summaryrefslogtreecommitdiff
path: root/libavcodec/h264dec.h (plain)
blob: e994f7e7fe88d744c41981ada262d667b58410d2
1/*
2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * H.264 / AVC / MPEG-4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
26 */
27
28#ifndef AVCODEC_H264DEC_H
29#define AVCODEC_H264DEC_H
30
31#include "libavutil/buffer.h"
32#include "libavutil/intreadwrite.h"
33#include "libavutil/thread.h"
34
35#include "cabac.h"
36#include "error_resilience.h"
37#include "h264_parse.h"
38#include "h264_ps.h"
39#include "h264_sei.h"
40#include "h2645_parse.h"
41#include "h264chroma.h"
42#include "h264dsp.h"
43#include "h264pred.h"
44#include "h264qpel.h"
45#include "internal.h"
46#include "mpegutils.h"
47#include "parser.h"
48#include "qpeldsp.h"
49#include "rectangle.h"
50#include "videodsp.h"
51
52#define H264_MAX_PICTURE_COUNT 36
53
54#define MAX_MMCO_COUNT 66
55
56#define MAX_DELAYED_PIC_COUNT 16
57
58/* Compiling in interlaced support reduces the speed
59 * of progressive decoding by about 2%. */
60#define ALLOW_INTERLACE
61
62#define FMO 0
63
64/**
65 * The maximum number of slices supported by the decoder.
66 * must be a power of 2
67 */
68#define MAX_SLICES 32
69
70#ifdef ALLOW_INTERLACE
71#define MB_MBAFF(h) (h)->mb_mbaff
72#define MB_FIELD(sl) (sl)->mb_field_decoding_flag
73#define FRAME_MBAFF(h) (h)->mb_aff_frame
74#define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
75#define LEFT_MBS 2
76#define LTOP 0
77#define LBOT 1
78#define LEFT(i) (i)
79#else
80#define MB_MBAFF(h) 0
81#define MB_FIELD(sl) 0
82#define FRAME_MBAFF(h) 0
83#define FIELD_PICTURE(h) 0
84#undef IS_INTERLACED
85#define IS_INTERLACED(mb_type) 0
86#define LEFT_MBS 1
87#define LTOP 0
88#define LBOT 0
89#define LEFT(i) 0
90#endif
91#define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
92
93#ifndef CABAC
94#define CABAC(h) (h)->ps.pps->cabac
95#endif
96
97#define CHROMA(h) ((h)->ps.sps->chroma_format_idc)
98#define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
99#define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
100
101#define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
102#define MB_TYPE_8x8DCT 0x01000000
103#define IS_REF0(a) ((a) & MB_TYPE_REF0)
104#define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
105
106/**
107 * Memory management control operation opcode.
108 */
109typedef enum MMCOOpcode {
110 MMCO_END = 0,
111 MMCO_SHORT2UNUSED,
112 MMCO_LONG2UNUSED,
113 MMCO_SHORT2LONG,
114 MMCO_SET_MAX_LONG,
115 MMCO_RESET,
116 MMCO_LONG,
117} MMCOOpcode;
118
119/**
120 * Memory management control operation.
121 */
122typedef struct MMCO {
123 MMCOOpcode opcode;
124 int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
125 int long_arg; ///< index, pic_num, or num long refs depending on opcode
126} MMCO;
127
128typedef struct H264Picture {
129 AVFrame *f;
130 ThreadFrame tf;
131
132 AVBufferRef *qscale_table_buf;
133 int8_t *qscale_table;
134
135 AVBufferRef *motion_val_buf[2];
136 int16_t (*motion_val[2])[2];
137
138 AVBufferRef *mb_type_buf;
139 uint32_t *mb_type;
140
141 AVBufferRef *hwaccel_priv_buf;
142 void *hwaccel_picture_private; ///< hardware accelerator private data
143
144 AVBufferRef *ref_index_buf[2];
145 int8_t *ref_index[2];
146
147 int field_poc[2]; ///< top/bottom POC
148 int poc; ///< frame POC
149 int frame_num; ///< frame_num (raw frame_num from slice header)
150 int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
151 not mix pictures before and after MMCO_RESET. */
152 int pic_id; /**< pic_num (short -> no wrap version of pic_num,
153 pic_num & max_pic_num; long -> long_pic_num) */
154 int long_ref; ///< 1->long term reference 0->short term reference
155 int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice)
156 int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
157 int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
158 int field_picture; ///< whether or not picture was encoded in separate fields
159
160 int reference;
161 int recovered; ///< picture at IDR or recovery point + recovery count
162 int invalid_gap;
163 int sei_recovery_frame_cnt;
164
165 int crop;
166 int crop_left;
167 int crop_top;
168} H264Picture;
169
170typedef struct H264Ref {
171 uint8_t *data[3];
172 int linesize[3];
173
174 int reference;
175 int poc;
176 int pic_id;
177
178 H264Picture *parent;
179} H264Ref;
180
181typedef struct H264SliceContext {
182 struct H264Context *h264;
183 GetBitContext gb;
184 ERContext er;
185
186 int slice_num;
187 int slice_type;
188 int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
189 int slice_type_fixed;
190
191 int qscale;
192 int chroma_qp[2]; // QPc
193 int qp_thresh; ///< QP threshold to skip loopfilter
194 int last_qscale_diff;
195
196 // deblock
197 int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
198 int slice_alpha_c0_offset;
199 int slice_beta_offset;
200
201 H264PredWeightTable pwt;
202
203 int prev_mb_skipped;
204 int next_mb_skipped;
205
206 int chroma_pred_mode;
207 int intra16x16_pred_mode;
208
209 int8_t intra4x4_pred_mode_cache[5 * 8];
210 int8_t(*intra4x4_pred_mode);
211
212 int topleft_mb_xy;
213 int top_mb_xy;
214 int topright_mb_xy;
215 int left_mb_xy[LEFT_MBS];
216
217 int topleft_type;
218 int top_type;
219 int topright_type;
220 int left_type[LEFT_MBS];
221
222 const uint8_t *left_block;
223 int topleft_partition;
224
225 unsigned int topleft_samples_available;
226 unsigned int top_samples_available;
227 unsigned int topright_samples_available;
228 unsigned int left_samples_available;
229
230 ptrdiff_t linesize, uvlinesize;
231 ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
232 ptrdiff_t mb_uvlinesize;
233
234 int mb_x, mb_y;
235 int mb_xy;
236 int resync_mb_x;
237 int resync_mb_y;
238 unsigned int first_mb_addr;
239 // index of the first MB of the next slice
240 int next_slice_idx;
241 int mb_skip_run;
242 int is_complex;
243
244 int picture_structure;
245 int mb_field_decoding_flag;
246 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
247
248 int redundant_pic_count;
249
250 /**
251 * number of neighbors (top and/or left) that used 8x8 dct
252 */
253 int neighbor_transform_size;
254
255 int direct_spatial_mv_pred;
256 int col_parity;
257 int col_fieldoff;
258
259 int cbp;
260 int top_cbp;
261 int left_cbp;
262
263 int dist_scale_factor[32];
264 int dist_scale_factor_field[2][32];
265 int map_col_to_list0[2][16 + 32];
266 int map_col_to_list0_field[2][2][16 + 32];
267
268 /**
269 * num_ref_idx_l0/1_active_minus1 + 1
270 */
271 unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
272 unsigned int list_count;
273 H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
274 * Reordered version of default_ref_list
275 * according to picture reordering in slice header */
276 struct {
277 uint8_t op;
278 uint32_t val;
279 } ref_modifications[2][32];
280 int nb_ref_modifications[2];
281
282 unsigned int pps_id;
283
284 const uint8_t *intra_pcm_ptr;
285 int16_t *dc_val_base;
286
287 uint8_t *bipred_scratchpad;
288 uint8_t *edge_emu_buffer;
289 uint8_t (*top_borders[2])[(16 * 3) * 2];
290 int bipred_scratchpad_allocated;
291 int edge_emu_buffer_allocated;
292 int top_borders_allocated[2];
293
294 /**
295 * non zero coeff count cache.
296 * is 64 if not available.
297 */
298 DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
299
300 /**
301 * Motion vector cache.
302 */
303 DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
304 DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
305 DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
306 uint8_t direct_cache[5 * 8];
307
308 DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
309
310 ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
311 DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
312 DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
313 ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
314 ///< check that i is not too large or ensure that there is some unused stuff after mb
315 int16_t mb_padding[256 * 2];
316
317 uint8_t (*mvd_table[2])[2];
318
319 /**
320 * Cabac
321 */
322 CABACContext cabac;
323 uint8_t cabac_state[1024];
324 int cabac_init_idc;
325
326 MMCO mmco[MAX_MMCO_COUNT];
327 int nb_mmco;
328 int explicit_ref_marking;
329
330 int frame_num;
331 int poc_lsb;
332 int delta_poc_bottom;
333 int delta_poc[2];
334 int curr_pic_num;
335 int max_pic_num;
336} H264SliceContext;
337
338/**
339 * H264Context
340 */
341typedef struct H264Context {
342 const AVClass *class;
343 AVCodecContext *avctx;
344 VideoDSPContext vdsp;
345 H264DSPContext h264dsp;
346 H264ChromaContext h264chroma;
347 H264QpelContext h264qpel;
348
349 H264Picture DPB[H264_MAX_PICTURE_COUNT];
350 H264Picture *cur_pic_ptr;
351 H264Picture cur_pic;
352 H264Picture last_pic_for_ec;
353
354 H264SliceContext *slice_ctx;
355 int nb_slice_ctx;
356 int nb_slice_ctx_queued;
357
358 H2645Packet pkt;
359
360 int pixel_shift; ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
361
362 /* coded dimensions -- 16 * mb w/h */
363 int width, height;
364 int chroma_x_shift, chroma_y_shift;
365
366 int droppable;
367 int coded_picture_number;
368
369 int context_initialized;
370 int flags;
371 int workaround_bugs;
372 /* Set when slice threading is used and at least one slice uses deblocking
373 * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
374 * during normal MB decoding and execute it serially at the end.
375 */
376 int postpone_filter;
377
378 /*
379 * Set to 1 when the current picture is IDR, 0 otherwise.
380 */
381 int picture_idr;
382
383 int8_t(*intra4x4_pred_mode);
384 H264PredContext hpc;
385
386 uint8_t (*non_zero_count)[48];
387
388#define LIST_NOT_USED -1 // FIXME rename?
389#define PART_NOT_AVAILABLE -2
390
391 /**
392 * block_offset[ 0..23] for frame macroblocks
393 * block_offset[24..47] for field macroblocks
394 */
395 int block_offset[2 * (16 * 3)];
396
397 uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
398 uint32_t *mb2br_xy;
399 int b_stride; // FIXME use s->b4_stride
400
401 uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
402
403 // interlacing specific flags
404 int mb_aff_frame;
405 int picture_structure;
406 int first_field;
407
408 uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
409
410 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
411 uint16_t *cbp_table;
412
413 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
414 uint8_t *chroma_pred_mode_table;
415 uint8_t (*mvd_table[2])[2];
416 uint8_t *direct_table;
417
418 uint8_t zigzag_scan[16];
419 uint8_t zigzag_scan8x8[64];
420 uint8_t zigzag_scan8x8_cavlc[64];
421 uint8_t field_scan[16];
422 uint8_t field_scan8x8[64];
423 uint8_t field_scan8x8_cavlc[64];
424 uint8_t zigzag_scan_q0[16];
425 uint8_t zigzag_scan8x8_q0[64];
426 uint8_t zigzag_scan8x8_cavlc_q0[64];
427 uint8_t field_scan_q0[16];
428 uint8_t field_scan8x8_q0[64];
429 uint8_t field_scan8x8_cavlc_q0[64];
430
431 int mb_y;
432 int mb_height, mb_width;
433 int mb_stride;
434 int mb_num;
435
436 // =============================================================
437 // Things below are not used in the MB or more inner code
438
439 int nal_ref_idc;
440 int nal_unit_type;
441
442 int has_slice; ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()
443
444 /**
445 * Used to parse AVC variant of H.264
446 */
447 int is_avc; ///< this flag is != 0 if codec is avc1
448 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
449
450 int bit_depth_luma; ///< luma bit depth from sps to detect changes
451 int chroma_format_idc; ///< chroma format from sps to detect changes
452
453 H264ParamSets ps;
454
455 uint16_t *slice_table_base;
456
457 H264POCContext poc;
458
459 H264Ref default_ref[2];
460 H264Picture *short_ref[32];
461 H264Picture *long_ref[32];
462 H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
463 int last_pocs[MAX_DELAYED_PIC_COUNT];
464 H264Picture *next_output_pic;
465 int next_outputed_poc;
466
467 /**
468 * memory management control operations buffer.
469 */
470 MMCO mmco[MAX_MMCO_COUNT];
471 int nb_mmco;
472 int mmco_reset;
473 int explicit_ref_marking;
474
475 int long_ref_count; ///< number of actual long term references
476 int short_ref_count; ///< number of actual short term references
477
478 /**
479 * @name Members for slice based multithreading
480 * @{
481 */
482 /**
483 * current slice number, used to initialize slice_num of each thread/context
484 */
485 int current_slice;
486
487 /** @} */
488
489 /**
490 * Complement sei_pic_struct
491 * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
492 * However, soft telecined frames may have these values.
493 * This is used in an attempt to flag soft telecine progressive.
494 */
495 int prev_interlaced_frame;
496
497 /**
498 * Are the SEI recovery points looking valid.
499 */
500 int valid_recovery_point;
501
502 /**
503 * recovery_frame is the frame_num at which the next frame should
504 * be fully constructed.
505 *
506 * Set to -1 when not expecting a recovery point.
507 */
508 int recovery_frame;
509
510/**
511 * We have seen an IDR, so all the following frames in coded order are correctly
512 * decodable.
513 */
514#define FRAME_RECOVERED_IDR (1 << 0)
515/**
516 * Sufficient number of frames have been decoded since a SEI recovery point,
517 * so all the following frames in presentation order are correct.
518 */
519#define FRAME_RECOVERED_SEI (1 << 1)
520
521 int frame_recovered; ///< Initial frame has been completely recovered
522
523 int has_recovery_point;
524
525 int missing_fields;
526
527 /* for frame threading, this is set to 1
528 * after finish_setup() has been called, so we cannot modify
529 * some context properties (which are supposed to stay constant between
530 * slices) anymore */
531 int setup_finished;
532
533 int cur_chroma_format_idc;
534 int cur_bit_depth_luma;
535 int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
536
537 int enable_er;
538
539 H264SEIContext sei;
540
541 AVBufferPool *qscale_table_pool;
542 AVBufferPool *mb_type_pool;
543 AVBufferPool *motion_val_pool;
544 AVBufferPool *ref_index_pool;
545 int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
546} H264Context;
547
548extern const uint16_t ff_h264_mb_sizes[4];
549
550/**
551 * Reconstruct bitstream slice_type.
552 */
553int ff_h264_get_slice_type(const H264SliceContext *sl);
554
555/**
556 * Allocate tables.
557 * needs width/height
558 */
559int ff_h264_alloc_tables(H264Context *h);
560
561int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
562int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
563void ff_h264_remove_all_refs(H264Context *h);
564
565/**
566 * Execute the reference picture marking (memory management control operations).
567 */
568int ff_h264_execute_ref_pic_marking(H264Context *h);
569
570int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
571 const H2645NAL *nal, void *logctx);
572
573void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
574int ff_h264_decode_init(AVCodecContext *avctx);
575void ff_h264_decode_init_vlc(void);
576
577/**
578 * Decode a macroblock
579 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
580 */
581int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
582
583/**
584 * Decode a CABAC coded macroblock
585 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
586 */
587int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
588
589void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
590
591void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
592void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
593void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
594 int *mb_type);
595
596void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
597 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
598 unsigned int linesize, unsigned int uvlinesize);
599void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
600 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
601 unsigned int linesize, unsigned int uvlinesize);
602
603/*
604 * o-o o-o
605 * / / /
606 * o-o o-o
607 * ,---'
608 * o-o o-o
609 * / / /
610 * o-o o-o
611 */
612
613/* Scan8 organization:
614 * 0 1 2 3 4 5 6 7
615 * 0 DY y y y y y
616 * 1 y Y Y Y Y
617 * 2 y Y Y Y Y
618 * 3 y Y Y Y Y
619 * 4 y Y Y Y Y
620 * 5 DU u u u u u
621 * 6 u U U U U
622 * 7 u U U U U
623 * 8 u U U U U
624 * 9 u U U U U
625 * 10 DV v v v v v
626 * 11 v V V V V
627 * 12 v V V V V
628 * 13 v V V V V
629 * 14 v V V V V
630 * DY/DU/DV are for luma/chroma DC.
631 */
632
633#define LUMA_DC_BLOCK_INDEX 48
634#define CHROMA_DC_BLOCK_INDEX 49
635
636// This table must be here because scan8[constant] must be known at compiletime
637static const uint8_t scan8[16 * 3 + 3] = {
638 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
639 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
640 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
641 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
642 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
643 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
644 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
645 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
646 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
647 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
648 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
649 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
650 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
651};
652
653static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
654{
655#if HAVE_BIGENDIAN
656 return (b & 0xFFFF) + (a << 16);
657#else
658 return (a & 0xFFFF) + (b << 16);
659#endif
660}
661
662static av_always_inline uint16_t pack8to16(unsigned a, unsigned b)
663{
664#if HAVE_BIGENDIAN
665 return (b & 0xFF) + (a << 8);
666#else
667 return (a & 0xFF) + (b << 8);
668#endif
669}
670
671/**
672 * Get the chroma qp.
673 */
674static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
675{
676 return pps->chroma_qp_table[t][qscale];
677}
678
679/**
680 * Get the predicted intra4x4 prediction mode.
681 */
682static av_always_inline int pred_intra_mode(const H264Context *h,
683 H264SliceContext *sl, int n)
684{
685 const int index8 = scan8[n];
686 const int left = sl->intra4x4_pred_mode_cache[index8 - 1];
687 const int top = sl->intra4x4_pred_mode_cache[index8 - 8];
688 const int min = FFMIN(left, top);
689
690 ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
691
692 if (min < 0)
693 return DC_PRED;
694 else
695 return min;
696}
697
698static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
699 H264SliceContext *sl)
700{
701 int8_t *i4x4 = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
702 int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
703
704 AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
705 i4x4[4] = i4x4_cache[7 + 8 * 3];
706 i4x4[5] = i4x4_cache[7 + 8 * 2];
707 i4x4[6] = i4x4_cache[7 + 8 * 1];
708}
709
710static av_always_inline void write_back_non_zero_count(const H264Context *h,
711 H264SliceContext *sl)
712{
713 const int mb_xy = sl->mb_xy;
714 uint8_t *nnz = h->non_zero_count[mb_xy];
715 uint8_t *nnz_cache = sl->non_zero_count_cache;
716
717 AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
718 AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
719 AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
720 AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
721 AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
722 AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
723 AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
724 AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
725
726 if (!h->chroma_y_shift) {
727 AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
728 AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
729 AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
730 AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
731 }
732}
733
734static av_always_inline void write_back_motion_list(const H264Context *h,
735 H264SliceContext *sl,
736 int b_stride,
737 int b_xy, int b8_xy,
738 int mb_type, int list)
739{
740 int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
741 int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
742 AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
743 AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
744 AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
745 AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
746 if (CABAC(h)) {
747 uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
748 : h->mb2br_xy[sl->mb_xy]];
749 uint8_t(*mvd_src)[2] = &sl->mvd_cache[list][scan8[0]];
750 if (IS_SKIP(mb_type)) {
751 AV_ZERO128(mvd_dst);
752 } else {
753 AV_COPY64(mvd_dst, mvd_src + 8 * 3);
754 AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
755 AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
756 AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
757 }
758 }
759
760 {
761 int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
762 int8_t *ref_cache = sl->ref_cache[list];
763 ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
764 ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
765 ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
766 ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
767 }
768}
769
770static av_always_inline void write_back_motion(const H264Context *h,
771 H264SliceContext *sl,
772 int mb_type)
773{
774 const int b_stride = h->b_stride;
775 const int b_xy = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
776 const int b8_xy = 4 * sl->mb_xy;
777
778 if (USES_LIST(mb_type, 0)) {
779 write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
780 } else {
781 fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
782 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
783 }
784 if (USES_LIST(mb_type, 1))
785 write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
786
787 if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
788 if (IS_8X8(mb_type)) {
789 uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
790 direct_table[1] = sl->sub_mb_type[1] >> 1;
791 direct_table[2] = sl->sub_mb_type[2] >> 1;
792 direct_table[3] = sl->sub_mb_type[3] >> 1;
793 }
794 }
795}
796
797static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
798{
799 if (h->ps.sps->direct_8x8_inference_flag)
800 return !(AV_RN64A(sl->sub_mb_type) &
801 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
802 0x0001000100010001ULL));
803 else
804 return !(AV_RN64A(sl->sub_mb_type) &
805 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
806 0x0001000100010001ULL));
807}
808
809static inline int find_start_code(const uint8_t *buf, int buf_size,
810 int buf_index, int next_avc)
811{
812 uint32_t state = -1;
813
814 buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1;
815
816 return FFMIN(buf_index, buf_size);
817}
818
819int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
820
821int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
822void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
823
824int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
825
826void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
827
828int ff_h264_decode_slice_header(H264Context *h, H264SliceContext *sl,
829 const H2645NAL *nal);
830/**
831 * Submit a slice for decoding.
832 *
833 * Parse the slice header, starting a new field/frame if necessary. If any
834 * slices are queued for the previous field, they are decoded.
835 */
836int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
837int ff_h264_execute_decode_slices(H264Context *h);
838int ff_h264_update_thread_context(AVCodecContext *dst,
839 const AVCodecContext *src);
840
841void ff_h264_flush_change(H264Context *h);
842
843void ff_h264_free_tables(H264Context *h);
844
845void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);
846
847#endif /* AVCODEC_H264DEC_H */
848