigger than the last one,
1785 * it's better to just ignore it than use its much less precise value.
1786 */
1787 if (p->reachable_bits && p->lastpkt_delay > dv * BAD_DELAY_GROWTH) {
1788 bb_error_msg("reply from %s: delay %f is too high, ignoring", p->p_dotted, p->lastpkt_delay);
1789 goto pick_normal_interval;
1790 }
1791
1792 p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
1793 datapoint = &p->filter_datapoint[p->datapoint_idx];
1794 datapoint->d_recv_time = T4;
1795 datapoint->d_offset = offset = ((T2 - T1) + (T3 - T4)) / 2;
1796 datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
1797 if (!p->reachable_bits) {
1798 /* 1st datapoint ever - replicate offset in every element */
1799 int i;
1800 for (i = 0; i < NUM_DATAPOINTS; i++) {
1801 p->filter_datapoint[i].d_offset = offset;
1802 }
1803 }
1804
1805 p->reachable_bits |= 1;
1806 if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
1807 bb_error_msg("reply from %s: offset:%+f delay:%f status:0x%02x strat:%d refid:0x%08x rootdelay:%f reach:0x%02x",
1808 p->p_dotted,
1809 offset,
1810 p->lastpkt_delay,
1811 p->lastpkt_status,
1812 p->lastpkt_stratum,
1813 p->lastpkt_refid,
1814 p->lastpkt_rootdelay,
1815 p->reachable_bits
1816 /* not shown: m_ppoll, m_precision_exp, m_rootdisp,
1817 * m_reftime, m_orgtime, m_rectime, m_xmttime
1818 */
1819 );
1820 }
1821
1822 /* Muck with statictics and update the clock */
1823 filter_datapoints(p);
1824 q = select_and_cluster();
1825 rc = -1;
1826 if (q) {
1827 rc = 0;
1828 if (!(option_mask32 & OPT_w)) {
1829 rc = update_local_clock(q);
1830 /* If drift is dangerously large, immediately
1831 * drop poll interval one step down.
1832 */
1833 if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
1834 VERB4 bb_error_msg("offset:%+f > POLLDOWN_OFFSET", q->filter_offset);
1835 goto poll_down;
1836 }
1837 }
1838 }
1839 /* else: no peer selected, rc = -1: we want to poll more often */
1840
1841 if (rc != 0) {
1842 /* Adjust the poll interval by comparing the current offset
1843 * with the clock jitter. If the offset is less than
1844 * the clock jitter times a constant, then the averaging interval
1845 * is increased, otherwise it is decreased. A bit of hysteresis
1846 * helps calm the dance. Works best using burst mode.
1847 */
1848 if (rc > 0 && G.offset_to_jitter_ratio <= POLLADJ_GATE) {
1849 /* was += G.poll_exp but it is a bit
1850 * too optimistic for my taste at high poll_exp's */
1851 G.polladj_count += MINPOLL;
1852 if (G.polladj_count > POLLADJ_LIMIT) {
1853 G.polladj_count = 0;
1854 if (G.poll_exp < MAXPOLL) {
1855 G.poll_exp++;
1856 VERB4 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1857 G.discipline_jitter, G.poll_exp);
1858 }
1859 } else {
1860 VERB4 bb_error_msg("polladj: incr:%d", G.polladj_count);
1861 }
1862 } else {
1863 G.polladj_count -= G.poll_exp * 2;
1864 if (G.polladj_count < -POLLADJ_LIMIT || G.poll_exp >= BIGPOLL) {
1865 poll_down:
1866 G.polladj_count = 0;
1867 if (G.poll_exp > MINPOLL) {
1868 llist_t *item;
1869
1870 G.poll_exp--;
1871 /* Correct p->next_action_time in each peer
1872 * which waits for sending, so that they send earlier.
1873 * Old pp->next_action_time are on the order
1874 * of t + (1 << old_poll_exp) + small_random,
1875 * we simply need to subtract ~half of that.
1876 */
1877 for (item = G.ntp_peers; item != NULL; item = item->link) {
1878 peer_t *pp = (peer_t *) item->data;
1879 if (pp->p_fd < 0)
1880 pp->next_action_time -= (1 << G.poll_exp);
1881 }
1882 VERB4 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1883 G.discipline_jitter, G.poll_exp);
1884 }
1885 } else {
1886 VERB4 bb_error_msg("polladj: decr:%d", G.polladj_count);
1887 }
1888 }
1889 }
1890
1891 /* Decide when to send new query for this peer */
1892 pick_normal_interval:
1893 interval = poll_interval(0);
1894 if (fabs(offset) >= STEP_THRESHOLD * 8 && interval > BIGOFF_INTERVAL) {
1895 /* If we are synced, offsets are less than STEP_THRESHOLD,
1896 * or at the very least not much larger than it.
1897 * Now we see a largish one.
1898 * Either this peer is feeling bad, or packet got corrupted,
1899 * or _our_ clock is wrong now and _all_ peers will show similar
1900 * largish offsets too.
1901 * I observed this with laptop suspend stopping clock.
1902 * In any case, it makes sense to make next request soonish:
1903 * cases 1 and 2: get a better datapoint,
1904 * case 3: allows to resync faster.
1905 */
1906 interval = BIGOFF_INTERVAL;
1907 }
1908
1909 set_next_and_ret:
1910 set_next(p, interval);
1911}
1912
1913#if ENABLE_FEATURE_NTPD_SERVER
1914static NOINLINE void
1915recv_and_process_client_pkt(void /*int fd*/)
1916{
1917 ssize_t size;
1918 //uint8_t version;
1919 len_and_sockaddr *to;
1920 struct sockaddr *from;
1921 msg_t msg;
1922 uint8_t query_status;
1923 l_fixedpt_t query_xmttime;
1924
1925 to = get_sock_lsa(G_listen_fd);
1926 from = xzalloc(to->len);
1927
1928 size = recv_from_to(G_listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
1929 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1930 char *addr;
1931 if (size < 0) {
1932 if (errno == EAGAIN)
1933 goto bail;
1934 bb_perror_msg_and_die("recv");
1935 }
1936 addr = xmalloc_sockaddr2dotted_noport(from);
1937 bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
1938 free(addr);
1939 goto bail;
1940 }
1941
1942 query_status = msg.m_status;
1943 query_xmttime = msg.m_xmttime;
1944
1945 /* Build a reply packet */
1946 memset(&msg, 0, sizeof(msg));
1947 msg.m_status = G.stratum < MAXSTRAT ? (G.ntp_status & LI_MASK) : LI_ALARM;
1948 msg.m_status |= (query_status & VERSION_MASK);
1949 msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
1950 MODE_SERVER : MODE_SYM_PAS;
1951 msg.m_stratum = G.stratum;
1952 msg.m_ppoll = G.poll_exp;
1953 msg.m_precision_exp = G_precision_exp;
1954 /* this time was obtained between poll() and recv() */
1955 msg.m_rectime = d_to_lfp(G.cur_time);
1956 msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */
1957 if (G.peer_cnt == 0) {
1958 /* we have no peers: "stratum 1 server" mode. reftime = our own time */
1959 G.reftime = G.cur_time;
1960 }
1961 msg.m_reftime = d_to_lfp(G.reftime);
1962 msg.m_orgtime = query_xmttime;
1963 msg.m_rootdelay = d_to_sfp(G.rootdelay);
1964//simple code does not do this, fix simple code!
1965 msg.m_rootdisp = d_to_sfp(G.rootdisp);
1966 //version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
1967 msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
1968
1969 /* We reply from the local address packet was sent to,
1970 * this makes to/from look swapped here: */
1971 do_sendto(G_listen_fd,
1972 /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
1973 &msg, size);
1974
1975 bail:
1976 free(to);
1977 free(from);
1978}
1979#endif
1980
1981/* Upstream ntpd's options:
1982 *
1983 * -4 Force DNS resolution of host names to the IPv4 namespace.
1984 * -6 Force DNS resolution of host names to the IPv6 namespace.
1985 * -a Require cryptographic authentication for broadcast client,
1986 * multicast client and symmetric passive associations.
1987 * This is the default.
1988 * -A Do not require cryptographic authentication for broadcast client,
1989 * multicast client and symmetric passive associations.
1990 * This is almost never a good idea.
1991 * -b Enable the client to synchronize to broadcast servers.
1992 * -c conffile
1993 * Specify the name and path of the configuration file,
1994 * default /etc/ntp.conf
1995 * -d Specify debugging mode. This option may occur more than once,
1996 * with each occurrence indicating greater detail of display.
1997 * -D level
1998 * Specify debugging level directly.
1999 * -f driftfile
2000 * Specify the name and path of the frequency file.
2001 * This is the same operation as the "driftfile FILE"
2002 * configuration command.
2003 * -g Normally, ntpd exits with a message to the system log
2004 * if the offset exceeds the panic threshold, which is 1000 s
2005 * by default. This option allows the time to be set to any value
2006 * without restriction; however, this can happen only once.
2007 * If the threshold is exceeded after that, ntpd will exit
2008 * with a message to the system log. This option can be used
2009 * with the -q and -x options. See the tinker command for other options.
2010 * -i jaildir
2011 * Chroot the server to the directory jaildir. This option also implies
2012 * that the server attempts to drop root privileges at startup
2013 * (otherwise, chroot gives very little additional security).
2014 * You may need to also specify a -u option.
2015 * -k keyfile
2016 * Specify the name and path of the symmetric key file,
2017 * default /etc/ntp/keys. This is the same operation
2018 * as the "keys FILE" configuration command.
2019 * -l logfile
2020 * Specify the name and path of the log file. The default
2021 * is the system log file. This is the same operation as
2022 * the "logfile FILE" configuration command.
2023 * -L Do not listen to virtual IPs. The default is to listen.
2024 * -n Don't fork.
2025 * -N To the extent permitted by the operating system,
2026 * run the ntpd at the highest priority.
2027 * -p pidfile
2028 * Specify the name and path of the file used to record the ntpd
2029 * process ID. This is the same operation as the "pidfile FILE"
2030 * configuration command.
2031 * -P priority
2032 * To the extent permitted by the operating system,
2033 * run the ntpd at the specified priority.
2034 * -q Exit the ntpd just after the first time the clock is set.
2035 * This behavior mimics that of the ntpdate program, which is
2036 * to be retired. The -g and -x options can be used with this option.
2037 * Note: The kernel time discipline is disabled with this option.
2038 * -r broadcastdelay
2039 * Specify the default propagation delay from the broadcast/multicast
2040 * server to this client. This is necessary only if the delay
2041 * cannot be computed automatically by the protocol.
2042 * -s statsdir
2043 * Specify the directory path for files created by the statistics
2044 * facility. This is the same operation as the "statsdir DIR"
2045 * configuration command.
2046 * -t key
2047 * Add a key number to the trusted key list. This option can occur
2048 * more than once.
2049 * -u user[:group]
2050 * Specify a user, and optionally a group, to switch to.
2051 * -v variable
2052 * -V variable
2053 * Add a system variable listed by default.
2054 * -x Normally, the time is slewed if the offset is less than the step
2055 * threshold, which is 128 ms by default, and stepped if above
2056 * the threshold. This option sets the threshold to 600 s, which is
2057 * well within the accuracy window to set the clock manually.
2058 * Note: since the slew rate of typical Unix kernels is limited
2059 * to 0.5 ms/s, each second of adjustment requires an amortization
2060 * interval of 2000 s. Thus, an adjustment as much as 600 s
2061 * will take almost 14 days to complete. This option can be used
2062 * with the -g and -q options. See the tinker command for other options.
2063 * Note: The kernel time discipline is disabled with this option.
2064 */
2065
2066/* By doing init in a separate function we decrease stack usage
2067 * in main loop.
2068 */
2069static NOINLINE void ntp_init(char **argv)
2070{
2071 unsigned opts;
2072 llist_t *peers;
2073
2074 srandom(getpid());
2075
2076 if (getuid())
2077 bb_error_msg_and_die("%s", bb_msg_you_must_be_root);
2078
2079 /* Set some globals */
2080 G.stratum = MAXSTRAT;
2081 if (BURSTPOLL != 0)
2082 G.poll_exp = BURSTPOLL; /* speeds up initial sync */
2083 G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */
2084
2085 /* Parse options */
2086 peers = NULL;
2087 opt_complementary = "dd:p::wn"; /* d: counter; p: list; -w implies -n */
2088 opts = getopt32(argv,
2089 "nqNx" /* compat */
2090 "wp:S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
2091 "d" /* compat */
2092 "46aAbgL", /* compat, ignored */
2093 &peers, &G.script_name, &G.verbose);
2094 if (!(opts & (OPT_p|OPT_l)))
2095 bb_show_usage();
2096// if (opts & OPT_x) /* disable stepping, only slew is allowed */
2097// G.time_was_stepped = 1;
2098 if (peers) {
2099 while (peers)
2100 add_peers(llist_pop(&peers));
2101 } else {
2102 /* -l but no peers: "stratum 1 server" mode */
2103 G.stratum = 1;
2104 }
2105 if (!(opts & OPT_n)) {
2106 bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
2107 logmode = LOGMODE_NONE;
2108 }
2109#if ENABLE_FEATURE_NTPD_SERVER
2110 G_listen_fd = -1;
2111 if (opts & OPT_l) {
2112 G_listen_fd = create_and_bind_dgram_or_die(NULL, 123);
2113 socket_want_pktinfo(G_listen_fd);
2114 setsockopt(G_listen_fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
2115 }
2116#endif
2117 /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
2118 if (opts & OPT_N)
2119 setpriority(PRIO_PROCESS, 0, -15);
2120
2121 /* If network is up, syncronization occurs in ~10 seconds.
2122 * We give "ntpd -q" 10 seconds to get first reply,
2123 * then another 50 seconds to finish syncing.
2124 *
2125 * I tested ntpd 4.2.6p1 and apparently it never exits
2126 * (will try forever), but it does not feel right.
2127 * The goal of -q is to act like ntpdate: set time
2128 * after a reasonably small period of polling, or fail.
2129 */
2130 if (opts & OPT_q) {
2131 option_mask32 |= OPT_qq;
2132 alarm(10);
2133 }
2134
2135 bb_signals(0
2136 | (1 << SIGTERM)
2137 | (1 << SIGINT)
2138 | (1 << SIGALRM)
2139 , record_signo
2140 );
2141 bb_signals(0
2142 | (1 << SIGPIPE)
2143 | (1 << SIGCHLD)
2144 , SIG_IGN
2145 );
2146}
2147
2148int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
2149int ntpd_main(int argc UNUSED_PARAM, char **argv)
2150{
2151#undef G
2152 struct globals G;
2153 struct pollfd *pfd;
2154 peer_t **idx2peer;
2155 unsigned cnt;
2156
2157 memset(&G, 0, sizeof(G));
2158 SET_PTR_TO_GLOBALS(&G);
2159
2160 ntp_init(argv);
2161
2162 /* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
2163 cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
2164 idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
2165 pfd = xzalloc(sizeof(pfd[0]) * cnt);
2166
2167 /* Countdown: we never sync before we sent INITIAL_SAMPLES+1
2168 * packets to each peer.
2169 * NB: if some peer is not responding, we may end up sending
2170 * fewer packets to it and more to other peers.
2171 * NB2: sync usually happens using INITIAL_SAMPLES packets,
2172 * since last reply does not come back instantaneously.
2173 */
2174 cnt = G.peer_cnt * (INITIAL_SAMPLES + 1);
2175
2176 write_pidfile(CONFIG_PID_FILE_PATH "/ntpd.pid");
2177
2178 while (!bb_got_signal) {
2179 llist_t *item;
2180 unsigned i, j;
2181 int nfds, timeout;
2182 double nextaction;
2183
2184 /* Nothing between here and poll() blocks for any significant time */
2185
2186 nextaction = G.cur_time + 3600;
2187
2188 i = 0;
2189#if ENABLE_FEATURE_NTPD_SERVER
2190 if (G_listen_fd != -1) {
2191 pfd[0].fd = G_listen_fd;
2192 pfd[0].events = POLLIN;
2193 i++;
2194 }
2195#endif
2196 /* Pass over peer list, send requests, time out on receives */
2197 for (item = G.ntp_peers; item != NULL; item = item->link) {
2198 peer_t *p = (peer_t *) item->data;
2199
2200 if (p->next_action_time <= G.cur_time) {
2201 if (p->p_fd == -1) {
2202 /* Time to send new req */
2203 if (--cnt == 0) {
2204 G.initial_poll_complete = 1;
2205 }
2206 send_query_to_peer(p);
2207 } else {
2208 /* Timed out waiting for reply */
2209 close(p->p_fd);
2210 p->p_fd = -1;
2211 timeout = poll_interval(-2); /* -2: try a bit sooner */
2212 bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
2213 p->p_dotted, p->reachable_bits, timeout);
2214 set_next(p, timeout);
2215 }
2216 }
2217
2218 if (p->next_action_time < nextaction)
2219 nextaction = p->next_action_time;
2220
2221 if (p->p_fd >= 0) {
2222 /* Wait for reply from this peer */
2223 pfd[i].fd = p->p_fd;
2224 pfd[i].events = POLLIN;
2225 idx2peer[i] = p;
2226 i++;
2227 }
2228 }
2229
2230 timeout = nextaction - G.cur_time;
2231 if (timeout < 0)
2232 timeout = 0;
2233 timeout++; /* (nextaction - G.cur_time) rounds down, compensating */
2234
2235 /* Here we may block */
2236 VERB2 {
2237 if (i > (ENABLE_FEATURE_NTPD_SERVER && G_listen_fd != -1)) {
2238 /* We wait for at least one reply.
2239 * Poll for it, without wasting time for message.
2240 * Since replies often come under 1 second, this also
2241 * reduces clutter in logs.
2242 */
2243 nfds = poll(pfd, i, 1000);
2244 if (nfds != 0)
2245 goto did_poll;
2246 if (--timeout <= 0)
2247 goto did_poll;
2248 }
2249 bb_error_msg("poll:%us sockets:%u interval:%us", timeout, i, 1 << G.poll_exp);
2250 }
2251 nfds = poll(pfd, i, timeout * 1000);
2252 did_poll:
2253 gettime1900d(); /* sets G.cur_time */
2254 if (nfds <= 0) {
2255 if (!bb_got_signal /* poll wasn't interrupted by a signal */
2256 && G.cur_time - G.last_script_run > 11*60
2257 ) {
2258 /* Useful for updating battery-backed RTC and such */
2259 run_script("periodic", G.last_update_offset);
2260 gettime1900d(); /* sets G.cur_time */
2261 }
2262 goto check_unsync;
2263 }
2264
2265 /* Process any received packets */
2266 j = 0;
2267#if ENABLE_FEATURE_NTPD_SERVER
2268 if (G.listen_fd != -1) {
2269 if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
2270 nfds--;
2271 recv_and_process_client_pkt(/*G.listen_fd*/);
2272 gettime1900d(); /* sets G.cur_time */
2273 }
2274 j = 1;
2275 }
2276#endif
2277 for (; nfds != 0 && j < i; j++) {
2278 if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
2279 /*
2280 * At init, alarm was set to 10 sec.
2281 * Now we did get a reply.
2282 * Increase timeout to 50 seconds to finish syncing.
2283 */
2284 if (option_mask32 & OPT_qq) {
2285 option_mask32 &= ~OPT_qq;
2286 alarm(50);
2287 }
2288 nfds--;
2289 recv_and_process_peer_pkt(idx2peer[j]);
2290 gettime1900d(); /* sets G.cur_time */
2291 }
2292 }
2293
2294 check_unsync:
2295 if (G.ntp_peers && G.stratum != MAXSTRAT) {
2296 for (item = G.ntp_peers; item != NULL; item = item->link) {
2297 peer_t *p = (peer_t *) item->data;
2298 if (p->reachable_bits)
2299 goto have_reachable_peer;
2300 }
2301 /* No peer responded for last 8 packets, panic */
2302 G.polladj_count = 0;
2303 G.poll_exp = MINPOLL;
2304 G.stratum = MAXSTRAT;
2305 run_script("unsync", 0.0);
2306 have_reachable_peer: ;
2307 }
2308 } /* while (!bb_got_signal) */
2309
2310 remove_pidfile(CONFIG_PID_FILE_PATH "/ntpd.pid");
2311 kill_myself_with_sig(bb_got_signal);
2312}
2313
2314
2315
2316
2317
2318
2319/*** openntpd-4.6 uses only adjtime, not adjtimex ***/
2320
2321/*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
2322
2323#if 0
2324static double
2325direct_freq(double fp_offset)
2326{
2327#ifdef KERNEL_PLL
2328 /*
2329 * If the kernel is enabled, we need the residual offset to
2330 * calculate the frequency correction.
2331 */
2332 if (pll_control && kern_enable) {
2333 memset(&ntv, 0, sizeof(ntv));
2334 ntp_adjtime(&ntv);
2335#ifdef STA_NANO
2336 clock_offset = ntv.offset / 1e9;
2337#else /* STA_NANO */
2338 clock_offset = ntv.offset / 1e6;
2339#endif /* STA_NANO */
2340 drift_comp = FREQTOD(ntv.freq);
2341 }
2342#endif /* KERNEL_PLL */
2343 set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
2344 wander_resid = 0;
2345 return drift_comp;
2346}
2347
2348static void
2349set_freq(double freq) /* frequency update */
2350{
2351 char tbuf[80];
2352
2353 drift_comp = freq;
2354
2355#ifdef KERNEL_PLL
2356 /*
2357 * If the kernel is enabled, update the kernel frequency.
2358 */
2359 if (pll_control && kern_enable) {
2360 memset(&ntv, 0, sizeof(ntv));
2361 ntv.modes = MOD_FREQUENCY;
2362 ntv.freq = DTOFREQ(drift_comp);
2363 ntp_adjtime(&ntv);
2364 snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
2365 report_event(EVNT_FSET, NULL, tbuf);
2366 } else {
2367 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2368 report_event(EVNT_FSET, NULL, tbuf);
2369 }
2370#else /* KERNEL_PLL */
2371 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2372 report_event(EVNT_FSET, NULL, tbuf);
2373#endif /* KERNEL_PLL */
2374}
2375
2376...
2377...
2378...
2379
2380#ifdef KERNEL_PLL
2381 /*
2382 * This code segment works when clock adjustments are made using
2383 * precision time kernel support and the ntp_adjtime() system
2384 * call. This support is available in Solaris 2.6 and later,
2385 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
2386 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
2387 * DECstation 5000/240 and Alpha AXP, additional kernel
2388 * modifications provide a true microsecond clock and nanosecond
2389 * clock, respectively.
2390 *
2391 * Important note: The kernel discipline is used only if the
2392 * step threshold is less than 0.5 s, as anything higher can
2393 * lead to overflow problems. This might occur if some misguided
2394 * lad set the step threshold to something ridiculous.
2395 */
2396 if (pll_control && kern_enable) {
2397
2398#define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
2399
2400 /*
2401 * We initialize the structure for the ntp_adjtime()
2402 * system call. We have to convert everything to
2403 * microseconds or nanoseconds first. Do not update the
2404 * system variables if the ext_enable flag is set. In
2405 * this case, the external clock driver will update the
2406 * variables, which will be read later by the local
2407 * clock driver. Afterwards, remember the time and
2408 * frequency offsets for jitter and stability values and
2409 * to update the frequency file.
2410 */
2411 memset(&ntv, 0, sizeof(ntv));
2412 if (ext_enable) {
2413 ntv.modes = MOD_STATUS;
2414 } else {
2415#ifdef STA_NANO
2416 ntv.modes = MOD_BITS | MOD_NANO;
2417#else /* STA_NANO */
2418 ntv.modes = MOD_BITS;
2419#endif /* STA_NANO */
2420 if (clock_offset < 0)
2421 dtemp = -.5;
2422 else
2423 dtemp = .5;
2424#ifdef STA_NANO
2425 ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
2426 ntv.constant = sys_poll;
2427#else /* STA_NANO */
2428 ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
2429 ntv.constant = sys_poll - 4;
2430#endif /* STA_NANO */
2431 ntv.esterror = (u_int32)(clock_jitter * 1e6);
2432 ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
2433 ntv.status = STA_PLL;
2434
2435 /*
2436 * Enable/disable the PPS if requested.
2437 */
2438 if (pps_enable) {
2439 if (!(pll_status & STA_PPSTIME))
2440 report_event(EVNT_KERN,
2441 NULL, "PPS enabled");
2442 ntv.status |= STA_PPSTIME | STA_PPSFREQ;
2443 } else {
2444 if (pll_status & STA_PPSTIME)
2445 report_event(EVNT_KERN,
2446 NULL, "PPS disabled");
2447 ntv.status &= ~(STA_PPSTIME | STA_PPSFREQ);
2448 }
2449 if (sys_leap == LEAP_ADDSECOND)
2450 ntv.status |= STA_INS;
2451 else if (sys_leap == LEAP_DELSECOND)
2452 ntv.status |= STA_DEL;
2453 }
2454
2455 /*
2456 * Pass the stuff to the kernel. If it squeals, turn off
2457 * the pps. In any case, fetch the kernel offset,
2458 * frequency and jitter.
2459 */
2460 if (ntp_adjtime(&ntv) == TIME_ERROR) {
2461 if (!(ntv.status & STA_PPSSIGNAL))
2462 report_event(EVNT_KERN, NULL,
2463 "PPS no signal");
2464 }
2465 pll_status = ntv.status;
2466#ifdef STA_NANO
2467 clock_offset = ntv.offset / 1e9;
2468#else /* STA_NANO */
2469 clock_offset = ntv.offset / 1e6;
2470#endif /* STA_NANO */
2471 clock_frequency = FREQTOD(ntv.freq);
2472
2473 /*
2474 * If the kernel PPS is lit, monitor its performance.
2475 */
2476 if (ntv.status & STA_PPSTIME) {
2477#ifdef STA_NANO
2478 clock_jitter = ntv.jitter / 1e9;
2479#else /* STA_NANO */
2480 clock_jitter = ntv.jitter / 1e6;
2481#endif /* STA_NANO */
2482 }
2483
2484#if defined(STA_NANO) && NTP_API == 4
2485 /*
2486 * If the TAI changes, update the kernel TAI.
2487 */
2488 if (loop_tai != sys_tai) {
2489 loop_tai = sys_tai;
2490 ntv.modes = MOD_TAI;
2491 ntv.constant = sys_tai;
2492 ntp_adjtime(&ntv);
2493 }
2494#endif /* STA_NANO */
2495 }
2496#endif /* KERNEL_PLL */
2497#endif
2498