summaryrefslogtreecommitdiff
path: root/libavcodec/diracdec.c (plain)
blob: 202ae94922785f3ab4004204983391068e2040d1
1/*
2 * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
3 * Copyright (C) 2009 David Conrad
4 * Copyright (C) 2011 Jordi Ortiz
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file
25 * Dirac Decoder
26 * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
27 */
28
29#include "libavutil/thread.h"
30#include "avcodec.h"
31#include "get_bits.h"
32#include "bytestream.h"
33#include "internal.h"
34#include "golomb.h"
35#include "dirac_arith.h"
36#include "dirac_vlc.h"
37#include "mpeg12data.h"
38#include "libavcodec/mpegvideo.h"
39#include "mpegvideoencdsp.h"
40#include "dirac_dwt.h"
41#include "dirac.h"
42#include "diractab.h"
43#include "diracdsp.h"
44#include "videodsp.h"
45
46/**
47 * The spec limits this to 3 for frame coding, but in practice can be as high as 6
48 */
49#define MAX_REFERENCE_FRAMES 8
50#define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
51#define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
52#define MAX_QUANT 255 /* max quant for VC-2 */
53#define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
54
55/**
56 * DiracBlock->ref flags, if set then the block does MC from the given ref
57 */
58#define DIRAC_REF_MASK_REF1 1
59#define DIRAC_REF_MASK_REF2 2
60#define DIRAC_REF_MASK_GLOBAL 4
61
62/**
63 * Value of Picture.reference when Picture is not a reference picture, but
64 * is held for delayed output.
65 */
66#define DELAYED_PIC_REF 4
67
68#define CALC_PADDING(size, depth) \
69 (((size + (1 << depth) - 1) >> depth) << depth)
70
71#define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
72
73typedef struct {
74 AVFrame *avframe;
75 int interpolated[3]; /* 1 if hpel[] is valid */
76 uint8_t *hpel[3][4];
77 uint8_t *hpel_base[3][4];
78 int reference;
79} DiracFrame;
80
81typedef struct {
82 union {
83 int16_t mv[2][2];
84 int16_t dc[3];
85 } u; /* anonymous unions aren't in C99 :( */
86 uint8_t ref;
87} DiracBlock;
88
89typedef struct SubBand {
90 int level;
91 int orientation;
92 int stride; /* in bytes */
93 int width;
94 int height;
95 int pshift;
96 int quant;
97 uint8_t *ibuf;
98 struct SubBand *parent;
99
100 /* for low delay */
101 unsigned length;
102 const uint8_t *coeff_data;
103} SubBand;
104
105typedef struct Plane {
106 DWTPlane idwt;
107
108 int width;
109 int height;
110 ptrdiff_t stride;
111
112 /* block length */
113 uint8_t xblen;
114 uint8_t yblen;
115 /* block separation (block n+1 starts after this many pixels in block n) */
116 uint8_t xbsep;
117 uint8_t ybsep;
118 /* amount of overspill on each edge (half of the overlap between blocks) */
119 uint8_t xoffset;
120 uint8_t yoffset;
121
122 SubBand band[MAX_DWT_LEVELS][4];
123} Plane;
124
125/* Used by Low Delay and High Quality profiles */
126typedef struct DiracSlice {
127 GetBitContext gb;
128 int slice_x;
129 int slice_y;
130 int bytes;
131} DiracSlice;
132
133typedef struct DiracContext {
134 AVCodecContext *avctx;
135 MpegvideoEncDSPContext mpvencdsp;
136 VideoDSPContext vdsp;
137 DiracDSPContext diracdsp;
138 DiracGolombLUT *reader_ctx;
139 DiracVersionInfo version;
140 GetBitContext gb;
141 AVDiracSeqHeader seq;
142 int seen_sequence_header;
143 int frame_number; /* number of the next frame to display */
144 Plane plane[3];
145 int chroma_x_shift;
146 int chroma_y_shift;
147
148 int bit_depth; /* bit depth */
149 int pshift; /* pixel shift = bit_depth > 8 */
150
151 int zero_res; /* zero residue flag */
152 int is_arith; /* whether coeffs use arith or golomb coding */
153 int core_syntax; /* use core syntax only */
154 int low_delay; /* use the low delay syntax */
155 int hq_picture; /* high quality picture, enables low_delay */
156 int ld_picture; /* use low delay picture, turns on low_delay */
157 int dc_prediction; /* has dc prediction */
158 int globalmc_flag; /* use global motion compensation */
159 int num_refs; /* number of reference pictures */
160
161 /* wavelet decoding */
162 unsigned wavelet_depth; /* depth of the IDWT */
163 unsigned wavelet_idx;
164
165 /**
166 * schroedinger older than 1.0.8 doesn't store
167 * quant delta if only one codebook exists in a band
168 */
169 unsigned old_delta_quant;
170 unsigned codeblock_mode;
171
172 unsigned num_x; /* number of horizontal slices */
173 unsigned num_y; /* number of vertical slices */
174
175 uint8_t *thread_buf; /* Per-thread buffer for coefficient storage */
176 int threads_num_buf; /* Current # of buffers allocated */
177 int thread_buf_size; /* Each thread has a buffer this size */
178
179 DiracSlice *slice_params_buf;
180 int slice_params_num_buf;
181
182 struct {
183 unsigned width;
184 unsigned height;
185 } codeblock[MAX_DWT_LEVELS+1];
186
187 struct {
188 AVRational bytes; /* average bytes per slice */
189 uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
190 } lowdelay;
191
192 struct {
193 unsigned prefix_bytes;
194 uint64_t size_scaler;
195 } highquality;
196
197 struct {
198 int pan_tilt[2]; /* pan/tilt vector */
199 int zrs[2][2]; /* zoom/rotate/shear matrix */
200 int perspective[2]; /* perspective vector */
201 unsigned zrs_exp;
202 unsigned perspective_exp;
203 } globalmc[2];
204
205 /* motion compensation */
206 uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
207 int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
208 unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
209
210 int blwidth; /* number of blocks (horizontally) */
211 int blheight; /* number of blocks (vertically) */
212 int sbwidth; /* number of superblocks (horizontally) */
213 int sbheight; /* number of superblocks (vertically) */
214
215 uint8_t *sbsplit;
216 DiracBlock *blmotion;
217
218 uint8_t *edge_emu_buffer[4];
219 uint8_t *edge_emu_buffer_base;
220
221 uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
222 uint8_t *mcscratch;
223 int buffer_stride;
224
225 DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
226
227 void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
228 void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
229 void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
230 dirac_weight_func weight_func;
231 dirac_biweight_func biweight_func;
232
233 DiracFrame *current_picture;
234 DiracFrame *ref_pics[2];
235
236 DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
237 DiracFrame *delay_frames[MAX_DELAY+1];
238 DiracFrame all_frames[MAX_FRAMES];
239} DiracContext;
240
241enum dirac_subband {
242 subband_ll = 0,
243 subband_hl = 1,
244 subband_lh = 2,
245 subband_hh = 3,
246 subband_nb,
247};
248
249/* magic number division by 3 from schroedinger */
250static inline int divide3(int x)
251{
252 return ((x+1)*21845 + 10922) >> 16;
253}
254
255static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
256{
257 DiracFrame *remove_pic = NULL;
258 int i, remove_idx = -1;
259
260 for (i = 0; framelist[i]; i++)
261 if (framelist[i]->avframe->display_picture_number == picnum) {
262 remove_pic = framelist[i];
263 remove_idx = i;
264 }
265
266 if (remove_pic)
267 for (i = remove_idx; framelist[i]; i++)
268 framelist[i] = framelist[i+1];
269
270 return remove_pic;
271}
272
273static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
274{
275 int i;
276 for (i = 0; i < maxframes; i++)
277 if (!framelist[i]) {
278 framelist[i] = frame;
279 return 0;
280 }
281 return -1;
282}
283
284static int alloc_sequence_buffers(DiracContext *s)
285{
286 int sbwidth = DIVRNDUP(s->seq.width, 4);
287 int sbheight = DIVRNDUP(s->seq.height, 4);
288 int i, w, h, top_padding;
289
290 /* todo: think more about this / use or set Plane here */
291 for (i = 0; i < 3; i++) {
292 int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
293 int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
294 w = s->seq.width >> (i ? s->chroma_x_shift : 0);
295 h = s->seq.height >> (i ? s->chroma_y_shift : 0);
296
297 /* we allocate the max we support here since num decompositions can
298 * change from frame to frame. Stride is aligned to 16 for SIMD, and
299 * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
300 * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
301 * on each side */
302 top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
303 w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
304 h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
305
306 s->plane[i].idwt.buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift));
307 s->plane[i].idwt.tmp = av_malloc_array((w+16), 2 << s->pshift);
308 s->plane[i].idwt.buf = s->plane[i].idwt.buf_base + (top_padding*w)*(2 << s->pshift);
309 if (!s->plane[i].idwt.buf_base || !s->plane[i].idwt.tmp)
310 return AVERROR(ENOMEM);
311 }
312
313 /* fixme: allocate using real stride here */
314 s->sbsplit = av_malloc_array(sbwidth, sbheight);
315 s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
316
317 if (!s->sbsplit || !s->blmotion)
318 return AVERROR(ENOMEM);
319 return 0;
320}
321
322static int alloc_buffers(DiracContext *s, int stride)
323{
324 int w = s->seq.width;
325 int h = s->seq.height;
326
327 av_assert0(stride >= w);
328 stride += 64;
329
330 if (s->buffer_stride >= stride)
331 return 0;
332 s->buffer_stride = 0;
333
334 av_freep(&s->edge_emu_buffer_base);
335 memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
336 av_freep(&s->mctmp);
337 av_freep(&s->mcscratch);
338
339 s->edge_emu_buffer_base = av_malloc_array(stride, MAX_BLOCKSIZE);
340
341 s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
342 s->mcscratch = av_malloc_array(stride, MAX_BLOCKSIZE);
343
344 if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
345 return AVERROR(ENOMEM);
346
347 s->buffer_stride = stride;
348 return 0;
349}
350
351static void free_sequence_buffers(DiracContext *s)
352{
353 int i, j, k;
354
355 for (i = 0; i < MAX_FRAMES; i++) {
356 if (s->all_frames[i].avframe->data[0]) {
357 av_frame_unref(s->all_frames[i].avframe);
358 memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
359 }
360
361 for (j = 0; j < 3; j++)
362 for (k = 1; k < 4; k++)
363 av_freep(&s->all_frames[i].hpel_base[j][k]);
364 }
365
366 memset(s->ref_frames, 0, sizeof(s->ref_frames));
367 memset(s->delay_frames, 0, sizeof(s->delay_frames));
368
369 for (i = 0; i < 3; i++) {
370 av_freep(&s->plane[i].idwt.buf_base);
371 av_freep(&s->plane[i].idwt.tmp);
372 }
373
374 s->buffer_stride = 0;
375 av_freep(&s->sbsplit);
376 av_freep(&s->blmotion);
377 av_freep(&s->edge_emu_buffer_base);
378
379 av_freep(&s->mctmp);
380 av_freep(&s->mcscratch);
381}
382
383static AVOnce dirac_arith_init = AV_ONCE_INIT;
384
385static av_cold int dirac_decode_init(AVCodecContext *avctx)
386{
387 DiracContext *s = avctx->priv_data;
388 int i, ret;
389
390 s->avctx = avctx;
391 s->frame_number = -1;
392
393 s->thread_buf = NULL;
394 s->threads_num_buf = -1;
395 s->thread_buf_size = -1;
396
397 ff_dirac_golomb_reader_init(&s->reader_ctx);
398 ff_diracdsp_init(&s->diracdsp);
399 ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
400 ff_videodsp_init(&s->vdsp, 8);
401
402 for (i = 0; i < MAX_FRAMES; i++) {
403 s->all_frames[i].avframe = av_frame_alloc();
404 if (!s->all_frames[i].avframe) {
405 while (i > 0)
406 av_frame_free(&s->all_frames[--i].avframe);
407 return AVERROR(ENOMEM);
408 }
409 }
410 ret = ff_thread_once(&dirac_arith_init, ff_dirac_init_arith_tables);
411 if (ret != 0)
412 return AVERROR_UNKNOWN;
413
414 return 0;
415}
416
417static void dirac_decode_flush(AVCodecContext *avctx)
418{
419 DiracContext *s = avctx->priv_data;
420 free_sequence_buffers(s);
421 s->seen_sequence_header = 0;
422 s->frame_number = -1;
423}
424
425static av_cold int dirac_decode_end(AVCodecContext *avctx)
426{
427 DiracContext *s = avctx->priv_data;
428 int i;
429
430 ff_dirac_golomb_reader_end(&s->reader_ctx);
431
432 dirac_decode_flush(avctx);
433 for (i = 0; i < MAX_FRAMES; i++)
434 av_frame_free(&s->all_frames[i].avframe);
435
436 av_freep(&s->thread_buf);
437 av_freep(&s->slice_params_buf);
438
439 return 0;
440}
441
442static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
443{
444 int coeff = dirac_get_se_golomb(gb);
445 const int sign = FFSIGN(coeff);
446 if (coeff)
447 coeff = sign*((sign * coeff * qfactor + qoffset) >> 2);
448 return coeff;
449}
450
451#define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
452
453#define UNPACK_ARITH(n, type) \
454 static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
455 SubBand *b, type *buf, int x, int y) \
456 { \
457 int coeff, sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
458 const int mstride = -(b->stride >> (1+b->pshift)); \
459 if (b->parent) { \
460 const type *pbuf = (type *)b->parent->ibuf; \
461 const int stride = b->parent->stride >> (1+b->parent->pshift); \
462 pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
463 } \
464 if (b->orientation == subband_hl) \
465 sign_pred = buf[mstride]; \
466 if (x) { \
467 pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
468 if (b->orientation == subband_lh) \
469 sign_pred = buf[-1]; \
470 } else { \
471 pred_ctx += !buf[mstride]; \
472 } \
473 coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
474 if (coeff) { \
475 coeff = (coeff * qfactor + qoffset) >> 2; \
476 sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
477 coeff = (coeff ^ -sign) + sign; \
478 } \
479 *buf = coeff; \
480 } \
481
482UNPACK_ARITH(8, int16_t)
483UNPACK_ARITH(10, int32_t)
484
485/**
486 * Decode the coeffs in the rectangle defined by left, right, top, bottom
487 * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
488 */
489static inline void codeblock(DiracContext *s, SubBand *b,
490 GetBitContext *gb, DiracArith *c,
491 int left, int right, int top, int bottom,
492 int blockcnt_one, int is_arith)
493{
494 int x, y, zero_block;
495 int qoffset, qfactor;
496 uint8_t *buf;
497
498 /* check for any coded coefficients in this codeblock */
499 if (!blockcnt_one) {
500 if (is_arith)
501 zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
502 else
503 zero_block = get_bits1(gb);
504
505 if (zero_block)
506 return;
507 }
508
509 if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
510 int quant = b->quant;
511 if (is_arith)
512 quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
513 else
514 quant += dirac_get_se_golomb(gb);
515 if (quant < 0) {
516 av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
517 return;
518 }
519 b->quant = quant;
520 }
521
522 if (b->quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
523 av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", b->quant);
524 b->quant = 0;
525 return;
526 }
527
528 qfactor = ff_dirac_qscale_tab[b->quant];
529 /* TODO: context pointer? */
530 if (!s->num_refs)
531 qoffset = ff_dirac_qoffset_intra_tab[b->quant] + 2;
532 else
533 qoffset = ff_dirac_qoffset_inter_tab[b->quant] + 2;
534
535 buf = b->ibuf + top * b->stride;
536 if (is_arith) {
537 for (y = top; y < bottom; y++) {
538 for (x = left; x < right; x++) {
539 if (b->pshift) {
540 coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
541 } else {
542 coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
543 }
544 }
545 buf += b->stride;
546 }
547 } else {
548 for (y = top; y < bottom; y++) {
549 for (x = left; x < right; x++) {
550 int val = coeff_unpack_golomb(gb, qfactor, qoffset);
551 if (b->pshift) {
552 AV_WN32(&buf[4*x], val);
553 } else {
554 AV_WN16(&buf[2*x], val);
555 }
556 }
557 buf += b->stride;
558 }
559 }
560}
561
562/**
563 * Dirac Specification ->
564 * 13.3 intra_dc_prediction(band)
565 */
566#define INTRA_DC_PRED(n, type) \
567 static inline void intra_dc_prediction_##n(SubBand *b) \
568 { \
569 type *buf = (type*)b->ibuf; \
570 int x, y; \
571 \
572 for (x = 1; x < b->width; x++) \
573 buf[x] += buf[x-1]; \
574 buf += (b->stride >> (1+b->pshift)); \
575 \
576 for (y = 1; y < b->height; y++) { \
577 buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
578 \
579 for (x = 1; x < b->width; x++) { \
580 int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
581 buf[x] += divide3(pred); \
582 } \
583 buf += (b->stride >> (1+b->pshift)); \
584 } \
585 } \
586
587INTRA_DC_PRED(8, int16_t)
588INTRA_DC_PRED(10, int32_t)
589
590/**
591 * Dirac Specification ->
592 * 13.4.2 Non-skipped subbands. subband_coeffs()
593 */
594static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
595{
596 int cb_x, cb_y, left, right, top, bottom;
597 DiracArith c;
598 GetBitContext gb;
599 int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
600 int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
601 int blockcnt_one = (cb_width + cb_height) == 2;
602
603 if (!b->length)
604 return;
605
606 init_get_bits8(&gb, b->coeff_data, b->length);
607
608 if (is_arith)
609 ff_dirac_init_arith_decoder(&c, &gb, b->length);
610
611 top = 0;
612 for (cb_y = 0; cb_y < cb_height; cb_y++) {
613 bottom = (b->height * (cb_y+1LL)) / cb_height;
614 left = 0;
615 for (cb_x = 0; cb_x < cb_width; cb_x++) {
616 right = (b->width * (cb_x+1LL)) / cb_width;
617 codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
618 left = right;
619 }
620 top = bottom;
621 }
622
623 if (b->orientation == subband_ll && s->num_refs == 0) {
624 if (s->pshift) {
625 intra_dc_prediction_10(b);
626 } else {
627 intra_dc_prediction_8(b);
628 }
629 }
630}
631
632static int decode_subband_arith(AVCodecContext *avctx, void *b)
633{
634 DiracContext *s = avctx->priv_data;
635 decode_subband_internal(s, b, 1);
636 return 0;
637}
638
639static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
640{
641 DiracContext *s = avctx->priv_data;
642 SubBand **b = arg;
643 decode_subband_internal(s, *b, 0);
644 return 0;
645}
646
647/**
648 * Dirac Specification ->
649 * [DIRAC_STD] 13.4.1 core_transform_data()
650 */
651static void decode_component(DiracContext *s, int comp)
652{
653 AVCodecContext *avctx = s->avctx;
654 SubBand *bands[3*MAX_DWT_LEVELS+1];
655 enum dirac_subband orientation;
656 int level, num_bands = 0;
657
658 /* Unpack all subbands at all levels. */
659 for (level = 0; level < s->wavelet_depth; level++) {
660 for (orientation = !!level; orientation < 4; orientation++) {
661 SubBand *b = &s->plane[comp].band[level][orientation];
662 bands[num_bands++] = b;
663
664 align_get_bits(&s->gb);
665 /* [DIRAC_STD] 13.4.2 subband() */
666 b->length = get_interleaved_ue_golomb(&s->gb);
667 if (b->length) {
668 b->quant = get_interleaved_ue_golomb(&s->gb);
669 align_get_bits(&s->gb);
670 b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
671 b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
672 skip_bits_long(&s->gb, b->length*8);
673 }
674 }
675 /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
676 if (s->is_arith)
677 avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
678 NULL, 4-!!level, sizeof(SubBand));
679 }
680 /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
681 if (!s->is_arith)
682 avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
683}
684
685#define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
686 type *buf = (type *)buf1; \
687 buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
688 if (get_bits_count(gb) >= ebits) \
689 return; \
690 if (buf2) { \
691 buf = (type *)buf2; \
692 buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
693 if (get_bits_count(gb) >= ebits) \
694 return; \
695 } \
696
697static void decode_subband(DiracContext *s, GetBitContext *gb, int quant,
698 int slice_x, int slice_y, int bits_end,
699 SubBand *b1, SubBand *b2)
700{
701 int left = b1->width * slice_x / s->num_x;
702 int right = b1->width *(slice_x+1) / s->num_x;
703 int top = b1->height * slice_y / s->num_y;
704 int bottom = b1->height *(slice_y+1) / s->num_y;
705
706 int qfactor, qoffset;
707
708 uint8_t *buf1 = b1->ibuf + top * b1->stride;
709 uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
710 int x, y;
711
712 if (quant > (DIRAC_MAX_QUANT_INDEX - 1)) {
713 av_log(s->avctx, AV_LOG_ERROR, "Unsupported quant %d\n", quant);
714 return;
715 }
716 qfactor = ff_dirac_qscale_tab[quant];
717 qoffset = ff_dirac_qoffset_intra_tab[quant] + 2;
718 /* we have to constantly check for overread since the spec explicitly
719 requires this, with the meaning that all remaining coeffs are set to 0 */
720 if (get_bits_count(gb) >= bits_end)
721 return;
722
723 if (s->pshift) {
724 for (y = top; y < bottom; y++) {
725 for (x = left; x < right; x++) {
726 PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
727 }
728 buf1 += b1->stride;
729 if (buf2)
730 buf2 += b2->stride;
731 }
732 }
733 else {
734 for (y = top; y < bottom; y++) {
735 for (x = left; x < right; x++) {
736 PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
737 }
738 buf1 += b1->stride;
739 if (buf2)
740 buf2 += b2->stride;
741 }
742 }
743}
744
745/**
746 * Dirac Specification ->
747 * 13.5.2 Slices. slice(sx,sy)
748 */
749static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
750{
751 DiracContext *s = avctx->priv_data;
752 DiracSlice *slice = arg;
753 GetBitContext *gb = &slice->gb;
754 enum dirac_subband orientation;
755 int level, quant, chroma_bits, chroma_end;
756
757 int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
758 int length_bits = av_log2(8 * slice->bytes)+1;
759 int luma_bits = get_bits_long(gb, length_bits);
760 int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
761
762 /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
763 for (level = 0; level < s->wavelet_depth; level++)
764 for (orientation = !!level; orientation < 4; orientation++) {
765 quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
766 decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
767 &s->plane[0].band[level][orientation], NULL);
768 }
769
770 /* consume any unused bits from luma */
771 skip_bits_long(gb, get_bits_count(gb) - luma_end);
772
773 chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
774 chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
775 /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
776 for (level = 0; level < s->wavelet_depth; level++)
777 for (orientation = !!level; orientation < 4; orientation++) {
778 quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
779 decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
780 &s->plane[1].band[level][orientation],
781 &s->plane[2].band[level][orientation]);
782 }
783
784 return 0;
785}
786
787typedef struct SliceCoeffs {
788 int left;
789 int top;
790 int tot_h;
791 int tot_v;
792 int tot;
793} SliceCoeffs;
794
795static int subband_coeffs(DiracContext *s, int x, int y, int p,
796 SliceCoeffs c[MAX_DWT_LEVELS])
797{
798 int level, coef = 0;
799 for (level = 0; level < s->wavelet_depth; level++) {
800 SliceCoeffs *o = &c[level];
801 SubBand *b = &s->plane[p].band[level][3]; /* orientation doens't matter */
802 o->top = b->height * y / s->num_y;
803 o->left = b->width * x / s->num_x;
804 o->tot_h = ((b->width * (x + 1)) / s->num_x) - o->left;
805 o->tot_v = ((b->height * (y + 1)) / s->num_y) - o->top;
806 o->tot = o->tot_h*o->tot_v;
807 coef += o->tot * (4 - !!level);
808 }
809 return coef;
810}
811
812/**
813 * VC-2 Specification ->
814 * 13.5.3 hq_slice(sx,sy)
815 */
816static int decode_hq_slice(DiracContext *s, DiracSlice *slice, uint8_t *tmp_buf)
817{
818 int i, level, orientation, quant_idx;
819 int qfactor[MAX_DWT_LEVELS][4], qoffset[MAX_DWT_LEVELS][4];
820 GetBitContext *gb = &slice->gb;
821 SliceCoeffs coeffs_num[MAX_DWT_LEVELS];
822
823 skip_bits_long(gb, 8*s->highquality.prefix_bytes);
824 quant_idx = get_bits(gb, 8);
825
826 if (quant_idx > DIRAC_MAX_QUANT_INDEX) {
827 av_log(s->avctx, AV_LOG_ERROR, "Invalid quantization index - %i\n", quant_idx);
828 return AVERROR_INVALIDDATA;
829 }
830
831 /* Slice quantization (slice_quantizers() in the specs) */
832 for (level = 0; level < s->wavelet_depth; level++) {
833 for (orientation = !!level; orientation < 4; orientation++) {
834 const int quant = FFMAX(quant_idx - s->lowdelay.quant[level][orientation], 0);
835 qfactor[level][orientation] = ff_dirac_qscale_tab[quant];
836 qoffset[level][orientation] = ff_dirac_qoffset_intra_tab[quant] + 2;
837 }
838 }
839
840 /* Luma + 2 Chroma planes */
841 for (i = 0; i < 3; i++) {
842 int coef_num, coef_par, off = 0;
843 int64_t length = s->highquality.size_scaler*get_bits(gb, 8);
844 int64_t bits_end = get_bits_count(gb) + 8*length;
845 const uint8_t *addr = align_get_bits(gb);
846
847 if (length*8 > get_bits_left(gb)) {
848 av_log(s->avctx, AV_LOG_ERROR, "end too far away\n");
849 return AVERROR_INVALIDDATA;
850 }
851
852 coef_num = subband_coeffs(s, slice->slice_x, slice->slice_y, i, coeffs_num);
853
854 if (s->pshift)
855 coef_par = ff_dirac_golomb_read_32bit(s->reader_ctx, addr,
856 length, tmp_buf, coef_num);
857 else
858 coef_par = ff_dirac_golomb_read_16bit(s->reader_ctx, addr,
859 length, tmp_buf, coef_num);
860
861 if (coef_num > coef_par) {
862 const int start_b = coef_par * (1 << (s->pshift + 1));
863 const int end_b = coef_num * (1 << (s->pshift + 1));
864 memset(&tmp_buf[start_b], 0, end_b - start_b);
865 }
866
867 for (level = 0; level < s->wavelet_depth; level++) {
868 const SliceCoeffs *c = &coeffs_num[level];
869 for (orientation = !!level; orientation < 4; orientation++) {
870 const SubBand *b1 = &s->plane[i].band[level][orientation];
871 uint8_t *buf = b1->ibuf + c->top * b1->stride + (c->left << (s->pshift + 1));
872
873 /* Change to c->tot_h <= 4 for AVX2 dequantization */
874 const int qfunc = s->pshift + 2*(c->tot_h <= 2);
875 s->diracdsp.dequant_subband[qfunc](&tmp_buf[off], buf, b1->stride,
876 qfactor[level][orientation],
877 qoffset[level][orientation],
878 c->tot_v, c->tot_h);
879
880 off += c->tot << (s->pshift + 1);
881 }
882 }
883
884 skip_bits_long(gb, bits_end - get_bits_count(gb));
885 }
886
887 return 0;
888}
889
890static int decode_hq_slice_row(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
891{
892 int i;
893 DiracContext *s = avctx->priv_data;
894 DiracSlice *slices = ((DiracSlice *)arg) + s->num_x*jobnr;
895 uint8_t *thread_buf = &s->thread_buf[s->thread_buf_size*threadnr];
896 for (i = 0; i < s->num_x; i++)
897 decode_hq_slice(s, &slices[i], thread_buf);
898 return 0;
899}
900
901/**
902 * Dirac Specification ->
903 * 13.5.1 low_delay_transform_data()
904 */
905static int decode_lowdelay(DiracContext *s)
906{
907 AVCodecContext *avctx = s->avctx;
908 int slice_x, slice_y, bufsize;
909 int64_t coef_buf_size, bytes = 0;
910 const uint8_t *buf;
911 DiracSlice *slices;
912 SliceCoeffs tmp[MAX_DWT_LEVELS];
913 int slice_num = 0;
914
915 if (s->slice_params_num_buf != (s->num_x * s->num_y)) {
916 s->slice_params_buf = av_realloc_f(s->slice_params_buf, s->num_x * s->num_y, sizeof(DiracSlice));
917 if (!s->slice_params_buf) {
918 av_log(s->avctx, AV_LOG_ERROR, "slice params buffer allocation failure\n");
919 s->slice_params_num_buf = 0;
920 return AVERROR(ENOMEM);
921 }
922 s->slice_params_num_buf = s->num_x * s->num_y;
923 }
924 slices = s->slice_params_buf;
925
926 /* 8 becacuse that's how much the golomb reader could overread junk data
927 * from another plane/slice at most, and 512 because SIMD */
928 coef_buf_size = subband_coeffs(s, s->num_x - 1, s->num_y - 1, 0, tmp) + 8;
929 coef_buf_size = (coef_buf_size << (1 + s->pshift)) + 512;
930
931 if (s->threads_num_buf != avctx->thread_count ||
932 s->thread_buf_size != coef_buf_size) {
933 s->threads_num_buf = avctx->thread_count;
934 s->thread_buf_size = coef_buf_size;
935 s->thread_buf = av_realloc_f(s->thread_buf, avctx->thread_count, s->thread_buf_size);
936 if (!s->thread_buf) {
937 av_log(s->avctx, AV_LOG_ERROR, "thread buffer allocation failure\n");
938 return AVERROR(ENOMEM);
939 }
940 }
941
942 align_get_bits(&s->gb);
943 /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
944 buf = s->gb.buffer + get_bits_count(&s->gb)/8;
945 bufsize = get_bits_left(&s->gb);
946
947 if (s->hq_picture) {
948 int i;
949
950 for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
951 for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
952 bytes = s->highquality.prefix_bytes + 1;
953 for (i = 0; i < 3; i++) {
954 if (bytes <= bufsize/8)
955 bytes += buf[bytes] * s->highquality.size_scaler + 1;
956 }
957 if (bytes >= INT_MAX || bytes*8 > bufsize) {
958 av_log(s->avctx, AV_LOG_ERROR, "too many bytes\n");
959 return AVERROR_INVALIDDATA;
960 }
961
962 slices[slice_num].bytes = bytes;
963 slices[slice_num].slice_x = slice_x;
964 slices[slice_num].slice_y = slice_y;
965 init_get_bits(&slices[slice_num].gb, buf, bufsize);
966 slice_num++;
967
968 buf += bytes;
969 if (bufsize/8 >= bytes)
970 bufsize -= bytes*8;
971 else
972 bufsize = 0;
973 }
974 }
975
976 if (s->num_x*s->num_y != slice_num) {
977 av_log(s->avctx, AV_LOG_ERROR, "too few slices\n");
978 return AVERROR_INVALIDDATA;
979 }
980
981 avctx->execute2(avctx, decode_hq_slice_row, slices, NULL, s->num_y);
982 } else {
983 for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
984 for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
985 bytes = (slice_num+1) * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den
986 - slice_num * (int64_t)s->lowdelay.bytes.num / s->lowdelay.bytes.den;
987 slices[slice_num].bytes = bytes;
988 slices[slice_num].slice_x = slice_x;
989 slices[slice_num].slice_y = slice_y;
990 init_get_bits(&slices[slice_num].gb, buf, bufsize);
991 slice_num++;
992
993 buf += bytes;
994 if (bufsize/8 >= bytes)
995 bufsize -= bytes*8;
996 else
997 bufsize = 0;
998 }
999 }
1000 avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
1001 sizeof(DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */
1002 }
1003
1004 if (s->dc_prediction) {
1005 if (s->pshift) {
1006 intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1007 intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1008 intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
1009 } else {
1010 intra_dc_prediction_8(&s->plane[0].band[0][0]);
1011 intra_dc_prediction_8(&s->plane[1].band[0][0]);
1012 intra_dc_prediction_8(&s->plane[2].band[0][0]);
1013 }
1014 }
1015
1016 return 0;
1017}
1018
1019static void init_planes(DiracContext *s)
1020{
1021 int i, w, h, level, orientation;
1022
1023 for (i = 0; i < 3; i++) {
1024 Plane *p = &s->plane[i];
1025
1026 p->width = s->seq.width >> (i ? s->chroma_x_shift : 0);
1027 p->height = s->seq.height >> (i ? s->chroma_y_shift : 0);
1028 p->idwt.width = w = CALC_PADDING(p->width , s->wavelet_depth);
1029 p->idwt.height = h = CALC_PADDING(p->height, s->wavelet_depth);
1030 p->idwt.stride = FFALIGN(p->idwt.width, 8) << (1 + s->pshift);
1031
1032 for (level = s->wavelet_depth-1; level >= 0; level--) {
1033 w = w>>1;
1034 h = h>>1;
1035 for (orientation = !!level; orientation < 4; orientation++) {
1036 SubBand *b = &p->band[level][orientation];
1037
1038 b->pshift = s->pshift;
1039 b->ibuf = p->idwt.buf;
1040 b->level = level;
1041 b->stride = p->idwt.stride << (s->wavelet_depth - level);
1042 b->width = w;
1043 b->height = h;
1044 b->orientation = orientation;
1045
1046 if (orientation & 1)
1047 b->ibuf += w << (1+b->pshift);
1048 if (orientation > 1)
1049 b->ibuf += (b->stride>>1);
1050
1051 if (level)
1052 b->parent = &p->band[level-1][orientation];
1053 }
1054 }
1055
1056 if (i > 0) {
1057 p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
1058 p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
1059 p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
1060 p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
1061 }
1062
1063 p->xoffset = (p->xblen - p->xbsep)/2;
1064 p->yoffset = (p->yblen - p->ybsep)/2;
1065 }
1066}
1067
1068/**
1069 * Unpack the motion compensation parameters
1070 * Dirac Specification ->
1071 * 11.2 Picture prediction data. picture_prediction()
1072 */
1073static int dirac_unpack_prediction_parameters(DiracContext *s)
1074{
1075 static const uint8_t default_blen[] = { 4, 12, 16, 24 };
1076
1077 GetBitContext *gb = &s->gb;
1078 unsigned idx, ref;
1079
1080 align_get_bits(gb);
1081 /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
1082 /* Luma and Chroma are equal. 11.2.3 */
1083 idx = get_interleaved_ue_golomb(gb); /* [DIRAC_STD] index */
1084
1085 if (idx > 4) {
1086 av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
1087 return AVERROR_INVALIDDATA;
1088 }
1089
1090 if (idx == 0) {
1091 s->plane[0].xblen = get_interleaved_ue_golomb(gb);
1092 s->plane[0].yblen = get_interleaved_ue_golomb(gb);
1093 s->plane[0].xbsep = get_interleaved_ue_golomb(gb);
1094 s->plane[0].ybsep = get_interleaved_ue_golomb(gb);
1095 } else {
1096 /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
1097 s->plane[0].xblen = default_blen[idx-1];
1098 s->plane[0].yblen = default_blen[idx-1];
1099 s->plane[0].xbsep = 4 * idx;
1100 s->plane[0].ybsep = 4 * idx;
1101 }
1102 /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
1103 Calculated in function dirac_unpack_block_motion_data */
1104
1105 if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
1106 s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
1107 !s->plane[0].xblen || !s->plane[0].yblen) {
1108 av_log(s->avctx, AV_LOG_ERROR,
1109 "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
1110 s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
1111 return AVERROR_INVALIDDATA;
1112 }
1113 if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
1114 av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
1115 return AVERROR_INVALIDDATA;
1116 }
1117 if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
1118 av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
1119 return AVERROR_INVALIDDATA;
1120 }
1121 if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
1122 av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
1123 return AVERROR_PATCHWELCOME;
1124 }
1125
1126 /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
1127 Read motion vector precision */
1128 s->mv_precision = get_interleaved_ue_golomb(gb);
1129 if (s->mv_precision > 3) {
1130 av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
1131 return AVERROR_INVALIDDATA;
1132 }
1133
1134 /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
1135 Read the global motion compensation parameters */
1136 s->globalmc_flag = get_bits1(gb);
1137 if (s->globalmc_flag) {
1138 memset(s->globalmc, 0, sizeof(s->globalmc));
1139 /* [DIRAC_STD] pan_tilt(gparams) */
1140 for (ref = 0; ref < s->num_refs; ref++) {
1141 if (get_bits1(gb)) {
1142 s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
1143 s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
1144 }
1145 /* [DIRAC_STD] zoom_rotate_shear(gparams)
1146 zoom/rotation/shear parameters */
1147 if (get_bits1(gb)) {
1148 s->globalmc[ref].zrs_exp = get_interleaved_ue_golomb(gb);
1149 s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
1150 s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
1151 s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
1152 s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
1153 } else {
1154 s->globalmc[ref].zrs[0][0] = 1;
1155 s->globalmc[ref].zrs[1][1] = 1;
1156 }
1157 /* [DIRAC_STD] perspective(gparams) */
1158 if (get_bits1(gb)) {
1159 s->globalmc[ref].perspective_exp = get_interleaved_ue_golomb(gb);
1160 s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
1161 s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
1162 }
1163 }
1164 }
1165
1166 /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
1167 Picture prediction mode, not currently used. */
1168 if (get_interleaved_ue_golomb(gb)) {
1169 av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
1170 return AVERROR_INVALIDDATA;
1171 }
1172
1173 /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
1174 just data read, weight calculation will be done later on. */
1175 s->weight_log2denom = 1;
1176 s->weight[0] = 1;
1177 s->weight[1] = 1;
1178
1179 if (get_bits1(gb)) {
1180 s->weight_log2denom = get_interleaved_ue_golomb(gb);
1181 s->weight[0] = dirac_get_se_golomb(gb);
1182 if (s->num_refs == 2)
1183 s->weight[1] = dirac_get_se_golomb(gb);
1184 }
1185 return 0;
1186}
1187
1188/**
1189 * Dirac Specification ->
1190 * 11.3 Wavelet transform data. wavelet_transform()
1191 */
1192static int dirac_unpack_idwt_params(DiracContext *s)
1193{
1194 GetBitContext *gb = &s->gb;
1195 int i, level;
1196 unsigned tmp;
1197
1198#define CHECKEDREAD(dst, cond, errmsg) \
1199 tmp = get_interleaved_ue_golomb(gb); \
1200 if (cond) { \
1201 av_log(s->avctx, AV_LOG_ERROR, errmsg); \
1202 return AVERROR_INVALIDDATA; \
1203 }\
1204 dst = tmp;
1205
1206 align_get_bits(gb);
1207
1208 s->zero_res = s->num_refs ? get_bits1(gb) : 0;
1209 if (s->zero_res)
1210 return 0;
1211
1212 /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
1213 CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
1214
1215 CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
1216
1217 if (!s->low_delay) {
1218 /* Codeblock parameters (core syntax only) */
1219 if (get_bits1(gb)) {
1220 for (i = 0; i <= s->wavelet_depth; i++) {
1221 CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
1222 CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
1223 }
1224
1225 CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
1226 }
1227 else {
1228 for (i = 0; i <= s->wavelet_depth; i++)
1229 s->codeblock[i].width = s->codeblock[i].height = 1;
1230 }
1231 }
1232 else {
1233 s->num_x = get_interleaved_ue_golomb(gb);
1234 s->num_y = get_interleaved_ue_golomb(gb);
1235 if (s->num_x * s->num_y == 0 || s->num_x * (uint64_t)s->num_y > INT_MAX) {
1236 av_log(s->avctx,AV_LOG_ERROR,"Invalid numx/y\n");
1237 s->num_x = s->num_y = 0;
1238 return AVERROR_INVALIDDATA;
1239 }
1240 if (s->ld_picture) {
1241 s->lowdelay.bytes.num = get_interleaved_ue_golomb(gb);
1242 s->lowdelay.bytes.den = get_interleaved_ue_golomb(gb);
1243 if (s->lowdelay.bytes.den <= 0) {
1244 av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
1245 return AVERROR_INVALIDDATA;
1246 }
1247 } else if (s->hq_picture) {
1248 s->highquality.prefix_bytes = get_interleaved_ue_golomb(gb);
1249 s->highquality.size_scaler = get_interleaved_ue_golomb(gb);
1250 if (s->highquality.prefix_bytes >= INT_MAX / 8) {
1251 av_log(s->avctx,AV_LOG_ERROR,"too many prefix bytes\n");
1252 return AVERROR_INVALIDDATA;
1253 }
1254 }
1255
1256 /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
1257 if (get_bits1(gb)) {
1258 av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
1259 /* custom quantization matrix */
1260 s->lowdelay.quant[0][0] = get_interleaved_ue_golomb(gb);
1261 for (level = 0; level < s->wavelet_depth; level++) {
1262 s->lowdelay.quant[level][1] = get_interleaved_ue_golomb(gb);
1263 s->lowdelay.quant[level][2] = get_interleaved_ue_golomb(gb);
1264 s->lowdelay.quant[level][3] = get_interleaved_ue_golomb(gb);
1265 }
1266 } else {
1267 if (s->wavelet_depth > 4) {
1268 av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
1269 return AVERROR_INVALIDDATA;
1270 }
1271 /* default quantization matrix */
1272 for (level = 0; level < s->wavelet_depth; level++)
1273 for (i = 0; i < 4; i++) {
1274 s->lowdelay.quant[level][i] = ff_dirac_default_qmat[s->wavelet_idx][level][i];
1275 /* haar with no shift differs for different depths */
1276 if (s->wavelet_idx == 3)
1277 s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
1278 }
1279 }
1280 }
1281 return 0;
1282}
1283
1284static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
1285{
1286 static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
1287
1288 if (!(x|y))
1289 return 0;
1290 else if (!y)
1291 return sbsplit[-1];
1292 else if (!x)
1293 return sbsplit[-stride];
1294
1295 return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
1296}
1297
1298static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
1299{
1300 int pred;
1301
1302 if (!(x|y))
1303 return 0;
1304 else if (!y)
1305 return block[-1].ref & refmask;
1306 else if (!x)
1307 return block[-stride].ref & refmask;
1308
1309 /* return the majority */
1310 pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
1311 return (pred >> 1) & refmask;
1312}
1313
1314static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
1315{
1316 int i, n = 0;
1317
1318 memset(block->u.dc, 0, sizeof(block->u.dc));
1319
1320 if (x && !(block[-1].ref & 3)) {
1321 for (i = 0; i < 3; i++)
1322 block->u.dc[i] += block[-1].u.dc[i];
1323 n++;
1324 }
1325
1326 if (y && !(block[-stride].ref & 3)) {
1327 for (i = 0; i < 3; i++)
1328 block->u.dc[i] += block[-stride].u.dc[i];
1329 n++;
1330 }
1331
1332 if (x && y && !(block[-1-stride].ref & 3)) {
1333 for (i = 0; i < 3; i++)
1334 block->u.dc[i] += block[-1-stride].u.dc[i];
1335 n++;
1336 }
1337
1338 if (n == 2) {
1339 for (i = 0; i < 3; i++)
1340 block->u.dc[i] = (block->u.dc[i]+1)>>1;
1341 } else if (n == 3) {
1342 for (i = 0; i < 3; i++)
1343 block->u.dc[i] = divide3(block->u.dc[i]);
1344 }
1345}
1346
1347static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
1348{
1349 int16_t *pred[3];
1350 int refmask = ref+1;
1351 int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
1352 int n = 0;
1353
1354 if (x && (block[-1].ref & mask) == refmask)
1355 pred[n++] = block[-1].u.mv[ref];
1356
1357 if (y && (block[-stride].ref & mask) == refmask)
1358 pred[n++] = block[-stride].u.mv[ref];
1359
1360 if (x && y && (block[-stride-1].ref & mask) == refmask)
1361 pred[n++] = block[-stride-1].u.mv[ref];
1362
1363 switch (n) {
1364 case 0:
1365 block->u.mv[ref][0] = 0;
1366 block->u.mv[ref][1] = 0;
1367 break;
1368 case 1:
1369 block->u.mv[ref][0] = pred[0][0];
1370 block->u.mv[ref][1] = pred[0][1];
1371 break;
1372 case 2:
1373 block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
1374 block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
1375 break;
1376 case 3:
1377 block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
1378 block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
1379 break;
1380 }
1381}
1382
1383static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
1384{
1385 int ez = s->globalmc[ref].zrs_exp;
1386 int ep = s->globalmc[ref].perspective_exp;
1387 int (*A)[2] = s->globalmc[ref].zrs;
1388 int *b = s->globalmc[ref].pan_tilt;
1389 int *c = s->globalmc[ref].perspective;
1390
1391 int m = (1<<ep) - (c[0]*x + c[1]*y);
1392 int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
1393 int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
1394
1395 block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
1396 block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
1397}
1398
1399static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
1400 int stride, int x, int y)
1401{
1402 int i;
1403
1404 block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
1405 block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
1406
1407 if (s->num_refs == 2) {
1408 block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
1409 block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
1410 }
1411
1412 if (!block->ref) {
1413 pred_block_dc(block, stride, x, y);
1414 for (i = 0; i < 3; i++)
1415 block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
1416 return;
1417 }
1418
1419 if (s->globalmc_flag) {
1420 block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
1421 block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
1422 }
1423
1424 for (i = 0; i < s->num_refs; i++)
1425 if (block->ref & (i+1)) {
1426 if (block->ref & DIRAC_REF_MASK_GLOBAL) {
1427 global_mv(s, block, x, y, i);
1428 } else {
1429 pred_mv(block, stride, x, y, i);
1430 block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1431 block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
1432 }
1433 }
1434}
1435
1436/**
1437 * Copies the current block to the other blocks covered by the current superblock split mode
1438 */
1439static void propagate_block_data(DiracBlock *block, int stride, int size)
1440{
1441 int x, y;
1442 DiracBlock *dst = block;
1443
1444 for (x = 1; x < size; x++)
1445 dst[x] = *block;
1446
1447 for (y = 1; y < size; y++) {
1448 dst += stride;
1449 for (x = 0; x < size; x++)
1450 dst[x] = *block;
1451 }
1452}
1453
1454/**
1455 * Dirac Specification ->
1456 * 12. Block motion data syntax
1457 */
1458static int dirac_unpack_block_motion_data(DiracContext *s)
1459{
1460 GetBitContext *gb = &s->gb;
1461 uint8_t *sbsplit = s->sbsplit;
1462 int i, x, y, q, p;
1463 DiracArith arith[8];
1464
1465 align_get_bits(gb);
1466
1467 /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
1468 s->sbwidth = DIVRNDUP(s->seq.width, 4*s->plane[0].xbsep);
1469 s->sbheight = DIVRNDUP(s->seq.height, 4*s->plane[0].ybsep);
1470 s->blwidth = 4 * s->sbwidth;
1471 s->blheight = 4 * s->sbheight;
1472
1473 /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
1474 decode superblock split modes */
1475 ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb)); /* get_interleaved_ue_golomb(gb) is the length */
1476 for (y = 0; y < s->sbheight; y++) {
1477 for (x = 0; x < s->sbwidth; x++) {
1478 unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
1479 if (split > 2)
1480 return AVERROR_INVALIDDATA;
1481 sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
1482 }
1483 sbsplit += s->sbwidth;
1484 }
1485
1486 /* setup arith decoding */
1487 ff_dirac_init_arith_decoder(arith, gb, get_interleaved_ue_golomb(gb));
1488 for (i = 0; i < s->num_refs; i++) {
1489 ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, get_interleaved_ue_golomb(gb));
1490 ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, get_interleaved_ue_golomb(gb));
1491 }
1492 for (i = 0; i < 3; i++)
1493 ff_dirac_init_arith_decoder(arith+1+i, gb, get_interleaved_ue_golomb(gb));
1494
1495 for (y = 0; y < s->sbheight; y++)
1496 for (x = 0; x < s->sbwidth; x++) {
1497 int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
1498 int step = 4 >> s->sbsplit[y * s->sbwidth + x];
1499
1500 for (q = 0; q < blkcnt; q++)
1501 for (p = 0; p < blkcnt; p++) {
1502 int bx = 4 * x + p*step;
1503 int by = 4 * y + q*step;
1504 DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
1505 decode_block_params(s, arith, block, s->blwidth, bx, by);
1506 propagate_block_data(block, s->blwidth, step);
1507 }
1508 }
1509
1510 return 0;
1511}
1512
1513static int weight(int i, int blen, int offset)
1514{
1515#define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
1516 (1 + (6*(i) + offset - 1) / (2*offset - 1))
1517
1518 if (i < 2*offset)
1519 return ROLLOFF(i);
1520 else if (i > blen-1 - 2*offset)
1521 return ROLLOFF(blen-1 - i);
1522 return 8;
1523}
1524
1525static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
1526 int left, int right, int wy)
1527{
1528 int x;
1529 for (x = 0; left && x < p->xblen >> 1; x++)
1530 obmc_weight[x] = wy*8;
1531 for (; x < p->xblen >> right; x++)
1532 obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
1533 for (; x < p->xblen; x++)
1534 obmc_weight[x] = wy*8;
1535 for (; x < stride; x++)
1536 obmc_weight[x] = 0;
1537}
1538
1539static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
1540 int left, int right, int top, int bottom)
1541{
1542 int y;
1543 for (y = 0; top && y < p->yblen >> 1; y++) {
1544 init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1545 obmc_weight += stride;
1546 }
1547 for (; y < p->yblen >> bottom; y++) {
1548 int wy = weight(y, p->yblen, p->yoffset);
1549 init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
1550 obmc_weight += stride;
1551 }
1552 for (; y < p->yblen; y++) {
1553 init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
1554 obmc_weight += stride;
1555 }
1556}
1557
1558static void init_obmc_weights(DiracContext *s, Plane *p, int by)
1559{
1560 int top = !by;
1561 int bottom = by == s->blheight-1;
1562
1563 /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
1564 if (top || bottom || by == 1) {
1565 init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
1566 init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
1567 init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
1568 }
1569}
1570
1571static const uint8_t epel_weights[4][4][4] = {
1572 {{ 16, 0, 0, 0 },
1573 { 12, 4, 0, 0 },
1574 { 8, 8, 0, 0 },
1575 { 4, 12, 0, 0 }},
1576 {{ 12, 0, 4, 0 },
1577 { 9, 3, 3, 1 },
1578 { 6, 6, 2, 2 },
1579 { 3, 9, 1, 3 }},
1580 {{ 8, 0, 8, 0 },
1581 { 6, 2, 6, 2 },
1582 { 4, 4, 4, 4 },
1583 { 2, 6, 2, 6 }},
1584 {{ 4, 0, 12, 0 },
1585 { 3, 1, 9, 3 },
1586 { 2, 2, 6, 6 },
1587 { 1, 3, 3, 9 }}
1588};
1589
1590/**
1591 * For block x,y, determine which of the hpel planes to do bilinear
1592 * interpolation from and set src[] to the location in each hpel plane
1593 * to MC from.
1594 *
1595 * @return the index of the put_dirac_pixels_tab function to use
1596 * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
1597 */
1598static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
1599 int x, int y, int ref, int plane)
1600{
1601 Plane *p = &s->plane[plane];
1602 uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
1603 int motion_x = block->u.mv[ref][0];
1604 int motion_y = block->u.mv[ref][1];
1605 int mx, my, i, epel, nplanes = 0;
1606
1607 if (plane) {
1608 motion_x >>= s->chroma_x_shift;
1609 motion_y >>= s->chroma_y_shift;
1610 }
1611
1612 mx = motion_x & ~(-1U << s->mv_precision);
1613 my = motion_y & ~(-1U << s->mv_precision);
1614 motion_x >>= s->mv_precision;
1615 motion_y >>= s->mv_precision;
1616 /* normalize subpel coordinates to epel */
1617 /* TODO: template this function? */
1618 mx <<= 3 - s->mv_precision;
1619 my <<= 3 - s->mv_precision;
1620
1621 x += motion_x;
1622 y += motion_y;
1623 epel = (mx|my)&1;
1624
1625 /* hpel position */
1626 if (!((mx|my)&3)) {
1627 nplanes = 1;
1628 src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
1629 } else {
1630 /* qpel or epel */
1631 nplanes = 4;
1632 for (i = 0; i < 4; i++)
1633 src[i] = ref_hpel[i] + y*p->stride + x;
1634
1635 /* if we're interpolating in the right/bottom halves, adjust the planes as needed
1636 we increment x/y because the edge changes for half of the pixels */
1637 if (mx > 4) {
1638 src[0] += 1;
1639 src[2] += 1;
1640 x++;
1641 }
1642 if (my > 4) {
1643 src[0] += p->stride;
1644 src[1] += p->stride;
1645 y++;
1646 }
1647
1648 /* hpel planes are:
1649 [0]: F [1]: H
1650 [2]: V [3]: C */
1651 if (!epel) {
1652 /* check if we really only need 2 planes since either mx or my is
1653 a hpel position. (epel weights of 0 handle this there) */
1654 if (!(mx&3)) {
1655 /* mx == 0: average [0] and [2]
1656 mx == 4: average [1] and [3] */
1657 src[!mx] = src[2 + !!mx];
1658 nplanes = 2;
1659 } else if (!(my&3)) {
1660 src[0] = src[(my>>1) ];
1661 src[1] = src[(my>>1)+1];
1662 nplanes = 2;
1663 }
1664 } else {
1665 /* adjust the ordering if needed so the weights work */
1666 if (mx > 4) {
1667 FFSWAP(const uint8_t *, src[0], src[1]);
1668 FFSWAP(const uint8_t *, src[2], src[3]);
1669 }
1670 if (my > 4) {
1671 FFSWAP(const uint8_t *, src[0], src[2]);
1672 FFSWAP(const uint8_t *, src[1], src[3]);
1673 }
1674 src[4] = epel_weights[my&3][mx&3];
1675 }
1676 }
1677
1678 /* fixme: v/h _edge_pos */
1679 if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
1680 y + p->yblen > p->height+EDGE_WIDTH/2 ||
1681 x < 0 || y < 0) {
1682 for (i = 0; i < nplanes; i++) {
1683 s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
1684 p->stride, p->stride,
1685 p->xblen, p->yblen, x, y,
1686 p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
1687 src[i] = s->edge_emu_buffer[i];
1688 }
1689 }
1690 return (nplanes>>1) + epel;
1691}
1692
1693static void add_dc(uint16_t *dst, int dc, int stride,
1694 uint8_t *obmc_weight, int xblen, int yblen)
1695{
1696 int x, y;
1697 dc += 128;
1698
1699 for (y = 0; y < yblen; y++) {
1700 for (x = 0; x < xblen; x += 2) {
1701 dst[x ] += dc * obmc_weight[x ];
1702 dst[x+1] += dc * obmc_weight[x+1];
1703 }
1704 dst += stride;
1705 obmc_weight += MAX_BLOCKSIZE;
1706 }
1707}
1708
1709static void block_mc(DiracContext *s, DiracBlock *block,
1710 uint16_t *mctmp, uint8_t *obmc_weight,
1711 int plane, int dstx, int dsty)
1712{
1713 Plane *p = &s->plane[plane];
1714 const uint8_t *src[5];
1715 int idx;
1716
1717 switch (block->ref&3) {
1718 case 0: /* DC */
1719 add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
1720 return;
1721 case 1:
1722 case 2:
1723 idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
1724 s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1725 if (s->weight_func)
1726 s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
1727 s->weight[0] + s->weight[1], p->yblen);
1728 break;
1729 case 3:
1730 idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
1731 s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1732 idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
1733 if (s->biweight_func) {
1734 /* fixme: +32 is a quick hack */
1735 s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
1736 s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
1737 s->weight[0], s->weight[1], p->yblen);
1738 } else
1739 s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
1740 break;
1741 }
1742 s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
1743}
1744
1745static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
1746{
1747 Plane *p = &s->plane[plane];
1748 int x, dstx = p->xbsep - p->xoffset;
1749
1750 block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
1751 mctmp += p->xbsep;
1752
1753 for (x = 1; x < s->blwidth-1; x++) {
1754 block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
1755 dstx += p->xbsep;
1756 mctmp += p->xbsep;
1757 }
1758 block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
1759}
1760
1761static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
1762{
1763 int idx = 0;
1764 if (xblen > 8)
1765 idx = 1;
1766 if (xblen > 16)
1767 idx = 2;
1768
1769 memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
1770 memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
1771 s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
1772 if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
1773 s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
1774 s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
1775 } else {
1776 s->weight_func = NULL;
1777 s->biweight_func = NULL;
1778 }
1779}
1780
1781static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
1782{
1783 /* chroma allocates an edge of 8 when subsampled
1784 which for 4:2:2 means an h edge of 16 and v edge of 8
1785 just use 8 for everything for the moment */
1786 int i, edge = EDGE_WIDTH/2;
1787
1788 ref->hpel[plane][0] = ref->avframe->data[plane];
1789 s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
1790
1791 /* no need for hpel if we only have fpel vectors */
1792 if (!s->mv_precision)
1793 return 0;
1794
1795 for (i = 1; i < 4; i++) {
1796 if (!ref->hpel_base[plane][i])
1797 ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
1798 if (!ref->hpel_base[plane][i]) {
1799 return AVERROR(ENOMEM);
1800 }
1801 /* we need to be 16-byte aligned even for chroma */
1802 ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
1803 }
1804
1805 if (!ref->interpolated[plane]) {
1806 s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
1807 ref->hpel[plane][3], ref->hpel[plane][0],
1808 ref->avframe->linesize[plane], width, height);
1809 s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1810 s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1811 s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
1812 }
1813 ref->interpolated[plane] = 1;
1814
1815 return 0;
1816}
1817
1818/**
1819 * Dirac Specification ->
1820 * 13.0 Transform data syntax. transform_data()
1821 */
1822static int dirac_decode_frame_internal(DiracContext *s)
1823{
1824 DWTContext d;
1825 int y, i, comp, dsty;
1826 int ret;
1827
1828 if (s->low_delay) {
1829 /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
1830 if (!s->hq_picture) {
1831 for (comp = 0; comp < 3; comp++) {
1832 Plane *p = &s->plane[comp];
1833 memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1834 }
1835 }
1836 if (!s->zero_res) {
1837 if ((ret = decode_lowdelay(s)) < 0)
1838 return ret;
1839 }
1840 }
1841
1842 for (comp = 0; comp < 3; comp++) {
1843 Plane *p = &s->plane[comp];
1844 uint8_t *frame = s->current_picture->avframe->data[comp];
1845
1846 /* FIXME: small resolutions */
1847 for (i = 0; i < 4; i++)
1848 s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
1849
1850 if (!s->zero_res && !s->low_delay)
1851 {
1852 memset(p->idwt.buf, 0, p->idwt.stride * p->idwt.height);
1853 decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
1854 }
1855 ret = ff_spatial_idwt_init(&d, &p->idwt, s->wavelet_idx+2,
1856 s->wavelet_depth, s->bit_depth);
1857 if (ret < 0)
1858 return ret;
1859
1860 if (!s->num_refs) { /* intra */
1861 for (y = 0; y < p->height; y += 16) {
1862 int idx = (s->bit_depth - 8) >> 1;
1863 ff_spatial_idwt_slice2(&d, y+16); /* decode */
1864 s->diracdsp.put_signed_rect_clamped[idx](frame + y*p->stride,
1865 p->stride,
1866 p->idwt.buf + y*p->idwt.stride,
1867 p->idwt.stride, p->width, 16);
1868 }
1869 } else { /* inter */
1870 int rowheight = p->ybsep*p->stride;
1871
1872 select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
1873
1874 for (i = 0; i < s->num_refs; i++) {
1875 int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
1876 if (ret < 0)
1877 return ret;
1878 }
1879
1880 memset(s->mctmp, 0, 4*p->yoffset*p->stride);
1881
1882 dsty = -p->yoffset;
1883 for (y = 0; y < s->blheight; y++) {
1884 int h = 0,
1885 start = FFMAX(dsty, 0);
1886 uint16_t *mctmp = s->mctmp + y*rowheight;
1887 DiracBlock *blocks = s->blmotion + y*s->blwidth;
1888
1889 init_obmc_weights(s, p, y);
1890
1891 if (y == s->blheight-1 || start+p->ybsep > p->height)
1892 h = p->height - start;
1893 else
1894 h = p->ybsep - (start - dsty);
1895 if (h < 0)
1896 break;
1897
1898 memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
1899 mc_row(s, blocks, mctmp, comp, dsty);
1900
1901 mctmp += (start - dsty)*p->stride + p->xoffset;
1902 ff_spatial_idwt_slice2(&d, start + h); /* decode */
1903 /* NOTE: add_rect_clamped hasn't been templated hence the shifts.
1904 * idwt.stride is passed as pixels, not in bytes as in the rest of the decoder */
1905 s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
1906 (int16_t*)(p->idwt.buf) + start*(p->idwt.stride >> 1), (p->idwt.stride >> 1), p->width, h);
1907
1908 dsty += p->ybsep;
1909 }
1910 }
1911 }
1912
1913
1914 return 0;
1915}
1916
1917static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
1918{
1919 int ret, i;
1920 int chroma_x_shift, chroma_y_shift;
1921 avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift);
1922
1923 f->width = avctx->width + 2 * EDGE_WIDTH;
1924 f->height = avctx->height + 2 * EDGE_WIDTH + 2;
1925 ret = ff_get_buffer(avctx, f, flags);
1926 if (ret < 0)
1927 return ret;
1928
1929 for (i = 0; f->data[i]; i++) {
1930 int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
1931 f->linesize[i] + 32;
1932 f->data[i] += offset;
1933 }
1934 f->width = avctx->width;
1935 f->height = avctx->height;
1936
1937 return 0;
1938}
1939
1940/**
1941 * Dirac Specification ->
1942 * 11.1.1 Picture Header. picture_header()
1943 */
1944static int dirac_decode_picture_header(DiracContext *s)
1945{
1946 unsigned retire, picnum;
1947 int i, j, ret;
1948 int64_t refdist, refnum;
1949 GetBitContext *gb = &s->gb;
1950
1951 /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
1952 picnum = s->current_picture->avframe->display_picture_number = get_bits_long(gb, 32);
1953
1954
1955 av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
1956
1957 /* if this is the first keyframe after a sequence header, start our
1958 reordering from here */
1959 if (s->frame_number < 0)
1960 s->frame_number = picnum;
1961
1962 s->ref_pics[0] = s->ref_pics[1] = NULL;
1963 for (i = 0; i < s->num_refs; i++) {
1964 refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
1965 refdist = INT64_MAX;
1966
1967 /* find the closest reference to the one we want */
1968 /* Jordi: this is needed if the referenced picture hasn't yet arrived */
1969 for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
1970 if (s->ref_frames[j]
1971 && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
1972 s->ref_pics[i] = s->ref_frames[j];
1973 refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
1974 }
1975
1976 if (!s->ref_pics[i] || refdist)
1977 av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
1978
1979 /* if there were no references at all, allocate one */
1980 if (!s->ref_pics[i])
1981 for (j = 0; j < MAX_FRAMES; j++)
1982 if (!s->all_frames[j].avframe->data[0]) {
1983 s->ref_pics[i] = &s->all_frames[j];
1984 ret = get_buffer_with_edge(s->avctx, s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF);
1985 if (ret < 0)
1986 return ret;
1987 break;
1988 }
1989
1990 if (!s->ref_pics[i]) {
1991 av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
1992 return AVERROR_INVALIDDATA;
1993 }
1994
1995 }
1996
1997 /* retire the reference frames that are not used anymore */
1998 if (s->current_picture->reference) {
1999 retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
2000 if (retire != picnum) {
2001 DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
2002
2003 if (retire_pic)
2004 retire_pic->reference &= DELAYED_PIC_REF;
2005 else
2006 av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
2007 }
2008
2009 /* if reference array is full, remove the oldest as per the spec */
2010 while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
2011 av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
2012 remove_frame(s->ref_frames, s->ref_frames[0]->avframe->display_picture_number)->reference &= DELAYED_PIC_REF;
2013 }
2014 }
2015
2016 if (s->num_refs) {
2017 ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
2018 if (ret < 0)
2019 return ret;
2020 ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
2021 if (ret < 0)
2022 return ret;
2023 }
2024 ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
2025 if (ret < 0)
2026 return ret;
2027
2028 init_planes(s);
2029 return 0;
2030}
2031
2032static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
2033{
2034 DiracFrame *out = s->delay_frames[0];
2035 int i, out_idx = 0;
2036 int ret;
2037
2038 /* find frame with lowest picture number */
2039 for (i = 1; s->delay_frames[i]; i++)
2040 if (s->delay_frames[i]->avframe->display_picture_number < out->avframe->display_picture_number) {
2041 out = s->delay_frames[i];
2042 out_idx = i;
2043 }
2044
2045 for (i = out_idx; s->delay_frames[i]; i++)
2046 s->delay_frames[i] = s->delay_frames[i+1];
2047
2048 if (out) {
2049 out->reference ^= DELAYED_PIC_REF;
2050 *got_frame = 1;
2051 if((ret = av_frame_ref(picture, out->avframe)) < 0)
2052 return ret;
2053 }
2054
2055 return 0;
2056}
2057
2058/**
2059 * Dirac Specification ->
2060 * 9.6 Parse Info Header Syntax. parse_info()
2061 * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
2062 */
2063#define DATA_UNIT_HEADER_SIZE 13
2064
2065/* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
2066 inside the function parse_sequence() */
2067static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
2068{
2069 DiracContext *s = avctx->priv_data;
2070 DiracFrame *pic = NULL;
2071 AVDiracSeqHeader *dsh;
2072 int ret, i;
2073 uint8_t parse_code;
2074 unsigned tmp;
2075
2076 if (size < DATA_UNIT_HEADER_SIZE)
2077 return AVERROR_INVALIDDATA;
2078
2079 parse_code = buf[4];
2080
2081 init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
2082
2083 if (parse_code == DIRAC_PCODE_SEQ_HEADER) {
2084 if (s->seen_sequence_header)
2085 return 0;
2086
2087 /* [DIRAC_STD] 10. Sequence header */
2088 ret = av_dirac_parse_sequence_header(&dsh, buf + DATA_UNIT_HEADER_SIZE, size - DATA_UNIT_HEADER_SIZE, avctx);
2089 if (ret < 0) {
2090 av_log(avctx, AV_LOG_ERROR, "error parsing sequence header");
2091 return ret;
2092 }
2093
2094 ret = ff_set_dimensions(avctx, dsh->width, dsh->height);
2095 if (ret < 0) {
2096 av_freep(&dsh);
2097 return ret;
2098 }
2099
2100 ff_set_sar(avctx, dsh->sample_aspect_ratio);
2101 avctx->pix_fmt = dsh->pix_fmt;
2102 avctx->color_range = dsh->color_range;
2103 avctx->color_trc = dsh->color_trc;
2104 avctx->color_primaries = dsh->color_primaries;
2105 avctx->colorspace = dsh->colorspace;
2106 avctx->profile = dsh->profile;
2107 avctx->level = dsh->level;
2108 avctx->framerate = dsh->framerate;
2109 s->bit_depth = dsh->bit_depth;
2110 s->version.major = dsh->version.major;
2111 s->version.minor = dsh->version.minor;
2112 s->seq = *dsh;
2113 av_freep(&dsh);
2114
2115 s->pshift = s->bit_depth > 8;
2116
2117 avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
2118
2119 ret = alloc_sequence_buffers(s);
2120 if (ret < 0)
2121 return ret;
2122
2123 s->seen_sequence_header = 1;
2124 } else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */
2125 free_sequence_buffers(s);
2126 s->seen_sequence_header = 0;
2127 } else if (parse_code == DIRAC_PCODE_AUX) {
2128 if (buf[13] == 1) { /* encoder implementation/version */
2129 int ver[3];
2130 /* versions older than 1.0.8 don't store quant delta for
2131 subbands with only one codeblock */
2132 if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
2133 if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
2134 s->old_delta_quant = 1;
2135 }
2136 } else if (parse_code & 0x8) { /* picture data unit */
2137 if (!s->seen_sequence_header) {
2138 av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
2139 return AVERROR_INVALIDDATA;
2140 }
2141
2142 /* find an unused frame */
2143 for (i = 0; i < MAX_FRAMES; i++)
2144 if (s->all_frames[i].avframe->data[0] == NULL)
2145 pic = &s->all_frames[i];
2146 if (!pic) {
2147 av_log(avctx, AV_LOG_ERROR, "framelist full\n");
2148 return AVERROR_INVALIDDATA;
2149 }
2150
2151 av_frame_unref(pic->avframe);
2152
2153 /* [DIRAC_STD] Defined in 9.6.1 ... */
2154 tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
2155 if (tmp > 2) {
2156 av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
2157 return AVERROR_INVALIDDATA;
2158 }
2159 s->num_refs = tmp;
2160 s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
2161 s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
2162 s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */
2163 s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */
2164 s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */
2165 s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */
2166 pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
2167 pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
2168 pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
2169
2170 /* VC-2 Low Delay has a different parse code than the Dirac Low Delay */
2171 if (s->version.minor == 2 && parse_code == 0x88)
2172 s->ld_picture = 1;
2173
2174 if (s->low_delay && !(s->ld_picture || s->hq_picture) ) {
2175 av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n");
2176 return AVERROR_INVALIDDATA;
2177 }
2178
2179 if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
2180 return ret;
2181 s->current_picture = pic;
2182 s->plane[0].stride = pic->avframe->linesize[0];
2183 s->plane[1].stride = pic->avframe->linesize[1];
2184 s->plane[2].stride = pic->avframe->linesize[2];
2185
2186 if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
2187 return AVERROR(ENOMEM);
2188
2189 /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
2190 ret = dirac_decode_picture_header(s);
2191 if (ret < 0)
2192 return ret;
2193
2194 /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
2195 ret = dirac_decode_frame_internal(s);
2196 if (ret < 0)
2197 return ret;
2198 }
2199 return 0;
2200}
2201
2202static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
2203{
2204 DiracContext *s = avctx->priv_data;
2205 AVFrame *picture = data;
2206 uint8_t *buf = pkt->data;
2207 int buf_size = pkt->size;
2208 int i, buf_idx = 0;
2209 int ret;
2210 unsigned data_unit_size;
2211
2212 /* release unused frames */
2213 for (i = 0; i < MAX_FRAMES; i++)
2214 if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
2215 av_frame_unref(s->all_frames[i].avframe);
2216 memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
2217 }
2218
2219 s->current_picture = NULL;
2220 *got_frame = 0;
2221
2222 /* end of stream, so flush delayed pics */
2223 if (buf_size == 0)
2224 return get_delayed_pic(s, (AVFrame *)data, got_frame);
2225
2226 for (;;) {
2227 /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
2228 [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
2229 BBCD start code search */
2230 for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
2231 if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
2232 buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
2233 break;
2234 }
2235 /* BBCD found or end of data */
2236 if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
2237 break;
2238
2239 data_unit_size = AV_RB32(buf+buf_idx+5);
2240 if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
2241 if(data_unit_size > buf_size - buf_idx)
2242 av_log(s->avctx, AV_LOG_ERROR,
2243 "Data unit with size %d is larger than input buffer, discarding\n",
2244 data_unit_size);
2245 buf_idx += 4;
2246 continue;
2247 }
2248 /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
2249 ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
2250 if (ret < 0)
2251 {
2252 av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
2253 return ret;
2254 }
2255 buf_idx += data_unit_size;
2256 }
2257
2258 if (!s->current_picture)
2259 return buf_size;
2260
2261 if (s->current_picture->avframe->display_picture_number > s->frame_number) {
2262 DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
2263
2264 s->current_picture->reference |= DELAYED_PIC_REF;
2265
2266 if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
2267 int min_num = s->delay_frames[0]->avframe->display_picture_number;
2268 /* Too many delayed frames, so we display the frame with the lowest pts */
2269 av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
2270
2271 for (i = 1; s->delay_frames[i]; i++)
2272 if (s->delay_frames[i]->avframe->display_picture_number < min_num)
2273 min_num = s->delay_frames[i]->avframe->display_picture_number;
2274
2275 delayed_frame = remove_frame(s->delay_frames, min_num);
2276 add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
2277 }
2278
2279 if (delayed_frame) {
2280 delayed_frame->reference ^= DELAYED_PIC_REF;
2281 if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
2282 return ret;
2283 *got_frame = 1;
2284 }
2285 } else if (s->current_picture->avframe->display_picture_number == s->frame_number) {
2286 /* The right frame at the right time :-) */
2287 if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
2288 return ret;
2289 *got_frame = 1;
2290 }
2291
2292 if (*got_frame)
2293 s->frame_number = picture->display_picture_number + 1;
2294
2295 return buf_idx;
2296}
2297
2298AVCodec ff_dirac_decoder = {
2299 .name = "dirac",
2300 .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
2301 .type = AVMEDIA_TYPE_VIDEO,
2302 .id = AV_CODEC_ID_DIRAC,
2303 .priv_data_size = sizeof(DiracContext),
2304 .init = dirac_decode_init,
2305 .close = dirac_decode_end,
2306 .decode = dirac_decode_frame,
2307 .capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_DR1,
2308 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
2309 .flush = dirac_decode_flush,
2310};
2311