summaryrefslogtreecommitdiff
path: root/libavcodec/exr.c (plain)
blob: e5dea0756d550c85a7ddfb5efceae75de6f71227
1/*
2 * OpenEXR (.exr) image decoder
3 * Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
4 * Copyright (c) 2009 Jimmy Christensen
5 *
6 * B44/B44A, Tile, UINT32 added by Jokyo Images support by CNC - French National Center for Cinema
7 *
8 * This file is part of FFmpeg.
9 *
10 * FFmpeg is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
14 *
15 * FFmpeg is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with FFmpeg; if not, write to the Free Software
22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
25/**
26 * @file
27 * OpenEXR decoder
28 * @author Jimmy Christensen
29 *
30 * For more information on the OpenEXR format, visit:
31 * http://openexr.com/
32 *
33 * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger.
34 * exr_half2float() is credited to Aaftab Munshi, Dan Ginsburg, Dave Shreiner.
35 */
36
37#include <float.h>
38#include <zlib.h>
39
40#include "libavutil/common.h"
41#include "libavutil/imgutils.h"
42#include "libavutil/intfloat.h"
43#include "libavutil/opt.h"
44#include "libavutil/color_utils.h"
45
46#include "avcodec.h"
47#include "bytestream.h"
48#include "get_bits.h"
49#include "internal.h"
50#include "mathops.h"
51#include "thread.h"
52
53enum ExrCompr {
54 EXR_RAW,
55 EXR_RLE,
56 EXR_ZIP1,
57 EXR_ZIP16,
58 EXR_PIZ,
59 EXR_PXR24,
60 EXR_B44,
61 EXR_B44A,
62 EXR_DWA,
63 EXR_DWB,
64 EXR_UNKN,
65};
66
67enum ExrPixelType {
68 EXR_UINT,
69 EXR_HALF,
70 EXR_FLOAT,
71 EXR_UNKNOWN,
72};
73
74enum ExrTileLevelMode {
75 EXR_TILE_LEVEL_ONE,
76 EXR_TILE_LEVEL_MIPMAP,
77 EXR_TILE_LEVEL_RIPMAP,
78 EXR_TILE_LEVEL_UNKNOWN,
79};
80
81enum ExrTileLevelRound {
82 EXR_TILE_ROUND_UP,
83 EXR_TILE_ROUND_DOWN,
84 EXR_TILE_ROUND_UNKNOWN,
85};
86
87typedef struct EXRChannel {
88 int xsub, ysub;
89 enum ExrPixelType pixel_type;
90} EXRChannel;
91
92typedef struct EXRTileAttribute {
93 int32_t xSize;
94 int32_t ySize;
95 enum ExrTileLevelMode level_mode;
96 enum ExrTileLevelRound level_round;
97} EXRTileAttribute;
98
99typedef struct EXRThreadData {
100 uint8_t *uncompressed_data;
101 int uncompressed_size;
102
103 uint8_t *tmp;
104 int tmp_size;
105
106 uint8_t *bitmap;
107 uint16_t *lut;
108
109 int ysize, xsize;
110
111 int channel_line_size;
112} EXRThreadData;
113
114typedef struct EXRContext {
115 AVClass *class;
116 AVFrame *picture;
117 AVCodecContext *avctx;
118
119 enum ExrCompr compression;
120 enum ExrPixelType pixel_type;
121 int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
122 const AVPixFmtDescriptor *desc;
123
124 int w, h;
125 uint32_t xmax, xmin;
126 uint32_t ymax, ymin;
127 uint32_t xdelta, ydelta;
128
129 int scan_lines_per_block;
130
131 EXRTileAttribute tile_attr; /* header data attribute of tile */
132 int is_tile; /* 0 if scanline, 1 if tile */
133
134 int is_luma;/* 1 if there is an Y plane */
135
136 GetByteContext gb;
137 const uint8_t *buf;
138 int buf_size;
139
140 EXRChannel *channels;
141 int nb_channels;
142 int current_channel_offset;
143
144 EXRThreadData *thread_data;
145
146 const char *layer;
147
148 enum AVColorTransferCharacteristic apply_trc_type;
149 float gamma;
150 uint16_t gamma_table[65536];
151} EXRContext;
152
153/* -15 stored using a single precision bias of 127 */
154#define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
155
156/* max exponent value in single precision that will be converted
157 * to Inf or Nan when stored as a half-float */
158#define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
159
160/* 255 is the max exponent biased value */
161#define FLOAT_MAX_BIASED_EXP (0xFF << 23)
162
163#define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
164
165/**
166 * Convert a half float as a uint16_t into a full float.
167 *
168 * @param hf half float as uint16_t
169 *
170 * @return float value
171 */
172static union av_intfloat32 exr_half2float(uint16_t hf)
173{
174 unsigned int sign = (unsigned int) (hf >> 15);
175 unsigned int mantissa = (unsigned int) (hf & ((1 << 10) - 1));
176 unsigned int exp = (unsigned int) (hf & HALF_FLOAT_MAX_BIASED_EXP);
177 union av_intfloat32 f;
178
179 if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
180 // we have a half-float NaN or Inf
181 // half-float NaNs will be converted to a single precision NaN
182 // half-float Infs will be converted to a single precision Inf
183 exp = FLOAT_MAX_BIASED_EXP;
184 if (mantissa)
185 mantissa = (1 << 23) - 1; // set all bits to indicate a NaN
186 } else if (exp == 0x0) {
187 // convert half-float zero/denorm to single precision value
188 if (mantissa) {
189 mantissa <<= 1;
190 exp = HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
191 // check for leading 1 in denorm mantissa
192 while ((mantissa & (1 << 10))) {
193 // for every leading 0, decrement single precision exponent by 1
194 // and shift half-float mantissa value to the left
195 mantissa <<= 1;
196 exp -= (1 << 23);
197 }
198 // clamp the mantissa to 10 bits
199 mantissa &= ((1 << 10) - 1);
200 // shift left to generate single-precision mantissa of 23 bits
201 mantissa <<= 13;
202 }
203 } else {
204 // shift left to generate single-precision mantissa of 23 bits
205 mantissa <<= 13;
206 // generate single precision biased exponent value
207 exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
208 }
209
210 f.i = (sign << 31) | exp | mantissa;
211
212 return f;
213}
214
215
216/**
217 * Convert from 32-bit float as uint32_t to uint16_t.
218 *
219 * @param v 32-bit float
220 *
221 * @return normalized 16-bit unsigned int
222 */
223static inline uint16_t exr_flt2uint(uint32_t v)
224{
225 unsigned int exp = v >> 23;
226 // "HACK": negative values result in exp< 0, so clipping them to 0
227 // is also handled by this condition, avoids explicit check for sign bit.
228 if (exp <= 127 + 7 - 24) // we would shift out all bits anyway
229 return 0;
230 if (exp >= 127)
231 return 0xffff;
232 v &= 0x007fffff;
233 return (v + (1 << 23)) >> (127 + 7 - exp);
234}
235
236/**
237 * Convert from 16-bit float as uint16_t to uint16_t.
238 *
239 * @param v 16-bit float
240 *
241 * @return normalized 16-bit unsigned int
242 */
243static inline uint16_t exr_halflt2uint(uint16_t v)
244{
245 unsigned exp = 14 - (v >> 10);
246 if (exp >= 14) {
247 if (exp == 14)
248 return (v >> 9) & 1;
249 else
250 return (v & 0x8000) ? 0 : 0xffff;
251 }
252 v <<= 6;
253 return (v + (1 << 16)) >> (exp + 1);
254}
255
256static void predictor(uint8_t *src, int size)
257{
258 uint8_t *t = src + 1;
259 uint8_t *stop = src + size;
260
261 while (t < stop) {
262 int d = (int) t[-1] + (int) t[0] - 128;
263 t[0] = d;
264 ++t;
265 }
266}
267
268static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
269{
270 const int8_t *t1 = src;
271 const int8_t *t2 = src + (size + 1) / 2;
272 int8_t *s = dst;
273 int8_t *stop = s + size;
274
275 while (1) {
276 if (s < stop)
277 *(s++) = *(t1++);
278 else
279 break;
280
281 if (s < stop)
282 *(s++) = *(t2++);
283 else
284 break;
285 }
286}
287
288static int zip_uncompress(const uint8_t *src, int compressed_size,
289 int uncompressed_size, EXRThreadData *td)
290{
291 unsigned long dest_len = uncompressed_size;
292
293 if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
294 dest_len != uncompressed_size)
295 return AVERROR_INVALIDDATA;
296
297 predictor(td->tmp, uncompressed_size);
298 reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
299
300 return 0;
301}
302
303static int rle_uncompress(const uint8_t *src, int compressed_size,
304 int uncompressed_size, EXRThreadData *td)
305{
306 uint8_t *d = td->tmp;
307 const int8_t *s = src;
308 int ssize = compressed_size;
309 int dsize = uncompressed_size;
310 uint8_t *dend = d + dsize;
311 int count;
312
313 while (ssize > 0) {
314 count = *s++;
315
316 if (count < 0) {
317 count = -count;
318
319 if ((dsize -= count) < 0 ||
320 (ssize -= count + 1) < 0)
321 return AVERROR_INVALIDDATA;
322
323 while (count--)
324 *d++ = *s++;
325 } else {
326 count++;
327
328 if ((dsize -= count) < 0 ||
329 (ssize -= 2) < 0)
330 return AVERROR_INVALIDDATA;
331
332 while (count--)
333 *d++ = *s;
334
335 s++;
336 }
337 }
338
339 if (dend != d)
340 return AVERROR_INVALIDDATA;
341
342 predictor(td->tmp, uncompressed_size);
343 reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
344
345 return 0;
346}
347
348#define USHORT_RANGE (1 << 16)
349#define BITMAP_SIZE (1 << 13)
350
351static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
352{
353 int i, k = 0;
354
355 for (i = 0; i < USHORT_RANGE; i++)
356 if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
357 lut[k++] = i;
358
359 i = k - 1;
360
361 memset(lut + k, 0, (USHORT_RANGE - k) * 2);
362
363 return i;
364}
365
366static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
367{
368 int i;
369
370 for (i = 0; i < dsize; ++i)
371 dst[i] = lut[dst[i]];
372}
373
374#define HUF_ENCBITS 16 // literal (value) bit length
375#define HUF_DECBITS 14 // decoding bit size (>= 8)
376
377#define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
378#define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
379#define HUF_DECMASK (HUF_DECSIZE - 1)
380
381typedef struct HufDec {
382 int len;
383 int lit;
384 int *p;
385} HufDec;
386
387static void huf_canonical_code_table(uint64_t *hcode)
388{
389 uint64_t c, n[59] = { 0 };
390 int i;
391
392 for (i = 0; i < HUF_ENCSIZE; ++i)
393 n[hcode[i]] += 1;
394
395 c = 0;
396 for (i = 58; i > 0; --i) {
397 uint64_t nc = ((c + n[i]) >> 1);
398 n[i] = c;
399 c = nc;
400 }
401
402 for (i = 0; i < HUF_ENCSIZE; ++i) {
403 int l = hcode[i];
404
405 if (l > 0)
406 hcode[i] = l | (n[l]++ << 6);
407 }
408}
409
410#define SHORT_ZEROCODE_RUN 59
411#define LONG_ZEROCODE_RUN 63
412#define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
413#define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
414
415static int huf_unpack_enc_table(GetByteContext *gb,
416 int32_t im, int32_t iM, uint64_t *hcode)
417{
418 GetBitContext gbit;
419 int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
420 if (ret < 0)
421 return ret;
422
423 for (; im <= iM; im++) {
424 uint64_t l = hcode[im] = get_bits(&gbit, 6);
425
426 if (l == LONG_ZEROCODE_RUN) {
427 int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
428
429 if (im + zerun > iM + 1)
430 return AVERROR_INVALIDDATA;
431
432 while (zerun--)
433 hcode[im++] = 0;
434
435 im--;
436 } else if (l >= SHORT_ZEROCODE_RUN) {
437 int zerun = l - SHORT_ZEROCODE_RUN + 2;
438
439 if (im + zerun > iM + 1)
440 return AVERROR_INVALIDDATA;
441
442 while (zerun--)
443 hcode[im++] = 0;
444
445 im--;
446 }
447 }
448
449 bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
450 huf_canonical_code_table(hcode);
451
452 return 0;
453}
454
455static int huf_build_dec_table(const uint64_t *hcode, int im,
456 int iM, HufDec *hdecod)
457{
458 for (; im <= iM; im++) {
459 uint64_t c = hcode[im] >> 6;
460 int i, l = hcode[im] & 63;
461
462 if (c >> l)
463 return AVERROR_INVALIDDATA;
464
465 if (l > HUF_DECBITS) {
466 HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
467 if (pl->len)
468 return AVERROR_INVALIDDATA;
469
470 pl->lit++;
471
472 pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
473 if (!pl->p)
474 return AVERROR(ENOMEM);
475
476 pl->p[pl->lit - 1] = im;
477 } else if (l) {
478 HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
479
480 for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
481 if (pl->len || pl->p)
482 return AVERROR_INVALIDDATA;
483 pl->len = l;
484 pl->lit = im;
485 }
486 }
487 }
488
489 return 0;
490}
491
492#define get_char(c, lc, gb) \
493{ \
494 c = (c << 8) | bytestream2_get_byte(gb); \
495 lc += 8; \
496}
497
498#define get_code(po, rlc, c, lc, gb, out, oe, outb) \
499{ \
500 if (po == rlc) { \
501 if (lc < 8) \
502 get_char(c, lc, gb); \
503 lc -= 8; \
504 \
505 cs = c >> lc; \
506 \
507 if (out + cs > oe || out == outb) \
508 return AVERROR_INVALIDDATA; \
509 \
510 s = out[-1]; \
511 \
512 while (cs-- > 0) \
513 *out++ = s; \
514 } else if (out < oe) { \
515 *out++ = po; \
516 } else { \
517 return AVERROR_INVALIDDATA; \
518 } \
519}
520
521static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
522 GetByteContext *gb, int nbits,
523 int rlc, int no, uint16_t *out)
524{
525 uint64_t c = 0;
526 uint16_t *outb = out;
527 uint16_t *oe = out + no;
528 const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
529 uint8_t cs;
530 uint16_t s;
531 int i, lc = 0;
532
533 while (gb->buffer < ie) {
534 get_char(c, lc, gb);
535
536 while (lc >= HUF_DECBITS) {
537 const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
538
539 if (pl.len) {
540 lc -= pl.len;
541 get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
542 } else {
543 int j;
544
545 if (!pl.p)
546 return AVERROR_INVALIDDATA;
547
548 for (j = 0; j < pl.lit; j++) {
549 int l = hcode[pl.p[j]] & 63;
550
551 while (lc < l && bytestream2_get_bytes_left(gb) > 0)
552 get_char(c, lc, gb);
553
554 if (lc >= l) {
555 if ((hcode[pl.p[j]] >> 6) ==
556 ((c >> (lc - l)) & ((1LL << l) - 1))) {
557 lc -= l;
558 get_code(pl.p[j], rlc, c, lc, gb, out, oe, outb);
559 break;
560 }
561 }
562 }
563
564 if (j == pl.lit)
565 return AVERROR_INVALIDDATA;
566 }
567 }
568 }
569
570 i = (8 - nbits) & 7;
571 c >>= i;
572 lc -= i;
573
574 while (lc > 0) {
575 const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
576
577 if (pl.len) {
578 lc -= pl.len;
579 get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
580 } else {
581 return AVERROR_INVALIDDATA;
582 }
583 }
584
585 if (out - outb != no)
586 return AVERROR_INVALIDDATA;
587 return 0;
588}
589
590static int huf_uncompress(GetByteContext *gb,
591 uint16_t *dst, int dst_size)
592{
593 int32_t src_size, im, iM;
594 uint32_t nBits;
595 uint64_t *freq;
596 HufDec *hdec;
597 int ret, i;
598
599 src_size = bytestream2_get_le32(gb);
600 im = bytestream2_get_le32(gb);
601 iM = bytestream2_get_le32(gb);
602 bytestream2_skip(gb, 4);
603 nBits = bytestream2_get_le32(gb);
604 if (im < 0 || im >= HUF_ENCSIZE ||
605 iM < 0 || iM >= HUF_ENCSIZE ||
606 src_size < 0)
607 return AVERROR_INVALIDDATA;
608
609 bytestream2_skip(gb, 4);
610
611 freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
612 hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
613 if (!freq || !hdec) {
614 ret = AVERROR(ENOMEM);
615 goto fail;
616 }
617
618 if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
619 goto fail;
620
621 if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
622 ret = AVERROR_INVALIDDATA;
623 goto fail;
624 }
625
626 if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
627 goto fail;
628 ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
629
630fail:
631 for (i = 0; i < HUF_DECSIZE; i++)
632 if (hdec)
633 av_freep(&hdec[i].p);
634
635 av_free(freq);
636 av_free(hdec);
637
638 return ret;
639}
640
641static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
642{
643 int16_t ls = l;
644 int16_t hs = h;
645 int hi = hs;
646 int ai = ls + (hi & 1) + (hi >> 1);
647 int16_t as = ai;
648 int16_t bs = ai - hi;
649
650 *a = as;
651 *b = bs;
652}
653
654#define NBITS 16
655#define A_OFFSET (1 << (NBITS - 1))
656#define MOD_MASK ((1 << NBITS) - 1)
657
658static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
659{
660 int m = l;
661 int d = h;
662 int bb = (m - (d >> 1)) & MOD_MASK;
663 int aa = (d + bb - A_OFFSET) & MOD_MASK;
664 *b = bb;
665 *a = aa;
666}
667
668static void wav_decode(uint16_t *in, int nx, int ox,
669 int ny, int oy, uint16_t mx)
670{
671 int w14 = (mx < (1 << 14));
672 int n = (nx > ny) ? ny : nx;
673 int p = 1;
674 int p2;
675
676 while (p <= n)
677 p <<= 1;
678
679 p >>= 1;
680 p2 = p;
681 p >>= 1;
682
683 while (p >= 1) {
684 uint16_t *py = in;
685 uint16_t *ey = in + oy * (ny - p2);
686 uint16_t i00, i01, i10, i11;
687 int oy1 = oy * p;
688 int oy2 = oy * p2;
689 int ox1 = ox * p;
690 int ox2 = ox * p2;
691
692 for (; py <= ey; py += oy2) {
693 uint16_t *px = py;
694 uint16_t *ex = py + ox * (nx - p2);
695
696 for (; px <= ex; px += ox2) {
697 uint16_t *p01 = px + ox1;
698 uint16_t *p10 = px + oy1;
699 uint16_t *p11 = p10 + ox1;
700
701 if (w14) {
702 wdec14(*px, *p10, &i00, &i10);
703 wdec14(*p01, *p11, &i01, &i11);
704 wdec14(i00, i01, px, p01);
705 wdec14(i10, i11, p10, p11);
706 } else {
707 wdec16(*px, *p10, &i00, &i10);
708 wdec16(*p01, *p11, &i01, &i11);
709 wdec16(i00, i01, px, p01);
710 wdec16(i10, i11, p10, p11);
711 }
712 }
713
714 if (nx & p) {
715 uint16_t *p10 = px + oy1;
716
717 if (w14)
718 wdec14(*px, *p10, &i00, p10);
719 else
720 wdec16(*px, *p10, &i00, p10);
721
722 *px = i00;
723 }
724 }
725
726 if (ny & p) {
727 uint16_t *px = py;
728 uint16_t *ex = py + ox * (nx - p2);
729
730 for (; px <= ex; px += ox2) {
731 uint16_t *p01 = px + ox1;
732
733 if (w14)
734 wdec14(*px, *p01, &i00, p01);
735 else
736 wdec16(*px, *p01, &i00, p01);
737
738 *px = i00;
739 }
740 }
741
742 p2 = p;
743 p >>= 1;
744 }
745}
746
747static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
748 int dsize, EXRThreadData *td)
749{
750 GetByteContext gb;
751 uint16_t maxval, min_non_zero, max_non_zero;
752 uint16_t *ptr;
753 uint16_t *tmp = (uint16_t *)td->tmp;
754 uint8_t *out;
755 int ret, i, j;
756 int pixel_half_size;/* 1 for half, 2 for float and uint32 */
757 EXRChannel *channel;
758 int tmp_offset;
759
760 if (!td->bitmap)
761 td->bitmap = av_malloc(BITMAP_SIZE);
762 if (!td->lut)
763 td->lut = av_malloc(1 << 17);
764 if (!td->bitmap || !td->lut) {
765 av_freep(&td->bitmap);
766 av_freep(&td->lut);
767 return AVERROR(ENOMEM);
768 }
769
770 bytestream2_init(&gb, src, ssize);
771 min_non_zero = bytestream2_get_le16(&gb);
772 max_non_zero = bytestream2_get_le16(&gb);
773
774 if (max_non_zero >= BITMAP_SIZE)
775 return AVERROR_INVALIDDATA;
776
777 memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
778 if (min_non_zero <= max_non_zero)
779 bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
780 max_non_zero - min_non_zero + 1);
781 memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1);
782
783 maxval = reverse_lut(td->bitmap, td->lut);
784
785 ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
786 if (ret)
787 return ret;
788
789 ptr = tmp;
790 for (i = 0; i < s->nb_channels; i++) {
791 channel = &s->channels[i];
792
793 if (channel->pixel_type == EXR_HALF)
794 pixel_half_size = 1;
795 else
796 pixel_half_size = 2;
797
798 for (j = 0; j < pixel_half_size; j++)
799 wav_decode(ptr + j, td->xsize, pixel_half_size, td->ysize,
800 td->xsize * pixel_half_size, maxval);
801 ptr += td->xsize * td->ysize * pixel_half_size;
802 }
803
804 apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
805
806 out = td->uncompressed_data;
807 for (i = 0; i < td->ysize; i++) {
808 tmp_offset = 0;
809 for (j = 0; j < s->nb_channels; j++) {
810 uint16_t *in;
811 EXRChannel *channel = &s->channels[j];
812 if (channel->pixel_type == EXR_HALF)
813 pixel_half_size = 1;
814 else
815 pixel_half_size = 2;
816
817 in = tmp + tmp_offset * td->xsize * td->ysize + i * td->xsize * pixel_half_size;
818 tmp_offset += pixel_half_size;
819 memcpy(out, in, td->xsize * 2 * pixel_half_size);
820 out += td->xsize * 2 * pixel_half_size;
821 }
822 }
823
824 return 0;
825}
826
827static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
828 int compressed_size, int uncompressed_size,
829 EXRThreadData *td)
830{
831 unsigned long dest_len, expected_len = 0;
832 const uint8_t *in = td->tmp;
833 uint8_t *out;
834 int c, i, j;
835
836 for (i = 0; i < s->nb_channels; i++) {
837 if (s->channels[i].pixel_type == EXR_FLOAT) {
838 expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */
839 } else if (s->channels[i].pixel_type == EXR_HALF) {
840 expected_len += (td->xsize * td->ysize * 2);
841 } else {//UINT 32
842 expected_len += (td->xsize * td->ysize * 4);
843 }
844 }
845
846 dest_len = expected_len;
847
848 if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) {
849 return AVERROR_INVALIDDATA;
850 } else if (dest_len != expected_len) {
851 return AVERROR_INVALIDDATA;
852 }
853
854 out = td->uncompressed_data;
855 for (i = 0; i < td->ysize; i++)
856 for (c = 0; c < s->nb_channels; c++) {
857 EXRChannel *channel = &s->channels[c];
858 const uint8_t *ptr[4];
859 uint32_t pixel = 0;
860
861 switch (channel->pixel_type) {
862 case EXR_FLOAT:
863 ptr[0] = in;
864 ptr[1] = ptr[0] + td->xsize;
865 ptr[2] = ptr[1] + td->xsize;
866 in = ptr[2] + td->xsize;
867
868 for (j = 0; j < td->xsize; ++j) {
869 uint32_t diff = (*(ptr[0]++) << 24) |
870 (*(ptr[1]++) << 16) |
871 (*(ptr[2]++) << 8);
872 pixel += diff;
873 bytestream_put_le32(&out, pixel);
874 }
875 break;
876 case EXR_HALF:
877 ptr[0] = in;
878 ptr[1] = ptr[0] + td->xsize;
879 in = ptr[1] + td->xsize;
880 for (j = 0; j < td->xsize; j++) {
881 uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
882
883 pixel += diff;
884 bytestream_put_le16(&out, pixel);
885 }
886 break;
887 case EXR_UINT:
888 ptr[0] = in;
889 ptr[1] = ptr[0] + s->xdelta;
890 ptr[2] = ptr[1] + s->xdelta;
891 ptr[3] = ptr[2] + s->xdelta;
892 in = ptr[3] + s->xdelta;
893
894 for (j = 0; j < s->xdelta; ++j) {
895 uint32_t diff = (*(ptr[0]++) << 24) |
896 (*(ptr[1]++) << 16) |
897 (*(ptr[2]++) << 8 ) |
898 (*(ptr[3]++));
899 pixel += diff;
900 bytestream_put_le32(&out, pixel);
901 }
902 break;
903 default:
904 return AVERROR_INVALIDDATA;
905 }
906 }
907
908 return 0;
909}
910
911static void unpack_14(const uint8_t b[14], uint16_t s[16])
912{
913 unsigned short shift = (b[ 2] >> 2);
914 unsigned short bias = (0x20 << shift);
915 int i;
916
917 s[ 0] = (b[0] << 8) | b[1];
918
919 s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias;
920 s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias;
921 s[12] = s[ 8] + ((b[ 4] & 0x3f) << shift) - bias;
922
923 s[ 1] = s[ 0] + ((b[ 5] >> 2) << shift) - bias;
924 s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias;
925 s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias;
926 s[13] = s[12] + ((b[ 7] & 0x3f) << shift) - bias;
927
928 s[ 2] = s[ 1] + ((b[ 8] >> 2) << shift) - bias;
929 s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias;
930 s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias;
931 s[14] = s[13] + ((b[10] & 0x3f) << shift) - bias;
932
933 s[ 3] = s[ 2] + ((b[11] >> 2) << shift) - bias;
934 s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias;
935 s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias;
936 s[15] = s[14] + ((b[13] & 0x3f) << shift) - bias;
937
938 for (i = 0; i < 16; ++i) {
939 if (s[i] & 0x8000)
940 s[i] &= 0x7fff;
941 else
942 s[i] = ~s[i];
943 }
944}
945
946static void unpack_3(const uint8_t b[3], uint16_t s[16])
947{
948 int i;
949
950 s[0] = (b[0] << 8) | b[1];
951
952 if (s[0] & 0x8000)
953 s[0] &= 0x7fff;
954 else
955 s[0] = ~s[0];
956
957 for (i = 1; i < 16; i++)
958 s[i] = s[0];
959}
960
961
962static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
963 int uncompressed_size, EXRThreadData *td) {
964 const int8_t *sr = src;
965 int stay_to_uncompress = compressed_size;
966 int nb_b44_block_w, nb_b44_block_h;
967 int index_tl_x, index_tl_y, index_out, index_tmp;
968 uint16_t tmp_buffer[16]; /* B44 use 4x4 half float pixel */
969 int c, iY, iX, y, x;
970 int target_channel_offset = 0;
971
972 /* calc B44 block count */
973 nb_b44_block_w = td->xsize / 4;
974 if ((td->xsize % 4) != 0)
975 nb_b44_block_w++;
976
977 nb_b44_block_h = td->ysize / 4;
978 if ((td->ysize % 4) != 0)
979 nb_b44_block_h++;
980
981 for (c = 0; c < s->nb_channels; c++) {
982 if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */
983 for (iY = 0; iY < nb_b44_block_h; iY++) {
984 for (iX = 0; iX < nb_b44_block_w; iX++) {/* For each B44 block */
985 if (stay_to_uncompress < 3) {
986 av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stay_to_uncompress);
987 return AVERROR_INVALIDDATA;
988 }
989
990 if (src[compressed_size - stay_to_uncompress + 2] == 0xfc) { /* B44A block */
991 unpack_3(sr, tmp_buffer);
992 sr += 3;
993 stay_to_uncompress -= 3;
994 } else {/* B44 Block */
995 if (stay_to_uncompress < 14) {
996 av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stay_to_uncompress);
997 return AVERROR_INVALIDDATA;
998 }
999 unpack_14(sr, tmp_buffer);
1000 sr += 14;
1001 stay_to_uncompress -= 14;
1002 }
1003
1004 /* copy data to uncompress buffer (B44 block can exceed target resolution)*/
1005 index_tl_x = iX * 4;
1006 index_tl_y = iY * 4;
1007
1008 for (y = index_tl_y; y < FFMIN(index_tl_y + 4, td->ysize); y++) {
1009 for (x = index_tl_x; x < FFMIN(index_tl_x + 4, td->xsize); x++) {
1010 index_out = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x;
1011 index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
1012 td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
1013 td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
1014 }
1015 }
1016 }
1017 }
1018 target_channel_offset += 2;
1019 } else {/* Float or UINT 32 channel */
1020 if (stay_to_uncompress < td->ysize * td->xsize * 4) {
1021 av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stay_to_uncompress);
1022 return AVERROR_INVALIDDATA;
1023 }
1024
1025 for (y = 0; y < td->ysize; y++) {
1026 index_out = target_channel_offset * td->xsize + y * td->channel_line_size;
1027 memcpy(&td->uncompressed_data[index_out], sr, td->xsize * 4);
1028 sr += td->xsize * 4;
1029 }
1030 target_channel_offset += 4;
1031
1032 stay_to_uncompress -= td->ysize * td->xsize * 4;
1033 }
1034 }
1035
1036 return 0;
1037}
1038
1039static int decode_block(AVCodecContext *avctx, void *tdata,
1040 int jobnr, int threadnr)
1041{
1042 EXRContext *s = avctx->priv_data;
1043 AVFrame *const p = s->picture;
1044 EXRThreadData *td = &s->thread_data[threadnr];
1045 const uint8_t *channel_buffer[4] = { 0 };
1046 const uint8_t *buf = s->buf;
1047 uint64_t line_offset, uncompressed_size;
1048 uint16_t *ptr_x;
1049 uint8_t *ptr;
1050 uint32_t data_size;
1051 uint64_t line, col = 0;
1052 uint64_t tileX, tileY, tileLevelX, tileLevelY;
1053 const uint8_t *src;
1054 int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components; /* nb pixel to add at the right of the datawindow */
1055 int bxmin = s->xmin * 2 * s->desc->nb_components; /* nb pixel to add at the left of the datawindow */
1056 int i, x, buf_size = s->buf_size;
1057 int c, rgb_channel_count;
1058 float one_gamma = 1.0f / s->gamma;
1059 avpriv_trc_function trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1060 int ret;
1061
1062 line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
1063
1064 if (s->is_tile) {
1065 if (line_offset > buf_size - 20)
1066 return AVERROR_INVALIDDATA;
1067
1068 src = buf + line_offset + 20;
1069
1070 tileX = AV_RL32(src - 20);
1071 tileY = AV_RL32(src - 16);
1072 tileLevelX = AV_RL32(src - 12);
1073 tileLevelY = AV_RL32(src - 8);
1074
1075 data_size = AV_RL32(src - 4);
1076 if (data_size <= 0 || data_size > buf_size)
1077 return AVERROR_INVALIDDATA;
1078
1079 if (tileLevelX || tileLevelY) { /* tile level, is not the full res level */
1080 avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile");
1081 return AVERROR_PATCHWELCOME;
1082 }
1083
1084 if (s->xmin || s->ymin) {
1085 avpriv_report_missing_feature(s->avctx, "Tiles with xmin/ymin");
1086 return AVERROR_PATCHWELCOME;
1087 }
1088
1089 line = s->tile_attr.ySize * tileY;
1090 col = s->tile_attr.xSize * tileX;
1091
1092 if (line < s->ymin || line > s->ymax ||
1093 col < s->xmin || col > s->xmax)
1094 return AVERROR_INVALIDDATA;
1095
1096 td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tileY * s->tile_attr.ySize);
1097 td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tileX * s->tile_attr.xSize);
1098
1099 if (col) { /* not the first tile of the line */
1100 bxmin = 0; /* doesn't add pixel at the left of the datawindow */
1101 }
1102
1103 if ((col + td->xsize) != s->xdelta)/* not the last tile of the line */
1104 axmax = 0; /* doesn't add pixel at the right of the datawindow */
1105
1106 td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1107 uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1108 } else {
1109 if (line_offset > buf_size - 8)
1110 return AVERROR_INVALIDDATA;
1111
1112 src = buf + line_offset + 8;
1113 line = AV_RL32(src - 8);
1114
1115 if (line < s->ymin || line > s->ymax)
1116 return AVERROR_INVALIDDATA;
1117
1118 data_size = AV_RL32(src - 4);
1119 if (data_size <= 0 || data_size > buf_size)
1120 return AVERROR_INVALIDDATA;
1121
1122 td->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */
1123 td->xsize = s->xdelta;
1124
1125 td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1126 uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1127
1128 if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
1129 line_offset > buf_size - uncompressed_size)) ||
1130 (s->compression != EXR_RAW && (data_size > uncompressed_size ||
1131 line_offset > buf_size - data_size))) {
1132 return AVERROR_INVALIDDATA;
1133 }
1134 }
1135
1136 if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */
1137 av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
1138 if (!td->tmp)
1139 return AVERROR(ENOMEM);
1140 }
1141
1142 if (data_size < uncompressed_size) {
1143 av_fast_padded_malloc(&td->uncompressed_data,
1144 &td->uncompressed_size, uncompressed_size);
1145
1146 if (!td->uncompressed_data)
1147 return AVERROR(ENOMEM);
1148
1149 ret = AVERROR_INVALIDDATA;
1150 switch (s->compression) {
1151 case EXR_ZIP1:
1152 case EXR_ZIP16:
1153 ret = zip_uncompress(src, data_size, uncompressed_size, td);
1154 break;
1155 case EXR_PIZ:
1156 ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
1157 break;
1158 case EXR_PXR24:
1159 ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
1160 break;
1161 case EXR_RLE:
1162 ret = rle_uncompress(src, data_size, uncompressed_size, td);
1163 break;
1164 case EXR_B44:
1165 case EXR_B44A:
1166 ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
1167 break;
1168 }
1169 if (ret < 0) {
1170 av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
1171 return ret;
1172 }
1173 src = td->uncompressed_data;
1174 }
1175
1176 if (!s->is_luma) {
1177 channel_buffer[0] = src + td->xsize * s->channel_offsets[0];
1178 channel_buffer[1] = src + td->xsize * s->channel_offsets[1];
1179 channel_buffer[2] = src + td->xsize * s->channel_offsets[2];
1180 rgb_channel_count = 3;
1181 } else { /* put y data in the first channel_buffer */
1182 channel_buffer[0] = src + td->xsize * s->channel_offsets[1];
1183 rgb_channel_count = 1;
1184 }
1185 if (s->channel_offsets[3] >= 0)
1186 channel_buffer[3] = src + td->xsize * s->channel_offsets[3];
1187
1188 ptr = p->data[0] + line * p->linesize[0] + (col * s->desc->nb_components * 2);
1189
1190 for (i = 0;
1191 i < td->ysize; i++, ptr += p->linesize[0]) {
1192
1193 const uint8_t * a;
1194 const uint8_t *rgb[3];
1195
1196 for (c = 0; c < rgb_channel_count; c++){
1197 rgb[c] = channel_buffer[c];
1198 }
1199
1200 if (channel_buffer[3])
1201 a = channel_buffer[3];
1202
1203 ptr_x = (uint16_t *) ptr;
1204
1205 // Zero out the start if xmin is not 0
1206 memset(ptr_x, 0, bxmin);
1207 ptr_x += s->xmin * s->desc->nb_components;
1208
1209 if (s->pixel_type == EXR_FLOAT) {
1210 // 32-bit
1211 if (trc_func) {
1212 for (x = 0; x < td->xsize; x++) {
1213 union av_intfloat32 t;
1214
1215 for (c = 0; c < rgb_channel_count; c++) {
1216 t.i = bytestream_get_le32(&rgb[c]);
1217 t.f = trc_func(t.f);
1218 *ptr_x++ = exr_flt2uint(t.i);
1219 }
1220 if (channel_buffer[3])
1221 *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
1222 }
1223 } else {
1224 for (x = 0; x < td->xsize; x++) {
1225 union av_intfloat32 t;
1226 int c;
1227
1228 for (c = 0; c < rgb_channel_count; c++) {
1229 t.i = bytestream_get_le32(&rgb[c]);
1230 if (t.f > 0.0f) /* avoid negative values */
1231 t.f = powf(t.f, one_gamma);
1232 *ptr_x++ = exr_flt2uint(t.i);
1233 }
1234
1235 if (channel_buffer[3])
1236 *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
1237 }
1238 }
1239 } else if (s->pixel_type == EXR_HALF) {
1240 // 16-bit
1241 for (x = 0; x < td->xsize; x++) {
1242 int c;
1243 for (c = 0; c < rgb_channel_count; c++) {
1244 *ptr_x++ = s->gamma_table[bytestream_get_le16(&rgb[c])];
1245 }
1246
1247 if (channel_buffer[3])
1248 *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
1249 }
1250 } else if (s->pixel_type == EXR_UINT) {
1251 for (x = 0; x < td->xsize; x++) {
1252 for (c = 0; c < rgb_channel_count; c++) {
1253 *ptr_x++ = bytestream_get_le32(&rgb[c]) >> 16;
1254 }
1255
1256 if (channel_buffer[3])
1257 *ptr_x++ = bytestream_get_le32(&a) >> 16;
1258 }
1259 }
1260
1261 // Zero out the end if xmax+1 is not w
1262 memset(ptr_x, 0, axmax);
1263
1264 channel_buffer[0] += td->channel_line_size;
1265 channel_buffer[1] += td->channel_line_size;
1266 channel_buffer[2] += td->channel_line_size;
1267 if (channel_buffer[3])
1268 channel_buffer[3] += td->channel_line_size;
1269 }
1270
1271 return 0;
1272}
1273
1274/**
1275 * Check if the variable name corresponds to its data type.
1276 *
1277 * @param s the EXRContext
1278 * @param value_name name of the variable to check
1279 * @param value_type type of the variable to check
1280 * @param minimum_length minimum length of the variable data
1281 *
1282 * @return bytes to read containing variable data
1283 * -1 if variable is not found
1284 * 0 if buffer ended prematurely
1285 */
1286static int check_header_variable(EXRContext *s,
1287 const char *value_name,
1288 const char *value_type,
1289 unsigned int minimum_length)
1290{
1291 int var_size = -1;
1292
1293 if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
1294 !strcmp(s->gb.buffer, value_name)) {
1295 // found value_name, jump to value_type (null terminated strings)
1296 s->gb.buffer += strlen(value_name) + 1;
1297 if (!strcmp(s->gb.buffer, value_type)) {
1298 s->gb.buffer += strlen(value_type) + 1;
1299 var_size = bytestream2_get_le32(&s->gb);
1300 // don't go read past boundaries
1301 if (var_size > bytestream2_get_bytes_left(&s->gb))
1302 var_size = 0;
1303 } else {
1304 // value_type not found, reset the buffer
1305 s->gb.buffer -= strlen(value_name) + 1;
1306 av_log(s->avctx, AV_LOG_WARNING,
1307 "Unknown data type %s for header variable %s.\n",
1308 value_type, value_name);
1309 }
1310 }
1311
1312 return var_size;
1313}
1314
1315static int decode_header(EXRContext *s, AVFrame *frame)
1316{
1317 AVDictionary *metadata = NULL;
1318 int magic_number, version, i, flags, sar = 0;
1319 int layer_match = 0;
1320
1321 s->current_channel_offset = 0;
1322 s->xmin = ~0;
1323 s->xmax = ~0;
1324 s->ymin = ~0;
1325 s->ymax = ~0;
1326 s->xdelta = ~0;
1327 s->ydelta = ~0;
1328 s->channel_offsets[0] = -1;
1329 s->channel_offsets[1] = -1;
1330 s->channel_offsets[2] = -1;
1331 s->channel_offsets[3] = -1;
1332 s->pixel_type = EXR_UNKNOWN;
1333 s->compression = EXR_UNKN;
1334 s->nb_channels = 0;
1335 s->w = 0;
1336 s->h = 0;
1337 s->tile_attr.xSize = -1;
1338 s->tile_attr.ySize = -1;
1339 s->is_tile = 0;
1340 s->is_luma = 0;
1341
1342 if (bytestream2_get_bytes_left(&s->gb) < 10) {
1343 av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1344 return AVERROR_INVALIDDATA;
1345 }
1346
1347 magic_number = bytestream2_get_le32(&s->gb);
1348 if (magic_number != 20000630) {
1349 /* As per documentation of OpenEXR, it is supposed to be
1350 * int 20000630 little-endian */
1351 av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1352 return AVERROR_INVALIDDATA;
1353 }
1354
1355 version = bytestream2_get_byte(&s->gb);
1356 if (version != 2) {
1357 avpriv_report_missing_feature(s->avctx, "Version %d", version);
1358 return AVERROR_PATCHWELCOME;
1359 }
1360
1361 flags = bytestream2_get_le24(&s->gb);
1362
1363 if (flags == 0x00)
1364 s->is_tile = 0;
1365 else if (flags & 0x02)
1366 s->is_tile = 1;
1367 else{
1368 avpriv_report_missing_feature(s->avctx, "flags %d", flags);
1369 return AVERROR_PATCHWELCOME;
1370 }
1371
1372 // Parse the header
1373 while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
1374 int var_size;
1375 if ((var_size = check_header_variable(s, "channels",
1376 "chlist", 38)) >= 0) {
1377 GetByteContext ch_gb;
1378 if (!var_size)
1379 return AVERROR_INVALIDDATA;
1380
1381 bytestream2_init(&ch_gb, s->gb.buffer, var_size);
1382
1383 while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1384 EXRChannel *channel;
1385 enum ExrPixelType current_pixel_type;
1386 int channel_index = -1;
1387 int xsub, ysub;
1388
1389 if (strcmp(s->layer, "") != 0) {
1390 if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1391 layer_match = 1;
1392 av_log(s->avctx, AV_LOG_INFO,
1393 "Channel match layer : %s.\n", ch_gb.buffer);
1394 ch_gb.buffer += strlen(s->layer);
1395 if (*ch_gb.buffer == '.')
1396 ch_gb.buffer++; /* skip dot if not given */
1397 } else {
1398 av_log(s->avctx, AV_LOG_INFO,
1399 "Channel doesn't match layer : %s.\n", ch_gb.buffer);
1400 }
1401 } else {
1402 layer_match = 1;
1403 }
1404
1405 if (layer_match) { /* only search channel if the layer match is valid */
1406 if (!strcmp(ch_gb.buffer, "R") ||
1407 !strcmp(ch_gb.buffer, "X") ||
1408 !strcmp(ch_gb.buffer, "U")) {
1409 channel_index = 0;
1410 s->is_luma = 0;
1411 } else if (!strcmp(ch_gb.buffer, "G") ||
1412 !strcmp(ch_gb.buffer, "V")) {
1413 channel_index = 1;
1414 s->is_luma = 0;
1415 } else if (!strcmp(ch_gb.buffer, "Y")) {
1416 channel_index = 1;
1417 s->is_luma = 1;
1418 } else if (!strcmp(ch_gb.buffer, "B") ||
1419 !strcmp(ch_gb.buffer, "Z") ||
1420 !strcmp(ch_gb.buffer, "W")){
1421 channel_index = 2;
1422 s->is_luma = 0;
1423 } else if (!strcmp(ch_gb.buffer, "A")) {
1424 channel_index = 3;
1425 } else {
1426 av_log(s->avctx, AV_LOG_WARNING,
1427 "Unsupported channel %.256s.\n", ch_gb.buffer);
1428 }
1429 }
1430
1431 /* skip until you get a 0 */
1432 while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1433 bytestream2_get_byte(&ch_gb))
1434 continue;
1435
1436 if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1437 av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1438 return AVERROR_INVALIDDATA;
1439 }
1440
1441 current_pixel_type = bytestream2_get_le32(&ch_gb);
1442 if (current_pixel_type >= EXR_UNKNOWN) {
1443 avpriv_report_missing_feature(s->avctx, "Pixel type %d",
1444 current_pixel_type);
1445 return AVERROR_PATCHWELCOME;
1446 }
1447
1448 bytestream2_skip(&ch_gb, 4);
1449 xsub = bytestream2_get_le32(&ch_gb);
1450 ysub = bytestream2_get_le32(&ch_gb);
1451
1452 if (xsub != 1 || ysub != 1) {
1453 avpriv_report_missing_feature(s->avctx,
1454 "Subsampling %dx%d",
1455 xsub, ysub);
1456 return AVERROR_PATCHWELCOME;
1457 }
1458
1459 if (channel_index >= 0 && s->channel_offsets[channel_index] == -1) { /* channel has not been previously assigned */
1460 if (s->pixel_type != EXR_UNKNOWN &&
1461 s->pixel_type != current_pixel_type) {
1462 av_log(s->avctx, AV_LOG_ERROR,
1463 "RGB channels not of the same depth.\n");
1464 return AVERROR_INVALIDDATA;
1465 }
1466 s->pixel_type = current_pixel_type;
1467 s->channel_offsets[channel_index] = s->current_channel_offset;
1468 }
1469
1470 s->channels = av_realloc(s->channels,
1471 ++s->nb_channels * sizeof(EXRChannel));
1472 if (!s->channels)
1473 return AVERROR(ENOMEM);
1474 channel = &s->channels[s->nb_channels - 1];
1475 channel->pixel_type = current_pixel_type;
1476 channel->xsub = xsub;
1477 channel->ysub = ysub;
1478
1479 if (current_pixel_type == EXR_HALF) {
1480 s->current_channel_offset += 2;
1481 } else {/* Float or UINT32 */
1482 s->current_channel_offset += 4;
1483 }
1484 }
1485
1486 /* Check if all channels are set with an offset or if the channels
1487 * are causing an overflow */
1488 if (!s->is_luma){/* if we expected to have at least 3 channels */
1489 if (FFMIN3(s->channel_offsets[0],
1490 s->channel_offsets[1],
1491 s->channel_offsets[2]) < 0) {
1492 if (s->channel_offsets[0] < 0)
1493 av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1494 if (s->channel_offsets[1] < 0)
1495 av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1496 if (s->channel_offsets[2] < 0)
1497 av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1498 return AVERROR_INVALIDDATA;
1499 }
1500 }
1501
1502 // skip one last byte and update main gb
1503 s->gb.buffer = ch_gb.buffer + 1;
1504 continue;
1505 } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1506 31)) >= 0) {
1507 if (!var_size)
1508 return AVERROR_INVALIDDATA;
1509
1510 s->xmin = bytestream2_get_le32(&s->gb);
1511 s->ymin = bytestream2_get_le32(&s->gb);
1512 s->xmax = bytestream2_get_le32(&s->gb);
1513 s->ymax = bytestream2_get_le32(&s->gb);
1514 s->xdelta = (s->xmax - s->xmin) + 1;
1515 s->ydelta = (s->ymax - s->ymin) + 1;
1516
1517 continue;
1518 } else if ((var_size = check_header_variable(s, "displayWindow",
1519 "box2i", 34)) >= 0) {
1520 if (!var_size)
1521 return AVERROR_INVALIDDATA;
1522
1523 bytestream2_skip(&s->gb, 8);
1524 s->w = bytestream2_get_le32(&s->gb) + 1;
1525 s->h = bytestream2_get_le32(&s->gb) + 1;
1526
1527 continue;
1528 } else if ((var_size = check_header_variable(s, "lineOrder",
1529 "lineOrder", 25)) >= 0) {
1530 int line_order;
1531 if (!var_size)
1532 return AVERROR_INVALIDDATA;
1533
1534 line_order = bytestream2_get_byte(&s->gb);
1535 av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1536 if (line_order > 2) {
1537 av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1538 return AVERROR_INVALIDDATA;
1539 }
1540
1541 continue;
1542 } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1543 "float", 31)) >= 0) {
1544 if (!var_size)
1545 return AVERROR_INVALIDDATA;
1546
1547 sar = bytestream2_get_le32(&s->gb);
1548
1549 continue;
1550 } else if ((var_size = check_header_variable(s, "compression",
1551 "compression", 29)) >= 0) {
1552 if (!var_size)
1553 return AVERROR_INVALIDDATA;
1554
1555 if (s->compression == EXR_UNKN)
1556 s->compression = bytestream2_get_byte(&s->gb);
1557 else
1558 av_log(s->avctx, AV_LOG_WARNING,
1559 "Found more than one compression attribute.\n");
1560
1561 continue;
1562 } else if ((var_size = check_header_variable(s, "tiles",
1563 "tiledesc", 22)) >= 0) {
1564 char tileLevel;
1565
1566 if (!s->is_tile)
1567 av_log(s->avctx, AV_LOG_WARNING,
1568 "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1569
1570 s->tile_attr.xSize = bytestream2_get_le32(&s->gb);
1571 s->tile_attr.ySize = bytestream2_get_le32(&s->gb);
1572
1573 tileLevel = bytestream2_get_byte(&s->gb);
1574 s->tile_attr.level_mode = tileLevel & 0x0f;
1575 s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1576
1577 if (s->tile_attr.level_mode >= EXR_TILE_LEVEL_UNKNOWN){
1578 avpriv_report_missing_feature(s->avctx, "Tile level mode %d",
1579 s->tile_attr.level_mode);
1580 return AVERROR_PATCHWELCOME;
1581 }
1582
1583 if (s->tile_attr.level_round >= EXR_TILE_ROUND_UNKNOWN) {
1584 avpriv_report_missing_feature(s->avctx, "Tile level round %d",
1585 s->tile_attr.level_round);
1586 return AVERROR_PATCHWELCOME;
1587 }
1588
1589 continue;
1590 } else if ((var_size = check_header_variable(s, "writer",
1591 "string", 1)) >= 0) {
1592 uint8_t key[256] = { 0 };
1593
1594 bytestream2_get_buffer(&s->gb, key, FFMIN(sizeof(key) - 1, var_size));
1595 av_dict_set(&metadata, "writer", key, 0);
1596
1597 continue;
1598 }
1599
1600 // Check if there are enough bytes for a header
1601 if (bytestream2_get_bytes_left(&s->gb) <= 9) {
1602 av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1603 return AVERROR_INVALIDDATA;
1604 }
1605
1606 // Process unknown variables
1607 for (i = 0; i < 2; i++) // value_name and value_type
1608 while (bytestream2_get_byte(&s->gb) != 0);
1609
1610 // Skip variable length
1611 bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
1612 }
1613
1614 ff_set_sar(s->avctx, av_d2q(av_int2float(sar), 255));
1615
1616 if (s->compression == EXR_UNKN) {
1617 av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1618 return AVERROR_INVALIDDATA;
1619 }
1620
1621 if (s->is_tile) {
1622 if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) {
1623 av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n");
1624 return AVERROR_INVALIDDATA;
1625 }
1626 }
1627
1628 if (bytestream2_get_bytes_left(&s->gb) <= 0) {
1629 av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
1630 return AVERROR_INVALIDDATA;
1631 }
1632
1633 av_frame_set_metadata(frame, metadata);
1634
1635 // aaand we are done
1636 bytestream2_skip(&s->gb, 1);
1637 return 0;
1638}
1639
1640static int decode_frame(AVCodecContext *avctx, void *data,
1641 int *got_frame, AVPacket *avpkt)
1642{
1643 EXRContext *s = avctx->priv_data;
1644 ThreadFrame frame = { .f = data };
1645 AVFrame *picture = data;
1646 uint8_t *ptr;
1647
1648 int y, ret;
1649 int out_line_size;
1650 int nb_blocks; /* nb scanline or nb tile */
1651 uint64_t *table; /* scanline offset table */
1652 uint8_t *marker; /* used to recreate invalid scanline offset table */
1653 uint8_t *head;
1654
1655 bytestream2_init(&s->gb, avpkt->data, avpkt->size);
1656
1657 if ((ret = decode_header(s, picture)) < 0)
1658 return ret;
1659
1660 switch (s->pixel_type) {
1661 case EXR_FLOAT:
1662 case EXR_HALF:
1663 case EXR_UINT:
1664 if (s->channel_offsets[3] >= 0) {
1665 if (!s->is_luma) {
1666 avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1667 } else {
1668 avctx->pix_fmt = AV_PIX_FMT_YA16;
1669 }
1670 } else {
1671 if (!s->is_luma) {
1672 avctx->pix_fmt = AV_PIX_FMT_RGB48;
1673 } else {
1674 avctx->pix_fmt = AV_PIX_FMT_GRAY16;
1675 }
1676 }
1677 break;
1678 default:
1679 av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
1680 return AVERROR_INVALIDDATA;
1681 }
1682
1683 if (s->apply_trc_type != AVCOL_TRC_UNSPECIFIED)
1684 avctx->color_trc = s->apply_trc_type;
1685
1686 switch (s->compression) {
1687 case EXR_RAW:
1688 case EXR_RLE:
1689 case EXR_ZIP1:
1690 s->scan_lines_per_block = 1;
1691 break;
1692 case EXR_PXR24:
1693 case EXR_ZIP16:
1694 s->scan_lines_per_block = 16;
1695 break;
1696 case EXR_PIZ:
1697 case EXR_B44:
1698 case EXR_B44A:
1699 s->scan_lines_per_block = 32;
1700 break;
1701 default:
1702 avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
1703 return AVERROR_PATCHWELCOME;
1704 }
1705
1706 /* Verify the xmin, xmax, ymin, ymax and xdelta before setting
1707 * the actual image size. */
1708 if (s->xmin > s->xmax ||
1709 s->ymin > s->ymax ||
1710 s->xdelta != s->xmax - s->xmin + 1 ||
1711 s->xmax >= s->w ||
1712 s->ymax >= s->h) {
1713 av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
1714 return AVERROR_INVALIDDATA;
1715 }
1716
1717 if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
1718 return ret;
1719
1720 s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
1721 if (!s->desc)
1722 return AVERROR_INVALIDDATA;
1723 out_line_size = avctx->width * 2 * s->desc->nb_components;
1724
1725 if (s->is_tile) {
1726 nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) *
1727 ((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize);
1728 } else { /* scanline */
1729 nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
1730 s->scan_lines_per_block;
1731 }
1732
1733 if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1734 return ret;
1735
1736 if (bytestream2_get_bytes_left(&s->gb) < nb_blocks * 8)
1737 return AVERROR_INVALIDDATA;
1738
1739 // check offset table and recreate it if need
1740 if (!s->is_tile && bytestream2_peek_le64(&s->gb) == 0) {
1741 head = avpkt->data;
1742 table = (uint64_t *)s->gb.buffer;
1743 marker = head + bytestream2_tell(&s->gb) + nb_blocks * 8;
1744
1745 av_log(s->avctx, AV_LOG_DEBUG, "recreating invalid scanline offset table\n");
1746
1747 for (y = 0; y < nb_blocks; y++) {
1748 table[y] = marker - head;
1749 marker += ((uint32_t *)marker)[1] + 8;
1750 }
1751 }
1752
1753 // save pointer we are going to use in decode_block
1754 s->buf = avpkt->data;
1755 s->buf_size = avpkt->size;
1756 ptr = picture->data[0];
1757
1758 // Zero out the start if ymin is not 0
1759 for (y = 0; y < s->ymin; y++) {
1760 memset(ptr, 0, out_line_size);
1761 ptr += picture->linesize[0];
1762 }
1763
1764 s->picture = picture;
1765
1766 avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks);
1767
1768 // Zero out the end if ymax+1 is not h
1769 ptr = picture->data[0] + ((s->ymax+1) * picture->linesize[0]);
1770 for (y = s->ymax + 1; y < avctx->height; y++) {
1771 memset(ptr, 0, out_line_size);
1772 ptr += picture->linesize[0];
1773 }
1774
1775 picture->pict_type = AV_PICTURE_TYPE_I;
1776 *got_frame = 1;
1777
1778 return avpkt->size;
1779}
1780
1781static av_cold int decode_init(AVCodecContext *avctx)
1782{
1783 EXRContext *s = avctx->priv_data;
1784 uint32_t i;
1785 union av_intfloat32 t;
1786 float one_gamma = 1.0f / s->gamma;
1787 avpriv_trc_function trc_func = NULL;
1788
1789 s->avctx = avctx;
1790
1791 trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1792 if (trc_func) {
1793 for (i = 0; i < 65536; ++i) {
1794 t = exr_half2float(i);
1795 t.f = trc_func(t.f);
1796 s->gamma_table[i] = exr_flt2uint(t.i);
1797 }
1798 } else {
1799 if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
1800 for (i = 0; i < 65536; ++i)
1801 s->gamma_table[i] = exr_halflt2uint(i);
1802 } else {
1803 for (i = 0; i < 65536; ++i) {
1804 t = exr_half2float(i);
1805 /* If negative value we reuse half value */
1806 if (t.f <= 0.0f) {
1807 s->gamma_table[i] = exr_halflt2uint(i);
1808 } else {
1809 t.f = powf(t.f, one_gamma);
1810 s->gamma_table[i] = exr_flt2uint(t.i);
1811 }
1812 }
1813 }
1814 }
1815
1816 // allocate thread data, used for non EXR_RAW compression types
1817 s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
1818 if (!s->thread_data)
1819 return AVERROR_INVALIDDATA;
1820
1821 return 0;
1822}
1823
1824#if HAVE_THREADS
1825static int decode_init_thread_copy(AVCodecContext *avctx)
1826{ EXRContext *s = avctx->priv_data;
1827
1828 // allocate thread data, used for non EXR_RAW compression types
1829 s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
1830 if (!s->thread_data)
1831 return AVERROR_INVALIDDATA;
1832
1833 return 0;
1834}
1835#endif
1836
1837static av_cold int decode_end(AVCodecContext *avctx)
1838{
1839 EXRContext *s = avctx->priv_data;
1840 int i;
1841 for (i = 0; i < avctx->thread_count; i++) {
1842 EXRThreadData *td = &s->thread_data[i];
1843 av_freep(&td->uncompressed_data);
1844 av_freep(&td->tmp);
1845 av_freep(&td->bitmap);
1846 av_freep(&td->lut);
1847 }
1848
1849 av_freep(&s->thread_data);
1850 av_freep(&s->channels);
1851
1852 return 0;
1853}
1854
1855#define OFFSET(x) offsetof(EXRContext, x)
1856#define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1857static const AVOption options[] = {
1858 { "layer", "Set the decoding layer", OFFSET(layer),
1859 AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
1860 { "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
1861 AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
1862
1863 // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option
1864 { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type),
1865 AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"},
1866 { "bt709", "BT.709", 0,
1867 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1868 { "gamma", "gamma", 0,
1869 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1870 { "gamma22", "BT.470 M", 0,
1871 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1872 { "gamma28", "BT.470 BG", 0,
1873 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1874 { "smpte170m", "SMPTE 170 M", 0,
1875 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1876 { "smpte240m", "SMPTE 240 M", 0,
1877 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1878 { "linear", "Linear", 0,
1879 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1880 { "log", "Log", 0,
1881 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1882 { "log_sqrt", "Log square root", 0,
1883 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1884 { "iec61966_2_4", "IEC 61966-2-4", 0,
1885 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1886 { "bt1361", "BT.1361", 0,
1887 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1888 { "iec61966_2_1", "IEC 61966-2-1", 0,
1889 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1890 { "bt2020_10bit", "BT.2020 - 10 bit", 0,
1891 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1892 { "bt2020_12bit", "BT.2020 - 12 bit", 0,
1893 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1894 { "smpte2084", "SMPTE ST 2084", 0,
1895 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1896 { "smpte428_1", "SMPTE ST 428-1", 0,
1897 AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1898
1899 { NULL },
1900};
1901
1902static const AVClass exr_class = {
1903 .class_name = "EXR",
1904 .item_name = av_default_item_name,
1905 .option = options,
1906 .version = LIBAVUTIL_VERSION_INT,
1907};
1908
1909AVCodec ff_exr_decoder = {
1910 .name = "exr",
1911 .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1912 .type = AVMEDIA_TYPE_VIDEO,
1913 .id = AV_CODEC_ID_EXR,
1914 .priv_data_size = sizeof(EXRContext),
1915 .init = decode_init,
1916 .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
1917 .close = decode_end,
1918 .decode = decode_frame,
1919 .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
1920 AV_CODEC_CAP_SLICE_THREADS,
1921 .priv_class = &exr_class,
1922};
1923