summaryrefslogtreecommitdiff
path: root/libavcodec/aacsbr_template.c (plain)
blob: 750131c64c4ad856a5c869de898d6ae17da5700b
1/*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5 *
6 * Fixed point code
7 * Copyright (c) 2013
8 * MIPS Technologies, Inc., California.
9 *
10 * This file is part of FFmpeg.
11 *
12 * FFmpeg is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2.1 of the License, or (at your option) any later version.
16 *
17 * FFmpeg is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
21 *
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with FFmpeg; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 */
26
27/**
28 * @file
29 * AAC Spectral Band Replication decoding functions
30 * @author Robert Swain ( rob opendot cl )
31 * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
32 * @author Zoran Basaric ( zoran.basaric@imgtec.com )
33 */
34
35#include "libavutil/qsort.h"
36
37av_cold void AAC_RENAME(ff_aac_sbr_init)(void)
38{
39 static const struct {
40 const void *sbr_codes, *sbr_bits;
41 const unsigned int table_size, elem_size;
42 } sbr_tmp[] = {
43 SBR_VLC_ROW(t_huffman_env_1_5dB),
44 SBR_VLC_ROW(f_huffman_env_1_5dB),
45 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
46 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
47 SBR_VLC_ROW(t_huffman_env_3_0dB),
48 SBR_VLC_ROW(f_huffman_env_3_0dB),
49 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
50 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
51 SBR_VLC_ROW(t_huffman_noise_3_0dB),
52 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
53 };
54
55 // SBR VLC table initialization
56 SBR_INIT_VLC_STATIC(0, 1098);
57 SBR_INIT_VLC_STATIC(1, 1092);
58 SBR_INIT_VLC_STATIC(2, 768);
59 SBR_INIT_VLC_STATIC(3, 1026);
60 SBR_INIT_VLC_STATIC(4, 1058);
61 SBR_INIT_VLC_STATIC(5, 1052);
62 SBR_INIT_VLC_STATIC(6, 544);
63 SBR_INIT_VLC_STATIC(7, 544);
64 SBR_INIT_VLC_STATIC(8, 592);
65 SBR_INIT_VLC_STATIC(9, 512);
66
67 aacsbr_tableinit();
68
69 AAC_RENAME(ff_ps_init)();
70}
71
72/** Places SBR in pure upsampling mode. */
73static void sbr_turnoff(SpectralBandReplication *sbr) {
74 sbr->start = 0;
75 sbr->ready_for_dequant = 0;
76 // Init defults used in pure upsampling mode
77 sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
78 sbr->m[1] = 0;
79 // Reset values for first SBR header
80 sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
81 memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
82}
83
84av_cold void AAC_RENAME(ff_aac_sbr_ctx_init)(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
85{
86 if(sbr->mdct.mdct_bits)
87 return;
88 sbr->kx[0] = sbr->kx[1];
89 sbr->id_aac = id_aac;
90 sbr_turnoff(sbr);
91 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
92 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
93 /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
94 * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
95 * and scale back down at synthesis. */
96 AAC_RENAME_32(ff_mdct_init)(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
97 AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
98 AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
99 AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
100 aacsbr_func_ptr_init(&sbr->c);
101}
102
103av_cold void AAC_RENAME(ff_aac_sbr_ctx_close)(SpectralBandReplication *sbr)
104{
105 AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
106 AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
107}
108
109static int qsort_comparison_function_int16(const void *a, const void *b)
110{
111 return *(const int16_t *)a - *(const int16_t *)b;
112}
113
114static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
115{
116 int i;
117 for (i = 0; i <= last_el; i++)
118 if (table[i] == needle)
119 return 1;
120 return 0;
121}
122
123/// Limiter Frequency Band Table (14496-3 sp04 p198)
124static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
125{
126 int k;
127 if (sbr->bs_limiter_bands > 0) {
128 static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f), //2^(0.49/1.2)
129 Q23(1.18509277094158210129f), //2^(0.49/2)
130 Q23(1.11987160404675912501f) }; //2^(0.49/3)
131 const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
132 int16_t patch_borders[7];
133 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
134
135 patch_borders[0] = sbr->kx[1];
136 for (k = 1; k <= sbr->num_patches; k++)
137 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
138
139 memcpy(sbr->f_tablelim, sbr->f_tablelow,
140 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
141 if (sbr->num_patches > 1)
142 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
143 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
144
145 AV_QSORT(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
146 uint16_t,
147 qsort_comparison_function_int16);
148
149 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
150 while (out < sbr->f_tablelim + sbr->n_lim) {
151#if USE_FIXED
152 if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
153#else
154 if (*in >= *out * lim_bands_per_octave_warped) {
155#endif /* USE_FIXED */
156 *++out = *in++;
157 } else if (*in == *out ||
158 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
159 in++;
160 sbr->n_lim--;
161 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
162 *out = *in++;
163 sbr->n_lim--;
164 } else {
165 *++out = *in++;
166 }
167 }
168 } else {
169 sbr->f_tablelim[0] = sbr->f_tablelow[0];
170 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
171 sbr->n_lim = 1;
172 }
173}
174
175static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
176{
177 unsigned int cnt = get_bits_count(gb);
178 uint8_t bs_header_extra_1;
179 uint8_t bs_header_extra_2;
180 int old_bs_limiter_bands = sbr->bs_limiter_bands;
181 SpectrumParameters old_spectrum_params;
182
183 sbr->start = 1;
184 sbr->ready_for_dequant = 0;
185
186 // Save last spectrum parameters variables to compare to new ones
187 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
188
189 sbr->bs_amp_res_header = get_bits1(gb);
190 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
191 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
192 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
193 skip_bits(gb, 2); // bs_reserved
194
195 bs_header_extra_1 = get_bits1(gb);
196 bs_header_extra_2 = get_bits1(gb);
197
198 if (bs_header_extra_1) {
199 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
200 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
201 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
202 } else {
203 sbr->spectrum_params.bs_freq_scale = 2;
204 sbr->spectrum_params.bs_alter_scale = 1;
205 sbr->spectrum_params.bs_noise_bands = 2;
206 }
207
208 // Check if spectrum parameters changed
209 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
210 sbr->reset = 1;
211
212 if (bs_header_extra_2) {
213 sbr->bs_limiter_bands = get_bits(gb, 2);
214 sbr->bs_limiter_gains = get_bits(gb, 2);
215 sbr->bs_interpol_freq = get_bits1(gb);
216 sbr->bs_smoothing_mode = get_bits1(gb);
217 } else {
218 sbr->bs_limiter_bands = 2;
219 sbr->bs_limiter_gains = 2;
220 sbr->bs_interpol_freq = 1;
221 sbr->bs_smoothing_mode = 1;
222 }
223
224 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
225 sbr_make_f_tablelim(sbr);
226
227 return get_bits_count(gb) - cnt;
228}
229
230static int array_min_int16(const int16_t *array, int nel)
231{
232 int i, min = array[0];
233 for (i = 1; i < nel; i++)
234 min = FFMIN(array[i], min);
235 return min;
236}
237
238static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
239{
240 // Requirements (14496-3 sp04 p205)
241 if (n_master <= 0) {
242 av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
243 return -1;
244 }
245 if (bs_xover_band >= n_master) {
246 av_log(avctx, AV_LOG_ERROR,
247 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
248 bs_xover_band);
249 return -1;
250 }
251 return 0;
252}
253
254/// Master Frequency Band Table (14496-3 sp04 p194)
255static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
256 SpectrumParameters *spectrum)
257{
258 unsigned int temp, max_qmf_subbands = 0;
259 unsigned int start_min, stop_min;
260 int k;
261 const int8_t *sbr_offset_ptr;
262 int16_t stop_dk[13];
263
264 if (sbr->sample_rate < 32000) {
265 temp = 3000;
266 } else if (sbr->sample_rate < 64000) {
267 temp = 4000;
268 } else
269 temp = 5000;
270
271 switch (sbr->sample_rate) {
272 case 16000:
273 sbr_offset_ptr = sbr_offset[0];
274 break;
275 case 22050:
276 sbr_offset_ptr = sbr_offset[1];
277 break;
278 case 24000:
279 sbr_offset_ptr = sbr_offset[2];
280 break;
281 case 32000:
282 sbr_offset_ptr = sbr_offset[3];
283 break;
284 case 44100: case 48000: case 64000:
285 sbr_offset_ptr = sbr_offset[4];
286 break;
287 case 88200: case 96000: case 128000: case 176400: case 192000:
288 sbr_offset_ptr = sbr_offset[5];
289 break;
290 default:
291 av_log(ac->avctx, AV_LOG_ERROR,
292 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
293 return -1;
294 }
295
296 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
297 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
298
299 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
300
301 if (spectrum->bs_stop_freq < 14) {
302 sbr->k[2] = stop_min;
303 make_bands(stop_dk, stop_min, 64, 13);
304 AV_QSORT(stop_dk, 13, int16_t, qsort_comparison_function_int16);
305 for (k = 0; k < spectrum->bs_stop_freq; k++)
306 sbr->k[2] += stop_dk[k];
307 } else if (spectrum->bs_stop_freq == 14) {
308 sbr->k[2] = 2*sbr->k[0];
309 } else if (spectrum->bs_stop_freq == 15) {
310 sbr->k[2] = 3*sbr->k[0];
311 } else {
312 av_log(ac->avctx, AV_LOG_ERROR,
313 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
314 return -1;
315 }
316 sbr->k[2] = FFMIN(64, sbr->k[2]);
317
318 // Requirements (14496-3 sp04 p205)
319 if (sbr->sample_rate <= 32000) {
320 max_qmf_subbands = 48;
321 } else if (sbr->sample_rate == 44100) {
322 max_qmf_subbands = 35;
323 } else if (sbr->sample_rate >= 48000)
324 max_qmf_subbands = 32;
325 else
326 av_assert0(0);
327
328 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
329 av_log(ac->avctx, AV_LOG_ERROR,
330 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
331 return -1;
332 }
333
334 if (!spectrum->bs_freq_scale) {
335 int dk, k2diff;
336
337 dk = spectrum->bs_alter_scale + 1;
338 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
339 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
340 return -1;
341
342 for (k = 1; k <= sbr->n_master; k++)
343 sbr->f_master[k] = dk;
344
345 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
346 if (k2diff < 0) {
347 sbr->f_master[1]--;
348 sbr->f_master[2]-= (k2diff < -1);
349 } else if (k2diff) {
350 sbr->f_master[sbr->n_master]++;
351 }
352
353 sbr->f_master[0] = sbr->k[0];
354 for (k = 1; k <= sbr->n_master; k++)
355 sbr->f_master[k] += sbr->f_master[k - 1];
356
357 } else {
358 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
359 int two_regions, num_bands_0;
360 int vdk0_max, vdk1_min;
361 int16_t vk0[49];
362#if USE_FIXED
363 int tmp, nz = 0;
364#endif /* USE_FIXED */
365
366 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
367 two_regions = 1;
368 sbr->k[1] = 2 * sbr->k[0];
369 } else {
370 two_regions = 0;
371 sbr->k[1] = sbr->k[2];
372 }
373
374#if USE_FIXED
375 tmp = (sbr->k[1] << 23) / sbr->k[0];
376 while (tmp < 0x40000000) {
377 tmp <<= 1;
378 nz++;
379 }
380 tmp = fixed_log(tmp - 0x80000000);
381 tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
382 tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
383 num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
384#else
385 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
386#endif /* USE_FIXED */
387
388 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
389 av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
390 return -1;
391 }
392
393 vk0[0] = 0;
394
395 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
396
397 AV_QSORT(vk0 + 1, num_bands_0, int16_t, qsort_comparison_function_int16);
398 vdk0_max = vk0[num_bands_0];
399
400 vk0[0] = sbr->k[0];
401 for (k = 1; k <= num_bands_0; k++) {
402 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
403 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
404 return -1;
405 }
406 vk0[k] += vk0[k-1];
407 }
408
409 if (two_regions) {
410 int16_t vk1[49];
411#if USE_FIXED
412 int num_bands_1;
413
414 tmp = (sbr->k[2] << 23) / sbr->k[1];
415 nz = 0;
416 while (tmp < 0x40000000) {
417 tmp <<= 1;
418 nz++;
419 }
420 tmp = fixed_log(tmp - 0x80000000);
421 tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
422 tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
423 if (spectrum->bs_alter_scale)
424 tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
425 num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
426#else
427 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
428 : 1.0f; // bs_alter_scale = {0,1}
429 int num_bands_1 = lrintf(half_bands * invwarp *
430 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
431#endif /* USE_FIXED */
432 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
433
434 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
435
436 if (vdk1_min < vdk0_max) {
437 int change;
438 AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
439 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
440 vk1[1] += change;
441 vk1[num_bands_1] -= change;
442 }
443
444 AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
445
446 vk1[0] = sbr->k[1];
447 for (k = 1; k <= num_bands_1; k++) {
448 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
449 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
450 return -1;
451 }
452 vk1[k] += vk1[k-1];
453 }
454
455 sbr->n_master = num_bands_0 + num_bands_1;
456 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
457 return -1;
458 memcpy(&sbr->f_master[0], vk0,
459 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
460 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
461 num_bands_1 * sizeof(sbr->f_master[0]));
462
463 } else {
464 sbr->n_master = num_bands_0;
465 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
466 return -1;
467 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
468 }
469 }
470
471 return 0;
472}
473
474/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
475static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
476{
477 int i, k, last_k = -1, last_msb = -1, sb = 0;
478 int msb = sbr->k[0];
479 int usb = sbr->kx[1];
480 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
481
482 sbr->num_patches = 0;
483
484 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
485 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
486 } else
487 k = sbr->n_master;
488
489 do {
490 int odd = 0;
491 if (k == last_k && msb == last_msb) {
492 av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
493 return AVERROR_INVALIDDATA;
494 }
495 last_k = k;
496 last_msb = msb;
497 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
498 sb = sbr->f_master[i];
499 odd = (sb + sbr->k[0]) & 1;
500 }
501
502 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
503 // After this check the final number of patches can still be six which is
504 // illegal however the Coding Technologies decoder check stream has a final
505 // count of 6 patches
506 if (sbr->num_patches > 5) {
507 av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
508 return -1;
509 }
510
511 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
512 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
513
514 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
515 usb = sb;
516 msb = sb;
517 sbr->num_patches++;
518 } else
519 msb = sbr->kx[1];
520
521 if (sbr->f_master[k] - sb < 3)
522 k = sbr->n_master;
523 } while (sb != sbr->kx[1] + sbr->m[1]);
524
525 if (sbr->num_patches > 1 &&
526 sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
527 sbr->num_patches--;
528
529 return 0;
530}
531
532/// Derived Frequency Band Tables (14496-3 sp04 p197)
533static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
534{
535 int k, temp;
536#if USE_FIXED
537 int nz = 0;
538#endif /* USE_FIXED */
539
540 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
541 sbr->n[0] = (sbr->n[1] + 1) >> 1;
542
543 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
544 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
545 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
546 sbr->kx[1] = sbr->f_tablehigh[0];
547
548 // Requirements (14496-3 sp04 p205)
549 if (sbr->kx[1] + sbr->m[1] > 64) {
550 av_log(ac->avctx, AV_LOG_ERROR,
551 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
552 return -1;
553 }
554 if (sbr->kx[1] > 32) {
555 av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
556 return -1;
557 }
558
559 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
560 temp = sbr->n[1] & 1;
561 for (k = 1; k <= sbr->n[0]; k++)
562 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
563#if USE_FIXED
564 temp = (sbr->k[2] << 23) / sbr->kx[1];
565 while (temp < 0x40000000) {
566 temp <<= 1;
567 nz++;
568 }
569 temp = fixed_log(temp - 0x80000000);
570 temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
571 temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
572
573 sbr->n_q = (temp + 0x400000) >> 23;
574 if (sbr->n_q < 1)
575 sbr->n_q = 1;
576#else
577 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
578 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
579#endif /* USE_FIXED */
580
581 if (sbr->n_q > 5) {
582 av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
583 return -1;
584 }
585
586 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
587 temp = 0;
588 for (k = 1; k <= sbr->n_q; k++) {
589 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
590 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
591 }
592
593 if (sbr_hf_calc_npatches(ac, sbr) < 0)
594 return -1;
595
596 sbr_make_f_tablelim(sbr);
597
598 sbr->data[0].f_indexnoise = 0;
599 sbr->data[1].f_indexnoise = 0;
600
601 return 0;
602}
603
604static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
605 int elements)
606{
607 int i;
608 for (i = 0; i < elements; i++) {
609 vec[i] = get_bits1(gb);
610 }
611}
612
613/** ceil(log2(index+1)) */
614static const int8_t ceil_log2[] = {
615 0, 1, 2, 2, 3, 3,
616};
617
618static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
619 GetBitContext *gb, SBRData *ch_data)
620{
621 int i;
622 int bs_pointer = 0;
623 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
624 int abs_bord_trail = 16;
625 int num_rel_lead, num_rel_trail;
626 unsigned bs_num_env_old = ch_data->bs_num_env;
627
628 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
629 ch_data->bs_amp_res = sbr->bs_amp_res_header;
630 ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
631
632 switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
633 case FIXFIX:
634 ch_data->bs_num_env = 1 << get_bits(gb, 2);
635 num_rel_lead = ch_data->bs_num_env - 1;
636 if (ch_data->bs_num_env == 1)
637 ch_data->bs_amp_res = 0;
638
639 if (ch_data->bs_num_env > 4) {
640 av_log(ac->avctx, AV_LOG_ERROR,
641 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
642 ch_data->bs_num_env);
643 return -1;
644 }
645
646 ch_data->t_env[0] = 0;
647 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
648
649 abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
650 ch_data->bs_num_env;
651 for (i = 0; i < num_rel_lead; i++)
652 ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
653
654 ch_data->bs_freq_res[1] = get_bits1(gb);
655 for (i = 1; i < ch_data->bs_num_env; i++)
656 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
657 break;
658 case FIXVAR:
659 abs_bord_trail += get_bits(gb, 2);
660 num_rel_trail = get_bits(gb, 2);
661 ch_data->bs_num_env = num_rel_trail + 1;
662 ch_data->t_env[0] = 0;
663 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
664
665 for (i = 0; i < num_rel_trail; i++)
666 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
667 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
668
669 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
670
671 for (i = 0; i < ch_data->bs_num_env; i++)
672 ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
673 break;
674 case VARFIX:
675 ch_data->t_env[0] = get_bits(gb, 2);
676 num_rel_lead = get_bits(gb, 2);
677 ch_data->bs_num_env = num_rel_lead + 1;
678 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
679
680 for (i = 0; i < num_rel_lead; i++)
681 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
682
683 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
684
685 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
686 break;
687 case VARVAR:
688 ch_data->t_env[0] = get_bits(gb, 2);
689 abs_bord_trail += get_bits(gb, 2);
690 num_rel_lead = get_bits(gb, 2);
691 num_rel_trail = get_bits(gb, 2);
692 ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
693
694 if (ch_data->bs_num_env > 5) {
695 av_log(ac->avctx, AV_LOG_ERROR,
696 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
697 ch_data->bs_num_env);
698 return -1;
699 }
700
701 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
702
703 for (i = 0; i < num_rel_lead; i++)
704 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
705 for (i = 0; i < num_rel_trail; i++)
706 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
707 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
708
709 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
710
711 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
712 break;
713 }
714
715 av_assert0(bs_pointer >= 0);
716 if (bs_pointer > ch_data->bs_num_env + 1) {
717 av_log(ac->avctx, AV_LOG_ERROR,
718 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
719 bs_pointer);
720 return -1;
721 }
722
723 for (i = 1; i <= ch_data->bs_num_env; i++) {
724 if (ch_data->t_env[i-1] >= ch_data->t_env[i]) {
725 av_log(ac->avctx, AV_LOG_ERROR, "Not strictly monotone time borders\n");
726 return -1;
727 }
728 }
729
730 ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
731
732 ch_data->t_q[0] = ch_data->t_env[0];
733 ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
734 if (ch_data->bs_num_noise > 1) {
735 int idx;
736 if (ch_data->bs_frame_class == FIXFIX) {
737 idx = ch_data->bs_num_env >> 1;
738 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
739 idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
740 } else { // VARFIX
741 if (!bs_pointer)
742 idx = 1;
743 else if (bs_pointer == 1)
744 idx = ch_data->bs_num_env - 1;
745 else // bs_pointer > 1
746 idx = bs_pointer - 1;
747 }
748 ch_data->t_q[1] = ch_data->t_env[idx];
749 }
750
751 ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
752 ch_data->e_a[1] = -1;
753 if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
754 ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
755 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
756 ch_data->e_a[1] = bs_pointer - 1;
757
758 return 0;
759}
760
761static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
762 //These variables are saved from the previous frame rather than copied
763 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
764 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
765 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
766
767 //These variables are read from the bitstream and therefore copied
768 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
769 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
770 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
771 dst->bs_num_env = src->bs_num_env;
772 dst->bs_amp_res = src->bs_amp_res;
773 dst->bs_num_noise = src->bs_num_noise;
774 dst->bs_frame_class = src->bs_frame_class;
775 dst->e_a[1] = src->e_a[1];
776}
777
778/// Read how the envelope and noise floor data is delta coded
779static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
780 SBRData *ch_data)
781{
782 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
783 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
784}
785
786/// Read inverse filtering data
787static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
788 SBRData *ch_data)
789{
790 int i;
791
792 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
793 for (i = 0; i < sbr->n_q; i++)
794 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
795}
796
797static int read_sbr_envelope(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
798 SBRData *ch_data, int ch)
799{
800 int bits;
801 int i, j, k;
802 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
803 int t_lav, f_lav;
804 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
805 const int odd = sbr->n[1] & 1;
806
807 if (sbr->bs_coupling && ch) {
808 if (ch_data->bs_amp_res) {
809 bits = 5;
810 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
811 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
812 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
813 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
814 } else {
815 bits = 6;
816 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
817 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
818 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
819 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
820 }
821 } else {
822 if (ch_data->bs_amp_res) {
823 bits = 6;
824 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
825 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
826 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
827 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
828 } else {
829 bits = 7;
830 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
831 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
832 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
833 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
834 }
835 }
836
837 for (i = 0; i < ch_data->bs_num_env; i++) {
838 if (ch_data->bs_df_env[i]) {
839 // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
840 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
841 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
842 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
843 if (ch_data->env_facs_q[i + 1][j] > 127U) {
844 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
845 return AVERROR_INVALIDDATA;
846 }
847 }
848 } else if (ch_data->bs_freq_res[i + 1]) {
849 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
850 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
851 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
852 if (ch_data->env_facs_q[i + 1][j] > 127U) {
853 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
854 return AVERROR_INVALIDDATA;
855 }
856 }
857 } else {
858 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
859 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
860 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
861 if (ch_data->env_facs_q[i + 1][j] > 127U) {
862 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
863 return AVERROR_INVALIDDATA;
864 }
865 }
866 }
867 } else {
868 ch_data->env_facs_q[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
869 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
870 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
871 if (ch_data->env_facs_q[i + 1][j] > 127U) {
872 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
873 return AVERROR_INVALIDDATA;
874 }
875 }
876 }
877 }
878
879 //assign 0th elements of env_facs_q from last elements
880 memcpy(ch_data->env_facs_q[0], ch_data->env_facs_q[ch_data->bs_num_env],
881 sizeof(ch_data->env_facs_q[0]));
882
883 return 0;
884}
885
886static int read_sbr_noise(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
887 SBRData *ch_data, int ch)
888{
889 int i, j;
890 VLC_TYPE (*t_huff)[2], (*f_huff)[2];
891 int t_lav, f_lav;
892 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
893
894 if (sbr->bs_coupling && ch) {
895 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
896 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
897 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
898 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
899 } else {
900 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
901 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
902 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
903 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
904 }
905
906 for (i = 0; i < ch_data->bs_num_noise; i++) {
907 if (ch_data->bs_df_noise[i]) {
908 for (j = 0; j < sbr->n_q; j++) {
909 ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
910 if (ch_data->noise_facs_q[i + 1][j] > 30U) {
911 av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
912 return AVERROR_INVALIDDATA;
913 }
914 }
915 } else {
916 ch_data->noise_facs_q[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
917 for (j = 1; j < sbr->n_q; j++) {
918 ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
919 if (ch_data->noise_facs_q[i + 1][j] > 30U) {
920 av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
921 return AVERROR_INVALIDDATA;
922 }
923 }
924 }
925 }
926
927 //assign 0th elements of noise_facs_q from last elements
928 memcpy(ch_data->noise_facs_q[0], ch_data->noise_facs_q[ch_data->bs_num_noise],
929 sizeof(ch_data->noise_facs_q[0]));
930 return 0;
931}
932
933static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
934 GetBitContext *gb,
935 int bs_extension_id, int *num_bits_left)
936{
937 switch (bs_extension_id) {
938 case EXTENSION_ID_PS:
939 if (!ac->oc[1].m4ac.ps) {
940 av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
941 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
942 *num_bits_left = 0;
943 } else {
944 *num_bits_left -= AAC_RENAME(ff_ps_read_data)(ac->avctx, gb, &sbr->ps, *num_bits_left);
945 ac->avctx->profile = FF_PROFILE_AAC_HE_V2;
946 }
947 break;
948 default:
949 // some files contain 0-padding
950 if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
951 avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
952 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
953 *num_bits_left = 0;
954 break;
955 }
956}
957
958static int read_sbr_single_channel_element(AACContext *ac,
959 SpectralBandReplication *sbr,
960 GetBitContext *gb)
961{
962 int ret;
963
964 if (get_bits1(gb)) // bs_data_extra
965 skip_bits(gb, 4); // bs_reserved
966
967 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
968 return -1;
969 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
970 read_sbr_invf(sbr, gb, &sbr->data[0]);
971 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
972 return ret;
973 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
974 return ret;
975
976 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
977 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
978
979 return 0;
980}
981
982static int read_sbr_channel_pair_element(AACContext *ac,
983 SpectralBandReplication *sbr,
984 GetBitContext *gb)
985{
986 int ret;
987
988 if (get_bits1(gb)) // bs_data_extra
989 skip_bits(gb, 8); // bs_reserved
990
991 if ((sbr->bs_coupling = get_bits1(gb))) {
992 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
993 return -1;
994 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
995 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
996 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
997 read_sbr_invf(sbr, gb, &sbr->data[0]);
998 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
999 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1000 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1001 return ret;
1002 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1003 return ret;
1004 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1005 return ret;
1006 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1007 return ret;
1008 } else {
1009 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
1010 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
1011 return -1;
1012 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1013 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1014 read_sbr_invf(sbr, gb, &sbr->data[0]);
1015 read_sbr_invf(sbr, gb, &sbr->data[1]);
1016 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1017 return ret;
1018 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1019 return ret;
1020 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1021 return ret;
1022 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1023 return ret;
1024 }
1025
1026 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1027 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1028 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1029 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1030
1031 return 0;
1032}
1033
1034static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1035 GetBitContext *gb, int id_aac)
1036{
1037 unsigned int cnt = get_bits_count(gb);
1038
1039 sbr->id_aac = id_aac;
1040 sbr->ready_for_dequant = 1;
1041
1042 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1043 if (read_sbr_single_channel_element(ac, sbr, gb)) {
1044 sbr_turnoff(sbr);
1045 return get_bits_count(gb) - cnt;
1046 }
1047 } else if (id_aac == TYPE_CPE) {
1048 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1049 sbr_turnoff(sbr);
1050 return get_bits_count(gb) - cnt;
1051 }
1052 } else {
1053 av_log(ac->avctx, AV_LOG_ERROR,
1054 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1055 sbr_turnoff(sbr);
1056 return get_bits_count(gb) - cnt;
1057 }
1058 if (get_bits1(gb)) { // bs_extended_data
1059 int num_bits_left = get_bits(gb, 4); // bs_extension_size
1060 if (num_bits_left == 15)
1061 num_bits_left += get_bits(gb, 8); // bs_esc_count
1062
1063 num_bits_left <<= 3;
1064 while (num_bits_left > 7) {
1065 num_bits_left -= 2;
1066 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1067 }
1068 if (num_bits_left < 0) {
1069 av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1070 }
1071 if (num_bits_left > 0)
1072 skip_bits(gb, num_bits_left);
1073 }
1074
1075 return get_bits_count(gb) - cnt;
1076}
1077
1078static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1079{
1080 int err;
1081 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1082 if (err >= 0)
1083 err = sbr_make_f_derived(ac, sbr);
1084 if (err < 0) {
1085 av_log(ac->avctx, AV_LOG_ERROR,
1086 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1087 sbr_turnoff(sbr);
1088 }
1089}
1090
1091/**
1092 * Decode Spectral Band Replication extension data; reference: table 4.55.
1093 *
1094 * @param crc flag indicating the presence of CRC checksum
1095 * @param cnt length of TYPE_FIL syntactic element in bytes
1096 *
1097 * @return Returns number of bytes consumed from the TYPE_FIL element.
1098 */
1099int AAC_RENAME(ff_decode_sbr_extension)(AACContext *ac, SpectralBandReplication *sbr,
1100 GetBitContext *gb_host, int crc, int cnt, int id_aac)
1101{
1102 unsigned int num_sbr_bits = 0, num_align_bits;
1103 unsigned bytes_read;
1104 GetBitContext gbc = *gb_host, *gb = &gbc;
1105 skip_bits_long(gb_host, cnt*8 - 4);
1106
1107 sbr->reset = 0;
1108
1109 if (!sbr->sample_rate)
1110 sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1111 if (!ac->oc[1].m4ac.ext_sample_rate)
1112 ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1113
1114 if (crc) {
1115 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1116 num_sbr_bits += 10;
1117 }
1118
1119 //Save some state from the previous frame.
1120 sbr->kx[0] = sbr->kx[1];
1121 sbr->m[0] = sbr->m[1];
1122 sbr->kx_and_m_pushed = 1;
1123
1124 num_sbr_bits++;
1125 if (get_bits1(gb)) // bs_header_flag
1126 num_sbr_bits += read_sbr_header(sbr, gb);
1127
1128 if (sbr->reset)
1129 sbr_reset(ac, sbr);
1130
1131 if (sbr->start)
1132 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1133
1134 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1135 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1136
1137 if (bytes_read > cnt) {
1138 av_log(ac->avctx, AV_LOG_ERROR,
1139 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1140 sbr_turnoff(sbr);
1141 }
1142 return cnt;
1143}
1144
1145/**
1146 * Analysis QMF Bank (14496-3 sp04 p206)
1147 *
1148 * @param x pointer to the beginning of the first sample window
1149 * @param W array of complex-valued samples split into subbands
1150 */
1151#ifndef sbr_qmf_analysis
1152#if USE_FIXED
1153static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
1154#else
1155static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
1156#endif /* USE_FIXED */
1157 SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
1158 INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1159{
1160 int i;
1161#if USE_FIXED
1162 int j;
1163#endif
1164 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1165 memcpy(x+288, in, 1024*sizeof(x[0]));
1166 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1167 // are not supported
1168 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1169 sbrdsp->sum64x5(z);
1170 sbrdsp->qmf_pre_shuffle(z);
1171#if USE_FIXED
1172 for (j = 64; j < 128; j++) {
1173 if (z[j] > 1<<24) {
1174 av_log(NULL, AV_LOG_WARNING,
1175 "sbr_qmf_analysis: value %09d too large, setting to %09d\n",
1176 z[j], 1<<24);
1177 z[j] = 1<<24;
1178 } else if (z[j] < -(1<<24)) {
1179 av_log(NULL, AV_LOG_WARNING,
1180 "sbr_qmf_analysis: value %09d too small, setting to %09d\n",
1181 z[j], -(1<<24));
1182 z[j] = -(1<<24);
1183 }
1184 }
1185#endif
1186 mdct->imdct_half(mdct, z, z+64);
1187 sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1188 x += 32;
1189 }
1190}
1191#endif
1192
1193/**
1194 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1195 * (14496-3 sp04 p206)
1196 */
1197#ifndef sbr_qmf_synthesis
1198static void sbr_qmf_synthesis(FFTContext *mdct,
1199#if USE_FIXED
1200 SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
1201#else
1202 SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1203#endif /* USE_FIXED */
1204 INTFLOAT *out, INTFLOAT X[2][38][64],
1205 INTFLOAT mdct_buf[2][64],
1206 INTFLOAT *v0, int *v_off, const unsigned int div)
1207{
1208 int i, n;
1209 const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1210 const int step = 128 >> div;
1211 INTFLOAT *v;
1212 for (i = 0; i < 32; i++) {
1213 if (*v_off < step) {
1214 int saved_samples = (1280 - 128) >> div;
1215 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1216 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1217 } else {
1218 *v_off -= step;
1219 }
1220 v = v0 + *v_off;
1221 if (div) {
1222 for (n = 0; n < 32; n++) {
1223 X[0][i][ n] = -X[0][i][n];
1224 X[0][i][32+n] = X[1][i][31-n];
1225 }
1226 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1227 sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1228 } else {
1229 sbrdsp->neg_odd_64(X[1][i]);
1230 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1231 mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1232 sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1233 }
1234 dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1235 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1236 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1237 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1238 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1239 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1240 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1241 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1242 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1243 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1244 out += 64 >> div;
1245 }
1246}
1247#endif
1248
1249/// Generate the subband filtered lowband
1250static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1251 INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1252 int buf_idx)
1253{
1254 int i, k;
1255 const int t_HFGen = 8;
1256 const int i_f = 32;
1257 memset(X_low, 0, 32*sizeof(*X_low));
1258 for (k = 0; k < sbr->kx[1]; k++) {
1259 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1260 X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1261 X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1262 }
1263 }
1264 buf_idx = 1-buf_idx;
1265 for (k = 0; k < sbr->kx[0]; k++) {
1266 for (i = 0; i < t_HFGen; i++) {
1267 X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1268 X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1269 }
1270 }
1271 return 0;
1272}
1273
1274/// High Frequency Generator (14496-3 sp04 p215)
1275static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1276 INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
1277 const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
1278 const INTFLOAT bw_array[5], const uint8_t *t_env,
1279 int bs_num_env)
1280{
1281 int j, x;
1282 int g = 0;
1283 int k = sbr->kx[1];
1284 for (j = 0; j < sbr->num_patches; j++) {
1285 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1286 const int p = sbr->patch_start_subband[j] + x;
1287 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1288 g++;
1289 g--;
1290
1291 if (g < 0) {
1292 av_log(ac->avctx, AV_LOG_ERROR,
1293 "ERROR : no subband found for frequency %d\n", k);
1294 return -1;
1295 }
1296
1297 sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1298 X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1299 alpha0[p], alpha1[p], bw_array[g],
1300 2 * t_env[0], 2 * t_env[bs_num_env]);
1301 }
1302 }
1303 if (k < sbr->m[1] + sbr->kx[1])
1304 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1305
1306 return 0;
1307}
1308
1309/// Generate the subband filtered lowband
1310static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
1311 const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
1312 const INTFLOAT X_low[32][40][2], int ch)
1313{
1314 int k, i;
1315 const int i_f = 32;
1316 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1317 memset(X, 0, 2*sizeof(*X));
1318 for (k = 0; k < sbr->kx[0]; k++) {
1319 for (i = 0; i < i_Temp; i++) {
1320 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1321 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1322 }
1323 }
1324 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1325 for (i = 0; i < i_Temp; i++) {
1326 X[0][i][k] = Y0[i + i_f][k][0];
1327 X[1][i][k] = Y0[i + i_f][k][1];
1328 }
1329 }
1330
1331 for (k = 0; k < sbr->kx[1]; k++) {
1332 for (i = i_Temp; i < 38; i++) {
1333 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1334 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1335 }
1336 }
1337 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1338 for (i = i_Temp; i < i_f; i++) {
1339 X[0][i][k] = Y1[i][k][0];
1340 X[1][i][k] = Y1[i][k][1];
1341 }
1342 }
1343 return 0;
1344}
1345
1346/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1347 * (14496-3 sp04 p217)
1348 */
1349static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1350 SBRData *ch_data, int e_a[2])
1351{
1352 int e, i, m;
1353
1354 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1355 for (e = 0; e < ch_data->bs_num_env; e++) {
1356 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1357 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1358 int k;
1359
1360 if (sbr->kx[1] != table[0]) {
1361 av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1362 "Derived frequency tables were not regenerated.\n");
1363 sbr_turnoff(sbr);
1364 return AVERROR_BUG;
1365 }
1366 for (i = 0; i < ilim; i++)
1367 for (m = table[i]; m < table[i + 1]; m++)
1368 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1369
1370 // ch_data->bs_num_noise > 1 => 2 noise floors
1371 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1372 for (i = 0; i < sbr->n_q; i++)
1373 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1374 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1375
1376 for (i = 0; i < sbr->n[1]; i++) {
1377 if (ch_data->bs_add_harmonic_flag) {
1378 const unsigned int m_midpoint =
1379 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1380
1381 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1382 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1383 }
1384 }
1385
1386 for (i = 0; i < ilim; i++) {
1387 int additional_sinusoid_present = 0;
1388 for (m = table[i]; m < table[i + 1]; m++) {
1389 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1390 additional_sinusoid_present = 1;
1391 break;
1392 }
1393 }
1394 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1395 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1396 }
1397 }
1398
1399 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1400 return 0;
1401}
1402
1403/// Estimation of current envelope (14496-3 sp04 p218)
1404static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1405 SpectralBandReplication *sbr, SBRData *ch_data)
1406{
1407 int e, m;
1408 int kx1 = sbr->kx[1];
1409
1410 if (sbr->bs_interpol_freq) {
1411 for (e = 0; e < ch_data->bs_num_env; e++) {
1412#if USE_FIXED
1413 const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
1414#else
1415 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1416#endif /* USE_FIXED */
1417 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1418 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1419
1420 for (m = 0; m < sbr->m[1]; m++) {
1421 AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1422#if USE_FIXED
1423 e_curr[e][m] = av_mul_sf(sum, recip_env_size);
1424#else
1425 e_curr[e][m] = sum * recip_env_size;
1426#endif /* USE_FIXED */
1427 }
1428 }
1429 } else {
1430 int k, p;
1431
1432 for (e = 0; e < ch_data->bs_num_env; e++) {
1433 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1434 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1435 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1436 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1437
1438 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1439#if USE_FIXED
1440 SoftFloat sum = FLOAT_0;
1441 const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
1442 for (k = table[p]; k < table[p + 1]; k++) {
1443 sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
1444 }
1445 sum = av_mul_sf(sum, den);
1446#else
1447 float sum = 0.0f;
1448 const int den = env_size * (table[p + 1] - table[p]);
1449
1450 for (k = table[p]; k < table[p + 1]; k++) {
1451 sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1452 }
1453 sum /= den;
1454#endif /* USE_FIXED */
1455 for (k = table[p]; k < table[p + 1]; k++) {
1456 e_curr[e][k - kx1] = sum;
1457 }
1458 }
1459 }
1460 }
1461}
1462
1463void AAC_RENAME(ff_sbr_apply)(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
1464 INTFLOAT* L, INTFLOAT* R)
1465{
1466 int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1467 int ch;
1468 int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1469 int err;
1470
1471 if (id_aac != sbr->id_aac) {
1472 av_log(ac->avctx, id_aac == TYPE_LFE ? AV_LOG_VERBOSE : AV_LOG_WARNING,
1473 "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
1474 sbr_turnoff(sbr);
1475 }
1476
1477 if (sbr->start && !sbr->ready_for_dequant) {
1478 av_log(ac->avctx, AV_LOG_ERROR,
1479 "No quantized data read for sbr_dequant.\n");
1480 sbr_turnoff(sbr);
1481 }
1482
1483 if (!sbr->kx_and_m_pushed) {
1484 sbr->kx[0] = sbr->kx[1];
1485 sbr->m[0] = sbr->m[1];
1486 } else {
1487 sbr->kx_and_m_pushed = 0;
1488 }
1489
1490 if (sbr->start) {
1491 sbr_dequant(sbr, id_aac);
1492 sbr->ready_for_dequant = 0;
1493 }
1494 for (ch = 0; ch < nch; ch++) {
1495 /* decode channel */
1496 sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1497 (INTFLOAT*)sbr->qmf_filter_scratch,
1498 sbr->data[ch].W, sbr->data[ch].Ypos);
1499 sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1500 (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1501 sbr->data[ch].Ypos);
1502 sbr->data[ch].Ypos ^= 1;
1503 if (sbr->start) {
1504 sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1505 (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1506 sbr_chirp(sbr, &sbr->data[ch]);
1507 av_assert0(sbr->data[ch].bs_num_env > 0);
1508 sbr_hf_gen(ac, sbr, sbr->X_high,
1509 (const INTFLOAT (*)[40][2]) sbr->X_low,
1510 (const INTFLOAT (*)[2]) sbr->alpha0,
1511 (const INTFLOAT (*)[2]) sbr->alpha1,
1512 sbr->data[ch].bw_array, sbr->data[ch].t_env,
1513 sbr->data[ch].bs_num_env);
1514
1515 // hf_adj
1516 err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1517 if (!err) {
1518 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1519 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1520 sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1521 (const INTFLOAT (*)[40][2]) sbr->X_high,
1522 sbr, &sbr->data[ch],
1523 sbr->data[ch].e_a);
1524 }
1525 }
1526
1527 /* synthesis */
1528 sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1529 (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1530 (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1531 (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1532 }
1533
1534 if (ac->oc[1].m4ac.ps == 1) {
1535 if (sbr->ps.start) {
1536 AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1537 } else {
1538 memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1539 }
1540 nch = 2;
1541 }
1542
1543 sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1544 L, sbr->X[0], sbr->qmf_filter_scratch,
1545 sbr->data[0].synthesis_filterbank_samples,
1546 &sbr->data[0].synthesis_filterbank_samples_offset,
1547 downsampled);
1548 if (nch == 2)
1549 sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1550 R, sbr->X[1], sbr->qmf_filter_scratch,
1551 sbr->data[1].synthesis_filterbank_samples,
1552 &sbr->data[1].synthesis_filterbank_samples_offset,
1553 downsampled);
1554}
1555
1556static void aacsbr_func_ptr_init(AACSBRContext *c)
1557{
1558 c->sbr_lf_gen = sbr_lf_gen;
1559 c->sbr_hf_assemble = sbr_hf_assemble;
1560 c->sbr_x_gen = sbr_x_gen;
1561 c->sbr_hf_inverse_filter = sbr_hf_inverse_filter;
1562
1563#if !USE_FIXED
1564 if(ARCH_MIPS)
1565 ff_aacsbr_func_ptr_init_mips(c);
1566#endif
1567}
1568