summaryrefslogtreecommitdiff
path: root/libavcodec/h264.h (plain)
blob: ed7f04b8537788e1d0804b0996e18173fd254627
1/*
2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
26 */
27
28#ifndef AVCODEC_H264_H
29#define AVCODEC_H264_H
30
31#include "libavutil/intreadwrite.h"
32#include "cabac.h"
33#include "error_resilience.h"
34#include "get_bits.h"
35#include "mpegvideo.h"
36#include "h264chroma.h"
37#include "h264dsp.h"
38#include "h264pred.h"
39#include "h264qpel.h"
40#include "rectangle.h"
41
42#define MAX_SPS_COUNT 32
43#define MAX_PPS_COUNT 256
44
45#define MAX_MMCO_COUNT 66
46
47#define MAX_DELAYED_PIC_COUNT 16
48
49#define MAX_MBPAIR_SIZE (256*1024) // a tighter bound could be calculated if someone cares about a few bytes
50
51/* Compiling in interlaced support reduces the speed
52 * of progressive decoding by about 2%. */
53#define ALLOW_INTERLACE
54
55#define FMO 0
56
57/**
58 * The maximum number of slices supported by the decoder.
59 * must be a power of 2
60 */
61#define MAX_SLICES 16
62
63#ifdef ALLOW_INTERLACE
64#define MB_MBAFF(h) h->mb_mbaff
65#define MB_FIELD(h) h->mb_field_decoding_flag
66#define FRAME_MBAFF(h) h->mb_aff_frame
67#define FIELD_PICTURE(h) (h->picture_structure != PICT_FRAME)
68#define LEFT_MBS 2
69#define LTOP 0
70#define LBOT 1
71#define LEFT(i) (i)
72#else
73#define MB_MBAFF(h) 0
74#define MB_FIELD(h) 0
75#define FRAME_MBAFF(h) 0
76#define FIELD_PICTURE(h) 0
77#undef IS_INTERLACED
78#define IS_INTERLACED(mb_type) 0
79#define LEFT_MBS 1
80#define LTOP 0
81#define LBOT 0
82#define LEFT(i) 0
83#endif
84#define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
85
86#ifndef CABAC
87#define CABAC(h) h->pps.cabac
88#endif
89
90#define CHROMA(h) (h->sps.chroma_format_idc)
91#define CHROMA422(h) (h->sps.chroma_format_idc == 2)
92#define CHROMA444(h) (h->sps.chroma_format_idc == 3)
93
94#define EXTENDED_SAR 255
95
96#define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
97#define MB_TYPE_8x8DCT 0x01000000
98#define IS_REF0(a) ((a) & MB_TYPE_REF0)
99#define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
100
101#define QP_MAX_NUM (51 + 6*6) // The maximum supported qp
102
103/* NAL unit types */
104enum {
105 NAL_SLICE = 1,
106 NAL_DPA,
107 NAL_DPB,
108 NAL_DPC,
109 NAL_IDR_SLICE,
110 NAL_SEI,
111 NAL_SPS,
112 NAL_PPS,
113 NAL_AUD,
114 NAL_END_SEQUENCE,
115 NAL_END_STREAM,
116 NAL_FILLER_DATA,
117 NAL_SPS_EXT,
118 NAL_AUXILIARY_SLICE = 19,
119 NAL_FF_IGNORE = 0xff0f001,
120};
121
122/**
123 * SEI message types
124 */
125typedef enum {
126 SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
127 SEI_TYPE_PIC_TIMING = 1, ///< picture timing
128 SEI_TYPE_USER_DATA_ITU_T_T35 = 4, ///< user data registered by ITU-T Recommendation T.35
129 SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
130 SEI_TYPE_RECOVERY_POINT = 6, ///< recovery point (frame # to decoder sync)
131 SEI_TYPE_FRAME_PACKING = 45, ///< frame packing arrangement
132} SEI_Type;
133
134/**
135 * pic_struct in picture timing SEI message
136 */
137typedef enum {
138 SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
139 SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
140 SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
141 SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
142 SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
143 SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
144 SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
145 SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
146 SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
147} SEI_PicStructType;
148
149/**
150 * frame_packing_arrangement types
151 */
152typedef enum {
153 SEI_FPA_TYPE_CHECKERBOARD = 0,
154 SEI_FPA_TYPE_INTERLEAVE_COLUMN = 1,
155 SEI_FPA_TYPE_INTERLEAVE_ROW = 2,
156 SEI_FPA_TYPE_SIDE_BY_SIDE = 3,
157 SEI_FPA_TYPE_TOP_BOTTOM = 4,
158 SEI_FPA_TYPE_INTERLEAVE_TEMPORAL = 5,
159 SEI_FPA_TYPE_2D = 6,
160} SEI_FpaType;
161
162/**
163 * Sequence parameter set
164 */
165typedef struct SPS {
166 int profile_idc;
167 int level_idc;
168 int chroma_format_idc;
169 int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
170 int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
171 int poc_type; ///< pic_order_cnt_type
172 int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
173 int delta_pic_order_always_zero_flag;
174 int offset_for_non_ref_pic;
175 int offset_for_top_to_bottom_field;
176 int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
177 int ref_frame_count; ///< num_ref_frames
178 int gaps_in_frame_num_allowed_flag;
179 int mb_width; ///< pic_width_in_mbs_minus1 + 1
180 int mb_height; ///< pic_height_in_map_units_minus1 + 1
181 int frame_mbs_only_flag;
182 int mb_aff; ///< mb_adaptive_frame_field_flag
183 int direct_8x8_inference_flag;
184 int crop; ///< frame_cropping_flag
185
186 /* those 4 are already in luma samples */
187 unsigned int crop_left; ///< frame_cropping_rect_left_offset
188 unsigned int crop_right; ///< frame_cropping_rect_right_offset
189 unsigned int crop_top; ///< frame_cropping_rect_top_offset
190 unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
191 int vui_parameters_present_flag;
192 AVRational sar;
193 int video_signal_type_present_flag;
194 int full_range;
195 int colour_description_present_flag;
196 enum AVColorPrimaries color_primaries;
197 enum AVColorTransferCharacteristic color_trc;
198 enum AVColorSpace colorspace;
199 int timing_info_present_flag;
200 uint32_t num_units_in_tick;
201 uint32_t time_scale;
202 int fixed_frame_rate_flag;
203 short offset_for_ref_frame[256]; // FIXME dyn aloc?
204 int bitstream_restriction_flag;
205 int num_reorder_frames;
206 int scaling_matrix_present;
207 uint8_t scaling_matrix4[6][16];
208 uint8_t scaling_matrix8[6][64];
209 int nal_hrd_parameters_present_flag;
210 int vcl_hrd_parameters_present_flag;
211 int pic_struct_present_flag;
212 int time_offset_length;
213 int cpb_cnt; ///< See H.264 E.1.2
214 int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 + 1
215 int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
216 int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
217 int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
218 int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
219 int residual_color_transform_flag; ///< residual_colour_transform_flag
220 int constraint_set_flags; ///< constraint_set[0-3]_flag
221 int new; ///< flag to keep track if the decoder context needs re-init due to changed SPS
222} SPS;
223
224/**
225 * Picture parameter set
226 */
227typedef struct PPS {
228 unsigned int sps_id;
229 int cabac; ///< entropy_coding_mode_flag
230 int pic_order_present; ///< pic_order_present_flag
231 int slice_group_count; ///< num_slice_groups_minus1 + 1
232 int mb_slice_group_map_type;
233 unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
234 int weighted_pred; ///< weighted_pred_flag
235 int weighted_bipred_idc;
236 int init_qp; ///< pic_init_qp_minus26 + 26
237 int init_qs; ///< pic_init_qs_minus26 + 26
238 int chroma_qp_index_offset[2];
239 int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
240 int constrained_intra_pred; ///< constrained_intra_pred_flag
241 int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
242 int transform_8x8_mode; ///< transform_8x8_mode_flag
243 uint8_t scaling_matrix4[6][16];
244 uint8_t scaling_matrix8[6][64];
245 uint8_t chroma_qp_table[2][QP_MAX_NUM+1]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
246 int chroma_qp_diff;
247} PPS;
248
249/**
250 * Frame Packing Arrangement Type
251 */
252typedef struct FPA {
253 int frame_packing_arrangement_id;
254 int frame_packing_arrangement_cancel_flag; ///< is previous arrangement canceled, -1 if never received
255 SEI_FpaType frame_packing_arrangement_type;
256 int frame_packing_arrangement_repetition_period;
257 int content_interpretation_type;
258 int quincunx_sampling_flag;
259} FPA;
260
261/**
262 * Memory management control operation opcode.
263 */
264typedef enum MMCOOpcode {
265 MMCO_END = 0,
266 MMCO_SHORT2UNUSED,
267 MMCO_LONG2UNUSED,
268 MMCO_SHORT2LONG,
269 MMCO_SET_MAX_LONG,
270 MMCO_RESET,
271 MMCO_LONG,
272} MMCOOpcode;
273
274/**
275 * Memory management control operation.
276 */
277typedef struct MMCO {
278 MMCOOpcode opcode;
279 int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
280 int long_arg; ///< index, pic_num, or num long refs depending on opcode
281} MMCO;
282
283/**
284 * H264Context
285 */
286typedef struct H264Context {
287 AVCodecContext *avctx;
288 VideoDSPContext vdsp;
289 H264DSPContext h264dsp;
290 H264ChromaContext h264chroma;
291 H264QpelContext h264qpel;
292 MotionEstContext me;
293 ParseContext parse_context;
294 GetBitContext gb;
295 DSPContext dsp;
296 ERContext er;
297
298 Picture *DPB;
299 Picture *cur_pic_ptr;
300 Picture cur_pic;
301
302 int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
303 int chroma_qp[2]; // QPc
304
305 int qp_thresh; ///< QP threshold to skip loopfilter
306
307 /* coded dimensions -- 16 * mb w/h */
308 int width, height;
309 ptrdiff_t linesize, uvlinesize;
310 int chroma_x_shift, chroma_y_shift;
311
312 int qscale;
313 int droppable;
314 int data_partitioning;
315 int coded_picture_number;
316 int low_delay;
317
318 int context_initialized;
319 int flags;
320 int workaround_bugs;
321
322 int prev_mb_skipped;
323 int next_mb_skipped;
324
325 // prediction stuff
326 int chroma_pred_mode;
327 int intra16x16_pred_mode;
328
329 int topleft_mb_xy;
330 int top_mb_xy;
331 int topright_mb_xy;
332 int left_mb_xy[LEFT_MBS];
333
334 int topleft_type;
335 int top_type;
336 int topright_type;
337 int left_type[LEFT_MBS];
338
339 const uint8_t *left_block;
340 int topleft_partition;
341
342 int8_t intra4x4_pred_mode_cache[5 * 8];
343 int8_t(*intra4x4_pred_mode);
344 H264PredContext hpc;
345 unsigned int topleft_samples_available;
346 unsigned int top_samples_available;
347 unsigned int topright_samples_available;
348 unsigned int left_samples_available;
349 uint8_t (*top_borders[2])[(16 * 3) * 2];
350
351 /**
352 * non zero coeff count cache.
353 * is 64 if not available.
354 */
355 DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
356
357 uint8_t (*non_zero_count)[48];
358
359 /**
360 * Motion vector cache.
361 */
362 DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
363 DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
364#define LIST_NOT_USED -1 // FIXME rename?
365#define PART_NOT_AVAILABLE -2
366
367 /**
368 * number of neighbors (top and/or left) that used 8x8 dct
369 */
370 int neighbor_transform_size;
371
372 /**
373 * block_offset[ 0..23] for frame macroblocks
374 * block_offset[24..47] for field macroblocks
375 */
376 int block_offset[2 * (16 * 3)];
377
378 uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
379 uint32_t *mb2br_xy;
380 int b_stride; // FIXME use s->b4_stride
381
382 ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
383 ptrdiff_t mb_uvlinesize;
384
385 unsigned current_sps_id; ///< id of the current SPS
386 SPS sps; ///< current sps
387
388 /**
389 * current pps
390 */
391 PPS pps; // FIXME move to Picture perhaps? (->no) do we need that?
392
393 uint32_t dequant4_buffer[6][QP_MAX_NUM + 1][16]; // FIXME should these be moved down?
394 uint32_t dequant8_buffer[6][QP_MAX_NUM + 1][64];
395 uint32_t(*dequant4_coeff[6])[16];
396 uint32_t(*dequant8_coeff[6])[64];
397
398 int slice_num;
399 uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
400 int slice_type;
401 int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
402 int slice_type_fixed;
403
404 // interlacing specific flags
405 int mb_aff_frame;
406 int mb_field_decoding_flag;
407 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
408 int picture_structure;
409 int first_field;
410
411 DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
412
413 // Weighted pred stuff
414 int use_weight;
415 int use_weight_chroma;
416 int luma_log2_weight_denom;
417 int chroma_log2_weight_denom;
418 // The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
419 int luma_weight[48][2][2];
420 int chroma_weight[48][2][2][2];
421 int implicit_weight[48][48][2];
422
423 int direct_spatial_mv_pred;
424 int col_parity;
425 int col_fieldoff;
426 int dist_scale_factor[32];
427 int dist_scale_factor_field[2][32];
428 int map_col_to_list0[2][16 + 32];
429 int map_col_to_list0_field[2][2][16 + 32];
430
431 /**
432 * num_ref_idx_l0/1_active_minus1 + 1
433 */
434 unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
435 unsigned int list_count;
436 uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
437 Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
438 * Reordered version of default_ref_list
439 * according to picture reordering in slice header */
440 int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
441
442 // data partitioning
443 GetBitContext intra_gb;
444 GetBitContext inter_gb;
445 GetBitContext *intra_gb_ptr;
446 GetBitContext *inter_gb_ptr;
447
448 const uint8_t *intra_pcm_ptr;
449 DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2]; ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space.
450 DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
451 int16_t mb_padding[256 * 2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
452
453 /**
454 * Cabac
455 */
456 CABACContext cabac;
457 uint8_t cabac_state[1024];
458
459 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
460 uint16_t *cbp_table;
461 int cbp;
462 int top_cbp;
463 int left_cbp;
464 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
465 uint8_t *chroma_pred_mode_table;
466 int last_qscale_diff;
467 uint8_t (*mvd_table[2])[2];
468 DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
469 uint8_t *direct_table;
470 uint8_t direct_cache[5 * 8];
471
472 uint8_t zigzag_scan[16];
473 uint8_t zigzag_scan8x8[64];
474 uint8_t zigzag_scan8x8_cavlc[64];
475 uint8_t field_scan[16];
476 uint8_t field_scan8x8[64];
477 uint8_t field_scan8x8_cavlc[64];
478 uint8_t zigzag_scan_q0[16];
479 uint8_t zigzag_scan8x8_q0[64];
480 uint8_t zigzag_scan8x8_cavlc_q0[64];
481 uint8_t field_scan_q0[16];
482 uint8_t field_scan8x8_q0[64];
483 uint8_t field_scan8x8_cavlc_q0[64];
484
485 int x264_build;
486
487 int mb_x, mb_y;
488 int resync_mb_x;
489 int resync_mb_y;
490 int mb_skip_run;
491 int mb_height, mb_width;
492 int mb_stride;
493 int mb_num;
494 int mb_xy;
495
496 int is_complex;
497
498 // deblock
499 int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
500 int slice_alpha_c0_offset;
501 int slice_beta_offset;
502
503 // =============================================================
504 // Things below are not used in the MB or more inner code
505
506 int nal_ref_idc;
507 int nal_unit_type;
508 uint8_t *rbsp_buffer[2];
509 unsigned int rbsp_buffer_size[2];
510
511 /**
512 * Used to parse AVC variant of h264
513 */
514 int is_avc; ///< this flag is != 0 if codec is avc1
515 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
516 int got_first; ///< this flag is != 0 if we've parsed a frame
517
518 int bit_depth_luma; ///< luma bit depth from sps to detect changes
519 int chroma_format_idc; ///< chroma format from sps to detect changes
520
521 SPS *sps_buffers[MAX_SPS_COUNT];
522 PPS *pps_buffers[MAX_PPS_COUNT];
523
524 int dequant_coeff_pps; ///< reinit tables when pps changes
525
526 uint16_t *slice_table_base;
527
528 // POC stuff
529 int poc_lsb;
530 int poc_msb;
531 int delta_poc_bottom;
532 int delta_poc[2];
533 int frame_num;
534 int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
535 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
536 int frame_num_offset; ///< for POC type 2
537 int prev_frame_num_offset; ///< for POC type 2
538 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
539
540 /**
541 * frame_num for frames or 2 * frame_num + 1 for field pics.
542 */
543 int curr_pic_num;
544
545 /**
546 * max_frame_num or 2 * max_frame_num for field pics.
547 */
548 int max_pic_num;
549
550 int redundant_pic_count;
551
552 Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
553 Picture *short_ref[32];
554 Picture *long_ref[32];
555 Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
556 int last_pocs[MAX_DELAYED_PIC_COUNT];
557 Picture *next_output_pic;
558 int outputed_poc;
559 int next_outputed_poc;
560
561 /**
562 * memory management control operations buffer.
563 */
564 MMCO mmco[MAX_MMCO_COUNT];
565 int mmco_index;
566 int mmco_reset;
567
568 int long_ref_count; ///< number of actual long term references
569 int short_ref_count; ///< number of actual short term references
570
571 int cabac_init_idc;
572
573 /**
574 * @name Members for slice based multithreading
575 * @{
576 */
577 struct H264Context *thread_context[MAX_THREADS];
578
579 /**
580 * current slice number, used to initialize slice_num of each thread/context
581 */
582 int current_slice;
583
584 /**
585 * Max number of threads / contexts.
586 * This is equal to AVCodecContext.thread_count unless
587 * multithreaded decoding is impossible, in which case it is
588 * reduced to 1.
589 */
590 int max_contexts;
591
592 int slice_context_count;
593
594 /**
595 * 1 if the single thread fallback warning has already been
596 * displayed, 0 otherwise.
597 */
598 int single_decode_warning;
599
600 enum AVPictureType pict_type;
601
602 int last_slice_type;
603 unsigned int last_ref_count[2];
604 /** @} */
605
606 /**
607 * pic_struct in picture timing SEI message
608 */
609 SEI_PicStructType sei_pic_struct;
610
611 /**
612 * Complement sei_pic_struct
613 * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
614 * However, soft telecined frames may have these values.
615 * This is used in an attempt to flag soft telecine progressive.
616 */
617 int prev_interlaced_frame;
618
619 /**
620 * Bit set of clock types for fields/frames in picture timing SEI message.
621 * For each found ct_type, appropriate bit is set (e.g., bit 1 for
622 * interlaced).
623 */
624 int sei_ct_type;
625
626 /**
627 * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
628 */
629 int sei_dpb_output_delay;
630
631 /**
632 * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
633 */
634 int sei_cpb_removal_delay;
635
636 /**
637 * recovery_frame_cnt from SEI message
638 *
639 * Set to -1 if no recovery point SEI message found or to number of frames
640 * before playback synchronizes. Frames having recovery point are key
641 * frames.
642 */
643 int sei_recovery_frame_cnt;
644 /**
645 * recovery_frame is the frame_num at which the next frame should
646 * be fully constructed.
647 *
648 * Set to -1 when not expecting a recovery point.
649 */
650 int recovery_frame;
651
652 /**
653 * Are the SEI recovery points looking valid.
654 */
655 int valid_recovery_point;
656
657 FPA sei_fpa;
658
659 int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
660 int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
661
662 // Timestamp stuff
663 int sei_buffering_period_present; ///< Buffering period SEI flag
664 int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
665
666 int cur_chroma_format_idc;
667 uint8_t *bipred_scratchpad;
668
669 int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
670
671 int sync; ///< did we had a keyframe or recovery point
672
673 uint8_t parse_history[4];
674 int parse_history_count;
675 int parse_last_mb;
676 uint8_t *edge_emu_buffer;
677 int16_t *dc_val_base;
678
679 uint8_t *visualization_buffer[3]; ///< temporary buffer vor MV visualization
680
681 AVBufferPool *qscale_table_pool;
682 AVBufferPool *mb_type_pool;
683 AVBufferPool *motion_val_pool;
684 AVBufferPool *ref_index_pool;
685} H264Context;
686
687extern const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM + 1]; ///< One chroma qp table for each possible bit depth (8-14).
688extern const uint16_t ff_h264_mb_sizes[4];
689
690/**
691 * Decode SEI
692 */
693int ff_h264_decode_sei(H264Context *h);
694
695/**
696 * Decode SPS
697 */
698int ff_h264_decode_seq_parameter_set(H264Context *h);
699
700/**
701 * compute profile from sps
702 */
703int ff_h264_get_profile(SPS *sps);
704
705/**
706 * Decode PPS
707 */
708int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
709
710/**
711 * Decode a network abstraction layer unit.
712 * @param consumed is the number of bytes used as input
713 * @param length is the length of the array
714 * @param dst_length is the number of decoded bytes FIXME here
715 * or a decode rbsp tailing?
716 * @return decoded bytes, might be src+1 if no escapes
717 */
718const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src,
719 int *dst_length, int *consumed, int length);
720
721/**
722 * Free any data that may have been allocated in the H264 context
723 * like SPS, PPS etc.
724 */
725void ff_h264_free_context(H264Context *h);
726
727/**
728 * Reconstruct bitstream slice_type.
729 */
730int ff_h264_get_slice_type(const H264Context *h);
731
732/**
733 * Allocate tables.
734 * needs width/height
735 */
736int ff_h264_alloc_tables(H264Context *h);
737
738/**
739 * Fill the default_ref_list.
740 */
741int ff_h264_fill_default_ref_list(H264Context *h);
742
743int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
744void ff_h264_fill_mbaff_ref_list(H264Context *h);
745void ff_h264_remove_all_refs(H264Context *h);
746
747/**
748 * Execute the reference picture marking (memory management control operations).
749 */
750int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
751
752int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb,
753 int first_slice);
754
755int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice);
756
757/**
758 * Check if the top & left blocks are available if needed & change the
759 * dc mode so it only uses the available blocks.
760 */
761int ff_h264_check_intra4x4_pred_mode(H264Context *h);
762
763/**
764 * Check if the top & left blocks are available if needed & change the
765 * dc mode so it only uses the available blocks.
766 */
767int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma);
768
769void ff_h264_hl_decode_mb(H264Context *h);
770int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size);
771int ff_h264_decode_init(AVCodecContext *avctx);
772void ff_h264_decode_init_vlc(void);
773
774/**
775 * Decode a macroblock
776 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
777 */
778int ff_h264_decode_mb_cavlc(H264Context *h);
779
780/**
781 * Decode a CABAC coded macroblock
782 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
783 */
784int ff_h264_decode_mb_cabac(H264Context *h);
785
786void ff_h264_init_cabac_states(H264Context *h);
787
788void ff_h264_direct_dist_scale_factor(H264Context *const h);
789void ff_h264_direct_ref_list_init(H264Context *const h);
790void ff_h264_pred_direct_motion(H264Context *const h, int *mb_type);
791
792void ff_h264_filter_mb_fast(H264Context *h, int mb_x, int mb_y,
793 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
794 unsigned int linesize, unsigned int uvlinesize);
795void ff_h264_filter_mb(H264Context *h, int mb_x, int mb_y,
796 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
797 unsigned int linesize, unsigned int uvlinesize);
798
799/**
800 * Reset SEI values at the beginning of the frame.
801 *
802 * @param h H.264 context.
803 */
804void ff_h264_reset_sei(H264Context *h);
805
806/**
807 * Get stereo_mode string from the h264 frame_packing_arrangement
808 * @param h H.264 context.
809 */
810const char* ff_h264_sei_stereo_mode(H264Context *h);
811
812/*
813 * o-o o-o
814 * / / /
815 * o-o o-o
816 * ,---'
817 * o-o o-o
818 * / / /
819 * o-o o-o
820 */
821
822/* Scan8 organization:
823 * 0 1 2 3 4 5 6 7
824 * 0 DY y y y y y
825 * 1 y Y Y Y Y
826 * 2 y Y Y Y Y
827 * 3 y Y Y Y Y
828 * 4 y Y Y Y Y
829 * 5 DU u u u u u
830 * 6 u U U U U
831 * 7 u U U U U
832 * 8 u U U U U
833 * 9 u U U U U
834 * 10 DV v v v v v
835 * 11 v V V V V
836 * 12 v V V V V
837 * 13 v V V V V
838 * 14 v V V V V
839 * DY/DU/DV are for luma/chroma DC.
840 */
841
842#define LUMA_DC_BLOCK_INDEX 48
843#define CHROMA_DC_BLOCK_INDEX 49
844
845// This table must be here because scan8[constant] must be known at compiletime
846static const uint8_t scan8[16 * 3 + 3] = {
847 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
848 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
849 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
850 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
851 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
852 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
853 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
854 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
855 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
856 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
857 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
858 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
859 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
860};
861
862static av_always_inline uint32_t pack16to32(int a, int b)
863{
864#if HAVE_BIGENDIAN
865 return (b & 0xFFFF) + (a << 16);
866#else
867 return (a & 0xFFFF) + (b << 16);
868#endif
869}
870
871static av_always_inline uint16_t pack8to16(int a, int b)
872{
873#if HAVE_BIGENDIAN
874 return (b & 0xFF) + (a << 8);
875#else
876 return (a & 0xFF) + (b << 8);
877#endif
878}
879
880/**
881 * Get the chroma qp.
882 */
883static av_always_inline int get_chroma_qp(H264Context *h, int t, int qscale)
884{
885 return h->pps.chroma_qp_table[t][qscale];
886}
887
888/**
889 * Get the predicted intra4x4 prediction mode.
890 */
891static av_always_inline int pred_intra_mode(H264Context *h, int n)
892{
893 const int index8 = scan8[n];
894 const int left = h->intra4x4_pred_mode_cache[index8 - 1];
895 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
896 const int min = FFMIN(left, top);
897
898 tprintf(h->avctx, "mode:%d %d min:%d\n", left, top, min);
899
900 if (min < 0)
901 return DC_PRED;
902 else
903 return min;
904}
905
906static av_always_inline void write_back_intra_pred_mode(H264Context *h)
907{
908 int8_t *i4x4 = h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy];
909 int8_t *i4x4_cache = h->intra4x4_pred_mode_cache;
910
911 AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
912 i4x4[4] = i4x4_cache[7 + 8 * 3];
913 i4x4[5] = i4x4_cache[7 + 8 * 2];
914 i4x4[6] = i4x4_cache[7 + 8 * 1];
915}
916
917static av_always_inline void write_back_non_zero_count(H264Context *h)
918{
919 const int mb_xy = h->mb_xy;
920 uint8_t *nnz = h->non_zero_count[mb_xy];
921 uint8_t *nnz_cache = h->non_zero_count_cache;
922
923 AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
924 AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
925 AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
926 AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
927 AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
928 AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
929 AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
930 AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
931
932 if (!h->chroma_y_shift) {
933 AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
934 AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
935 AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
936 AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
937 }
938}
939
940static av_always_inline void write_back_motion_list(H264Context *h,
941 int b_stride,
942 int b_xy, int b8_xy,
943 int mb_type, int list)
944{
945 int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
946 int16_t(*mv_src)[2] = &h->mv_cache[list][scan8[0]];
947 AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
948 AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
949 AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
950 AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
951 if (CABAC(h)) {
952 uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8 * h->mb_xy
953 : h->mb2br_xy[h->mb_xy]];
954 uint8_t(*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
955 if (IS_SKIP(mb_type)) {
956 AV_ZERO128(mvd_dst);
957 } else {
958 AV_COPY64(mvd_dst, mvd_src + 8 * 3);
959 AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
960 AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
961 AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
962 }
963 }
964
965 {
966 int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
967 int8_t *ref_cache = h->ref_cache[list];
968 ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
969 ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
970 ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
971 ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
972 }
973}
974
975static av_always_inline void write_back_motion(H264Context *h, int mb_type)
976{
977 const int b_stride = h->b_stride;
978 const int b_xy = 4 * h->mb_x + 4 * h->mb_y * h->b_stride; // try mb2b(8)_xy
979 const int b8_xy = 4 * h->mb_xy;
980
981 if (USES_LIST(mb_type, 0)) {
982 write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 0);
983 } else {
984 fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
985 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
986 }
987 if (USES_LIST(mb_type, 1))
988 write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 1);
989
990 if (h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
991 if (IS_8X8(mb_type)) {
992 uint8_t *direct_table = &h->direct_table[4 * h->mb_xy];
993 direct_table[1] = h->sub_mb_type[1] >> 1;
994 direct_table[2] = h->sub_mb_type[2] >> 1;
995 direct_table[3] = h->sub_mb_type[3] >> 1;
996 }
997 }
998}
999
1000static av_always_inline int get_dct8x8_allowed(H264Context *h)
1001{
1002 if (h->sps.direct_8x8_inference_flag)
1003 return !(AV_RN64A(h->sub_mb_type) &
1004 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
1005 0x0001000100010001ULL));
1006 else
1007 return !(AV_RN64A(h->sub_mb_type) &
1008 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
1009 0x0001000100010001ULL));
1010}
1011
1012void ff_h264_draw_horiz_band(H264Context *h, int y, int height);
1013int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc);
1014int ff_pred_weight_table(H264Context *h);
1015int ff_set_ref_count(H264Context *h);
1016
1017#endif /* AVCODEC_H264_H */
1018