summaryrefslogtreecommitdiff
path: root/libavcodec/alsdec.c (plain)
blob: d95e30d10d3f2f260b710446a5fa1bbcc13139b4
1/*
2 * MPEG-4 ALS decoder
3 * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * MPEG-4 ALS decoder
25 * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26 */
27
28#include <inttypes.h>
29
30#include "avcodec.h"
31#include "get_bits.h"
32#include "unary.h"
33#include "mpeg4audio.h"
34#include "bytestream.h"
35#include "bgmc.h"
36#include "bswapdsp.h"
37#include "internal.h"
38#include "mlz.h"
39#include "libavutil/samplefmt.h"
40#include "libavutil/crc.h"
41#include "libavutil/softfloat_ieee754.h"
42#include "libavutil/intfloat.h"
43#include "libavutil/intreadwrite.h"
44
45#include <stdint.h>
46
47/** Rice parameters and corresponding index offsets for decoding the
48 * indices of scaled PARCOR values. The table chosen is set globally
49 * by the encoder and stored in ALSSpecificConfig.
50 */
51static const int8_t parcor_rice_table[3][20][2] = {
52 { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
53 { 12, 3}, { -7, 3}, { 9, 3}, { -5, 3}, { 6, 3},
54 { -4, 3}, { 3, 3}, { -3, 2}, { 3, 2}, { -2, 2},
55 { 3, 2}, { -1, 2}, { 2, 2}, { -1, 2}, { 2, 2} },
56 { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
57 { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
58 {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
59 { 7, 3}, { -4, 4}, { 3, 3}, { -1, 3}, { 1, 3} },
60 { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
61 { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
62 {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
63 { 3, 3}, { 0, 3}, { -1, 3}, { 2, 3}, { -1, 2} }
64};
65
66
67/** Scaled PARCOR values used for the first two PARCOR coefficients.
68 * To be indexed by the Rice coded indices.
69 * Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
70 * Actual values are divided by 32 in order to be stored in 16 bits.
71 */
72static const int16_t parcor_scaled_values[] = {
73 -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
74 -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
75 -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
76 -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
77 -1013728 / 32, -1009376 / 32, -1004768 / 32, -999904 / 32,
78 -994784 / 32, -989408 / 32, -983776 / 32, -977888 / 32,
79 -971744 / 32, -965344 / 32, -958688 / 32, -951776 / 32,
80 -944608 / 32, -937184 / 32, -929504 / 32, -921568 / 32,
81 -913376 / 32, -904928 / 32, -896224 / 32, -887264 / 32,
82 -878048 / 32, -868576 / 32, -858848 / 32, -848864 / 32,
83 -838624 / 32, -828128 / 32, -817376 / 32, -806368 / 32,
84 -795104 / 32, -783584 / 32, -771808 / 32, -759776 / 32,
85 -747488 / 32, -734944 / 32, -722144 / 32, -709088 / 32,
86 -695776 / 32, -682208 / 32, -668384 / 32, -654304 / 32,
87 -639968 / 32, -625376 / 32, -610528 / 32, -595424 / 32,
88 -580064 / 32, -564448 / 32, -548576 / 32, -532448 / 32,
89 -516064 / 32, -499424 / 32, -482528 / 32, -465376 / 32,
90 -447968 / 32, -430304 / 32, -412384 / 32, -394208 / 32,
91 -375776 / 32, -357088 / 32, -338144 / 32, -318944 / 32,
92 -299488 / 32, -279776 / 32, -259808 / 32, -239584 / 32,
93 -219104 / 32, -198368 / 32, -177376 / 32, -156128 / 32,
94 -134624 / 32, -112864 / 32, -90848 / 32, -68576 / 32,
95 -46048 / 32, -23264 / 32, -224 / 32, 23072 / 32,
96 46624 / 32, 70432 / 32, 94496 / 32, 118816 / 32,
97 143392 / 32, 168224 / 32, 193312 / 32, 218656 / 32,
98 244256 / 32, 270112 / 32, 296224 / 32, 322592 / 32,
99 349216 / 32, 376096 / 32, 403232 / 32, 430624 / 32,
100 458272 / 32, 486176 / 32, 514336 / 32, 542752 / 32,
101 571424 / 32, 600352 / 32, 629536 / 32, 658976 / 32,
102 688672 / 32, 718624 / 32, 748832 / 32, 779296 / 32,
103 810016 / 32, 840992 / 32, 872224 / 32, 903712 / 32,
104 935456 / 32, 967456 / 32, 999712 / 32, 1032224 / 32
105};
106
107
108/** Gain values of p(0) for long-term prediction.
109 * To be indexed by the Rice coded indices.
110 */
111static const uint8_t ltp_gain_values [4][4] = {
112 { 0, 8, 16, 24},
113 {32, 40, 48, 56},
114 {64, 70, 76, 82},
115 {88, 92, 96, 100}
116};
117
118
119/** Inter-channel weighting factors for multi-channel correlation.
120 * To be indexed by the Rice coded indices.
121 */
122static const int16_t mcc_weightings[] = {
123 204, 192, 179, 166, 153, 140, 128, 115,
124 102, 89, 76, 64, 51, 38, 25, 12,
125 0, -12, -25, -38, -51, -64, -76, -89,
126 -102, -115, -128, -140, -153, -166, -179, -192
127};
128
129
130/** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
131 */
132static const uint8_t tail_code[16][6] = {
133 { 74, 44, 25, 13, 7, 3},
134 { 68, 42, 24, 13, 7, 3},
135 { 58, 39, 23, 13, 7, 3},
136 {126, 70, 37, 19, 10, 5},
137 {132, 70, 37, 20, 10, 5},
138 {124, 70, 38, 20, 10, 5},
139 {120, 69, 37, 20, 11, 5},
140 {116, 67, 37, 20, 11, 5},
141 {108, 66, 36, 20, 10, 5},
142 {102, 62, 36, 20, 10, 5},
143 { 88, 58, 34, 19, 10, 5},
144 {162, 89, 49, 25, 13, 7},
145 {156, 87, 49, 26, 14, 7},
146 {150, 86, 47, 26, 14, 7},
147 {142, 84, 47, 26, 14, 7},
148 {131, 79, 46, 26, 14, 7}
149};
150
151
152enum RA_Flag {
153 RA_FLAG_NONE,
154 RA_FLAG_FRAMES,
155 RA_FLAG_HEADER
156};
157
158
159typedef struct ALSSpecificConfig {
160 uint32_t samples; ///< number of samples, 0xFFFFFFFF if unknown
161 int resolution; ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
162 int floating; ///< 1 = IEEE 32-bit floating-point, 0 = integer
163 int msb_first; ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
164 int frame_length; ///< frame length for each frame (last frame may differ)
165 int ra_distance; ///< distance between RA frames (in frames, 0...255)
166 enum RA_Flag ra_flag; ///< indicates where the size of ra units is stored
167 int adapt_order; ///< adaptive order: 1 = on, 0 = off
168 int coef_table; ///< table index of Rice code parameters
169 int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
170 int max_order; ///< maximum prediction order (0..1023)
171 int block_switching; ///< number of block switching levels
172 int bgmc; ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
173 int sb_part; ///< sub-block partition
174 int joint_stereo; ///< joint stereo: 1 = on, 0 = off
175 int mc_coding; ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
176 int chan_config; ///< indicates that a chan_config_info field is present
177 int chan_sort; ///< channel rearrangement: 1 = on, 0 = off
178 int rlslms; ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
179 int chan_config_info; ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
180 int *chan_pos; ///< original channel positions
181 int crc_enabled; ///< enable Cyclic Redundancy Checksum
182} ALSSpecificConfig;
183
184
185typedef struct ALSChannelData {
186 int stop_flag;
187 int master_channel;
188 int time_diff_flag;
189 int time_diff_sign;
190 int time_diff_index;
191 int weighting[6];
192} ALSChannelData;
193
194
195typedef struct ALSDecContext {
196 AVCodecContext *avctx;
197 ALSSpecificConfig sconf;
198 GetBitContext gb;
199 BswapDSPContext bdsp;
200 const AVCRC *crc_table;
201 uint32_t crc_org; ///< CRC value of the original input data
202 uint32_t crc; ///< CRC value calculated from decoded data
203 unsigned int cur_frame_length; ///< length of the current frame to decode
204 unsigned int frame_id; ///< the frame ID / number of the current frame
205 unsigned int js_switch; ///< if true, joint-stereo decoding is enforced
206 unsigned int cs_switch; ///< if true, channel rearrangement is done
207 unsigned int num_blocks; ///< number of blocks used in the current frame
208 unsigned int s_max; ///< maximum Rice parameter allowed in entropy coding
209 uint8_t *bgmc_lut; ///< pointer at lookup tables used for BGMC
210 int *bgmc_lut_status; ///< pointer at lookup table status flags used for BGMC
211 int ltp_lag_length; ///< number of bits used for ltp lag value
212 int *const_block; ///< contains const_block flags for all channels
213 unsigned int *shift_lsbs; ///< contains shift_lsbs flags for all channels
214 unsigned int *opt_order; ///< contains opt_order flags for all channels
215 int *store_prev_samples; ///< contains store_prev_samples flags for all channels
216 int *use_ltp; ///< contains use_ltp flags for all channels
217 int *ltp_lag; ///< contains ltp lag values for all channels
218 int **ltp_gain; ///< gain values for ltp 5-tap filter for a channel
219 int *ltp_gain_buffer; ///< contains all gain values for ltp 5-tap filter
220 int32_t **quant_cof; ///< quantized parcor coefficients for a channel
221 int32_t *quant_cof_buffer; ///< contains all quantized parcor coefficients
222 int32_t **lpc_cof; ///< coefficients of the direct form prediction filter for a channel
223 int32_t *lpc_cof_buffer; ///< contains all coefficients of the direct form prediction filter
224 int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
225 ALSChannelData **chan_data; ///< channel data for multi-channel correlation
226 ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
227 int *reverted_channels; ///< stores a flag for each reverted channel
228 int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
229 int32_t **raw_samples; ///< decoded raw samples for each channel
230 int32_t *raw_buffer; ///< contains all decoded raw samples including carryover samples
231 uint8_t *crc_buffer; ///< buffer of byte order corrected samples used for CRC check
232 MLZ* mlz; ///< masked lz decompression structure
233 SoftFloat_IEEE754 *acf; ///< contains common multiplier for all channels
234 int *last_acf_mantissa; ///< contains the last acf mantissa data of common multiplier for all channels
235 int *shift_value; ///< value by which the binary point is to be shifted for all channels
236 int *last_shift_value; ///< contains last shift value for all channels
237 int **raw_mantissa; ///< decoded mantissa bits of the difference signal
238 unsigned char *larray; ///< buffer to store the output of masked lz decompression
239 int *nbits; ///< contains the number of bits to read for masked lz decompression for all samples
240} ALSDecContext;
241
242
243typedef struct ALSBlockData {
244 unsigned int block_length; ///< number of samples within the block
245 unsigned int ra_block; ///< if true, this is a random access block
246 int *const_block; ///< if true, this is a constant value block
247 int js_blocks; ///< true if this block contains a difference signal
248 unsigned int *shift_lsbs; ///< shift of values for this block
249 unsigned int *opt_order; ///< prediction order of this block
250 int *store_prev_samples;///< if true, carryover samples have to be stored
251 int *use_ltp; ///< if true, long-term prediction is used
252 int *ltp_lag; ///< lag value for long-term prediction
253 int *ltp_gain; ///< gain values for ltp 5-tap filter
254 int32_t *quant_cof; ///< quantized parcor coefficients
255 int32_t *lpc_cof; ///< coefficients of the direct form prediction
256 int32_t *raw_samples; ///< decoded raw samples / residuals for this block
257 int32_t *prev_raw_samples; ///< contains unshifted raw samples from the previous block
258 int32_t *raw_other; ///< decoded raw samples of the other channel of a channel pair
259} ALSBlockData;
260
261
262static av_cold void dprint_specific_config(ALSDecContext *ctx)
263{
264#ifdef DEBUG
265 AVCodecContext *avctx = ctx->avctx;
266 ALSSpecificConfig *sconf = &ctx->sconf;
267
268 ff_dlog(avctx, "resolution = %i\n", sconf->resolution);
269 ff_dlog(avctx, "floating = %i\n", sconf->floating);
270 ff_dlog(avctx, "frame_length = %i\n", sconf->frame_length);
271 ff_dlog(avctx, "ra_distance = %i\n", sconf->ra_distance);
272 ff_dlog(avctx, "ra_flag = %i\n", sconf->ra_flag);
273 ff_dlog(avctx, "adapt_order = %i\n", sconf->adapt_order);
274 ff_dlog(avctx, "coef_table = %i\n", sconf->coef_table);
275 ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
276 ff_dlog(avctx, "max_order = %i\n", sconf->max_order);
277 ff_dlog(avctx, "block_switching = %i\n", sconf->block_switching);
278 ff_dlog(avctx, "bgmc = %i\n", sconf->bgmc);
279 ff_dlog(avctx, "sb_part = %i\n", sconf->sb_part);
280 ff_dlog(avctx, "joint_stereo = %i\n", sconf->joint_stereo);
281 ff_dlog(avctx, "mc_coding = %i\n", sconf->mc_coding);
282 ff_dlog(avctx, "chan_config = %i\n", sconf->chan_config);
283 ff_dlog(avctx, "chan_sort = %i\n", sconf->chan_sort);
284 ff_dlog(avctx, "RLSLMS = %i\n", sconf->rlslms);
285 ff_dlog(avctx, "chan_config_info = %i\n", sconf->chan_config_info);
286#endif
287}
288
289
290/** Read an ALSSpecificConfig from a buffer into the output struct.
291 */
292static av_cold int read_specific_config(ALSDecContext *ctx)
293{
294 GetBitContext gb;
295 uint64_t ht_size;
296 int i, config_offset;
297 MPEG4AudioConfig m4ac = {0};
298 ALSSpecificConfig *sconf = &ctx->sconf;
299 AVCodecContext *avctx = ctx->avctx;
300 uint32_t als_id, header_size, trailer_size;
301 int ret;
302
303 if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
304 return ret;
305
306 config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
307 avctx->extradata_size * 8, 1);
308
309 if (config_offset < 0)
310 return AVERROR_INVALIDDATA;
311
312 skip_bits_long(&gb, config_offset);
313
314 if (get_bits_left(&gb) < (30 << 3))
315 return AVERROR_INVALIDDATA;
316
317 // read the fixed items
318 als_id = get_bits_long(&gb, 32);
319 avctx->sample_rate = m4ac.sample_rate;
320 skip_bits_long(&gb, 32); // sample rate already known
321 sconf->samples = get_bits_long(&gb, 32);
322 avctx->channels = m4ac.channels;
323 skip_bits(&gb, 16); // number of channels already known
324 skip_bits(&gb, 3); // skip file_type
325 sconf->resolution = get_bits(&gb, 3);
326 sconf->floating = get_bits1(&gb);
327 sconf->msb_first = get_bits1(&gb);
328 sconf->frame_length = get_bits(&gb, 16) + 1;
329 sconf->ra_distance = get_bits(&gb, 8);
330 sconf->ra_flag = get_bits(&gb, 2);
331 sconf->adapt_order = get_bits1(&gb);
332 sconf->coef_table = get_bits(&gb, 2);
333 sconf->long_term_prediction = get_bits1(&gb);
334 sconf->max_order = get_bits(&gb, 10);
335 sconf->block_switching = get_bits(&gb, 2);
336 sconf->bgmc = get_bits1(&gb);
337 sconf->sb_part = get_bits1(&gb);
338 sconf->joint_stereo = get_bits1(&gb);
339 sconf->mc_coding = get_bits1(&gb);
340 sconf->chan_config = get_bits1(&gb);
341 sconf->chan_sort = get_bits1(&gb);
342 sconf->crc_enabled = get_bits1(&gb);
343 sconf->rlslms = get_bits1(&gb);
344 skip_bits(&gb, 5); // skip 5 reserved bits
345 skip_bits1(&gb); // skip aux_data_enabled
346
347
348 // check for ALSSpecificConfig struct
349 if (als_id != MKBETAG('A','L','S','\0'))
350 return AVERROR_INVALIDDATA;
351
352 ctx->cur_frame_length = sconf->frame_length;
353
354 // read channel config
355 if (sconf->chan_config)
356 sconf->chan_config_info = get_bits(&gb, 16);
357 // TODO: use this to set avctx->channel_layout
358
359
360 // read channel sorting
361 if (sconf->chan_sort && avctx->channels > 1) {
362 int chan_pos_bits = av_ceil_log2(avctx->channels);
363 int bits_needed = avctx->channels * chan_pos_bits + 7;
364 if (get_bits_left(&gb) < bits_needed)
365 return AVERROR_INVALIDDATA;
366
367 if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
368 return AVERROR(ENOMEM);
369
370 ctx->cs_switch = 1;
371
372 for (i = 0; i < avctx->channels; i++) {
373 sconf->chan_pos[i] = -1;
374 }
375
376 for (i = 0; i < avctx->channels; i++) {
377 int idx;
378
379 idx = get_bits(&gb, chan_pos_bits);
380 if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
381 av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
382 ctx->cs_switch = 0;
383 break;
384 }
385 sconf->chan_pos[idx] = i;
386 }
387
388 align_get_bits(&gb);
389 }
390
391
392 // read fixed header and trailer sizes,
393 // if size = 0xFFFFFFFF then there is no data field!
394 if (get_bits_left(&gb) < 64)
395 return AVERROR_INVALIDDATA;
396
397 header_size = get_bits_long(&gb, 32);
398 trailer_size = get_bits_long(&gb, 32);
399 if (header_size == 0xFFFFFFFF)
400 header_size = 0;
401 if (trailer_size == 0xFFFFFFFF)
402 trailer_size = 0;
403
404 ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
405
406
407 // skip the header and trailer data
408 if (get_bits_left(&gb) < ht_size)
409 return AVERROR_INVALIDDATA;
410
411 if (ht_size > INT32_MAX)
412 return AVERROR_PATCHWELCOME;
413
414 skip_bits_long(&gb, ht_size);
415
416
417 // initialize CRC calculation
418 if (sconf->crc_enabled) {
419 if (get_bits_left(&gb) < 32)
420 return AVERROR_INVALIDDATA;
421
422 if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
423 ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
424 ctx->crc = 0xFFFFFFFF;
425 ctx->crc_org = ~get_bits_long(&gb, 32);
426 } else
427 skip_bits_long(&gb, 32);
428 }
429
430
431 // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
432
433 dprint_specific_config(ctx);
434
435 return 0;
436}
437
438
439/** Check the ALSSpecificConfig for unsupported features.
440 */
441static int check_specific_config(ALSDecContext *ctx)
442{
443 ALSSpecificConfig *sconf = &ctx->sconf;
444 int error = 0;
445
446 // report unsupported feature and set error value
447 #define MISSING_ERR(cond, str, errval) \
448 { \
449 if (cond) { \
450 avpriv_report_missing_feature(ctx->avctx, \
451 str); \
452 error = errval; \
453 } \
454 }
455
456 MISSING_ERR(sconf->rlslms, "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
457
458 return error;
459}
460
461
462/** Parse the bs_info field to extract the block partitioning used in
463 * block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
464 */
465static void parse_bs_info(const uint32_t bs_info, unsigned int n,
466 unsigned int div, unsigned int **div_blocks,
467 unsigned int *num_blocks)
468{
469 if (n < 31 && ((bs_info << n) & 0x40000000)) {
470 // if the level is valid and the investigated bit n is set
471 // then recursively check both children at bits (2n+1) and (2n+2)
472 n *= 2;
473 div += 1;
474 parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
475 parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
476 } else {
477 // else the bit is not set or the last level has been reached
478 // (bit implicitly not set)
479 **div_blocks = div;
480 (*div_blocks)++;
481 (*num_blocks)++;
482 }
483}
484
485
486/** Read and decode a Rice codeword.
487 */
488static int32_t decode_rice(GetBitContext *gb, unsigned int k)
489{
490 int max = get_bits_left(gb) - k;
491 int q = get_unary(gb, 0, max);
492 int r = k ? get_bits1(gb) : !(q & 1);
493
494 if (k > 1) {
495 q <<= (k - 1);
496 q += get_bits_long(gb, k - 1);
497 } else if (!k) {
498 q >>= 1;
499 }
500 return r ? q : ~q;
501}
502
503
504/** Convert PARCOR coefficient k to direct filter coefficient.
505 */
506static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
507{
508 int i, j;
509
510 for (i = 0, j = k - 1; i < j; i++, j--) {
511 int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
512 cof[j] += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
513 cof[i] += tmp1;
514 }
515 if (i == j)
516 cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
517
518 cof[k] = par[k];
519}
520
521
522/** Read block switching field if necessary and set actual block sizes.
523 * Also assure that the block sizes of the last frame correspond to the
524 * actual number of samples.
525 */
526static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
527 uint32_t *bs_info)
528{
529 ALSSpecificConfig *sconf = &ctx->sconf;
530 GetBitContext *gb = &ctx->gb;
531 unsigned int *ptr_div_blocks = div_blocks;
532 unsigned int b;
533
534 if (sconf->block_switching) {
535 unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
536 *bs_info = get_bits_long(gb, bs_info_len);
537 *bs_info <<= (32 - bs_info_len);
538 }
539
540 ctx->num_blocks = 0;
541 parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
542
543 // The last frame may have an overdetermined block structure given in
544 // the bitstream. In that case the defined block structure would need
545 // more samples than available to be consistent.
546 // The block structure is actually used but the block sizes are adapted
547 // to fit the actual number of available samples.
548 // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
549 // This results in the actual block sizes: 2 2 1 0.
550 // This is not specified in 14496-3 but actually done by the reference
551 // codec RM22 revision 2.
552 // This appears to happen in case of an odd number of samples in the last
553 // frame which is actually not allowed by the block length switching part
554 // of 14496-3.
555 // The ALS conformance files feature an odd number of samples in the last
556 // frame.
557
558 for (b = 0; b < ctx->num_blocks; b++)
559 div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
560
561 if (ctx->cur_frame_length != ctx->sconf.frame_length) {
562 unsigned int remaining = ctx->cur_frame_length;
563
564 for (b = 0; b < ctx->num_blocks; b++) {
565 if (remaining <= div_blocks[b]) {
566 div_blocks[b] = remaining;
567 ctx->num_blocks = b + 1;
568 break;
569 }
570
571 remaining -= div_blocks[b];
572 }
573 }
574}
575
576
577/** Read the block data for a constant block
578 */
579static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
580{
581 ALSSpecificConfig *sconf = &ctx->sconf;
582 AVCodecContext *avctx = ctx->avctx;
583 GetBitContext *gb = &ctx->gb;
584
585 if (bd->block_length <= 0)
586 return AVERROR_INVALIDDATA;
587
588 *bd->raw_samples = 0;
589 *bd->const_block = get_bits1(gb); // 1 = constant value, 0 = zero block (silence)
590 bd->js_blocks = get_bits1(gb);
591
592 // skip 5 reserved bits
593 skip_bits(gb, 5);
594
595 if (*bd->const_block) {
596 unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
597 *bd->raw_samples = get_sbits_long(gb, const_val_bits);
598 }
599
600 // ensure constant block decoding by reusing this field
601 *bd->const_block = 1;
602
603 return 0;
604}
605
606
607/** Decode the block data for a constant block
608 */
609static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
610{
611 int smp = bd->block_length - 1;
612 int32_t val = *bd->raw_samples;
613 int32_t *dst = bd->raw_samples + 1;
614
615 // write raw samples into buffer
616 for (; smp; smp--)
617 *dst++ = val;
618}
619
620
621/** Read the block data for a non-constant block
622 */
623static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
624{
625 ALSSpecificConfig *sconf = &ctx->sconf;
626 AVCodecContext *avctx = ctx->avctx;
627 GetBitContext *gb = &ctx->gb;
628 unsigned int k;
629 unsigned int s[8];
630 unsigned int sx[8];
631 unsigned int sub_blocks, log2_sub_blocks, sb_length;
632 unsigned int start = 0;
633 unsigned int opt_order;
634 int sb;
635 int32_t *quant_cof = bd->quant_cof;
636 int32_t *current_res;
637
638
639 // ensure variable block decoding by reusing this field
640 *bd->const_block = 0;
641
642 *bd->opt_order = 1;
643 bd->js_blocks = get_bits1(gb);
644
645 opt_order = *bd->opt_order;
646
647 // determine the number of subblocks for entropy decoding
648 if (!sconf->bgmc && !sconf->sb_part) {
649 log2_sub_blocks = 0;
650 } else {
651 if (sconf->bgmc && sconf->sb_part)
652 log2_sub_blocks = get_bits(gb, 2);
653 else
654 log2_sub_blocks = 2 * get_bits1(gb);
655 }
656
657 sub_blocks = 1 << log2_sub_blocks;
658
659 // do not continue in case of a damaged stream since
660 // block_length must be evenly divisible by sub_blocks
661 if (bd->block_length & (sub_blocks - 1)) {
662 av_log(avctx, AV_LOG_WARNING,
663 "Block length is not evenly divisible by the number of subblocks.\n");
664 return AVERROR_INVALIDDATA;
665 }
666
667 sb_length = bd->block_length >> log2_sub_blocks;
668
669 if (sconf->bgmc) {
670 s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
671 for (k = 1; k < sub_blocks; k++)
672 s[k] = s[k - 1] + decode_rice(gb, 2);
673
674 for (k = 0; k < sub_blocks; k++) {
675 sx[k] = s[k] & 0x0F;
676 s [k] >>= 4;
677 }
678 } else {
679 s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
680 for (k = 1; k < sub_blocks; k++)
681 s[k] = s[k - 1] + decode_rice(gb, 0);
682 }
683 for (k = 1; k < sub_blocks; k++)
684 if (s[k] > 32) {
685 av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
686 return AVERROR_INVALIDDATA;
687 }
688
689 if (get_bits1(gb))
690 *bd->shift_lsbs = get_bits(gb, 4) + 1;
691
692 *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
693
694
695 if (!sconf->rlslms) {
696 if (sconf->adapt_order && sconf->max_order) {
697 int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
698 2, sconf->max_order + 1));
699 *bd->opt_order = get_bits(gb, opt_order_length);
700 if (*bd->opt_order > sconf->max_order) {
701 *bd->opt_order = sconf->max_order;
702 av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
703 return AVERROR_INVALIDDATA;
704 }
705 } else {
706 *bd->opt_order = sconf->max_order;
707 }
708 if (*bd->opt_order > bd->block_length) {
709 *bd->opt_order = bd->block_length;
710 av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
711 return AVERROR_INVALIDDATA;
712 }
713 opt_order = *bd->opt_order;
714
715 if (opt_order) {
716 int add_base;
717
718 if (sconf->coef_table == 3) {
719 add_base = 0x7F;
720
721 // read coefficient 0
722 quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
723
724 // read coefficient 1
725 if (opt_order > 1)
726 quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
727
728 // read coefficients 2 to opt_order
729 for (k = 2; k < opt_order; k++)
730 quant_cof[k] = get_bits(gb, 7);
731 } else {
732 int k_max;
733 add_base = 1;
734
735 // read coefficient 0 to 19
736 k_max = FFMIN(opt_order, 20);
737 for (k = 0; k < k_max; k++) {
738 int rice_param = parcor_rice_table[sconf->coef_table][k][1];
739 int offset = parcor_rice_table[sconf->coef_table][k][0];
740 quant_cof[k] = decode_rice(gb, rice_param) + offset;
741 if (quant_cof[k] < -64 || quant_cof[k] > 63) {
742 av_log(avctx, AV_LOG_ERROR,
743 "quant_cof %"PRId32" is out of range.\n",
744 quant_cof[k]);
745 return AVERROR_INVALIDDATA;
746 }
747 }
748
749 // read coefficients 20 to 126
750 k_max = FFMIN(opt_order, 127);
751 for (; k < k_max; k++)
752 quant_cof[k] = decode_rice(gb, 2) + (k & 1);
753
754 // read coefficients 127 to opt_order
755 for (; k < opt_order; k++)
756 quant_cof[k] = decode_rice(gb, 1);
757
758 quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
759
760 if (opt_order > 1)
761 quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
762 }
763
764 for (k = 2; k < opt_order; k++)
765 quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
766 }
767 }
768
769 // read LTP gain and lag values
770 if (sconf->long_term_prediction) {
771 *bd->use_ltp = get_bits1(gb);
772
773 if (*bd->use_ltp) {
774 int r, c;
775
776 bd->ltp_gain[0] = decode_rice(gb, 1) << 3;
777 bd->ltp_gain[1] = decode_rice(gb, 2) << 3;
778
779 r = get_unary(gb, 0, 4);
780 c = get_bits(gb, 2);
781 if (r >= 4) {
782 av_log(avctx, AV_LOG_ERROR, "r overflow\n");
783 return AVERROR_INVALIDDATA;
784 }
785
786 bd->ltp_gain[2] = ltp_gain_values[r][c];
787
788 bd->ltp_gain[3] = decode_rice(gb, 2) << 3;
789 bd->ltp_gain[4] = decode_rice(gb, 1) << 3;
790
791 *bd->ltp_lag = get_bits(gb, ctx->ltp_lag_length);
792 *bd->ltp_lag += FFMAX(4, opt_order + 1);
793 }
794 }
795
796 // read first value and residuals in case of a random access block
797 if (bd->ra_block) {
798 if (opt_order)
799 bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
800 if (opt_order > 1)
801 bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
802 if (opt_order > 2)
803 bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
804
805 start = FFMIN(opt_order, 3);
806 }
807
808 // read all residuals
809 if (sconf->bgmc) {
810 int delta[8];
811 unsigned int k [8];
812 unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
813
814 // read most significant bits
815 unsigned int high;
816 unsigned int low;
817 unsigned int value;
818
819 ff_bgmc_decode_init(gb, &high, &low, &value);
820
821 current_res = bd->raw_samples + start;
822
823 for (sb = 0; sb < sub_blocks; sb++) {
824 unsigned int sb_len = sb_length - (sb ? 0 : start);
825
826 k [sb] = s[sb] > b ? s[sb] - b : 0;
827 delta[sb] = 5 - s[sb] + k[sb];
828
829 ff_bgmc_decode(gb, sb_len, current_res,
830 delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
831
832 current_res += sb_len;
833 }
834
835 ff_bgmc_decode_end(gb);
836
837
838 // read least significant bits and tails
839 current_res = bd->raw_samples + start;
840
841 for (sb = 0; sb < sub_blocks; sb++, start = 0) {
842 unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
843 unsigned int cur_k = k[sb];
844 unsigned int cur_s = s[sb];
845
846 for (; start < sb_length; start++) {
847 int32_t res = *current_res;
848
849 if (res == cur_tail_code) {
850 unsigned int max_msb = (2 + (sx[sb] > 2) + (sx[sb] > 10))
851 << (5 - delta[sb]);
852
853 res = decode_rice(gb, cur_s);
854
855 if (res >= 0) {
856 res += (max_msb ) << cur_k;
857 } else {
858 res -= (max_msb - 1) << cur_k;
859 }
860 } else {
861 if (res > cur_tail_code)
862 res--;
863
864 if (res & 1)
865 res = -res;
866
867 res >>= 1;
868
869 if (cur_k) {
870 res <<= cur_k;
871 res |= get_bits_long(gb, cur_k);
872 }
873 }
874
875 *current_res++ = res;
876 }
877 }
878 } else {
879 current_res = bd->raw_samples + start;
880
881 for (sb = 0; sb < sub_blocks; sb++, start = 0)
882 for (; start < sb_length; start++)
883 *current_res++ = decode_rice(gb, s[sb]);
884 }
885
886 return 0;
887}
888
889
890/** Decode the block data for a non-constant block
891 */
892static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
893{
894 ALSSpecificConfig *sconf = &ctx->sconf;
895 unsigned int block_length = bd->block_length;
896 unsigned int smp = 0;
897 unsigned int k;
898 int opt_order = *bd->opt_order;
899 int sb;
900 int64_t y;
901 int32_t *quant_cof = bd->quant_cof;
902 int32_t *lpc_cof = bd->lpc_cof;
903 int32_t *raw_samples = bd->raw_samples;
904 int32_t *raw_samples_end = bd->raw_samples + bd->block_length;
905 int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
906
907 // reverse long-term prediction
908 if (*bd->use_ltp) {
909 int ltp_smp;
910
911 for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
912 int center = ltp_smp - *bd->ltp_lag;
913 int begin = FFMAX(0, center - 2);
914 int end = center + 3;
915 int tab = 5 - (end - begin);
916 int base;
917
918 y = 1 << 6;
919
920 for (base = begin; base < end; base++, tab++)
921 y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
922
923 raw_samples[ltp_smp] += y >> 7;
924 }
925 }
926
927 // reconstruct all samples from residuals
928 if (bd->ra_block) {
929 for (smp = 0; smp < opt_order; smp++) {
930 y = 1 << 19;
931
932 for (sb = 0; sb < smp; sb++)
933 y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
934
935 *raw_samples++ -= y >> 20;
936 parcor_to_lpc(smp, quant_cof, lpc_cof);
937 }
938 } else {
939 for (k = 0; k < opt_order; k++)
940 parcor_to_lpc(k, quant_cof, lpc_cof);
941
942 // store previous samples in case that they have to be altered
943 if (*bd->store_prev_samples)
944 memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
945 sizeof(*bd->prev_raw_samples) * sconf->max_order);
946
947 // reconstruct difference signal for prediction (joint-stereo)
948 if (bd->js_blocks && bd->raw_other) {
949 int32_t *left, *right;
950
951 if (bd->raw_other > raw_samples) { // D = R - L
952 left = raw_samples;
953 right = bd->raw_other;
954 } else { // D = R - L
955 left = bd->raw_other;
956 right = raw_samples;
957 }
958
959 for (sb = -1; sb >= -sconf->max_order; sb--)
960 raw_samples[sb] = right[sb] - left[sb];
961 }
962
963 // reconstruct shifted signal
964 if (*bd->shift_lsbs)
965 for (sb = -1; sb >= -sconf->max_order; sb--)
966 raw_samples[sb] >>= *bd->shift_lsbs;
967 }
968
969 // reverse linear prediction coefficients for efficiency
970 lpc_cof = lpc_cof + opt_order;
971
972 for (sb = 0; sb < opt_order; sb++)
973 lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
974
975 // reconstruct raw samples
976 raw_samples = bd->raw_samples + smp;
977 lpc_cof = lpc_cof_reversed + opt_order;
978
979 for (; raw_samples < raw_samples_end; raw_samples++) {
980 y = 1 << 19;
981
982 for (sb = -opt_order; sb < 0; sb++)
983 y += MUL64(lpc_cof[sb], raw_samples[sb]);
984
985 *raw_samples -= y >> 20;
986 }
987
988 raw_samples = bd->raw_samples;
989
990 // restore previous samples in case that they have been altered
991 if (*bd->store_prev_samples)
992 memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
993 sizeof(*raw_samples) * sconf->max_order);
994
995 return 0;
996}
997
998
999/** Read the block data.
1000 */
1001static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
1002{
1003 int ret;
1004 GetBitContext *gb = &ctx->gb;
1005 ALSSpecificConfig *sconf = &ctx->sconf;
1006
1007 *bd->shift_lsbs = 0;
1008 // read block type flag and read the samples accordingly
1009 if (get_bits1(gb)) {
1010 ret = read_var_block_data(ctx, bd);
1011 } else {
1012 ret = read_const_block_data(ctx, bd);
1013 }
1014
1015 if (!sconf->mc_coding || ctx->js_switch)
1016 align_get_bits(gb);
1017
1018 return ret;
1019}
1020
1021
1022/** Decode the block data.
1023 */
1024static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
1025{
1026 unsigned int smp;
1027 int ret = 0;
1028
1029 // read block type flag and read the samples accordingly
1030 if (*bd->const_block)
1031 decode_const_block_data(ctx, bd);
1032 else
1033 ret = decode_var_block_data(ctx, bd); // always return 0
1034
1035 if (ret < 0)
1036 return ret;
1037
1038 // TODO: read RLSLMS extension data
1039
1040 if (*bd->shift_lsbs)
1041 for (smp = 0; smp < bd->block_length; smp++)
1042 bd->raw_samples[smp] <<= *bd->shift_lsbs;
1043
1044 return 0;
1045}
1046
1047
1048/** Read and decode block data successively.
1049 */
1050static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
1051{
1052 int ret;
1053
1054 if ((ret = read_block(ctx, bd)) < 0)
1055 return ret;
1056
1057 return decode_block(ctx, bd);
1058}
1059
1060
1061/** Compute the number of samples left to decode for the current frame and
1062 * sets these samples to zero.
1063 */
1064static void zero_remaining(unsigned int b, unsigned int b_max,
1065 const unsigned int *div_blocks, int32_t *buf)
1066{
1067 unsigned int count = 0;
1068
1069 while (b < b_max)
1070 count += div_blocks[b++];
1071
1072 if (count)
1073 memset(buf, 0, sizeof(*buf) * count);
1074}
1075
1076
1077/** Decode blocks independently.
1078 */
1079static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1080 unsigned int c, const unsigned int *div_blocks,
1081 unsigned int *js_blocks)
1082{
1083 int ret;
1084 unsigned int b;
1085 ALSBlockData bd = { 0 };
1086
1087 bd.ra_block = ra_frame;
1088 bd.const_block = ctx->const_block;
1089 bd.shift_lsbs = ctx->shift_lsbs;
1090 bd.opt_order = ctx->opt_order;
1091 bd.store_prev_samples = ctx->store_prev_samples;
1092 bd.use_ltp = ctx->use_ltp;
1093 bd.ltp_lag = ctx->ltp_lag;
1094 bd.ltp_gain = ctx->ltp_gain[0];
1095 bd.quant_cof = ctx->quant_cof[0];
1096 bd.lpc_cof = ctx->lpc_cof[0];
1097 bd.prev_raw_samples = ctx->prev_raw_samples;
1098 bd.raw_samples = ctx->raw_samples[c];
1099
1100
1101 for (b = 0; b < ctx->num_blocks; b++) {
1102 bd.block_length = div_blocks[b];
1103
1104 if ((ret = read_decode_block(ctx, &bd)) < 0) {
1105 // damaged block, write zero for the rest of the frame
1106 zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1107 return ret;
1108 }
1109 bd.raw_samples += div_blocks[b];
1110 bd.ra_block = 0;
1111 }
1112
1113 return 0;
1114}
1115
1116
1117/** Decode blocks dependently.
1118 */
1119static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1120 unsigned int c, const unsigned int *div_blocks,
1121 unsigned int *js_blocks)
1122{
1123 ALSSpecificConfig *sconf = &ctx->sconf;
1124 unsigned int offset = 0;
1125 unsigned int b;
1126 int ret;
1127 ALSBlockData bd[2] = { { 0 } };
1128
1129 bd[0].ra_block = ra_frame;
1130 bd[0].const_block = ctx->const_block;
1131 bd[0].shift_lsbs = ctx->shift_lsbs;
1132 bd[0].opt_order = ctx->opt_order;
1133 bd[0].store_prev_samples = ctx->store_prev_samples;
1134 bd[0].use_ltp = ctx->use_ltp;
1135 bd[0].ltp_lag = ctx->ltp_lag;
1136 bd[0].ltp_gain = ctx->ltp_gain[0];
1137 bd[0].quant_cof = ctx->quant_cof[0];
1138 bd[0].lpc_cof = ctx->lpc_cof[0];
1139 bd[0].prev_raw_samples = ctx->prev_raw_samples;
1140 bd[0].js_blocks = *js_blocks;
1141
1142 bd[1].ra_block = ra_frame;
1143 bd[1].const_block = ctx->const_block;
1144 bd[1].shift_lsbs = ctx->shift_lsbs;
1145 bd[1].opt_order = ctx->opt_order;
1146 bd[1].store_prev_samples = ctx->store_prev_samples;
1147 bd[1].use_ltp = ctx->use_ltp;
1148 bd[1].ltp_lag = ctx->ltp_lag;
1149 bd[1].ltp_gain = ctx->ltp_gain[0];
1150 bd[1].quant_cof = ctx->quant_cof[0];
1151 bd[1].lpc_cof = ctx->lpc_cof[0];
1152 bd[1].prev_raw_samples = ctx->prev_raw_samples;
1153 bd[1].js_blocks = *(js_blocks + 1);
1154
1155 // decode all blocks
1156 for (b = 0; b < ctx->num_blocks; b++) {
1157 unsigned int s;
1158
1159 bd[0].block_length = div_blocks[b];
1160 bd[1].block_length = div_blocks[b];
1161
1162 bd[0].raw_samples = ctx->raw_samples[c ] + offset;
1163 bd[1].raw_samples = ctx->raw_samples[c + 1] + offset;
1164
1165 bd[0].raw_other = bd[1].raw_samples;
1166 bd[1].raw_other = bd[0].raw_samples;
1167
1168 if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1169 (ret = read_decode_block(ctx, &bd[1])) < 0)
1170 goto fail;
1171
1172 // reconstruct joint-stereo blocks
1173 if (bd[0].js_blocks) {
1174 if (bd[1].js_blocks)
1175 av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1176
1177 for (s = 0; s < div_blocks[b]; s++)
1178 bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
1179 } else if (bd[1].js_blocks) {
1180 for (s = 0; s < div_blocks[b]; s++)
1181 bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
1182 }
1183
1184 offset += div_blocks[b];
1185 bd[0].ra_block = 0;
1186 bd[1].ra_block = 0;
1187 }
1188
1189 // store carryover raw samples,
1190 // the others channel raw samples are stored by the calling function.
1191 memmove(ctx->raw_samples[c] - sconf->max_order,
1192 ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1193 sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1194
1195 return 0;
1196fail:
1197 // damaged block, write zero for the rest of the frame
1198 zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1199 zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1200 return ret;
1201}
1202
1203static inline int als_weighting(GetBitContext *gb, int k, int off)
1204{
1205 int idx = av_clip(decode_rice(gb, k) + off,
1206 0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1207 return mcc_weightings[idx];
1208}
1209
1210/** Read the channel data.
1211 */
1212static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
1213{
1214 GetBitContext *gb = &ctx->gb;
1215 ALSChannelData *current = cd;
1216 unsigned int channels = ctx->avctx->channels;
1217 int entries = 0;
1218
1219 while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1220 current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1221
1222 if (current->master_channel >= channels) {
1223 av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1224 return AVERROR_INVALIDDATA;
1225 }
1226
1227 if (current->master_channel != c) {
1228 current->time_diff_flag = get_bits1(gb);
1229 current->weighting[0] = als_weighting(gb, 1, 16);
1230 current->weighting[1] = als_weighting(gb, 2, 14);
1231 current->weighting[2] = als_weighting(gb, 1, 16);
1232
1233 if (current->time_diff_flag) {
1234 current->weighting[3] = als_weighting(gb, 1, 16);
1235 current->weighting[4] = als_weighting(gb, 1, 16);
1236 current->weighting[5] = als_weighting(gb, 1, 16);
1237
1238 current->time_diff_sign = get_bits1(gb);
1239 current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1240 }
1241 }
1242
1243 current++;
1244 entries++;
1245 }
1246
1247 if (entries == channels) {
1248 av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1249 return AVERROR_INVALIDDATA;
1250 }
1251
1252 align_get_bits(gb);
1253 return 0;
1254}
1255
1256
1257/** Recursively reverts the inter-channel correlation for a block.
1258 */
1259static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
1260 ALSChannelData **cd, int *reverted,
1261 unsigned int offset, int c)
1262{
1263 ALSChannelData *ch = cd[c];
1264 unsigned int dep = 0;
1265 unsigned int channels = ctx->avctx->channels;
1266 unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1267
1268 if (reverted[c])
1269 return 0;
1270
1271 reverted[c] = 1;
1272
1273 while (dep < channels && !ch[dep].stop_flag) {
1274 revert_channel_correlation(ctx, bd, cd, reverted, offset,
1275 ch[dep].master_channel);
1276
1277 dep++;
1278 }
1279
1280 if (dep == channels) {
1281 av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1282 return AVERROR_INVALIDDATA;
1283 }
1284
1285 bd->const_block = ctx->const_block + c;
1286 bd->shift_lsbs = ctx->shift_lsbs + c;
1287 bd->opt_order = ctx->opt_order + c;
1288 bd->store_prev_samples = ctx->store_prev_samples + c;
1289 bd->use_ltp = ctx->use_ltp + c;
1290 bd->ltp_lag = ctx->ltp_lag + c;
1291 bd->ltp_gain = ctx->ltp_gain[c];
1292 bd->lpc_cof = ctx->lpc_cof[c];
1293 bd->quant_cof = ctx->quant_cof[c];
1294 bd->raw_samples = ctx->raw_samples[c] + offset;
1295
1296 for (dep = 0; !ch[dep].stop_flag; dep++) {
1297 ptrdiff_t smp;
1298 ptrdiff_t begin = 1;
1299 ptrdiff_t end = bd->block_length - 1;
1300 int64_t y;
1301 int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1302
1303 if (ch[dep].master_channel == c)
1304 continue;
1305
1306 if (ch[dep].time_diff_flag) {
1307 int t = ch[dep].time_diff_index;
1308
1309 if (ch[dep].time_diff_sign) {
1310 t = -t;
1311 if (begin < t) {
1312 av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
1313 return AVERROR_INVALIDDATA;
1314 }
1315 begin -= t;
1316 } else {
1317 if (end < t) {
1318 av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
1319 return AVERROR_INVALIDDATA;
1320 }
1321 end -= t;
1322 }
1323
1324 if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1325 FFMAX(end + 1, end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1326 av_log(ctx->avctx, AV_LOG_ERROR,
1327 "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1328 master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1, end + 1 + t),
1329 ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1330 return AVERROR_INVALIDDATA;
1331 }
1332
1333 for (smp = begin; smp < end; smp++) {
1334 y = (1 << 6) +
1335 MUL64(ch[dep].weighting[0], master[smp - 1 ]) +
1336 MUL64(ch[dep].weighting[1], master[smp ]) +
1337 MUL64(ch[dep].weighting[2], master[smp + 1 ]) +
1338 MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1339 MUL64(ch[dep].weighting[4], master[smp + t]) +
1340 MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1341
1342 bd->raw_samples[smp] += y >> 7;
1343 }
1344 } else {
1345
1346 if (begin - 1 < ctx->raw_buffer - master ||
1347 end + 1 > ctx->raw_buffer + channels * channel_size - master) {
1348 av_log(ctx->avctx, AV_LOG_ERROR,
1349 "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1350 master + begin - 1, master + end + 1,
1351 ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1352 return AVERROR_INVALIDDATA;
1353 }
1354
1355 for (smp = begin; smp < end; smp++) {
1356 y = (1 << 6) +
1357 MUL64(ch[dep].weighting[0], master[smp - 1]) +
1358 MUL64(ch[dep].weighting[1], master[smp ]) +
1359 MUL64(ch[dep].weighting[2], master[smp + 1]);
1360
1361 bd->raw_samples[smp] += y >> 7;
1362 }
1363 }
1364 }
1365
1366 return 0;
1367}
1368
1369
1370/** multiply two softfloats and handle the rounding off
1371 */
1372static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b) {
1373 uint64_t mantissa_temp;
1374 uint64_t mask_64;
1375 int cutoff_bit_count;
1376 unsigned char last_2_bits;
1377 unsigned int mantissa;
1378 int32_t sign;
1379 uint32_t return_val = 0;
1380 int bit_count = 48;
1381
1382 sign = a.sign ^ b.sign;
1383
1384 // Multiply mantissa bits in a 64-bit register
1385 mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
1386 mask_64 = (uint64_t)0x1 << 47;
1387
1388 // Count the valid bit count
1389 while (!(mantissa_temp & mask_64) && mask_64) {
1390 bit_count--;
1391 mask_64 >>= 1;
1392 }
1393
1394 // Round off
1395 cutoff_bit_count = bit_count - 24;
1396 if (cutoff_bit_count > 0) {
1397 last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
1398 if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
1399 // Need to round up
1400 mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
1401 }
1402 }
1403
1404 mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
1405
1406 // Need one more shift?
1407 if (mantissa & 0x01000000ul) {
1408 bit_count++;
1409 mantissa >>= 1;
1410 }
1411
1412 if (!sign) {
1413 return_val = 0x80000000U;
1414 }
1415
1416 return_val |= (a.exp + b.exp + bit_count - 47) << 23;
1417 return_val |= mantissa;
1418 return av_bits2sf_ieee754(return_val);
1419}
1420
1421
1422/** Read and decode the floating point sample data
1423 */
1424static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
1425 AVCodecContext *avctx = ctx->avctx;
1426 GetBitContext *gb = &ctx->gb;
1427 SoftFloat_IEEE754 *acf = ctx->acf;
1428 int *shift_value = ctx->shift_value;
1429 int *last_shift_value = ctx->last_shift_value;
1430 int *last_acf_mantissa = ctx->last_acf_mantissa;
1431 int **raw_mantissa = ctx->raw_mantissa;
1432 int *nbits = ctx->nbits;
1433 unsigned char *larray = ctx->larray;
1434 int frame_length = ctx->cur_frame_length;
1435 SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
1436 unsigned int partA_flag;
1437 unsigned int highest_byte;
1438 unsigned int shift_amp;
1439 uint32_t tmp_32;
1440 int use_acf;
1441 int nchars;
1442 int i;
1443 int c;
1444 long k;
1445 long nbits_aligned;
1446 unsigned long acc;
1447 unsigned long j;
1448 uint32_t sign;
1449 uint32_t e;
1450 uint32_t mantissa;
1451
1452 skip_bits_long(gb, 32); //num_bytes_diff_float
1453 use_acf = get_bits1(gb);
1454
1455 if (ra_frame) {
1456 memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
1457 memset(last_shift_value, 0, avctx->channels * sizeof(*last_shift_value) );
1458 ff_mlz_flush_dict(ctx->mlz);
1459 }
1460
1461 for (c = 0; c < avctx->channels; ++c) {
1462 if (use_acf) {
1463 //acf_flag
1464 if (get_bits1(gb)) {
1465 tmp_32 = get_bits(gb, 23);
1466 last_acf_mantissa[c] = tmp_32;
1467 } else {
1468 tmp_32 = last_acf_mantissa[c];
1469 }
1470 acf[c] = av_bits2sf_ieee754(tmp_32);
1471 } else {
1472 acf[c] = FLOAT_1;
1473 }
1474
1475 highest_byte = get_bits(gb, 2);
1476 partA_flag = get_bits1(gb);
1477 shift_amp = get_bits1(gb);
1478
1479 if (shift_amp) {
1480 shift_value[c] = get_bits(gb, 8);
1481 last_shift_value[c] = shift_value[c];
1482 } else {
1483 shift_value[c] = last_shift_value[c];
1484 }
1485
1486 if (partA_flag) {
1487 if (!get_bits1(gb)) { //uncompressed
1488 for (i = 0; i < frame_length; ++i) {
1489 if (ctx->raw_samples[c][i] == 0) {
1490 ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
1491 }
1492 }
1493 } else { //compressed
1494 nchars = 0;
1495 for (i = 0; i < frame_length; ++i) {
1496 if (ctx->raw_samples[c][i] == 0) {
1497 nchars += 4;
1498 }
1499 }
1500
1501 tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1502 if(tmp_32 != nchars) {
1503 av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1504 return AVERROR_INVALIDDATA;
1505 }
1506
1507 for (i = 0; i < frame_length; ++i) {
1508 ctx->raw_mantissa[c][i] = AV_RB32(larray);
1509 }
1510 }
1511 }
1512
1513 //decode part B
1514 if (highest_byte) {
1515 for (i = 0; i < frame_length; ++i) {
1516 if (ctx->raw_samples[c][i] != 0) {
1517 //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
1518 if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1519 nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
1520 } else {
1521 nbits[i] = 23;
1522 }
1523 nbits[i] = FFMIN(nbits[i], highest_byte*8);
1524 }
1525 }
1526
1527 if (!get_bits1(gb)) { //uncompressed
1528 for (i = 0; i < frame_length; ++i) {
1529 if (ctx->raw_samples[c][i] != 0) {
1530 raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
1531 }
1532 }
1533 } else { //compressed
1534 nchars = 0;
1535 for (i = 0; i < frame_length; ++i) {
1536 if (ctx->raw_samples[c][i]) {
1537 nchars += (int) nbits[i] / 8;
1538 if (nbits[i] & 7) {
1539 ++nchars;
1540 }
1541 }
1542 }
1543
1544 tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1545 if(tmp_32 != nchars) {
1546 av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1547 return AVERROR_INVALIDDATA;
1548 }
1549
1550 j = 0;
1551 for (i = 0; i < frame_length; ++i) {
1552 if (ctx->raw_samples[c][i]) {
1553 if (nbits[i] & 7) {
1554 nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
1555 } else {
1556 nbits_aligned = nbits[i];
1557 }
1558 acc = 0;
1559 for (k = 0; k < nbits_aligned/8; ++k) {
1560 acc = (acc << 8) + larray[j++];
1561 }
1562 acc >>= (nbits_aligned - nbits[i]);
1563 raw_mantissa[c][i] = acc;
1564 }
1565 }
1566 }
1567 }
1568
1569 for (i = 0; i < frame_length; ++i) {
1570 SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
1571 pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
1572
1573 if (ctx->raw_samples[c][i] != 0) {
1574 if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1575 pcm_sf = multiply(acf[c], pcm_sf);
1576 }
1577
1578 sign = pcm_sf.sign;
1579 e = pcm_sf.exp;
1580 mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
1581
1582 while(mantissa >= 0x1000000) {
1583 e++;
1584 mantissa >>= 1;
1585 }
1586
1587 if (mantissa) e += (shift_value[c] - 127);
1588 mantissa &= 0x007fffffUL;
1589
1590 tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
1591 ctx->raw_samples[c][i] = tmp_32;
1592 } else {
1593 ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
1594 }
1595 }
1596 align_get_bits(gb);
1597 }
1598 return 0;
1599}
1600
1601
1602/** Read the frame data.
1603 */
1604static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1605{
1606 ALSSpecificConfig *sconf = &ctx->sconf;
1607 AVCodecContext *avctx = ctx->avctx;
1608 GetBitContext *gb = &ctx->gb;
1609 unsigned int div_blocks[32]; ///< block sizes.
1610 unsigned int c;
1611 unsigned int js_blocks[2];
1612 uint32_t bs_info = 0;
1613 int ret;
1614
1615 // skip the size of the ra unit if present in the frame
1616 if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1617 skip_bits_long(gb, 32);
1618
1619 if (sconf->mc_coding && sconf->joint_stereo) {
1620 ctx->js_switch = get_bits1(gb);
1621 align_get_bits(gb);
1622 }
1623
1624 if (!sconf->mc_coding || ctx->js_switch) {
1625 int independent_bs = !sconf->joint_stereo;
1626
1627 for (c = 0; c < avctx->channels; c++) {
1628 js_blocks[0] = 0;
1629 js_blocks[1] = 0;
1630
1631 get_block_sizes(ctx, div_blocks, &bs_info);
1632
1633 // if joint_stereo and block_switching is set, independent decoding
1634 // is signaled via the first bit of bs_info
1635 if (sconf->joint_stereo && sconf->block_switching)
1636 if (bs_info >> 31)
1637 independent_bs = 2;
1638
1639 // if this is the last channel, it has to be decoded independently
1640 if (c == avctx->channels - 1)
1641 independent_bs = 1;
1642
1643 if (independent_bs) {
1644 ret = decode_blocks_ind(ctx, ra_frame, c,
1645 div_blocks, js_blocks);
1646 if (ret < 0)
1647 return ret;
1648 independent_bs--;
1649 } else {
1650 ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1651 if (ret < 0)
1652 return ret;
1653
1654 c++;
1655 }
1656
1657 // store carryover raw samples
1658 memmove(ctx->raw_samples[c] - sconf->max_order,
1659 ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1660 sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1661 }
1662 } else { // multi-channel coding
1663 ALSBlockData bd = { 0 };
1664 int b, ret;
1665 int *reverted_channels = ctx->reverted_channels;
1666 unsigned int offset = 0;
1667
1668 for (c = 0; c < avctx->channels; c++)
1669 if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1670 av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1671 return AVERROR_INVALIDDATA;
1672 }
1673
1674 memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1675
1676 bd.ra_block = ra_frame;
1677 bd.prev_raw_samples = ctx->prev_raw_samples;
1678
1679 get_block_sizes(ctx, div_blocks, &bs_info);
1680
1681 for (b = 0; b < ctx->num_blocks; b++) {
1682 bd.block_length = div_blocks[b];
1683 if (bd.block_length <= 0) {
1684 av_log(ctx->avctx, AV_LOG_WARNING,
1685 "Invalid block length %u in channel data!\n",
1686 bd.block_length);
1687 continue;
1688 }
1689
1690 for (c = 0; c < avctx->channels; c++) {
1691 bd.const_block = ctx->const_block + c;
1692 bd.shift_lsbs = ctx->shift_lsbs + c;
1693 bd.opt_order = ctx->opt_order + c;
1694 bd.store_prev_samples = ctx->store_prev_samples + c;
1695 bd.use_ltp = ctx->use_ltp + c;
1696 bd.ltp_lag = ctx->ltp_lag + c;
1697 bd.ltp_gain = ctx->ltp_gain[c];
1698 bd.lpc_cof = ctx->lpc_cof[c];
1699 bd.quant_cof = ctx->quant_cof[c];
1700 bd.raw_samples = ctx->raw_samples[c] + offset;
1701 bd.raw_other = NULL;
1702
1703 if ((ret = read_block(ctx, &bd)) < 0)
1704 return ret;
1705 if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1706 return ret;
1707 }
1708
1709 for (c = 0; c < avctx->channels; c++) {
1710 ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1711 reverted_channels, offset, c);
1712 if (ret < 0)
1713 return ret;
1714 }
1715 for (c = 0; c < avctx->channels; c++) {
1716 bd.const_block = ctx->const_block + c;
1717 bd.shift_lsbs = ctx->shift_lsbs + c;
1718 bd.opt_order = ctx->opt_order + c;
1719 bd.store_prev_samples = ctx->store_prev_samples + c;
1720 bd.use_ltp = ctx->use_ltp + c;
1721 bd.ltp_lag = ctx->ltp_lag + c;
1722 bd.ltp_gain = ctx->ltp_gain[c];
1723 bd.lpc_cof = ctx->lpc_cof[c];
1724 bd.quant_cof = ctx->quant_cof[c];
1725 bd.raw_samples = ctx->raw_samples[c] + offset;
1726
1727 if ((ret = decode_block(ctx, &bd)) < 0)
1728 return ret;
1729 }
1730
1731 memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1732 offset += div_blocks[b];
1733 bd.ra_block = 0;
1734 }
1735
1736 // store carryover raw samples
1737 for (c = 0; c < avctx->channels; c++)
1738 memmove(ctx->raw_samples[c] - sconf->max_order,
1739 ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1740 sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1741 }
1742
1743 if (sconf->floating) {
1744 read_diff_float_data(ctx, ra_frame);
1745 }
1746
1747 if (get_bits_left(gb) < 0) {
1748 av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1749 return AVERROR_INVALIDDATA;
1750 }
1751
1752 return 0;
1753}
1754
1755
1756/** Decode an ALS frame.
1757 */
1758static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1759 AVPacket *avpkt)
1760{
1761 ALSDecContext *ctx = avctx->priv_data;
1762 AVFrame *frame = data;
1763 ALSSpecificConfig *sconf = &ctx->sconf;
1764 const uint8_t *buffer = avpkt->data;
1765 int buffer_size = avpkt->size;
1766 int invalid_frame, ret;
1767 unsigned int c, sample, ra_frame, bytes_read, shift;
1768
1769 if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1770 return ret;
1771
1772 // In the case that the distance between random access frames is set to zero
1773 // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1774 // For the first frame, if prediction is used, all samples used from the
1775 // previous frame are assumed to be zero.
1776 ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1777
1778 // the last frame to decode might have a different length
1779 if (sconf->samples != 0xFFFFFFFF)
1780 ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1781 sconf->frame_length);
1782 else
1783 ctx->cur_frame_length = sconf->frame_length;
1784
1785 // decode the frame data
1786 if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1787 av_log(ctx->avctx, AV_LOG_WARNING,
1788 "Reading frame data failed. Skipping RA unit.\n");
1789
1790 ctx->frame_id++;
1791
1792 /* get output buffer */
1793 frame->nb_samples = ctx->cur_frame_length;
1794 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1795 return ret;
1796
1797 // transform decoded frame into output format
1798 #define INTERLEAVE_OUTPUT(bps) \
1799 { \
1800 int##bps##_t *dest = (int##bps##_t*)frame->data[0]; \
1801 shift = bps - ctx->avctx->bits_per_raw_sample; \
1802 if (!ctx->cs_switch) { \
1803 for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1804 for (c = 0; c < avctx->channels; c++) \
1805 *dest++ = ctx->raw_samples[c][sample] << shift; \
1806 } else { \
1807 for (sample = 0; sample < ctx->cur_frame_length; sample++) \
1808 for (c = 0; c < avctx->channels; c++) \
1809 *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
1810 } \
1811 }
1812
1813 if (ctx->avctx->bits_per_raw_sample <= 16) {
1814 INTERLEAVE_OUTPUT(16)
1815 } else {
1816 INTERLEAVE_OUTPUT(32)
1817 }
1818
1819 // update CRC
1820 if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1821 int swap = HAVE_BIGENDIAN != sconf->msb_first;
1822
1823 if (ctx->avctx->bits_per_raw_sample == 24) {
1824 int32_t *src = (int32_t *)frame->data[0];
1825
1826 for (sample = 0;
1827 sample < ctx->cur_frame_length * avctx->channels;
1828 sample++) {
1829 int32_t v;
1830
1831 if (swap)
1832 v = av_bswap32(src[sample]);
1833 else
1834 v = src[sample];
1835 if (!HAVE_BIGENDIAN)
1836 v >>= 8;
1837
1838 ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1839 }
1840 } else {
1841 uint8_t *crc_source;
1842
1843 if (swap) {
1844 if (ctx->avctx->bits_per_raw_sample <= 16) {
1845 int16_t *src = (int16_t*) frame->data[0];
1846 int16_t *dest = (int16_t*) ctx->crc_buffer;
1847 for (sample = 0;
1848 sample < ctx->cur_frame_length * avctx->channels;
1849 sample++)
1850 *dest++ = av_bswap16(src[sample]);
1851 } else {
1852 ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1853 (uint32_t *) frame->data[0],
1854 ctx->cur_frame_length * avctx->channels);
1855 }
1856 crc_source = ctx->crc_buffer;
1857 } else {
1858 crc_source = frame->data[0];
1859 }
1860
1861 ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1862 ctx->cur_frame_length * avctx->channels *
1863 av_get_bytes_per_sample(avctx->sample_fmt));
1864 }
1865
1866
1867 // check CRC sums if this is the last frame
1868 if (ctx->cur_frame_length != sconf->frame_length &&
1869 ctx->crc_org != ctx->crc) {
1870 av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1871 if (avctx->err_recognition & AV_EF_EXPLODE)
1872 return AVERROR_INVALIDDATA;
1873 }
1874 }
1875
1876 *got_frame_ptr = 1;
1877
1878 bytes_read = invalid_frame ? buffer_size :
1879 (get_bits_count(&ctx->gb) + 7) >> 3;
1880
1881 return bytes_read;
1882}
1883
1884
1885/** Uninitialize the ALS decoder.
1886 */
1887static av_cold int decode_end(AVCodecContext *avctx)
1888{
1889 ALSDecContext *ctx = avctx->priv_data;
1890 int i;
1891
1892 av_freep(&ctx->sconf.chan_pos);
1893
1894 ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1895
1896 av_freep(&ctx->const_block);
1897 av_freep(&ctx->shift_lsbs);
1898 av_freep(&ctx->opt_order);
1899 av_freep(&ctx->store_prev_samples);
1900 av_freep(&ctx->use_ltp);
1901 av_freep(&ctx->ltp_lag);
1902 av_freep(&ctx->ltp_gain);
1903 av_freep(&ctx->ltp_gain_buffer);
1904 av_freep(&ctx->quant_cof);
1905 av_freep(&ctx->lpc_cof);
1906 av_freep(&ctx->quant_cof_buffer);
1907 av_freep(&ctx->lpc_cof_buffer);
1908 av_freep(&ctx->lpc_cof_reversed_buffer);
1909 av_freep(&ctx->prev_raw_samples);
1910 av_freep(&ctx->raw_samples);
1911 av_freep(&ctx->raw_buffer);
1912 av_freep(&ctx->chan_data);
1913 av_freep(&ctx->chan_data_buffer);
1914 av_freep(&ctx->reverted_channels);
1915 av_freep(&ctx->crc_buffer);
1916 if (ctx->mlz) {
1917 av_freep(&ctx->mlz->dict);
1918 av_freep(&ctx->mlz);
1919 }
1920 av_freep(&ctx->acf);
1921 av_freep(&ctx->last_acf_mantissa);
1922 av_freep(&ctx->shift_value);
1923 av_freep(&ctx->last_shift_value);
1924 if (ctx->raw_mantissa) {
1925 for (i = 0; i < avctx->channels; i++) {
1926 av_freep(&ctx->raw_mantissa[i]);
1927 }
1928 av_freep(&ctx->raw_mantissa);
1929 }
1930 av_freep(&ctx->larray);
1931 av_freep(&ctx->nbits);
1932
1933 return 0;
1934}
1935
1936
1937/** Initialize the ALS decoder.
1938 */
1939static av_cold int decode_init(AVCodecContext *avctx)
1940{
1941 unsigned int c;
1942 unsigned int channel_size;
1943 int num_buffers, ret;
1944 ALSDecContext *ctx = avctx->priv_data;
1945 ALSSpecificConfig *sconf = &ctx->sconf;
1946 ctx->avctx = avctx;
1947
1948 if (!avctx->extradata) {
1949 av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1950 return AVERROR_INVALIDDATA;
1951 }
1952
1953 if ((ret = read_specific_config(ctx)) < 0) {
1954 av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1955 goto fail;
1956 }
1957
1958 if ((ret = check_specific_config(ctx)) < 0) {
1959 goto fail;
1960 }
1961
1962 if (sconf->bgmc) {
1963 ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1964 if (ret < 0)
1965 goto fail;
1966 }
1967 if (sconf->floating) {
1968 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1969 avctx->bits_per_raw_sample = 32;
1970 } else {
1971 avctx->sample_fmt = sconf->resolution > 1
1972 ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
1973 avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
1974 if (avctx->bits_per_raw_sample > 32) {
1975 av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
1976 avctx->bits_per_raw_sample);
1977 ret = AVERROR_INVALIDDATA;
1978 goto fail;
1979 }
1980 }
1981
1982 // set maximum Rice parameter for progressive decoding based on resolution
1983 // This is not specified in 14496-3 but actually done by the reference
1984 // codec RM22 revision 2.
1985 ctx->s_max = sconf->resolution > 1 ? 31 : 15;
1986
1987 // set lag value for long-term prediction
1988 ctx->ltp_lag_length = 8 + (avctx->sample_rate >= 96000) +
1989 (avctx->sample_rate >= 192000);
1990
1991 // allocate quantized parcor coefficient buffer
1992 num_buffers = sconf->mc_coding ? avctx->channels : 1;
1993
1994 ctx->quant_cof = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
1995 ctx->lpc_cof = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
1996 ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
1997 sizeof(*ctx->quant_cof_buffer));
1998 ctx->lpc_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
1999 sizeof(*ctx->lpc_cof_buffer));
2000 ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
2001 sizeof(*ctx->lpc_cof_buffer));
2002
2003 if (!ctx->quant_cof || !ctx->lpc_cof ||
2004 !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer ||
2005 !ctx->lpc_cof_reversed_buffer) {
2006 av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2007 ret = AVERROR(ENOMEM);
2008 goto fail;
2009 }
2010
2011 // assign quantized parcor coefficient buffers
2012 for (c = 0; c < num_buffers; c++) {
2013 ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
2014 ctx->lpc_cof[c] = ctx->lpc_cof_buffer + c * sconf->max_order;
2015 }
2016
2017 // allocate and assign lag and gain data buffer for ltp mode
2018 ctx->const_block = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
2019 ctx->shift_lsbs = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
2020 ctx->opt_order = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
2021 ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
2022 ctx->use_ltp = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
2023 ctx->ltp_lag = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
2024 ctx->ltp_gain = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
2025 ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
2026
2027 if (!ctx->const_block || !ctx->shift_lsbs ||
2028 !ctx->opt_order || !ctx->store_prev_samples ||
2029 !ctx->use_ltp || !ctx->ltp_lag ||
2030 !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
2031 av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2032 ret = AVERROR(ENOMEM);
2033 goto fail;
2034 }
2035
2036 for (c = 0; c < num_buffers; c++)
2037 ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
2038
2039 // allocate and assign channel data buffer for mcc mode
2040 if (sconf->mc_coding) {
2041 ctx->chan_data_buffer = av_mallocz_array(num_buffers * num_buffers,
2042 sizeof(*ctx->chan_data_buffer));
2043 ctx->chan_data = av_mallocz_array(num_buffers,
2044 sizeof(*ctx->chan_data));
2045 ctx->reverted_channels = av_malloc_array(num_buffers,
2046 sizeof(*ctx->reverted_channels));
2047
2048 if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
2049 av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2050 ret = AVERROR(ENOMEM);
2051 goto fail;
2052 }
2053
2054 for (c = 0; c < num_buffers; c++)
2055 ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
2056 } else {
2057 ctx->chan_data = NULL;
2058 ctx->chan_data_buffer = NULL;
2059 ctx->reverted_channels = NULL;
2060 }
2061
2062 channel_size = sconf->frame_length + sconf->max_order;
2063
2064 ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
2065 ctx->raw_buffer = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
2066 ctx->raw_samples = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
2067
2068 if (sconf->floating) {
2069 ctx->acf = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
2070 ctx->shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
2071 ctx->last_shift_value = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
2072 ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
2073 ctx->raw_mantissa = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
2074
2075 ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
2076 ctx->nbits = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
2077 ctx->mlz = av_mallocz(sizeof(*ctx->mlz));
2078
2079 if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
2080 || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
2081 av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2082 ret = AVERROR(ENOMEM);
2083 goto fail;
2084 }
2085
2086 ff_mlz_init_dict(avctx, ctx->mlz);
2087 ff_mlz_flush_dict(ctx->mlz);
2088
2089 for (c = 0; c < avctx->channels; ++c) {
2090 ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
2091 }
2092 }
2093
2094 // allocate previous raw sample buffer
2095 if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
2096 av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2097 ret = AVERROR(ENOMEM);
2098 goto fail;
2099 }
2100
2101 // assign raw samples buffers
2102 ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
2103 for (c = 1; c < avctx->channels; c++)
2104 ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
2105
2106 // allocate crc buffer
2107 if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
2108 (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
2109 ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
2110 avctx->channels *
2111 av_get_bytes_per_sample(avctx->sample_fmt),
2112 sizeof(*ctx->crc_buffer));
2113 if (!ctx->crc_buffer) {
2114 av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2115 ret = AVERROR(ENOMEM);
2116 goto fail;
2117 }
2118 }
2119
2120 ff_bswapdsp_init(&ctx->bdsp);
2121
2122 return 0;
2123
2124fail:
2125 decode_end(avctx);
2126 return ret;
2127}
2128
2129
2130/** Flush (reset) the frame ID after seeking.
2131 */
2132static av_cold void flush(AVCodecContext *avctx)
2133{
2134 ALSDecContext *ctx = avctx->priv_data;
2135
2136 ctx->frame_id = 0;
2137}
2138
2139
2140AVCodec ff_als_decoder = {
2141 .name = "als",
2142 .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
2143 .type = AVMEDIA_TYPE_AUDIO,
2144 .id = AV_CODEC_ID_MP4ALS,
2145 .priv_data_size = sizeof(ALSDecContext),
2146 .init = decode_init,
2147 .close = decode_end,
2148 .decode = decode_frame,
2149 .flush = flush,
2150 .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
2151};
2152