summaryrefslogtreecommitdiff
path: root/libavcodec/hevc.c (plain)
blob: 412ba198f051a6be7eae5e197e7dca372a756abf
1/*
2 * HEVC video Decoder
3 *
4 * Copyright (C) 2012 - 2013 Guillaume Martres
5 * Copyright (C) 2012 - 2013 Mickael Raulet
6 * Copyright (C) 2012 - 2013 Gildas Cocherel
7 * Copyright (C) 2012 - 2013 Wassim Hamidouche
8 *
9 * This file is part of FFmpeg.
10 *
11 * FFmpeg is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * FFmpeg is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with FFmpeg; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 */
25
26#include "libavutil/atomic.h"
27#include "libavutil/attributes.h"
28#include "libavutil/common.h"
29#include "libavutil/internal.h"
30#include "libavutil/md5.h"
31#include "libavutil/opt.h"
32#include "libavutil/pixdesc.h"
33
34#include "bytestream.h"
35#include "cabac_functions.h"
36#include "dsputil.h"
37#include "golomb.h"
38#include "hevc.h"
39
40const uint8_t ff_hevc_qpel_extra_before[4] = { 0, 3, 3, 2 };
41const uint8_t ff_hevc_qpel_extra_after[4] = { 0, 3, 4, 4 };
42const uint8_t ff_hevc_qpel_extra[4] = { 0, 6, 7, 6 };
43
44/**
45 * NOTE: Each function hls_foo correspond to the function foo in the
46 * specification (HLS stands for High Level Syntax).
47 */
48
49/**
50 * Section 5.7
51 */
52
53/* free everything allocated by pic_arrays_init() */
54static void pic_arrays_free(HEVCContext *s)
55{
56 av_freep(&s->sao);
57 av_freep(&s->deblock);
58 av_freep(&s->split_cu_flag);
59
60 av_freep(&s->skip_flag);
61 av_freep(&s->tab_ct_depth);
62
63 av_freep(&s->tab_ipm);
64 av_freep(&s->cbf_luma);
65 av_freep(&s->is_pcm);
66
67 av_freep(&s->qp_y_tab);
68 av_freep(&s->tab_slice_address);
69 av_freep(&s->filter_slice_edges);
70
71 av_freep(&s->horizontal_bs);
72 av_freep(&s->vertical_bs);
73
74 av_freep(&s->sh.entry_point_offset);
75 av_freep(&s->sh.size);
76 av_freep(&s->sh.offset);
77
78 av_buffer_pool_uninit(&s->tab_mvf_pool);
79 av_buffer_pool_uninit(&s->rpl_tab_pool);
80}
81
82/* allocate arrays that depend on frame dimensions */
83static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
84{
85 int log2_min_cb_size = sps->log2_min_cb_size;
86 int width = sps->width;
87 int height = sps->height;
88 int pic_size = width * height;
89 int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
90 ((height >> log2_min_cb_size) + 1);
91 int ctb_count = sps->ctb_width * sps->ctb_height;
92 int min_pu_size = sps->min_pu_width * sps->min_pu_height;
93
94 s->bs_width = width >> 3;
95 s->bs_height = height >> 3;
96
97 s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
98 s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
99 s->split_cu_flag = av_malloc(pic_size);
100 if (!s->sao || !s->deblock || !s->split_cu_flag)
101 goto fail;
102
103 s->skip_flag = av_malloc(pic_size_in_ctb);
104 s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width);
105 if (!s->skip_flag || !s->tab_ct_depth)
106 goto fail;
107
108 s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height);
109 s->tab_ipm = av_malloc(min_pu_size);
110 s->is_pcm = av_malloc(min_pu_size);
111 if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
112 goto fail;
113
114 s->filter_slice_edges = av_malloc(ctb_count);
115 s->tab_slice_address = av_malloc(pic_size_in_ctb * sizeof(*s->tab_slice_address));
116 s->qp_y_tab = av_malloc(pic_size_in_ctb * sizeof(*s->qp_y_tab));
117 if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
118 goto fail;
119
120 s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
121 s->vertical_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
122 if (!s->horizontal_bs || !s->vertical_bs)
123 goto fail;
124
125 s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
126 av_buffer_alloc);
127 s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
128 av_buffer_allocz);
129 if (!s->tab_mvf_pool || !s->rpl_tab_pool)
130 goto fail;
131
132 return 0;
133fail:
134 pic_arrays_free(s);
135 return AVERROR(ENOMEM);
136}
137
138static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
139{
140 int i = 0;
141 int j = 0;
142 uint8_t luma_weight_l0_flag[16];
143 uint8_t chroma_weight_l0_flag[16];
144 uint8_t luma_weight_l1_flag[16];
145 uint8_t chroma_weight_l1_flag[16];
146
147 s->sh.luma_log2_weight_denom = get_ue_golomb_long(gb);
148 if (s->sps->chroma_format_idc != 0) {
149 int delta = get_se_golomb(gb);
150 s->sh.chroma_log2_weight_denom = av_clip_c(s->sh.luma_log2_weight_denom + delta, 0, 7);
151 }
152
153 for (i = 0; i < s->sh.nb_refs[L0]; i++) {
154 luma_weight_l0_flag[i] = get_bits1(gb);
155 if (!luma_weight_l0_flag[i]) {
156 s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
157 s->sh.luma_offset_l0[i] = 0;
158 }
159 }
160 if (s->sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for"
161 for (i = 0; i < s->sh.nb_refs[L0]; i++)
162 chroma_weight_l0_flag[i] = get_bits1(gb);
163 } else {
164 for (i = 0; i < s->sh.nb_refs[L0]; i++)
165 chroma_weight_l0_flag[i] = 0;
166 }
167 for (i = 0; i < s->sh.nb_refs[L0]; i++) {
168 if (luma_weight_l0_flag[i]) {
169 int delta_luma_weight_l0 = get_se_golomb(gb);
170 s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
171 s->sh.luma_offset_l0[i] = get_se_golomb(gb);
172 }
173 if (chroma_weight_l0_flag[i]) {
174 for (j = 0; j < 2; j++) {
175 int delta_chroma_weight_l0 = get_se_golomb(gb);
176 int delta_chroma_offset_l0 = get_se_golomb(gb);
177 s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
178 s->sh.chroma_offset_l0[i][j] = av_clip_c((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
179 >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
180 }
181 } else {
182 s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
183 s->sh.chroma_offset_l0[i][0] = 0;
184 s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
185 s->sh.chroma_offset_l0[i][1] = 0;
186 }
187 }
188 if (s->sh.slice_type == B_SLICE) {
189 for (i = 0; i < s->sh.nb_refs[L1]; i++) {
190 luma_weight_l1_flag[i] = get_bits1(gb);
191 if (!luma_weight_l1_flag[i]) {
192 s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
193 s->sh.luma_offset_l1[i] = 0;
194 }
195 }
196 if (s->sps->chroma_format_idc != 0) {
197 for (i = 0; i < s->sh.nb_refs[L1]; i++)
198 chroma_weight_l1_flag[i] = get_bits1(gb);
199 } else {
200 for (i = 0; i < s->sh.nb_refs[L1]; i++)
201 chroma_weight_l1_flag[i] = 0;
202 }
203 for (i = 0; i < s->sh.nb_refs[L1]; i++) {
204 if (luma_weight_l1_flag[i]) {
205 int delta_luma_weight_l1 = get_se_golomb(gb);
206 s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
207 s->sh.luma_offset_l1[i] = get_se_golomb(gb);
208 }
209 if (chroma_weight_l1_flag[i]) {
210 for (j = 0; j < 2; j++) {
211 int delta_chroma_weight_l1 = get_se_golomb(gb);
212 int delta_chroma_offset_l1 = get_se_golomb(gb);
213 s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
214 s->sh.chroma_offset_l1[i][j] = av_clip_c((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
215 >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
216 }
217 } else {
218 s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
219 s->sh.chroma_offset_l1[i][0] = 0;
220 s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
221 s->sh.chroma_offset_l1[i][1] = 0;
222 }
223 }
224 }
225}
226
227static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
228{
229 const HEVCSPS *sps = s->sps;
230 int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
231 int prev_delta_msb = 0;
232 int nb_sps = 0, nb_sh;
233 int i;
234
235 rps->nb_refs = 0;
236 if (!sps->long_term_ref_pics_present_flag)
237 return 0;
238
239 if (sps->num_long_term_ref_pics_sps > 0)
240 nb_sps = get_ue_golomb_long(gb);
241 nb_sh = get_ue_golomb_long(gb);
242
243 if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc))
244 return AVERROR_INVALIDDATA;
245
246 rps->nb_refs = nb_sh + nb_sps;
247
248 for (i = 0; i < rps->nb_refs; i++) {
249 uint8_t delta_poc_msb_present;
250
251 if (i < nb_sps) {
252 uint8_t lt_idx_sps = 0;
253
254 if (sps->num_long_term_ref_pics_sps > 1)
255 lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
256
257 rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
258 rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
259 } else {
260 rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
261 rps->used[i] = get_bits1(gb);
262 }
263
264 delta_poc_msb_present = get_bits1(gb);
265 if (delta_poc_msb_present) {
266 int delta = get_ue_golomb_long(gb);
267
268 if (i && i != nb_sps)
269 delta += prev_delta_msb;
270
271 rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
272 prev_delta_msb = delta;
273 }
274 }
275
276 return 0;
277}
278
279static int set_sps(HEVCContext *s, const HEVCSPS *sps)
280{
281 int ret;
282
283 pic_arrays_free(s);
284 ret = pic_arrays_init(s, sps);
285 if (ret < 0)
286 goto fail;
287
288 s->avctx->coded_width = sps->width;
289 s->avctx->coded_height = sps->height;
290 s->avctx->width = sps->output_width;
291 s->avctx->height = sps->output_height;
292 s->avctx->pix_fmt = sps->pix_fmt;
293 s->avctx->sample_aspect_ratio = sps->vui.sar;
294 s->avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
295
296 ff_hevc_pred_init(&s->hpc, sps->bit_depth);
297 ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
298 ff_videodsp_init (&s->vdsp, sps->bit_depth);
299
300 if (sps->sao_enabled) {
301 av_frame_unref(s->tmp_frame);
302 ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF);
303 if (ret < 0)
304 goto fail;
305 s->frame = s->tmp_frame;
306 }
307
308 s->sps = sps;
309 s->vps = s->vps_list[s->sps->vps_id];
310 return 0;
311fail:
312 pic_arrays_free(s);
313 s->sps = NULL;
314 return ret;
315}
316
317static int hls_slice_header(HEVCContext *s)
318{
319 GetBitContext *gb = &s->HEVClc->gb;
320 SliceHeader *sh = &s->sh;
321 int i, j, ret;
322
323 // Coded parameters
324 sh->first_slice_in_pic_flag = get_bits1(gb);
325 if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
326 s->seq_decode = (s->seq_decode + 1) & 0xff;
327 s->max_ra = INT_MAX;
328 if (IS_IDR(s))
329 ff_hevc_clear_refs(s);
330 }
331 if (s->nal_unit_type >= 16 && s->nal_unit_type <= 23)
332 sh->no_output_of_prior_pics_flag = get_bits1(gb);
333
334 sh->pps_id = get_ue_golomb_long(gb);
335 if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) {
336 av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
337 return AVERROR_INVALIDDATA;
338 }
339 if (!sh->first_slice_in_pic_flag &&
340 s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) {
341 av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
342 return AVERROR_INVALIDDATA;
343 }
344 s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data;
345
346 if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) {
347 s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data;
348
349 ff_hevc_clear_refs(s);
350 ret = set_sps(s, s->sps);
351 if (ret < 0)
352 return ret;
353
354 s->seq_decode = (s->seq_decode + 1) & 0xff;
355 s->max_ra = INT_MAX;
356 }
357
358 sh->dependent_slice_segment_flag = 0;
359 if (!sh->first_slice_in_pic_flag) {
360 int slice_address_length;
361
362 if (s->pps->dependent_slice_segments_enabled_flag)
363 sh->dependent_slice_segment_flag = get_bits1(gb);
364
365 slice_address_length = av_ceil_log2(s->sps->ctb_width *
366 s->sps->ctb_height);
367 sh->slice_segment_addr = get_bits(gb, slice_address_length);
368 if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) {
369 av_log(s->avctx, AV_LOG_ERROR, "Invalid slice segment address: %u.\n",
370 sh->slice_segment_addr);
371 return AVERROR_INVALIDDATA;
372 }
373
374 if (!sh->dependent_slice_segment_flag) {
375 sh->slice_addr = sh->slice_segment_addr;
376 s->slice_idx++;
377 }
378 } else {
379 sh->slice_segment_addr = sh->slice_addr = 0;
380 s->slice_idx = 0;
381 s->slice_initialized = 0;
382 }
383
384 if (!sh->dependent_slice_segment_flag) {
385 s->slice_initialized = 0;
386
387 for (i = 0; i < s->pps->num_extra_slice_header_bits; i++)
388 skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
389
390 sh->slice_type = get_ue_golomb_long(gb);
391 if (!(sh->slice_type == I_SLICE || sh->slice_type == P_SLICE ||
392 sh->slice_type == B_SLICE)) {
393 av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
394 sh->slice_type);
395 return AVERROR_INVALIDDATA;
396 }
397 if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
398 av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
399 return AVERROR_INVALIDDATA;
400 }
401
402 if (s->pps->output_flag_present_flag)
403 sh->pic_output_flag = get_bits1(gb);
404
405 if (s->sps->separate_colour_plane_flag)
406 sh->colour_plane_id = get_bits(gb, 2);
407
408 if (!IS_IDR(s)) {
409 int short_term_ref_pic_set_sps_flag;
410 int poc;
411
412 sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb);
413 poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
414 if (!sh->first_slice_in_pic_flag && poc != s->poc) {
415 av_log(s->avctx, AV_LOG_WARNING,
416 "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
417 if (s->avctx->err_recognition & AV_EF_EXPLODE)
418 return AVERROR_INVALIDDATA;
419 poc = s->poc;
420 }
421 s->poc = poc;
422
423 short_term_ref_pic_set_sps_flag = get_bits1(gb);
424 if (!short_term_ref_pic_set_sps_flag) {
425 ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1);
426 if (ret < 0)
427 return ret;
428
429 sh->short_term_rps = &sh->slice_rps;
430 } else {
431 int numbits, rps_idx;
432
433 if (!s->sps->nb_st_rps) {
434 av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
435 return AVERROR_INVALIDDATA;
436 }
437
438 numbits = av_ceil_log2(s->sps->nb_st_rps);
439 rps_idx = (numbits > 0) ? get_bits(gb, numbits) : 0;
440 sh->short_term_rps = &s->sps->st_rps[rps_idx];
441 }
442
443 ret = decode_lt_rps(s, &sh->long_term_rps, gb);
444 if (ret < 0) {
445 av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
446 if (s->avctx->err_recognition & AV_EF_EXPLODE)
447 return AVERROR_INVALIDDATA;
448 }
449
450 if (s->sps->sps_temporal_mvp_enabled_flag)
451 sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
452 else
453 sh->slice_temporal_mvp_enabled_flag = 0;
454 } else {
455 s->sh.short_term_rps = NULL;
456 s->poc = 0;
457 }
458
459 /* 8.3.1 */
460 if (s->temporal_id == 0 &&
461 s->nal_unit_type != NAL_TRAIL_N &&
462 s->nal_unit_type != NAL_TSA_N &&
463 s->nal_unit_type != NAL_STSA_N &&
464 s->nal_unit_type != NAL_TRAIL_N &&
465 s->nal_unit_type != NAL_RADL_N &&
466 s->nal_unit_type != NAL_RADL_R &&
467 s->nal_unit_type != NAL_RASL_R)
468 s->pocTid0 = s->poc;
469
470 if (s->sps->sao_enabled) {
471 sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
472 sh->slice_sample_adaptive_offset_flag[1] =
473 sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
474 } else {
475 sh->slice_sample_adaptive_offset_flag[0] = 0;
476 sh->slice_sample_adaptive_offset_flag[1] = 0;
477 sh->slice_sample_adaptive_offset_flag[2] = 0;
478 }
479
480 sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
481 if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
482 int nb_refs;
483
484 sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active;
485 if (sh->slice_type == B_SLICE)
486 sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active;
487
488 if (get_bits1(gb)) { // num_ref_idx_active_override_flag
489 sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
490 if (sh->slice_type == B_SLICE)
491 sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
492 }
493 if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
494 av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
495 sh->nb_refs[L0], sh->nb_refs[L1]);
496 return AVERROR_INVALIDDATA;
497 }
498
499 sh->rpl_modification_flag[0] = 0;
500 sh->rpl_modification_flag[1] = 0;
501 nb_refs = ff_hevc_frame_nb_refs(s);
502 if (!nb_refs) {
503 av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
504 return AVERROR_INVALIDDATA;
505 }
506
507 if (s->pps->lists_modification_present_flag && nb_refs > 1) {
508 sh->rpl_modification_flag[0] = get_bits1(gb);
509 if (sh->rpl_modification_flag[0]) {
510 for (i = 0; i < sh->nb_refs[L0]; i++)
511 sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
512 }
513
514 if (sh->slice_type == B_SLICE) {
515 sh->rpl_modification_flag[1] = get_bits1(gb);
516 if (sh->rpl_modification_flag[1] == 1)
517 for (i = 0; i < sh->nb_refs[L1]; i++)
518 sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
519 }
520 }
521
522 if (sh->slice_type == B_SLICE)
523 sh->mvd_l1_zero_flag = get_bits1(gb);
524
525 if (s->pps->cabac_init_present_flag)
526 sh->cabac_init_flag = get_bits1(gb);
527 else
528 sh->cabac_init_flag = 0;
529
530 sh->collocated_ref_idx = 0;
531 if (sh->slice_temporal_mvp_enabled_flag) {
532 sh->collocated_list = L0;
533 if (sh->slice_type == B_SLICE)
534 sh->collocated_list = !get_bits1(gb);
535
536 if (sh->nb_refs[sh->collocated_list] > 1) {
537 sh->collocated_ref_idx = get_ue_golomb_long(gb);
538 if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
539 av_log(s->avctx, AV_LOG_ERROR,
540 "Invalid collocated_ref_idx: %d.\n", sh->collocated_ref_idx);
541 return AVERROR_INVALIDDATA;
542 }
543 }
544 }
545
546 if ((s->pps->weighted_pred_flag && sh->slice_type == P_SLICE) ||
547 (s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
548 pred_weight_table(s, gb);
549 }
550
551 sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
552 if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
553 av_log(s->avctx, AV_LOG_ERROR,
554 "Invalid number of merging MVP candidates: %d.\n",
555 sh->max_num_merge_cand);
556 return AVERROR_INVALIDDATA;
557 }
558 }
559
560 sh->slice_qp_delta = get_se_golomb(gb);
561 if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) {
562 sh->slice_cb_qp_offset = get_se_golomb(gb);
563 sh->slice_cr_qp_offset = get_se_golomb(gb);
564 } else {
565 sh->slice_cb_qp_offset = 0;
566 sh->slice_cr_qp_offset = 0;
567 }
568
569 if (s->pps->deblocking_filter_control_present_flag) {
570 int deblocking_filter_override_flag = 0;
571
572 if (s->pps->deblocking_filter_override_enabled_flag)
573 deblocking_filter_override_flag = get_bits1(gb);
574
575 if (deblocking_filter_override_flag) {
576 sh->disable_deblocking_filter_flag = get_bits1(gb);
577 if (!sh->disable_deblocking_filter_flag) {
578 sh->beta_offset = get_se_golomb(gb) * 2;
579 sh->tc_offset = get_se_golomb(gb) * 2;
580 }
581 } else {
582 sh->disable_deblocking_filter_flag = s->pps->disable_dbf;
583 sh->beta_offset = s->pps->beta_offset;
584 sh->tc_offset = s->pps->tc_offset;
585 }
586 } else {
587 sh->disable_deblocking_filter_flag = 0;
588 sh->beta_offset = 0;
589 sh->tc_offset = 0;
590 }
591
592 if (s->pps->seq_loop_filter_across_slices_enabled_flag &&
593 (sh->slice_sample_adaptive_offset_flag[0] ||
594 sh->slice_sample_adaptive_offset_flag[1] ||
595 !sh->disable_deblocking_filter_flag)) {
596 sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
597 } else {
598 sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag;
599 }
600 } else if (!s->slice_initialized) {
601 av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
602 return AVERROR_INVALIDDATA;
603 }
604
605 sh->num_entry_point_offsets = 0;
606 if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) {
607 sh->num_entry_point_offsets = get_ue_golomb_long(gb);
608 if (sh->num_entry_point_offsets > 0) {
609 int offset_len = get_ue_golomb_long(gb) + 1;
610 int segments = offset_len >> 4;
611 int rest = (offset_len & 15);
612 av_freep(&sh->entry_point_offset);
613 av_freep(&sh->offset);
614 av_freep(&sh->size);
615 sh->entry_point_offset = av_malloc(sh->num_entry_point_offsets * sizeof(int));
616 sh->offset = av_malloc(sh->num_entry_point_offsets * sizeof(int));
617 sh->size = av_malloc(sh->num_entry_point_offsets * sizeof(int));
618 for (i = 0; i < sh->num_entry_point_offsets; i++) {
619 int val = 0;
620 for (j = 0; j < segments; j++) {
621 val <<= 16;
622 val += get_bits(gb, 16);
623 }
624 if (rest) {
625 val <<= rest;
626 val += get_bits(gb, rest);
627 }
628 sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
629 }
630 if (s->threads_number > 1 && (s->pps->num_tile_rows > 1 || s->pps->num_tile_columns > 1)) {
631 s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
632 s->threads_number = 1;
633 } else
634 s->enable_parallel_tiles = 0;
635 } else
636 s->enable_parallel_tiles = 0;
637 }
638
639 if (s->pps->slice_header_extension_present_flag) {
640 int length = get_ue_golomb_long(gb);
641 for (i = 0; i < length; i++)
642 skip_bits(gb, 8); // slice_header_extension_data_byte
643 }
644
645 // Inferred parameters
646 sh->slice_qp = 26 + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta;
647 sh->slice_ctb_addr_rs = sh->slice_segment_addr;
648
649 s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
650
651 if (!s->pps->cu_qp_delta_enabled_flag)
652 s->HEVClc->qp_y = ((s->sh.slice_qp + 52 + 2 * s->sps->qp_bd_offset) %
653 (52 + s->sps->qp_bd_offset)) - s->sps->qp_bd_offset;
654
655 s->slice_initialized = 1;
656
657 return 0;
658}
659
660#define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
661
662#define SET_SAO(elem, value) \
663do { \
664 if (!sao_merge_up_flag && !sao_merge_left_flag) \
665 sao->elem = value; \
666 else if (sao_merge_left_flag) \
667 sao->elem = CTB(s->sao, rx-1, ry).elem; \
668 else if (sao_merge_up_flag) \
669 sao->elem = CTB(s->sao, rx, ry-1).elem; \
670 else \
671 sao->elem = 0; \
672} while (0)
673
674static void hls_sao_param(HEVCContext *s, int rx, int ry)
675{
676 HEVCLocalContext *lc = s->HEVClc;
677 int sao_merge_left_flag = 0;
678 int sao_merge_up_flag = 0;
679 int shift = s->sps->bit_depth - FFMIN(s->sps->bit_depth, 10);
680 SAOParams *sao = &CTB(s->sao, rx, ry);
681 int c_idx, i;
682
683 if (s->sh.slice_sample_adaptive_offset_flag[0] ||
684 s->sh.slice_sample_adaptive_offset_flag[1]) {
685 if (rx > 0) {
686 if (lc->ctb_left_flag)
687 sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
688 }
689 if (ry > 0 && !sao_merge_left_flag) {
690 if (lc->ctb_up_flag)
691 sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
692 }
693 }
694
695 for (c_idx = 0; c_idx < 3; c_idx++) {
696 if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
697 sao->type_idx[c_idx] = SAO_NOT_APPLIED;
698 continue;
699 }
700
701 if (c_idx == 2) {
702 sao->type_idx[2] = sao->type_idx[1];
703 sao->eo_class[2] = sao->eo_class[1];
704 } else {
705 SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
706 }
707
708 if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
709 continue;
710
711 for (i = 0; i < 4; i++)
712 SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
713
714 if (sao->type_idx[c_idx] == SAO_BAND) {
715 for (i = 0; i < 4; i++) {
716 if (sao->offset_abs[c_idx][i]) {
717 SET_SAO(offset_sign[c_idx][i], ff_hevc_sao_offset_sign_decode(s));
718 } else {
719 sao->offset_sign[c_idx][i] = 0;
720 }
721 }
722 SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
723 } else if (c_idx != 2) {
724 SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
725 }
726
727 // Inferred parameters
728 sao->offset_val[c_idx][0] = 0;
729 for (i = 0; i < 4; i++) {
730 sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift;
731 if (sao->type_idx[c_idx] == SAO_EDGE) {
732 if (i > 1)
733 sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
734 } else if (sao->offset_sign[c_idx][i]) {
735 sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
736 }
737 }
738 }
739}
740
741#undef SET_SAO
742#undef CTB
743
744
745static void hls_transform_unit(HEVCContext *s, int x0, int y0,
746 int xBase, int yBase, int cb_xBase, int cb_yBase,
747 int log2_cb_size, int log2_trafo_size,
748 int trafo_depth, int blk_idx)
749{
750 HEVCLocalContext *lc = s->HEVClc;
751
752 if (lc->cu.pred_mode == MODE_INTRA) {
753 int trafo_size = 1 << log2_trafo_size;
754 ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
755
756 s->hpc.intra_pred(s, x0, y0, log2_trafo_size, 0);
757 if (log2_trafo_size > 2) {
758 trafo_size = trafo_size << (s->sps->hshift[1] - 1);
759 ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
760 s->hpc.intra_pred(s, x0, y0, log2_trafo_size - 1, 1);
761 s->hpc.intra_pred(s, x0, y0, log2_trafo_size - 1, 2);
762 } else if (blk_idx == 3) {
763 trafo_size = trafo_size << (s->sps->hshift[1]);
764 ff_hevc_set_neighbour_available(s, xBase, yBase, trafo_size, trafo_size);
765 s->hpc.intra_pred(s, xBase, yBase, log2_trafo_size, 1);
766 s->hpc.intra_pred(s, xBase, yBase, log2_trafo_size, 2);
767 }
768 }
769
770 if (lc->tt.cbf_luma ||
771 SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) ||
772 SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0)) {
773 int scan_idx = SCAN_DIAG;
774 int scan_idx_c = SCAN_DIAG;
775
776 if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
777 lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
778 if (lc->tu.cu_qp_delta != 0)
779 if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
780 lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
781 lc->tu.is_cu_qp_delta_coded = 1;
782 ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size);
783 }
784
785 if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
786 if (lc->tu.cur_intra_pred_mode >= 6 &&
787 lc->tu.cur_intra_pred_mode <= 14) {
788 scan_idx = SCAN_VERT;
789 } else if (lc->tu.cur_intra_pred_mode >= 22 &&
790 lc->tu.cur_intra_pred_mode <= 30) {
791 scan_idx = SCAN_HORIZ;
792 }
793
794 if (lc->pu.intra_pred_mode_c >= 6 &&
795 lc->pu.intra_pred_mode_c <= 14) {
796 scan_idx_c = SCAN_VERT;
797 } else if (lc->pu.intra_pred_mode_c >= 22 &&
798 lc->pu.intra_pred_mode_c <= 30) {
799 scan_idx_c = SCAN_HORIZ;
800 }
801 }
802
803 if (lc->tt.cbf_luma)
804 ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
805 if (log2_trafo_size > 2) {
806 if (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0))
807 ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1);
808 if (SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0))
809 ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2);
810 } else if (blk_idx == 3) {
811 if (SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], xBase, yBase))
812 ff_hevc_hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1);
813 if (SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], xBase, yBase))
814 ff_hevc_hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2);
815 }
816 }
817}
818
819static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
820{
821 int cb_size = 1 << log2_cb_size;
822 int log2_min_pu_size = s->sps->log2_min_pu_size;
823
824 int min_pu_width = s->sps->min_pu_width;
825 int x_end = FFMIN(x0 + cb_size, s->sps->width);
826 int y_end = FFMIN(y0 + cb_size, s->sps->height);
827 int i, j;
828
829 for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
830 for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
831 s->is_pcm[i + j * min_pu_width] = 2;
832}
833
834static void hls_transform_tree(HEVCContext *s, int x0, int y0,
835 int xBase, int yBase, int cb_xBase, int cb_yBase,
836 int log2_cb_size, int log2_trafo_size,
837 int trafo_depth, int blk_idx)
838{
839 HEVCLocalContext *lc = s->HEVClc;
840 uint8_t split_transform_flag;
841
842 if (trafo_depth > 0 && log2_trafo_size == 2) {
843 SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
844 SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth - 1], xBase, yBase);
845 SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) =
846 SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth - 1], xBase, yBase);
847 } else {
848 SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
849 SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) = 0;
850 }
851
852 if (lc->cu.intra_split_flag) {
853 if (trafo_depth == 1)
854 lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
855 } else {
856 lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0];
857 }
858
859 lc->tt.cbf_luma = 1;
860
861 lc->tt.inter_split_flag = (s->sps->max_transform_hierarchy_depth_inter == 0 &&
862 lc->cu.pred_mode == MODE_INTER &&
863 lc->cu.part_mode != PART_2Nx2N && trafo_depth == 0);
864
865 if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
866 log2_trafo_size > s->sps->log2_min_tb_size &&
867 trafo_depth < lc->cu.max_trafo_depth &&
868 !(lc->cu.intra_split_flag && trafo_depth == 0)) {
869 split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
870 } else {
871 split_transform_flag = (log2_trafo_size > s->sps->log2_max_trafo_size ||
872 (lc->cu.intra_split_flag && (trafo_depth == 0)) ||
873 lc->tt.inter_split_flag);
874 }
875
876 if (log2_trafo_size > 2) {
877 if (trafo_depth == 0 ||
878 SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth - 1], xBase, yBase)) {
879 SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) =
880 ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
881 }
882
883 if (trafo_depth == 0 || SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth - 1], xBase, yBase)) {
884 SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0) =
885 ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
886 }
887 }
888
889 if (split_transform_flag) {
890 int x1 = x0 + ((1 << log2_trafo_size) >> 1);
891 int y1 = y0 + ((1 << log2_trafo_size) >> 1);
892
893 hls_transform_tree(s, x0, y0, x0, y0, cb_xBase, cb_yBase, log2_cb_size,
894 log2_trafo_size - 1, trafo_depth + 1, 0);
895 hls_transform_tree(s, x1, y0, x0, y0, cb_xBase, cb_yBase, log2_cb_size,
896 log2_trafo_size - 1, trafo_depth + 1, 1);
897 hls_transform_tree(s, x0, y1, x0, y0, cb_xBase, cb_yBase, log2_cb_size,
898 log2_trafo_size - 1, trafo_depth + 1, 2);
899 hls_transform_tree(s, x1, y1, x0, y0, cb_xBase, cb_yBase, log2_cb_size,
900 log2_trafo_size - 1, trafo_depth + 1, 3);
901 } else {
902 int min_tu_size = 1 << s->sps->log2_min_tb_size;
903 int log2_min_tu_size = s->sps->log2_min_tb_size;
904 int min_tu_width = s->sps->min_tb_width;
905
906 if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
907 SAMPLE_CBF(lc->tt.cbf_cb[trafo_depth], x0, y0) ||
908 SAMPLE_CBF(lc->tt.cbf_cr[trafo_depth], x0, y0)) {
909 lc->tt.cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
910 }
911
912 hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
913 log2_cb_size, log2_trafo_size, trafo_depth, blk_idx);
914
915 // TODO: store cbf_luma somewhere else
916 if (lc->tt.cbf_luma) {
917 int i, j;
918 for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
919 for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
920 int x_tu = (x0 + j) >> log2_min_tu_size;
921 int y_tu = (y0 + i) >> log2_min_tu_size;
922 s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
923 }
924 }
925 if (!s->sh.disable_deblocking_filter_flag) {
926 ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size,
927 lc->slice_or_tiles_up_boundary,
928 lc->slice_or_tiles_left_boundary);
929 if (s->pps->transquant_bypass_enable_flag && lc->cu.cu_transquant_bypass_flag)
930 set_deblocking_bypass(s, x0, y0, log2_trafo_size);
931 }
932 }
933}
934
935static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
936{
937 //TODO: non-4:2:0 support
938 HEVCLocalContext *lc = s->HEVClc;
939 GetBitContext gb;
940 int cb_size = 1 << log2_cb_size;
941 int stride0 = s->frame->linesize[0];
942 uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)];
943 int stride1 = s->frame->linesize[1];
944 uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)];
945 int stride2 = s->frame->linesize[2];
946 uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)];
947
948 int length = cb_size * cb_size * s->sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->sps->pcm.bit_depth;
949 const uint8_t *pcm = skip_bytes(&s->HEVClc->cc, (length + 7) >> 3);
950 int ret;
951
952 ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size,
953 lc->slice_or_tiles_up_boundary,
954 lc->slice_or_tiles_left_boundary);
955
956 ret = init_get_bits(&gb, pcm, length);
957 if (ret < 0)
958 return ret;
959
960 s->hevcdsp.put_pcm(dst0, stride0, cb_size, &gb, s->sps->pcm.bit_depth);
961 s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
962 s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
963 return 0;
964}
965
966/**
967 * 8.5.3.2.2.1 Luma sample interpolation process
968 *
969 * @param s HEVC decoding context
970 * @param dst target buffer for block data at block position
971 * @param dststride stride of the dst buffer
972 * @param ref reference picture buffer at origin (0, 0)
973 * @param mv motion vector (relative to block position) to get pixel data from
974 * @param x_off horizontal position of block from origin (0, 0)
975 * @param y_off vertical position of block from origin (0, 0)
976 * @param block_w width of block
977 * @param block_h height of block
978 */
979static void luma_mc(HEVCContext *s, int16_t *dst, ptrdiff_t dststride,
980 AVFrame *ref, const Mv *mv, int x_off, int y_off,
981 int block_w, int block_h)
982{
983 HEVCLocalContext *lc = s->HEVClc;
984 uint8_t *src = ref->data[0];
985 ptrdiff_t srcstride = ref->linesize[0];
986 int pic_width = s->sps->width;
987 int pic_height = s->sps->height;
988
989 int mx = mv->x & 3;
990 int my = mv->y & 3;
991 int extra_left = ff_hevc_qpel_extra_before[mx];
992 int extra_top = ff_hevc_qpel_extra_before[my];
993
994 x_off += mv->x >> 2;
995 y_off += mv->y >> 2;
996 src += y_off * srcstride + (x_off << s->sps->pixel_shift);
997
998 if (x_off < extra_left || y_off < extra_top ||
999 x_off >= pic_width - block_w - ff_hevc_qpel_extra_after[mx] ||
1000 y_off >= pic_height - block_h - ff_hevc_qpel_extra_after[my]) {
1001 int offset = extra_top * srcstride + (extra_left << s->sps->pixel_shift);
1002
1003 s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, srcstride, src - offset, srcstride,
1004 block_w + ff_hevc_qpel_extra[mx], block_h + ff_hevc_qpel_extra[my],
1005 x_off - extra_left, y_off - extra_top,
1006 pic_width, pic_height);
1007 src = lc->edge_emu_buffer + offset;
1008 }
1009 s->hevcdsp.put_hevc_qpel[my][mx](dst, dststride, src, srcstride, block_w,
1010 block_h, lc->mc_buffer);
1011}
1012
1013/**
1014 * 8.5.3.2.2.2 Chroma sample interpolation process
1015 *
1016 * @param s HEVC decoding context
1017 * @param dst1 target buffer for block data at block position (U plane)
1018 * @param dst2 target buffer for block data at block position (V plane)
1019 * @param dststride stride of the dst1 and dst2 buffers
1020 * @param ref reference picture buffer at origin (0, 0)
1021 * @param mv motion vector (relative to block position) to get pixel data from
1022 * @param x_off horizontal position of block from origin (0, 0)
1023 * @param y_off vertical position of block from origin (0, 0)
1024 * @param block_w width of block
1025 * @param block_h height of block
1026 */
1027static void chroma_mc(HEVCContext *s, int16_t *dst1, int16_t *dst2, ptrdiff_t dststride, AVFrame *ref,
1028 const Mv *mv, int x_off, int y_off, int block_w, int block_h)
1029{
1030 HEVCLocalContext *lc = s->HEVClc;
1031 uint8_t *src1 = ref->data[1];
1032 uint8_t *src2 = ref->data[2];
1033 ptrdiff_t src1stride = ref->linesize[1];
1034 ptrdiff_t src2stride = ref->linesize[2];
1035 int pic_width = s->sps->width >> 1;
1036 int pic_height = s->sps->height >> 1;
1037
1038 int mx = mv->x & 7;
1039 int my = mv->y & 7;
1040
1041 x_off += mv->x >> 3;
1042 y_off += mv->y >> 3;
1043 src1 += y_off * src1stride + (x_off << s->sps->pixel_shift);
1044 src2 += y_off * src2stride + (x_off << s->sps->pixel_shift);
1045
1046 if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
1047 x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
1048 y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
1049 int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift));
1050 int offset2 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift));
1051
1052 s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1stride, src1 - offset1, src1stride,
1053 block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1054 x_off - EPEL_EXTRA_BEFORE,
1055 y_off - EPEL_EXTRA_BEFORE,
1056 pic_width, pic_height);
1057
1058 src1 = lc->edge_emu_buffer + offset1;
1059 s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
1060 block_w, block_h, mx, my, lc->mc_buffer);
1061
1062 s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src2stride, src2 - offset2, src2stride,
1063 block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1064 x_off - EPEL_EXTRA_BEFORE,
1065 y_off - EPEL_EXTRA_BEFORE,
1066 pic_width, pic_height);
1067 src2 = lc->edge_emu_buffer + offset2;
1068 s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
1069 block_w, block_h, mx, my,
1070 lc->mc_buffer);
1071 } else {
1072 s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
1073 block_w, block_h, mx, my,
1074 lc->mc_buffer);
1075 s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
1076 block_w, block_h, mx, my,
1077 lc->mc_buffer);
1078 }
1079}
1080
1081static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
1082 const Mv *mv, int y0, int height)
1083{
1084 int y = (mv->y >> 2) + y0 + height + 9;
1085
1086 if (s->threads_type == FF_THREAD_FRAME )
1087 ff_thread_await_progress(&ref->tf, y, 0);
1088}
1089
1090static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
1091 int nPbW, int nPbH,
1092 int log2_cb_size, int partIdx)
1093{
1094#define POS(c_idx, x, y) \
1095 &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
1096 (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
1097 HEVCLocalContext *lc = s->HEVClc;
1098 int merge_idx = 0;
1099 struct MvField current_mv = {{{ 0 }}};
1100
1101 int min_pu_width = s->sps->min_pu_width;
1102
1103 MvField *tab_mvf = s->ref->tab_mvf;
1104 RefPicList *refPicList = s->ref->refPicList;
1105 HEVCFrame *ref0, *ref1;
1106
1107 int tmpstride = MAX_PB_SIZE;
1108
1109 uint8_t *dst0 = POS(0, x0, y0);
1110 uint8_t *dst1 = POS(1, x0, y0);
1111 uint8_t *dst2 = POS(2, x0, y0);
1112 int log2_min_cb_size = s->sps->log2_min_cb_size;
1113 int min_cb_width = s->sps->min_cb_width;
1114 int x_cb = x0 >> log2_min_cb_size;
1115 int y_cb = y0 >> log2_min_cb_size;
1116 int ref_idx[2];
1117 int mvp_flag[2];
1118 int x_pu, y_pu;
1119 int i, j;
1120
1121 if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
1122 if (s->sh.max_num_merge_cand > 1)
1123 merge_idx = ff_hevc_merge_idx_decode(s);
1124 else
1125 merge_idx = 0;
1126
1127 ff_hevc_luma_mv_merge_mode(s, x0, y0, 1 << log2_cb_size, 1 << log2_cb_size,
1128 log2_cb_size, partIdx, merge_idx, &current_mv);
1129 x_pu = x0 >> s->sps->log2_min_pu_size;
1130 y_pu = y0 >> s->sps->log2_min_pu_size;
1131
1132 for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1133 for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1134 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1135 } else { /* MODE_INTER */
1136 lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
1137 if (lc->pu.merge_flag) {
1138 if (s->sh.max_num_merge_cand > 1)
1139 merge_idx = ff_hevc_merge_idx_decode(s);
1140 else
1141 merge_idx = 0;
1142
1143 ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1144 partIdx, merge_idx, &current_mv);
1145 x_pu = x0 >> s->sps->log2_min_pu_size;
1146 y_pu = y0 >> s->sps->log2_min_pu_size;
1147
1148 for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1149 for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1150 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1151 } else {
1152 enum InterPredIdc inter_pred_idc = PRED_L0;
1153 ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
1154 if (s->sh.slice_type == B_SLICE)
1155 inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
1156
1157 if (inter_pred_idc != PRED_L1) {
1158 if (s->sh.nb_refs[L0]) {
1159 ref_idx[0] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
1160 current_mv.ref_idx[0] = ref_idx[0];
1161 }
1162 current_mv.pred_flag[0] = 1;
1163 ff_hevc_hls_mvd_coding(s, x0, y0, 0);
1164 mvp_flag[0] = ff_hevc_mvp_lx_flag_decode(s);
1165 ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1166 partIdx, merge_idx, &current_mv, mvp_flag[0], 0);
1167 current_mv.mv[0].x += lc->pu.mvd.x;
1168 current_mv.mv[0].y += lc->pu.mvd.y;
1169 }
1170
1171 if (inter_pred_idc != PRED_L0) {
1172 if (s->sh.nb_refs[L1]) {
1173 ref_idx[1] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
1174 current_mv.ref_idx[1] = ref_idx[1];
1175 }
1176
1177 if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
1178 lc->pu.mvd.x = 0;
1179 lc->pu.mvd.y = 0;
1180 } else {
1181 ff_hevc_hls_mvd_coding(s, x0, y0, 1);
1182 }
1183
1184 current_mv.pred_flag[1] = 1;
1185 mvp_flag[1] = ff_hevc_mvp_lx_flag_decode(s);
1186 ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1187 partIdx, merge_idx, &current_mv, mvp_flag[1], 1);
1188 current_mv.mv[1].x += lc->pu.mvd.x;
1189 current_mv.mv[1].y += lc->pu.mvd.y;
1190 }
1191
1192 x_pu = x0 >> s->sps->log2_min_pu_size;
1193 y_pu = y0 >> s->sps->log2_min_pu_size;
1194
1195 for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1196 for(j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1197 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1198 }
1199 }
1200
1201 if (current_mv.pred_flag[0]) {
1202 ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
1203 if (!ref0)
1204 return;
1205 hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
1206 }
1207 if (current_mv.pred_flag[1]) {
1208 ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
1209 if (!ref1)
1210 return;
1211 hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
1212 }
1213
1214 if (current_mv.pred_flag[0] && !current_mv.pred_flag[1]) {
1215 DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1216 DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1217
1218 luma_mc(s, tmp, tmpstride, ref0->frame,
1219 &current_mv.mv[0], x0, y0, nPbW, nPbH);
1220
1221 if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1222 (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1223 s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
1224 s->sh.luma_weight_l0[current_mv.ref_idx[0]],
1225 s->sh.luma_offset_l0[current_mv.ref_idx[0]],
1226 dst0, s->frame->linesize[0], tmp,
1227 tmpstride, nPbW, nPbH);
1228 } else {
1229 s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
1230 }
1231 chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
1232 &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1233
1234 if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1235 (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1236 s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1237 s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
1238 s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
1239 dst1, s->frame->linesize[1], tmp, tmpstride,
1240 nPbW / 2, nPbH / 2);
1241 s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1242 s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
1243 s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
1244 dst2, s->frame->linesize[2], tmp2, tmpstride,
1245 nPbW / 2, nPbH / 2);
1246 } else {
1247 s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1248 s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1249 }
1250 } else if (!current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
1251 DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1252 DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1253
1254 if (!ref1)
1255 return;
1256
1257 luma_mc(s, tmp, tmpstride, ref1->frame,
1258 &current_mv.mv[1], x0, y0, nPbW, nPbH);
1259
1260 if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1261 (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1262 s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
1263 s->sh.luma_weight_l1[current_mv.ref_idx[1]],
1264 s->sh.luma_offset_l1[current_mv.ref_idx[1]],
1265 dst0, s->frame->linesize[0], tmp, tmpstride,
1266 nPbW, nPbH);
1267 } else {
1268 s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
1269 }
1270
1271 chroma_mc(s, tmp, tmp2, tmpstride, ref1->frame,
1272 &current_mv.mv[1], x0/2, y0/2, nPbW/2, nPbH/2);
1273
1274 if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1275 (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1276 s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1277 s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
1278 s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
1279 dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1280 s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1281 s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
1282 s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
1283 dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1284 } else {
1285 s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1286 s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1287 }
1288 } else if (current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
1289 DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1290 DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1291 DECLARE_ALIGNED(16, int16_t, tmp3[MAX_PB_SIZE * MAX_PB_SIZE]);
1292 DECLARE_ALIGNED(16, int16_t, tmp4[MAX_PB_SIZE * MAX_PB_SIZE]);
1293 HEVCFrame *ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
1294 HEVCFrame *ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
1295
1296 if (!ref0 || !ref1)
1297 return;
1298
1299 luma_mc(s, tmp, tmpstride, ref0->frame,
1300 &current_mv.mv[0], x0, y0, nPbW, nPbH);
1301 luma_mc(s, tmp2, tmpstride, ref1->frame,
1302 &current_mv.mv[1], x0, y0, nPbW, nPbH);
1303
1304 if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1305 (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1306 s->hevcdsp.weighted_pred_avg(s->sh.luma_log2_weight_denom,
1307 s->sh.luma_weight_l0[current_mv.ref_idx[0]],
1308 s->sh.luma_weight_l1[current_mv.ref_idx[1]],
1309 s->sh.luma_offset_l0[current_mv.ref_idx[0]],
1310 s->sh.luma_offset_l1[current_mv.ref_idx[1]],
1311 dst0, s->frame->linesize[0],
1312 tmp, tmp2, tmpstride, nPbW, nPbH);
1313 } else {
1314 s->hevcdsp.put_weighted_pred_avg(dst0, s->frame->linesize[0],
1315 tmp, tmp2, tmpstride, nPbW, nPbH);
1316 }
1317
1318 chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
1319 &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1320 chroma_mc(s, tmp3, tmp4, tmpstride, ref1->frame,
1321 &current_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1322
1323 if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1324 (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1325 s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
1326 s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
1327 s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
1328 s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
1329 s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
1330 dst1, s->frame->linesize[1], tmp, tmp3,
1331 tmpstride, nPbW / 2, nPbH / 2);
1332 s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
1333 s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
1334 s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
1335 s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
1336 s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
1337 dst2, s->frame->linesize[2], tmp2, tmp4,
1338 tmpstride, nPbW / 2, nPbH / 2);
1339 } else {
1340 s->hevcdsp.put_weighted_pred_avg(dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbW/2, nPbH/2);
1341 s->hevcdsp.put_weighted_pred_avg(dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbW/2, nPbH/2);
1342 }
1343 }
1344}
1345
1346/**
1347 * 8.4.1
1348 */
1349static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
1350 int prev_intra_luma_pred_flag)
1351{
1352 HEVCLocalContext *lc = s->HEVClc;
1353 int x_pu = x0 >> s->sps->log2_min_pu_size;
1354 int y_pu = y0 >> s->sps->log2_min_pu_size;
1355 int min_pu_width = s->sps->min_pu_width;
1356 int size_in_pus = pu_size >> s->sps->log2_min_pu_size;
1357 int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
1358 int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);
1359
1360 int cand_up = (lc->ctb_up_flag || y0b) ?
1361 s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
1362 int cand_left = (lc->ctb_left_flag || x0b) ?
1363 s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
1364
1365 int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size);
1366
1367 MvField *tab_mvf = s->ref->tab_mvf;
1368 int intra_pred_mode;
1369 int candidate[3];
1370 int i, j;
1371
1372 // intra_pred_mode prediction does not cross vertical CTB boundaries
1373 if ((y0 - 1) < y_ctb)
1374 cand_up = INTRA_DC;
1375
1376 if (cand_left == cand_up) {
1377 if (cand_left < 2) {
1378 candidate[0] = INTRA_PLANAR;
1379 candidate[1] = INTRA_DC;
1380 candidate[2] = INTRA_ANGULAR_26;
1381 } else {
1382 candidate[0] = cand_left;
1383 candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
1384 candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
1385 }
1386 } else {
1387 candidate[0] = cand_left;
1388 candidate[1] = cand_up;
1389 if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
1390 candidate[2] = INTRA_PLANAR;
1391 } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
1392 candidate[2] = INTRA_DC;
1393 } else {
1394 candidate[2] = INTRA_ANGULAR_26;
1395 }
1396 }
1397
1398 if (prev_intra_luma_pred_flag) {
1399 intra_pred_mode = candidate[lc->pu.mpm_idx];
1400 } else {
1401 if (candidate[0] > candidate[1])
1402 FFSWAP(uint8_t, candidate[0], candidate[1]);
1403 if (candidate[0] > candidate[2])
1404 FFSWAP(uint8_t, candidate[0], candidate[2]);
1405 if (candidate[1] > candidate[2])
1406 FFSWAP(uint8_t, candidate[1], candidate[2]);
1407
1408 intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
1409 for (i = 0; i < 3; i++)
1410 if (intra_pred_mode >= candidate[i])
1411 intra_pred_mode++;
1412 }
1413
1414 /* write the intra prediction units into the mv array */
1415 if (!size_in_pus)
1416 size_in_pus = 1;
1417 for (i = 0; i < size_in_pus; i++) {
1418 memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
1419 intra_pred_mode, size_in_pus);
1420
1421 for (j = 0; j < size_in_pus; j++) {
1422 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].is_intra = 1;
1423 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[0] = 0;
1424 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[1] = 0;
1425 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[0] = 0;
1426 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[1] = 0;
1427 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].x = 0;
1428 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].y = 0;
1429 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].x = 0;
1430 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].y = 0;
1431 }
1432 }
1433
1434 return intra_pred_mode;
1435}
1436
1437static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
1438 int log2_cb_size, int ct_depth)
1439{
1440 int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size;
1441 int x_cb = x0 >> s->sps->log2_min_cb_size;
1442 int y_cb = y0 >> s->sps->log2_min_cb_size;
1443 int y;
1444
1445 for (y = 0; y < length; y++)
1446 memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb],
1447 ct_depth, length);
1448}
1449
1450static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
1451 int log2_cb_size)
1452{
1453 HEVCLocalContext *lc = s->HEVClc;
1454 static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
1455 uint8_t prev_intra_luma_pred_flag[4];
1456 int split = lc->cu.part_mode == PART_NxN;
1457 int pb_size = (1 << log2_cb_size) >> split;
1458 int side = split + 1;
1459 int chroma_mode;
1460 int i, j;
1461
1462 for (i = 0; i < side; i++)
1463 for (j = 0; j < side; j++)
1464 prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
1465
1466 for (i = 0; i < side; i++) {
1467 for (j = 0; j < side; j++) {
1468 if (prev_intra_luma_pred_flag[2 * i + j])
1469 lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
1470 else
1471 lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
1472
1473 lc->pu.intra_pred_mode[2 * i + j] =
1474 luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
1475 prev_intra_luma_pred_flag[2 * i + j]);
1476 }
1477 }
1478
1479 chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
1480 if (chroma_mode != 4) {
1481 if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
1482 lc->pu.intra_pred_mode_c = 34;
1483 else
1484 lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode];
1485 } else {
1486 lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0];
1487 }
1488}
1489
1490static void intra_prediction_unit_default_value(HEVCContext *s,
1491 int x0, int y0,
1492 int log2_cb_size)
1493{
1494 HEVCLocalContext *lc = s->HEVClc;
1495 int pb_size = 1 << log2_cb_size;
1496 int size_in_pus = pb_size >> s->sps->log2_min_pu_size;
1497 int min_pu_width = s->sps->min_pu_width;
1498 MvField *tab_mvf = s->ref->tab_mvf;
1499 int x_pu = x0 >> s->sps->log2_min_pu_size;
1500 int y_pu = y0 >> s->sps->log2_min_pu_size;
1501 int j, k;
1502
1503 if (size_in_pus == 0)
1504 size_in_pus = 1;
1505 for (j = 0; j < size_in_pus; j++) {
1506 memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
1507 for (k = 0; k < size_in_pus; k++)
1508 tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].is_intra = lc->cu.pred_mode == MODE_INTRA;
1509 }
1510}
1511
1512static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
1513{
1514 int cb_size = 1 << log2_cb_size;
1515 HEVCLocalContext *lc = s->HEVClc;
1516 int log2_min_cb_size = s->sps->log2_min_cb_size;
1517 int length = cb_size >> log2_min_cb_size;
1518 int min_cb_width = s->sps->min_cb_width;
1519 int x_cb = x0 >> log2_min_cb_size;
1520 int y_cb = y0 >> log2_min_cb_size;
1521 int x, y;
1522
1523 lc->cu.x = x0;
1524 lc->cu.y = y0;
1525 lc->cu.rqt_root_cbf = 1;
1526
1527 lc->cu.pred_mode = MODE_INTRA;
1528 lc->cu.part_mode = PART_2Nx2N;
1529 lc->cu.intra_split_flag = 0;
1530 lc->cu.pcm_flag = 0;
1531 SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
1532 for (x = 0; x < 4; x++)
1533 lc->pu.intra_pred_mode[x] = 1;
1534 if (s->pps->transquant_bypass_enable_flag) {
1535 lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
1536 if (lc->cu.cu_transquant_bypass_flag)
1537 set_deblocking_bypass(s, x0, y0, log2_cb_size);
1538 } else
1539 lc->cu.cu_transquant_bypass_flag = 0;
1540
1541 if (s->sh.slice_type != I_SLICE) {
1542 uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
1543
1544 lc->cu.pred_mode = MODE_SKIP;
1545 x = y_cb * min_cb_width + x_cb;
1546 for (y = 0; y < length; y++) {
1547 memset(&s->skip_flag[x], skip_flag, length);
1548 x += min_cb_width;
1549 }
1550 lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
1551 }
1552
1553 if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
1554 hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
1555 intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
1556
1557 if (!s->sh.disable_deblocking_filter_flag)
1558 ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size,
1559 lc->slice_or_tiles_up_boundary,
1560 lc->slice_or_tiles_left_boundary);
1561 } else {
1562 if (s->sh.slice_type != I_SLICE)
1563 lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
1564 if (lc->cu.pred_mode != MODE_INTRA ||
1565 log2_cb_size == s->sps->log2_min_cb_size) {
1566 lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
1567 lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
1568 lc->cu.pred_mode == MODE_INTRA;
1569 }
1570
1571 if (lc->cu.pred_mode == MODE_INTRA) {
1572 if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag &&
1573 log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size &&
1574 log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
1575 lc->cu.pcm_flag = ff_hevc_pcm_flag_decode(s);
1576 }
1577 if (lc->cu.pcm_flag) {
1578 int ret;
1579 intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
1580 ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
1581 if (s->sps->pcm.loop_filter_disable_flag)
1582 set_deblocking_bypass(s, x0, y0, log2_cb_size);
1583
1584 if (ret < 0)
1585 return ret;
1586 } else {
1587 intra_prediction_unit(s, x0, y0, log2_cb_size);
1588 }
1589 } else {
1590 intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
1591 switch (lc->cu.part_mode) {
1592 case PART_2Nx2N:
1593 hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
1594 break;
1595 case PART_2NxN:
1596 hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0);
1597 hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size/2, log2_cb_size, 1);
1598 break;
1599 case PART_Nx2N:
1600 hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0);
1601 hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1);
1602 break;
1603 case PART_2NxnU:
1604 hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0);
1605 hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1);
1606 break;
1607 case PART_2NxnD:
1608 hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0);
1609 hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1);
1610 break;
1611 case PART_nLx2N:
1612 hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size,0);
1613 hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1);
1614 break;
1615 case PART_nRx2N:
1616 hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size,0);
1617 hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size/4, cb_size, log2_cb_size, 1);
1618 break;
1619 case PART_NxN:
1620 hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0);
1621 hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1);
1622 hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2);
1623 hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
1624 break;
1625 }
1626 }
1627
1628 if (!lc->cu.pcm_flag) {
1629 if (lc->cu.pred_mode != MODE_INTRA &&
1630 !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
1631 lc->cu.rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
1632 }
1633 if (lc->cu.rqt_root_cbf) {
1634 lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
1635 s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
1636 s->sps->max_transform_hierarchy_depth_inter;
1637 hls_transform_tree(s, x0, y0, x0, y0, x0, y0, log2_cb_size,
1638 log2_cb_size, 0, 0);
1639 } else {
1640 if (!s->sh.disable_deblocking_filter_flag)
1641 ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size,
1642 lc->slice_or_tiles_up_boundary,
1643 lc->slice_or_tiles_left_boundary);
1644 }
1645 }
1646 }
1647
1648 if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
1649 ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size);
1650
1651 x = y_cb * min_cb_width + x_cb;
1652 for (y = 0; y < length; y++) {
1653 memset(&s->qp_y_tab[x], lc->qp_y, length);
1654 x += min_cb_width;
1655 }
1656
1657 set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth);
1658
1659 return 0;
1660}
1661
1662static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
1663 int log2_cb_size, int cb_depth)
1664{
1665 HEVCLocalContext *lc = s->HEVClc;
1666 const int cb_size = 1 << log2_cb_size;
1667 int ret;
1668
1669 lc->ct.depth = cb_depth;
1670 if ((x0 + cb_size <= s->sps->width) &&
1671 (y0 + cb_size <= s->sps->height) &&
1672 log2_cb_size > s->sps->log2_min_cb_size) {
1673 SAMPLE(s->split_cu_flag, x0, y0) =
1674 ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
1675 } else {
1676 SAMPLE(s->split_cu_flag, x0, y0) =
1677 (log2_cb_size > s->sps->log2_min_cb_size);
1678 }
1679 if (s->pps->cu_qp_delta_enabled_flag &&
1680 log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
1681 lc->tu.is_cu_qp_delta_coded = 0;
1682 lc->tu.cu_qp_delta = 0;
1683 }
1684
1685 if (SAMPLE(s->split_cu_flag, x0, y0)) {
1686 const int cb_size_split = cb_size >> 1;
1687 const int x1 = x0 + cb_size_split;
1688 const int y1 = y0 + cb_size_split;
1689 int more_data = 0;
1690
1691 more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
1692 if (more_data < 0)
1693 return more_data;
1694
1695 if (more_data && x1 < s->sps->width)
1696 more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
1697 if (more_data && y1 < s->sps->height)
1698 more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
1699 if (more_data && x1 < s->sps->width &&
1700 y1 < s->sps->height) {
1701 return hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
1702 }
1703 if (more_data)
1704 return ((x1 + cb_size_split) < s->sps->width ||
1705 (y1 + cb_size_split) < s->sps->height);
1706 else
1707 return 0;
1708 } else {
1709 ret = hls_coding_unit(s, x0, y0, log2_cb_size);
1710 if (ret < 0)
1711 return ret;
1712 if ((!((x0 + cb_size) %
1713 (1 << (s->sps->log2_ctb_size))) ||
1714 (x0 + cb_size >= s->sps->width)) &&
1715 (!((y0 + cb_size) %
1716 (1 << (s->sps->log2_ctb_size))) ||
1717 (y0 + cb_size >= s->sps->height))) {
1718 int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
1719 return !end_of_slice_flag;
1720 } else {
1721 return 1;
1722 }
1723 }
1724
1725 return 0;
1726}
1727
1728static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb, int ctb_addr_ts)
1729{
1730 HEVCLocalContext *lc = s->HEVClc;
1731 int ctb_size = 1 << s->sps->log2_ctb_size;
1732 int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
1733 int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
1734
1735 int tile_left_boundary;
1736 int tile_up_boundary;
1737 int slice_left_boundary;
1738 int slice_up_boundary;
1739
1740 s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
1741
1742 if (s->pps->entropy_coding_sync_enabled_flag) {
1743 if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
1744 lc->first_qp_group = 1;
1745 lc->end_of_tiles_x = s->sps->width;
1746 } else if (s->pps->tiles_enabled_flag) {
1747 if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) {
1748 int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size];
1749 lc->start_of_tiles_x = x_ctb;
1750 lc->end_of_tiles_x = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size);
1751 lc->first_qp_group = 1;
1752 }
1753 } else {
1754 lc->end_of_tiles_x = s->sps->width;
1755 }
1756
1757 lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height);
1758
1759 if (s->pps->tiles_enabled_flag) {
1760 tile_left_boundary = ((x_ctb > 0) &&
1761 (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]]));
1762 slice_left_boundary = ((x_ctb > 0) &&
1763 (s->tab_slice_address[ctb_addr_rs] == s->tab_slice_address[ctb_addr_rs - 1]));
1764 tile_up_boundary = ((y_ctb > 0) &&
1765 (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]]));
1766 slice_up_boundary = ((y_ctb > 0) &&
1767 (s->tab_slice_address[ctb_addr_rs] == s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width]));
1768 } else {
1769 tile_left_boundary =
1770 tile_up_boundary = 1;
1771 slice_left_boundary = ctb_addr_in_slice > 0;
1772 slice_up_boundary = ctb_addr_in_slice >= s->sps->ctb_width;
1773 }
1774 lc->slice_or_tiles_left_boundary = (!slice_left_boundary) + (!tile_left_boundary << 1);
1775 lc->slice_or_tiles_up_boundary = (!slice_up_boundary + (!tile_up_boundary << 1));
1776 lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && tile_left_boundary);
1777 lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && tile_up_boundary);
1778 lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]]));
1779 lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]]));
1780}
1781
1782static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
1783{
1784 HEVCContext *s = avctxt->priv_data;
1785 int ctb_size = 1 << s->sps->log2_ctb_size;
1786 int more_data = 1;
1787 int x_ctb = 0;
1788 int y_ctb = 0;
1789 int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
1790
1791 while (more_data && ctb_addr_ts < s->sps->ctb_size) {
1792 int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
1793
1794 x_ctb = (ctb_addr_rs % ((s->sps->width + (ctb_size - 1)) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
1795 y_ctb = (ctb_addr_rs / ((s->sps->width + (ctb_size - 1)) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
1796 hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
1797
1798 ff_hevc_cabac_init(s, ctb_addr_ts);
1799
1800 hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
1801
1802 s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
1803 s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
1804 s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
1805
1806 more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
1807 if (more_data < 0)
1808 return more_data;
1809
1810 ctb_addr_ts++;
1811 ff_hevc_save_states(s, ctb_addr_ts);
1812 ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
1813 }
1814
1815 if (x_ctb + ctb_size >= s->sps->width &&
1816 y_ctb + ctb_size >= s->sps->height)
1817 ff_hevc_hls_filter(s, x_ctb, y_ctb);
1818
1819 return ctb_addr_ts;
1820}
1821
1822static int hls_slice_data(HEVCContext *s)
1823{
1824 int arg[2];
1825 int ret[2];
1826
1827 arg[0] = 0;
1828 arg[1] = 1;
1829
1830 s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
1831 return ret[0];
1832}
1833static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
1834{
1835 HEVCContext *s1 = avctxt->priv_data, *s;
1836 HEVCLocalContext *lc;
1837 int ctb_size = 1<< s1->sps->log2_ctb_size;
1838 int more_data = 1;
1839 int *ctb_row_p = input_ctb_row;
1840 int ctb_row = ctb_row_p[job];
1841 int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->sps->width + ctb_size - 1) >> s1->sps->log2_ctb_size);
1842 int ctb_addr_ts = s1->pps->ctb_addr_rs_to_ts[ctb_addr_rs];
1843 int thread = ctb_row % s1->threads_number;
1844 int ret;
1845
1846 s = s1->sList[self_id];
1847 lc = s->HEVClc;
1848
1849 if(ctb_row) {
1850 ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
1851
1852 if (ret < 0)
1853 return ret;
1854 ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
1855 }
1856
1857 while(more_data && ctb_addr_ts < s->sps->ctb_size) {
1858 int x_ctb = (ctb_addr_rs % s->sps->ctb_width) << s->sps->log2_ctb_size;
1859 int y_ctb = (ctb_addr_rs / s->sps->ctb_width) << s->sps->log2_ctb_size;
1860
1861 hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
1862
1863 ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
1864
1865 if (avpriv_atomic_int_get(&s1->wpp_err)){
1866 ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
1867 return 0;
1868 }
1869
1870 ff_hevc_cabac_init(s, ctb_addr_ts);
1871 hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
1872 more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
1873
1874 if (more_data < 0)
1875 return more_data;
1876
1877 ctb_addr_ts++;
1878
1879 ff_hevc_save_states(s, ctb_addr_ts);
1880 ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
1881 ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
1882
1883 if (!more_data && (x_ctb+ctb_size) < s->sps->width && ctb_row != s->sh.num_entry_point_offsets) {
1884 avpriv_atomic_int_set(&s1->wpp_err, 1);
1885 ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
1886 return 0;
1887 }
1888
1889 if ((x_ctb+ctb_size) >= s->sps->width && (y_ctb+ctb_size) >= s->sps->height ) {
1890 ff_hevc_hls_filter(s, x_ctb, y_ctb);
1891 ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
1892 return ctb_addr_ts;
1893 }
1894 ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
1895 x_ctb+=ctb_size;
1896
1897 if(x_ctb >= s->sps->width) {
1898 break;
1899 }
1900 }
1901 ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
1902
1903 return 0;
1904}
1905
1906static int hls_slice_data_wpp(HEVCContext *s, const uint8_t *nal, int length)
1907{
1908 HEVCLocalContext *lc = s->HEVClc;
1909 int *ret = av_malloc((s->sh.num_entry_point_offsets + 1) * sizeof(int));
1910 int *arg = av_malloc((s->sh.num_entry_point_offsets + 1) * sizeof(int));
1911 int offset;
1912 int startheader, cmpt = 0;
1913 int i, j, res = 0;
1914
1915
1916 if (!s->sList[1]) {
1917 ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
1918
1919
1920 for (i = 1; i < s->threads_number; i++) {
1921 s->sList[i] = av_malloc(sizeof(HEVCContext));
1922 memcpy(s->sList[i], s, sizeof(HEVCContext));
1923 s->HEVClcList[i] = av_malloc(sizeof(HEVCLocalContext));
1924 s->HEVClcList[i]->edge_emu_buffer = av_malloc((MAX_PB_SIZE + 7) * s->frame->linesize[0]);
1925 s->sList[i]->HEVClc = s->HEVClcList[i];
1926 }
1927 }
1928
1929 offset = (lc->gb.index >> 3);
1930
1931 for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < s->skipped_bytes; j++) {
1932 if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) {
1933 startheader--;
1934 cmpt++;
1935 }
1936 }
1937
1938 for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
1939 offset += (s->sh.entry_point_offset[i - 1] - cmpt);
1940 for (j = 0, cmpt = 0, startheader = offset
1941 + s->sh.entry_point_offset[i]; j < s->skipped_bytes; j++) {
1942 if (s->skipped_bytes_pos[j] >= offset && s->skipped_bytes_pos[j] < startheader) {
1943 startheader--;
1944 cmpt++;
1945 }
1946 }
1947 s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
1948 s->sh.offset[i - 1] = offset;
1949
1950 }
1951 if (s->sh.num_entry_point_offsets != 0) {
1952 offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
1953 s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
1954 s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
1955
1956 }
1957 s->data = nal;
1958
1959 for (i = 1; i < s->threads_number; i++) {
1960 s->sList[i]->HEVClc->first_qp_group = 1;
1961 s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
1962 memcpy(s->sList[i], s, sizeof(HEVCContext));
1963 s->sList[i]->HEVClc = s->HEVClcList[i];
1964 }
1965
1966 avpriv_atomic_int_set(&s->wpp_err, 0);
1967 ff_reset_entries(s->avctx);
1968
1969 for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
1970 arg[i] = i;
1971 ret[i] = 0;
1972 }
1973
1974 if (s->pps->entropy_coding_sync_enabled_flag)
1975 s->avctx->execute2(s->avctx, (void *) hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
1976
1977 for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
1978 res += ret[i];
1979 av_free(ret);
1980 av_free(arg);
1981 return res;
1982}
1983
1984/**
1985 * @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit,
1986 * 0 if the unit should be skipped, 1 otherwise
1987 */
1988static int hls_nal_unit(HEVCContext *s)
1989{
1990 GetBitContext *gb = &s->HEVClc->gb;
1991 int nuh_layer_id;
1992
1993 if (get_bits1(gb) != 0)
1994 return AVERROR_INVALIDDATA;
1995
1996 s->nal_unit_type = get_bits(gb, 6);
1997
1998 nuh_layer_id = get_bits(gb, 6);
1999 s->temporal_id = get_bits(gb, 3) - 1;
2000 if (s->temporal_id < 0)
2001 return AVERROR_INVALIDDATA;
2002
2003 av_log(s->avctx, AV_LOG_DEBUG,
2004 "nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n",
2005 s->nal_unit_type, nuh_layer_id, s->temporal_id);
2006
2007 return nuh_layer_id == 0;
2008}
2009
2010static void restore_tqb_pixels(HEVCContext *s)
2011{
2012 int min_pu_size = 1 << s->sps->log2_min_pu_size;
2013 int x, y, c_idx;
2014
2015 for (c_idx = 0; c_idx < 3; c_idx++) {
2016 ptrdiff_t stride = s->frame->linesize[c_idx];
2017 int hshift = s->sps->hshift[c_idx];
2018 int vshift = s->sps->vshift[c_idx];
2019 for (y = 0; y < s->sps->min_pu_height; y++) {
2020 for (x = 0; x < s->sps->min_pu_width; x++) {
2021 if (s->is_pcm[y * s->sps->min_pu_width + x]) {
2022 int n;
2023 int len = min_pu_size >> hshift;
2024 uint8_t *src = &s->frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
2025 uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
2026 for (n = 0; n < (min_pu_size >> vshift); n++) {
2027 memcpy(dst, src, len);
2028 src += stride;
2029 dst += stride;
2030 }
2031 }
2032 }
2033 }
2034 }
2035}
2036
2037static int hevc_frame_start(HEVCContext *s)
2038{
2039 HEVCLocalContext *lc = s->HEVClc;
2040 int ret;
2041
2042 memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
2043 memset(s->vertical_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
2044 memset(s->cbf_luma, 0, s->sps->min_tb_width * s->sps->min_tb_height);
2045 memset(s->is_pcm, 0, s->sps->min_pu_width * s->sps->min_pu_height);
2046
2047 lc->start_of_tiles_x = 0;
2048 s->is_decoded = 0;
2049
2050 if (s->pps->tiles_enabled_flag)
2051 lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size;
2052
2053 ret = ff_hevc_set_new_ref(s, s->sps->sao_enabled ? &s->sao_frame : &s->frame,
2054 s->poc);
2055 if (ret < 0)
2056 goto fail;
2057
2058 av_fast_malloc(&lc->edge_emu_buffer, &lc->edge_emu_buffer_size,
2059 (MAX_PB_SIZE + 7) * s->ref->frame->linesize[0]);
2060 if (!lc->edge_emu_buffer) {
2061 ret = AVERROR(ENOMEM);
2062 goto fail;
2063 }
2064
2065 ret = ff_hevc_frame_rps(s);
2066 if (ret < 0) {
2067 av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
2068 goto fail;
2069 }
2070
2071 av_frame_unref(s->output_frame);
2072 ret = ff_hevc_output_frame(s, s->output_frame, 0);
2073 if (ret < 0)
2074 goto fail;
2075
2076 ff_thread_finish_setup(s->avctx);
2077
2078 return 0;
2079fail:
2080 if (s->ref && s->threads_type == FF_THREAD_FRAME)
2081 ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
2082 s->ref = NULL;
2083 return ret;
2084}
2085
2086static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length)
2087{
2088 HEVCLocalContext *lc = s->HEVClc;
2089 GetBitContext *gb = &lc->gb;
2090 int ctb_addr_ts;
2091 int ret;
2092
2093 ret = init_get_bits8(gb, nal, length);
2094 if (ret < 0)
2095 return ret;
2096
2097 ret = hls_nal_unit(s);
2098 if (ret < 0) {
2099 av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
2100 s->nal_unit_type);
2101 if (s->avctx->err_recognition & AV_EF_EXPLODE)
2102 return ret;
2103 return 0;
2104 } else if (!ret)
2105 return 0;
2106
2107 switch (s->nal_unit_type) {
2108 case NAL_VPS:
2109 ret = ff_hevc_decode_nal_vps(s);
2110 if (ret < 0)
2111 return ret;
2112 break;
2113 case NAL_SPS:
2114 ret = ff_hevc_decode_nal_sps(s);
2115 if (ret < 0)
2116 return ret;
2117 break;
2118 case NAL_PPS:
2119 ret = ff_hevc_decode_nal_pps(s);
2120 if (ret < 0)
2121 return ret;
2122 break;
2123 case NAL_SEI_PREFIX:
2124 case NAL_SEI_SUFFIX:
2125 ret = ff_hevc_decode_nal_sei(s);
2126 if (ret < 0)
2127 return ret;
2128 break;
2129 case NAL_TRAIL_R:
2130 case NAL_TRAIL_N:
2131 case NAL_TSA_N:
2132 case NAL_TSA_R:
2133 case NAL_STSA_N:
2134 case NAL_STSA_R:
2135 case NAL_BLA_W_LP:
2136 case NAL_BLA_W_RADL:
2137 case NAL_BLA_N_LP:
2138 case NAL_IDR_W_RADL:
2139 case NAL_IDR_N_LP:
2140 case NAL_CRA_NUT:
2141 case NAL_RADL_N:
2142 case NAL_RADL_R:
2143 case NAL_RASL_N:
2144 case NAL_RASL_R:
2145 ret = hls_slice_header(s);
2146 if (ret < 0)
2147 return ret;
2148
2149 if (s->max_ra == INT_MAX) {
2150 if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
2151 s->max_ra = s->poc;
2152 } else {
2153 if (IS_IDR(s))
2154 s->max_ra = INT_MIN;
2155 }
2156 }
2157
2158 if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
2159 s->poc <= s->max_ra) {
2160 s->is_decoded = 0;
2161 break;
2162 } else {
2163 if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
2164 s->max_ra = INT_MIN;
2165 }
2166
2167 if (s->sh.first_slice_in_pic_flag) {
2168 ret = hevc_frame_start(s);
2169 if (ret < 0)
2170 return ret;
2171 } else if (!s->ref) {
2172 av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
2173 return AVERROR_INVALIDDATA;
2174 }
2175
2176 if (!s->sh.dependent_slice_segment_flag &&
2177 s->sh.slice_type != I_SLICE) {
2178 ret = ff_hevc_slice_rpl(s);
2179 if (ret < 0) {
2180 av_log(s->avctx, AV_LOG_WARNING,
2181 "Error constructing the reference lists for the current slice.\n");
2182 if (s->avctx->err_recognition & AV_EF_EXPLODE)
2183 return ret;
2184 }
2185 }
2186
2187 if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
2188 ctb_addr_ts = hls_slice_data_wpp(s, nal, length);
2189 else
2190 ctb_addr_ts = hls_slice_data(s);
2191
2192 if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {
2193 s->is_decoded = 1;
2194 if ((s->pps->transquant_bypass_enable_flag ||
2195 (s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) &&
2196 s->sps->sao_enabled)
2197 restore_tqb_pixels(s);
2198 }
2199
2200 if (ctb_addr_ts < 0)
2201 return ctb_addr_ts;
2202 break;
2203 case NAL_EOS_NUT:
2204 case NAL_EOB_NUT:
2205 s->seq_decode = (s->seq_decode + 1) & 0xff;
2206 s->max_ra = INT_MAX;
2207 break;
2208 case NAL_AUD:
2209 case NAL_FD_NUT:
2210 break;
2211 default:
2212 av_log(s->avctx, AV_LOG_INFO,
2213 "Skipping NAL unit %d\n", s->nal_unit_type);
2214 }
2215
2216 return 0;
2217}
2218
2219/* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication
2220 between these functions would be nice. */
2221int ff_hevc_extract_rbsp(HEVCContext *s, const uint8_t *src, int length,
2222 HEVCNAL *nal)
2223{
2224 int i, si, di;
2225 uint8_t *dst;
2226
2227 s->skipped_bytes = 0;
2228#define STARTCODE_TEST \
2229 if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \
2230 if (src[i + 2] != 3) { \
2231 /* startcode, so we must be past the end */ \
2232 length = i; \
2233 } \
2234 break; \
2235 }
2236#if HAVE_FAST_UNALIGNED
2237#define FIND_FIRST_ZERO \
2238 if (i > 0 && !src[i]) \
2239 i--; \
2240 while (src[i]) \
2241 i++
2242#if HAVE_FAST_64BIT
2243 for (i = 0; i + 1 < length; i += 9) {
2244 if (!((~AV_RN64A(src + i) &
2245 (AV_RN64A(src + i) - 0x0100010001000101ULL)) &
2246 0x8000800080008080ULL))
2247 continue;
2248 FIND_FIRST_ZERO;
2249 STARTCODE_TEST;
2250 i -= 7;
2251 }
2252#else
2253 for (i = 0; i + 1 < length; i += 5) {
2254 if (!((~AV_RN32A(src + i) &
2255 (AV_RN32A(src + i) - 0x01000101U)) &
2256 0x80008080U))
2257 continue;
2258 FIND_FIRST_ZERO;
2259 STARTCODE_TEST;
2260 i -= 3;
2261 }
2262#endif
2263#else
2264 for (i = 0; i + 1 < length; i += 2) {
2265 if (src[i])
2266 continue;
2267 if (i > 0 && src[i - 1] == 0)
2268 i--;
2269 STARTCODE_TEST;
2270 }
2271#endif
2272
2273 if (i >= length - 1) { // no escaped 0
2274 nal->data = src;
2275 nal->size = length;
2276 return length;
2277 }
2278
2279 av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size,
2280 length + FF_INPUT_BUFFER_PADDING_SIZE);
2281 if (!nal->rbsp_buffer)
2282 return AVERROR(ENOMEM);
2283
2284 dst = nal->rbsp_buffer;
2285
2286 memcpy(dst, src, i);
2287 si = di = i;
2288 while (si + 2 < length) {
2289 // remove escapes (very rare 1:2^22)
2290 if (src[si + 2] > 3) {
2291 dst[di++] = src[si++];
2292 dst[di++] = src[si++];
2293 } else if (src[si] == 0 && src[si + 1] == 0) {
2294 if (src[si + 2] == 3) { // escape
2295 dst[di++] = 0;
2296 dst[di++] = 0;
2297 si += 3;
2298
2299#if 0
2300 s->skipped_bytes++;
2301 if (s->skipped_bytes_pos_size < s->skipped_bytes) {
2302 s->skipped_bytes_pos_size *= 2;
2303 av_reallocp_array(&s->skipped_bytes_pos,
2304 s->skipped_bytes_pos_size,
2305 sizeof(*s->skipped_bytes_pos));
2306 if (!s->skipped_bytes_pos)
2307 return AVERROR(ENOMEM);
2308 }
2309 if (s->skipped_bytes_pos)
2310 s->skipped_bytes_pos[s->skipped_bytes-1] = di - 1;
2311#endif
2312 continue;
2313 } else // next start code
2314 goto nsc;
2315 }
2316
2317 dst[di++] = src[si++];
2318 }
2319 while (si < length)
2320 dst[di++] = src[si++];
2321nsc:
2322
2323 memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
2324
2325 nal->data = dst;
2326 nal->size = di;
2327 return si;
2328}
2329
2330static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
2331{
2332 int i, consumed, ret = 0;
2333
2334 s->ref = NULL;
2335 s->eos = 0;
2336
2337 /* split the input packet into NAL units, so we know the upper bound on the
2338 * number of slices in the frame */
2339 s->nb_nals = 0;
2340 while (length >= 4) {
2341 HEVCNAL *nal;
2342 int extract_length = 0;
2343
2344 if (s->is_nalff) {
2345 int i;
2346 for (i = 0; i < s->nal_length_size; i++)
2347 extract_length = (extract_length << 8) | buf[i];
2348 buf += s->nal_length_size;
2349 length -= s->nal_length_size;
2350
2351 if (extract_length > length) {
2352 av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n");
2353 ret = AVERROR_INVALIDDATA;
2354 goto fail;
2355 }
2356 } else {
2357 /* search start code */
2358 while (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
2359 ++buf;
2360 --length;
2361 if (length < 4) {
2362 av_log(s->avctx, AV_LOG_ERROR, "No start code is found.\n");
2363 ret = AVERROR_INVALIDDATA;
2364 goto fail;
2365 }
2366 }
2367
2368 buf += 3;
2369 length -= 3;
2370 }
2371
2372 if (!s->is_nalff)
2373 extract_length = length;
2374
2375 if (s->nals_allocated < s->nb_nals + 1) {
2376 int new_size = s->nals_allocated + 1;
2377 HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp));
2378 if (!tmp) {
2379 ret = AVERROR(ENOMEM);
2380 goto fail;
2381 }
2382 s->nals = tmp;
2383 memset(s->nals + s->nals_allocated, 0, (new_size - s->nals_allocated) * sizeof(*tmp));
2384 av_reallocp_array(&s->skipped_bytes_nal, new_size, sizeof(*s->skipped_bytes_nal));
2385 av_reallocp_array(&s->skipped_bytes_pos_size_nal, new_size, sizeof(*s->skipped_bytes_pos_size_nal));
2386 av_reallocp_array(&s->skipped_bytes_pos_nal, new_size, sizeof(*s->skipped_bytes_pos_nal));
2387 s->skipped_bytes_pos_size_nal[s->nals_allocated] = 1024; // initial buffer size
2388 s->skipped_bytes_pos_nal[s->nals_allocated] = av_malloc_array(s->skipped_bytes_pos_size_nal[s->nals_allocated], sizeof(*s->skipped_bytes_pos));
2389 s->nals_allocated = new_size;
2390 }
2391 s->skipped_bytes_pos_size = s->skipped_bytes_pos_size_nal[s->nb_nals];
2392 s->skipped_bytes_pos = s->skipped_bytes_pos_nal[s->nb_nals];
2393 nal = &s->nals[s->nb_nals];
2394
2395 consumed = ff_hevc_extract_rbsp(s, buf, extract_length, nal);
2396
2397 s->skipped_bytes_nal[s->nb_nals] = s->skipped_bytes;
2398 s->skipped_bytes_pos_size_nal[s->nb_nals] = s->skipped_bytes_pos_size;
2399 s->skipped_bytes_pos_nal[s->nb_nals++] = s->skipped_bytes_pos;
2400
2401
2402 if (consumed < 0) {
2403 ret = consumed;
2404 goto fail;
2405 }
2406
2407 ret = init_get_bits8(&s->HEVClc->gb, nal->data, nal->size);
2408 if (ret < 0)
2409 goto fail;
2410 hls_nal_unit(s);
2411
2412 if (s->nal_unit_type == NAL_EOS_NUT ||
2413 s->nal_unit_type == NAL_EOB_NUT)
2414 s->eos = 1;
2415
2416 buf += consumed;
2417 length -= consumed;
2418 }
2419
2420 /* parse the NAL units */
2421 for (i = 0; i < s->nb_nals; i++) {
2422 int ret;
2423 s->skipped_bytes = s->skipped_bytes_nal[i];
2424 s->skipped_bytes_pos = s->skipped_bytes_pos_nal[i];
2425
2426 ret = decode_nal_unit(s, s->nals[i].data, s->nals[i].size);
2427 if (ret < 0) {
2428 av_log(s->avctx, AV_LOG_WARNING,
2429 "Error parsing NAL unit #%d.\n", i);
2430 if (s->avctx->err_recognition & AV_EF_EXPLODE)
2431 goto fail;
2432 }
2433 }
2434
2435fail:
2436 if (s->ref && s->threads_type == FF_THREAD_FRAME)
2437 ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
2438
2439 return ret;
2440}
2441
2442static void print_md5(void *log_ctx, int level, uint8_t md5[16])
2443{
2444 int i;
2445 for (i = 0; i < 16; i++)
2446 av_log(log_ctx, level, "%02"PRIx8, md5[i]);
2447}
2448
2449static int verify_md5(HEVCContext *s, AVFrame *frame)
2450{
2451 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
2452 int pixel_shift;
2453 int i, j;
2454
2455 if (!desc)
2456 return AVERROR(EINVAL);
2457
2458 pixel_shift = desc->comp[0].depth_minus1 > 7;
2459
2460 av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
2461 s->poc);
2462
2463 /* the checksums are LE, so we have to byteswap for >8bpp formats
2464 * on BE arches */
2465#if HAVE_BIGENDIAN
2466 if (pixel_shift && !s->checksum_buf) {
2467 av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
2468 FFMAX3(frame->linesize[0], frame->linesize[1],
2469 frame->linesize[2]));
2470 if (!s->checksum_buf)
2471 return AVERROR(ENOMEM);
2472 }
2473#endif
2474
2475 for (i = 0; frame->data[i]; i++) {
2476 int width = s->avctx->coded_width;
2477 int height = s->avctx->coded_height;
2478 int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
2479 int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
2480 uint8_t md5[16];
2481
2482 av_md5_init(s->md5_ctx);
2483 for (j = 0; j < h; j++) {
2484 const uint8_t *src = frame->data[i] + j * frame->linesize[i];
2485#if HAVE_BIGENDIAN
2486 if (pixel_shift) {
2487 s->dsp.bswap16_buf((uint16_t*)s->checksum_buf,
2488 (const uint16_t*)src, w);
2489 src = s->checksum_buf;
2490 }
2491#endif
2492 av_md5_update(s->md5_ctx, src, w << pixel_shift);
2493 }
2494 av_md5_final(s->md5_ctx, md5);
2495
2496 if (!memcmp(md5, s->md5[i], 16)) {
2497 av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
2498 print_md5(s->avctx, AV_LOG_DEBUG, md5);
2499 av_log (s->avctx, AV_LOG_DEBUG, "; ");
2500 } else {
2501 av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
2502 print_md5(s->avctx, AV_LOG_ERROR, md5);
2503 av_log (s->avctx, AV_LOG_ERROR, " != ");
2504 print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
2505 av_log (s->avctx, AV_LOG_ERROR, "\n");
2506 return AVERROR_INVALIDDATA;
2507 }
2508 }
2509
2510 av_log(s->avctx, AV_LOG_DEBUG, "\n");
2511
2512 return 0;
2513}
2514
2515static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
2516 AVPacket *avpkt)
2517{
2518 int ret;
2519 HEVCContext *s = avctx->priv_data;
2520
2521 if (!avpkt->size) {
2522 ret = ff_hevc_output_frame(s, data, 1);
2523 if (ret < 0)
2524 return ret;
2525
2526 *got_output = ret;
2527 return 0;
2528 }
2529
2530 s->ref = NULL;
2531 ret = decode_nal_units(s, avpkt->data, avpkt->size);
2532 if (ret < 0)
2533 return ret;
2534
2535 /* verify the SEI checksum */
2536 if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
2537 avctx->err_recognition & AV_EF_EXPLODE &&
2538 s->is_md5) {
2539 ret = verify_md5(s, s->ref->frame);
2540 if (ret < 0) {
2541 ff_hevc_unref_frame(s, s->ref, ~0);
2542 return ret;
2543 }
2544 }
2545 s->is_md5 = 0;
2546
2547 if (s->is_decoded) {
2548 av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
2549 s->is_decoded = 0;
2550 }
2551
2552 if (s->output_frame->buf[0]) {
2553 av_frame_move_ref(data, s->output_frame);
2554 *got_output = 1;
2555 }
2556
2557 return avpkt->size;
2558}
2559
2560static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
2561{
2562 int ret;
2563
2564 ret = ff_thread_ref_frame(&dst->tf, &src->tf);
2565 if (ret < 0)
2566 return ret;
2567
2568 dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
2569 if (!dst->tab_mvf_buf)
2570 goto fail;
2571 dst->tab_mvf = src->tab_mvf;
2572
2573 dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
2574 if (!dst->rpl_tab_buf)
2575 goto fail;
2576 dst->rpl_tab = src->rpl_tab;
2577
2578 dst->rpl_buf = av_buffer_ref(src->rpl_buf);
2579 if (!dst->rpl_buf)
2580 goto fail;
2581
2582 dst->poc = src->poc;
2583 dst->ctb_count = src->ctb_count;
2584 dst->window = src->window;
2585 dst->flags = src->flags;
2586 dst->sequence = src->sequence;
2587
2588 return 0;
2589fail:
2590 ff_hevc_unref_frame(s, dst, ~0);
2591 return AVERROR(ENOMEM);
2592}
2593
2594static av_cold int hevc_decode_free(AVCodecContext *avctx)
2595{
2596 HEVCContext *s = avctx->priv_data;
2597 HEVCLocalContext *lc = s->HEVClc;
2598 int i;
2599
2600 pic_arrays_free(s);
2601
2602 av_freep(&lc->edge_emu_buffer);
2603 av_freep(&s->md5_ctx);
2604
2605 for(i=0; i < s->nals_allocated; i++) {
2606 av_freep(&s->skipped_bytes_pos_nal[i]);
2607 }
2608 av_freep(&s->skipped_bytes_pos_size_nal);
2609 av_freep(&s->skipped_bytes_nal);
2610 av_freep(&s->skipped_bytes_pos_nal);
2611
2612 av_freep(&s->cabac_state);
2613
2614 av_frame_free(&s->tmp_frame);
2615 av_frame_free(&s->output_frame);
2616
2617 for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
2618 ff_hevc_unref_frame(s, &s->DPB[i], ~0);
2619 av_frame_free(&s->DPB[i].frame);
2620 }
2621
2622 for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++)
2623 av_freep(&s->vps_list[i]);
2624 for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++)
2625 av_buffer_unref(&s->sps_list[i]);
2626 for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++)
2627 av_buffer_unref(&s->pps_list[i]);
2628
2629 av_freep(&s->sh.entry_point_offset);
2630 av_freep(&s->sh.offset);
2631 av_freep(&s->sh.size);
2632
2633 for (i = 1; i < s->threads_number; i++) {
2634 lc = s->HEVClcList[i];
2635 if (lc) {
2636 av_freep(&lc->edge_emu_buffer);
2637
2638 av_freep(&s->HEVClcList[i]);
2639 av_freep(&s->sList[i]);
2640 }
2641 }
2642 av_freep(&s->HEVClcList[0]);
2643
2644 for (i = 0; i < s->nals_allocated; i++)
2645 av_freep(&s->nals[i].rbsp_buffer);
2646 av_freep(&s->nals);
2647 s->nals_allocated = 0;
2648
2649 return 0;
2650}
2651
2652static av_cold int hevc_init_context(AVCodecContext *avctx)
2653{
2654 HEVCContext *s = avctx->priv_data;
2655 int i;
2656
2657 s->avctx = avctx;
2658
2659 s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
2660 if (!s->HEVClc)
2661 goto fail;
2662 s->HEVClcList[0] = s->HEVClc;
2663 s->sList[0] = s;
2664
2665 s->cabac_state = av_malloc(HEVC_CONTEXTS);
2666 if (!s->cabac_state)
2667 goto fail;
2668
2669 s->tmp_frame = av_frame_alloc();
2670 if (!s->tmp_frame)
2671 goto fail;
2672
2673 s->output_frame = av_frame_alloc();
2674 if (!s->output_frame)
2675 goto fail;
2676
2677 for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
2678 s->DPB[i].frame = av_frame_alloc();
2679 if (!s->DPB[i].frame)
2680 goto fail;
2681 s->DPB[i].tf.f = s->DPB[i].frame;
2682 }
2683
2684 s->max_ra = INT_MAX;
2685
2686 s->md5_ctx = av_md5_alloc();
2687 if (!s->md5_ctx)
2688 goto fail;
2689
2690 ff_dsputil_init(&s->dsp, avctx);
2691
2692 s->context_initialized = 1;
2693
2694 return 0;
2695fail:
2696 hevc_decode_free(avctx);
2697 return AVERROR(ENOMEM);
2698}
2699
2700static int hevc_update_thread_context(AVCodecContext *dst,
2701 const AVCodecContext *src)
2702{
2703 HEVCContext *s = dst->priv_data;
2704 HEVCContext *s0 = src->priv_data;
2705 int i, ret;
2706
2707 if (!s->context_initialized) {
2708 ret = hevc_init_context(dst);
2709 if (ret < 0)
2710 return ret;
2711 }
2712
2713 for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
2714 ff_hevc_unref_frame(s, &s->DPB[i], ~0);
2715 if (s0->DPB[i].frame->buf[0]) {
2716 ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
2717 if (ret < 0)
2718 return ret;
2719 }
2720 }
2721
2722 for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) {
2723 av_buffer_unref(&s->sps_list[i]);
2724 if (s0->sps_list[i]) {
2725 s->sps_list[i] = av_buffer_ref(s0->sps_list[i]);
2726 if (!s->sps_list[i])
2727 return AVERROR(ENOMEM);
2728 }
2729 }
2730
2731 for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) {
2732 av_buffer_unref(&s->pps_list[i]);
2733 if (s0->pps_list[i]) {
2734 s->pps_list[i] = av_buffer_ref(s0->pps_list[i]);
2735 if (!s->pps_list[i])
2736 return AVERROR(ENOMEM);
2737 }
2738 }
2739
2740 if (s->sps != s0->sps)
2741 ret = set_sps(s, s0->sps);
2742
2743 s->seq_decode = s0->seq_decode;
2744 s->seq_output = s0->seq_output;
2745 s->pocTid0 = s0->pocTid0;
2746 s->max_ra = s0->max_ra;
2747
2748 s->is_nalff = s0->is_nalff;
2749 s->nal_length_size = s0->nal_length_size;
2750
2751 s->threads_number = s0->threads_number;
2752 s->threads_type = s0->threads_type;
2753
2754 if (s0->eos) {
2755 s->seq_decode = (s->seq_decode + 1) & 0xff;
2756 s->max_ra = INT_MAX;
2757 }
2758
2759 return 0;
2760}
2761
2762static int hevc_decode_extradata(HEVCContext *s)
2763{
2764 AVCodecContext *avctx = s->avctx;
2765 GetByteContext gb;
2766 int ret;
2767
2768 bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
2769
2770 if (avctx->extradata_size > 3 &&
2771 (avctx->extradata[0] || avctx->extradata[1] ||
2772 avctx->extradata[2] > 1)) {
2773 /* It seems the extradata is encoded as hvcC format.
2774 * Temporarily, we support configurationVersion==0 until 14496-15 3rd finalized.
2775 * When finalized, configurationVersion will be 1 and we can recognize hvcC by
2776 * checking if avctx->extradata[0]==1 or not. */
2777 int i, j, num_arrays;
2778 int nal_len_size;
2779
2780 s->is_nalff = 1;
2781
2782 bytestream2_skip(&gb, 21);
2783 nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
2784 num_arrays = bytestream2_get_byte(&gb);
2785
2786 /* nal units in the hvcC always have length coded with 2 bytes,
2787 * so put a fake nal_length_size = 2 while parsing them */
2788 s->nal_length_size = 2;
2789
2790 /* Decode nal units from hvcC. */
2791 for (i = 0; i < num_arrays; i++) {
2792 int type = bytestream2_get_byte(&gb) & 0x3f;
2793 int cnt = bytestream2_get_be16(&gb);
2794
2795 for (j = 0; j < cnt; j++) {
2796 // +2 for the nal size field
2797 int nalsize = bytestream2_peek_be16(&gb) + 2;
2798 if (bytestream2_get_bytes_left(&gb) < nalsize) {
2799 av_log(s->avctx, AV_LOG_ERROR,
2800 "Invalid NAL unit size in extradata.\n");
2801 return AVERROR_INVALIDDATA;
2802 }
2803
2804 ret = decode_nal_units(s, gb.buffer, nalsize);
2805 if (ret < 0) {
2806 av_log(avctx, AV_LOG_ERROR,
2807 "Decoding nal unit %d %d from hvcC failed\n", type, i);
2808 return ret;
2809 }
2810 bytestream2_skip(&gb, nalsize);
2811 }
2812 }
2813
2814 /* Now store right nal length size, that will be used to parse all other nals */
2815 s->nal_length_size = nal_len_size;
2816 } else {
2817 s->is_nalff = 0;
2818 ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
2819 if (ret < 0)
2820 return ret;
2821 }
2822 return 0;
2823}
2824
2825static av_cold int hevc_decode_init(AVCodecContext *avctx)
2826{
2827 HEVCContext *s = avctx->priv_data;
2828 int ret;
2829
2830 ff_init_cabac_states();
2831
2832 avctx->internal->allocate_progress = 1;
2833
2834 ret = hevc_init_context(avctx);
2835 if (ret < 0)
2836 return ret;
2837
2838 s->enable_parallel_tiles = 0;
2839
2840 if(avctx->active_thread_type & FF_THREAD_SLICE)
2841 s->threads_number = avctx->thread_count;
2842 else
2843 s->threads_number = 1;
2844
2845 if (avctx->extradata_size > 0 && avctx->extradata) {
2846 ret = hevc_decode_extradata(s);
2847 if (ret < 0) {
2848 hevc_decode_free(avctx);
2849 return ret;
2850 }
2851 }
2852
2853 if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
2854 s->threads_type = FF_THREAD_FRAME;
2855 else
2856 s->threads_type = FF_THREAD_SLICE;
2857
2858 return 0;
2859}
2860
2861static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
2862{
2863 HEVCContext *s = avctx->priv_data;
2864 int ret;
2865
2866 memset(s, 0, sizeof(*s));
2867
2868 ret = hevc_init_context(avctx);
2869 if (ret < 0)
2870 return ret;
2871
2872 return 0;
2873}
2874
2875static void hevc_decode_flush(AVCodecContext *avctx)
2876{
2877 HEVCContext *s = avctx->priv_data;
2878 ff_hevc_flush_dpb(s);
2879 s->max_ra = INT_MAX;
2880}
2881
2882#define OFFSET(x) offsetof(HEVCContext, x)
2883#define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
2884static const AVOption options[] = {
2885 { "strict-displaywin", "stricly apply default display window size", OFFSET(strict_def_disp_win),
2886 AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
2887 { NULL },
2888};
2889
2890static const AVClass hevc_decoder_class = {
2891 .class_name = "HEVC decoder",
2892 .item_name = av_default_item_name,
2893 .option = options,
2894 .version = LIBAVUTIL_VERSION_INT,
2895};
2896
2897AVCodec ff_hevc_decoder = {
2898 .name = "hevc",
2899 .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
2900 .type = AVMEDIA_TYPE_VIDEO,
2901 .id = AV_CODEC_ID_HEVC,
2902 .priv_data_size = sizeof(HEVCContext),
2903 .priv_class = &hevc_decoder_class,
2904 .init = hevc_decode_init,
2905 .close = hevc_decode_free,
2906 .decode = hevc_decode_frame,
2907 .flush = hevc_decode_flush,
2908 .update_thread_context = hevc_update_thread_context,
2909 .init_thread_copy = hevc_init_thread_copy,
2910 .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS,
2911};
2912