summaryrefslogtreecommitdiff
path: root/libavcodec/huffyuvenc.c (plain)
blob: 89639b75df05a6767f02af85c0a6e03e2e09b64b
1/*
2 * Copyright (c) 2002-2014 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
5 * the algorithm used
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 * yuva, gray, 4:4:4, 4:1:1, 4:1:0 and >8 bit per sample support sponsored by NOA
24 */
25
26/**
27 * @file
28 * huffyuv encoder
29 */
30
31#include "avcodec.h"
32#include "huffyuv.h"
33#include "huffman.h"
34#include "huffyuvencdsp.h"
35#include "internal.h"
36#include "lossless_videoencdsp.h"
37#include "put_bits.h"
38#include "libavutil/opt.h"
39#include "libavutil/pixdesc.h"
40
41static inline void diff_bytes(HYuvContext *s, uint8_t *dst,
42 const uint8_t *src0, const uint8_t *src1, int w)
43{
44 if (s->bps <= 8) {
45 s->llvidencdsp.diff_bytes(dst, src0, src1, w);
46 } else {
47 s->hencdsp.diff_int16((uint16_t *)dst, (const uint16_t *)src0, (const uint16_t *)src1, s->n - 1, w);
48 }
49}
50
51static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
52 const uint8_t *src, int w, int left)
53{
54 int i;
55 if (s->bps <= 8) {
56 if (w < 32) {
57 for (i = 0; i < w; i++) {
58 const int temp = src[i];
59 dst[i] = temp - left;
60 left = temp;
61 }
62 return left;
63 } else {
64 for (i = 0; i < 32; i++) {
65 const int temp = src[i];
66 dst[i] = temp - left;
67 left = temp;
68 }
69 s->llvidencdsp.diff_bytes(dst + 32, src + 32, src + 31, w - 32);
70 return src[w-1];
71 }
72 } else {
73 const uint16_t *src16 = (const uint16_t *)src;
74 uint16_t *dst16 = ( uint16_t *)dst;
75 if (w < 32) {
76 for (i = 0; i < w; i++) {
77 const int temp = src16[i];
78 dst16[i] = temp - left;
79 left = temp;
80 }
81 return left;
82 } else {
83 for (i = 0; i < 16; i++) {
84 const int temp = src16[i];
85 dst16[i] = temp - left;
86 left = temp;
87 }
88 s->hencdsp.diff_int16(dst16 + 16, src16 + 16, src16 + 15, s->n - 1, w - 16);
89 return src16[w-1];
90 }
91 }
92}
93
94static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
95 const uint8_t *src, int w,
96 int *red, int *green, int *blue,
97 int *alpha)
98{
99 int i;
100 int r, g, b, a;
101 r = *red;
102 g = *green;
103 b = *blue;
104 a = *alpha;
105
106 for (i = 0; i < FFMIN(w, 4); i++) {
107 const int rt = src[i * 4 + R];
108 const int gt = src[i * 4 + G];
109 const int bt = src[i * 4 + B];
110 const int at = src[i * 4 + A];
111 dst[i * 4 + R] = rt - r;
112 dst[i * 4 + G] = gt - g;
113 dst[i * 4 + B] = bt - b;
114 dst[i * 4 + A] = at - a;
115 r = rt;
116 g = gt;
117 b = bt;
118 a = at;
119 }
120
121 s->llvidencdsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
122
123 *red = src[(w - 1) * 4 + R];
124 *green = src[(w - 1) * 4 + G];
125 *blue = src[(w - 1) * 4 + B];
126 *alpha = src[(w - 1) * 4 + A];
127}
128
129static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst,
130 uint8_t *src, int w,
131 int *red, int *green, int *blue)
132{
133 int i;
134 int r, g, b;
135 r = *red;
136 g = *green;
137 b = *blue;
138 for (i = 0; i < FFMIN(w, 16); i++) {
139 const int rt = src[i * 3 + 0];
140 const int gt = src[i * 3 + 1];
141 const int bt = src[i * 3 + 2];
142 dst[i * 3 + 0] = rt - r;
143 dst[i * 3 + 1] = gt - g;
144 dst[i * 3 + 2] = bt - b;
145 r = rt;
146 g = gt;
147 b = bt;
148 }
149
150 s->llvidencdsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);
151
152 *red = src[(w - 1) * 3 + 0];
153 *green = src[(w - 1) * 3 + 1];
154 *blue = src[(w - 1) * 3 + 2];
155}
156
157static void sub_median_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top)
158{
159 if (s->bps <= 8) {
160 s->llvidencdsp.sub_median_pred(dst, src1, src2, w , left, left_top);
161 } else {
162 s->hencdsp.sub_hfyu_median_pred_int16((uint16_t *)dst, (const uint16_t *)src1, (const uint16_t *)src2, s->n - 1, w , left, left_top);
163 }
164}
165
166static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
167{
168 int i;
169 int index = 0;
170 int n = s->vlc_n;
171
172 for (i = 0; i < n;) {
173 int val = len[i];
174 int repeat = 0;
175
176 for (; i < n && len[i] == val && repeat < 255; i++)
177 repeat++;
178
179 av_assert0(val < 32 && val >0 && repeat < 256 && repeat>0);
180 if (repeat > 7) {
181 buf[index++] = val;
182 buf[index++] = repeat;
183 } else {
184 buf[index++] = val | (repeat << 5);
185 }
186 }
187
188 return index;
189}
190
191static int store_huffman_tables(HYuvContext *s, uint8_t *buf)
192{
193 int i, ret;
194 int size = 0;
195 int count = 3;
196
197 if (s->version > 2)
198 count = 1 + s->alpha + 2*s->chroma;
199
200 for (i = 0; i < count; i++) {
201 if ((ret = ff_huff_gen_len_table(s->len[i], s->stats[i], s->vlc_n, 0)) < 0)
202 return ret;
203
204 if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i], s->vlc_n) < 0) {
205 return -1;
206 }
207
208 size += store_table(s, s->len[i], buf + size);
209 }
210 return size;
211}
212
213static av_cold int encode_init(AVCodecContext *avctx)
214{
215 HYuvContext *s = avctx->priv_data;
216 int i, j;
217 int ret;
218 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
219
220 ff_huffyuv_common_init(avctx);
221 ff_huffyuvencdsp_init(&s->hencdsp, avctx);
222 ff_llvidencdsp_init(&s->llvidencdsp);
223
224 avctx->extradata = av_mallocz(3*MAX_N + 4);
225 if (s->flags&AV_CODEC_FLAG_PASS1) {
226#define STATS_OUT_SIZE 21*MAX_N*3 + 4
227 avctx->stats_out = av_mallocz(STATS_OUT_SIZE); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
228 if (!avctx->stats_out)
229 return AVERROR(ENOMEM);
230 }
231 s->version = 2;
232
233 if (!avctx->extradata)
234 return AVERROR(ENOMEM);
235
236#if FF_API_CODED_FRAME
237FF_DISABLE_DEPRECATION_WARNINGS
238 avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
239 avctx->coded_frame->key_frame = 1;
240FF_ENABLE_DEPRECATION_WARNINGS
241#endif
242#if FF_API_PRIVATE_OPT
243FF_DISABLE_DEPRECATION_WARNINGS
244 if (avctx->context_model == 1)
245 s->context = avctx->context_model;
246FF_ENABLE_DEPRECATION_WARNINGS
247#endif
248
249 s->bps = desc->comp[0].depth;
250 s->yuv = !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
251 s->chroma = desc->nb_components > 2;
252 s->alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
253 av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt,
254 &s->chroma_h_shift,
255 &s->chroma_v_shift);
256
257 switch (avctx->pix_fmt) {
258 case AV_PIX_FMT_YUV420P:
259 case AV_PIX_FMT_YUV422P:
260 if (s->width & 1) {
261 av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
262 return AVERROR(EINVAL);
263 }
264 s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
265 break;
266 case AV_PIX_FMT_YUV444P:
267 case AV_PIX_FMT_YUV410P:
268 case AV_PIX_FMT_YUV411P:
269 case AV_PIX_FMT_YUV440P:
270 case AV_PIX_FMT_GBRP:
271 case AV_PIX_FMT_GBRP9:
272 case AV_PIX_FMT_GBRP10:
273 case AV_PIX_FMT_GBRP12:
274 case AV_PIX_FMT_GBRP14:
275 case AV_PIX_FMT_GBRP16:
276 case AV_PIX_FMT_GRAY8:
277 case AV_PIX_FMT_GRAY16:
278 case AV_PIX_FMT_YUVA444P:
279 case AV_PIX_FMT_YUVA420P:
280 case AV_PIX_FMT_YUVA422P:
281 case AV_PIX_FMT_GBRAP:
282 case AV_PIX_FMT_GRAY8A:
283 case AV_PIX_FMT_YUV420P9:
284 case AV_PIX_FMT_YUV420P10:
285 case AV_PIX_FMT_YUV420P12:
286 case AV_PIX_FMT_YUV420P14:
287 case AV_PIX_FMT_YUV420P16:
288 case AV_PIX_FMT_YUV422P9:
289 case AV_PIX_FMT_YUV422P10:
290 case AV_PIX_FMT_YUV422P12:
291 case AV_PIX_FMT_YUV422P14:
292 case AV_PIX_FMT_YUV422P16:
293 case AV_PIX_FMT_YUV444P9:
294 case AV_PIX_FMT_YUV444P10:
295 case AV_PIX_FMT_YUV444P12:
296 case AV_PIX_FMT_YUV444P14:
297 case AV_PIX_FMT_YUV444P16:
298 case AV_PIX_FMT_YUVA420P9:
299 case AV_PIX_FMT_YUVA420P10:
300 case AV_PIX_FMT_YUVA420P16:
301 case AV_PIX_FMT_YUVA422P9:
302 case AV_PIX_FMT_YUVA422P10:
303 case AV_PIX_FMT_YUVA422P16:
304 case AV_PIX_FMT_YUVA444P9:
305 case AV_PIX_FMT_YUVA444P10:
306 case AV_PIX_FMT_YUVA444P16:
307 s->version = 3;
308 break;
309 case AV_PIX_FMT_RGB32:
310 s->bitstream_bpp = 32;
311 break;
312 case AV_PIX_FMT_RGB24:
313 s->bitstream_bpp = 24;
314 break;
315 default:
316 av_log(avctx, AV_LOG_ERROR, "format not supported\n");
317 return AVERROR(EINVAL);
318 }
319 s->n = 1<<s->bps;
320 s->vlc_n = FFMIN(s->n, MAX_VLC_N);
321
322 avctx->bits_per_coded_sample = s->bitstream_bpp;
323 s->decorrelate = s->bitstream_bpp >= 24 && !s->yuv && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR);
324#if FF_API_PRIVATE_OPT
325FF_DISABLE_DEPRECATION_WARNINGS
326 if (avctx->prediction_method)
327 s->predictor = avctx->prediction_method;
328FF_ENABLE_DEPRECATION_WARNINGS
329#endif
330 s->interlaced = avctx->flags & AV_CODEC_FLAG_INTERLACED_ME ? 1 : 0;
331 if (s->context) {
332 if (s->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) {
333 av_log(avctx, AV_LOG_ERROR,
334 "context=1 is not compatible with "
335 "2 pass huffyuv encoding\n");
336 return AVERROR(EINVAL);
337 }
338 }
339
340 if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
341 if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
342 av_log(avctx, AV_LOG_ERROR,
343 "Error: YV12 is not supported by huffyuv; use "
344 "vcodec=ffvhuff or format=422p\n");
345 return AVERROR(EINVAL);
346 }
347#if FF_API_PRIVATE_OPT
348 if (s->context) {
349 av_log(avctx, AV_LOG_ERROR,
350 "Error: per-frame huffman tables are not supported "
351 "by huffyuv; use vcodec=ffvhuff\n");
352 return AVERROR(EINVAL);
353 }
354 if (s->version > 2) {
355 av_log(avctx, AV_LOG_ERROR,
356 "Error: ver>2 is not supported "
357 "by huffyuv; use vcodec=ffvhuff\n");
358 return AVERROR(EINVAL);
359 }
360#endif
361 if (s->interlaced != ( s->height > 288 ))
362 av_log(avctx, AV_LOG_INFO,
363 "using huffyuv 2.2.0 or newer interlacing flag\n");
364 }
365
366 if (s->version > 3 && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
367 av_log(avctx, AV_LOG_ERROR, "Ver > 3 is under development, files encoded with it may not be decodable with future versions!!!\n"
368 "Use vstrict=-2 / -strict -2 to use it anyway.\n");
369 return AVERROR(EINVAL);
370 }
371
372 if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN && s->version <= 2) {
373 av_log(avctx, AV_LOG_ERROR,
374 "Error: RGB is incompatible with median predictor\n");
375 return AVERROR(EINVAL);
376 }
377
378 ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
379 ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
380 if (s->context)
381 ((uint8_t*)avctx->extradata)[2] |= 0x40;
382 if (s->version < 3) {
383 ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
384 ((uint8_t*)avctx->extradata)[3] = 0;
385 } else {
386 ((uint8_t*)avctx->extradata)[1] = ((s->bps-1)<<4) | s->chroma_h_shift | (s->chroma_v_shift<<2);
387 if (s->chroma)
388 ((uint8_t*)avctx->extradata)[2] |= s->yuv ? 1 : 2;
389 if (s->alpha)
390 ((uint8_t*)avctx->extradata)[2] |= 4;
391 ((uint8_t*)avctx->extradata)[3] = 1;
392 }
393 s->avctx->extradata_size = 4;
394
395 if (avctx->stats_in) {
396 char *p = avctx->stats_in;
397
398 for (i = 0; i < 4; i++)
399 for (j = 0; j < s->vlc_n; j++)
400 s->stats[i][j] = 1;
401
402 for (;;) {
403 for (i = 0; i < 4; i++) {
404 char *next;
405
406 for (j = 0; j < s->vlc_n; j++) {
407 s->stats[i][j] += strtol(p, &next, 0);
408 if (next == p) return -1;
409 p = next;
410 }
411 }
412 if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
413 }
414 } else {
415 for (i = 0; i < 4; i++)
416 for (j = 0; j < s->vlc_n; j++) {
417 int d = FFMIN(j, s->vlc_n - j);
418
419 s->stats[i][j] = 100000000 / (d*d + 1);
420 }
421 }
422
423 ret = store_huffman_tables(s, s->avctx->extradata + s->avctx->extradata_size);
424 if (ret < 0)
425 return ret;
426 s->avctx->extradata_size += ret;
427
428 if (s->context) {
429 for (i = 0; i < 4; i++) {
430 int pels = s->width * s->height / (i ? 40 : 10);
431 for (j = 0; j < s->vlc_n; j++) {
432 int d = FFMIN(j, s->vlc_n - j);
433 s->stats[i][j] = pels/(d*d + 1);
434 }
435 }
436 } else {
437 for (i = 0; i < 4; i++)
438 for (j = 0; j < s->vlc_n; j++)
439 s->stats[i][j]= 0;
440 }
441
442 if (ff_huffyuv_alloc_temp(s)) {
443 ff_huffyuv_common_end(s);
444 return AVERROR(ENOMEM);
445 }
446
447 s->picture_number=0;
448
449 return 0;
450}
451static int encode_422_bitstream(HYuvContext *s, int offset, int count)
452{
453 int i;
454 const uint8_t *y = s->temp[0] + offset;
455 const uint8_t *u = s->temp[1] + offset / 2;
456 const uint8_t *v = s->temp[2] + offset / 2;
457
458 if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
459 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
460 return -1;
461 }
462
463#define LOAD4\
464 int y0 = y[2 * i];\
465 int y1 = y[2 * i + 1];\
466 int u0 = u[i];\
467 int v0 = v[i];
468
469 count /= 2;
470
471 if (s->flags & AV_CODEC_FLAG_PASS1) {
472 for(i = 0; i < count; i++) {
473 LOAD4;
474 s->stats[0][y0]++;
475 s->stats[1][u0]++;
476 s->stats[0][y1]++;
477 s->stats[2][v0]++;
478 }
479 }
480 if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
481 return 0;
482 if (s->context) {
483 for (i = 0; i < count; i++) {
484 LOAD4;
485 s->stats[0][y0]++;
486 put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
487 s->stats[1][u0]++;
488 put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
489 s->stats[0][y1]++;
490 put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
491 s->stats[2][v0]++;
492 put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
493 }
494 } else {
495 for(i = 0; i < count; i++) {
496 LOAD4;
497 put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
498 put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
499 put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
500 put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
501 }
502 }
503 return 0;
504}
505
506static int encode_plane_bitstream(HYuvContext *s, int width, int plane)
507{
508 int i, count = width/2;
509
510 if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < count * s->bps / 2) {
511 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
512 return -1;
513 }
514
515#define LOADEND\
516 int y0 = s->temp[0][width-1];
517#define LOADEND_14\
518 int y0 = s->temp16[0][width-1] & mask;
519#define LOADEND_16\
520 int y0 = s->temp16[0][width-1];
521#define STATEND\
522 s->stats[plane][y0]++;
523#define STATEND_16\
524 s->stats[plane][y0>>2]++;
525#define WRITEEND\
526 put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);
527#define WRITEEND_16\
528 put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
529 put_bits(&s->pb, 2, y0&3);
530
531#define LOAD2\
532 int y0 = s->temp[0][2 * i];\
533 int y1 = s->temp[0][2 * i + 1];
534#define LOAD2_14\
535 int y0 = s->temp16[0][2 * i] & mask;\
536 int y1 = s->temp16[0][2 * i + 1] & mask;
537#define LOAD2_16\
538 int y0 = s->temp16[0][2 * i];\
539 int y1 = s->temp16[0][2 * i + 1];
540#define STAT2\
541 s->stats[plane][y0]++;\
542 s->stats[plane][y1]++;
543#define STAT2_16\
544 s->stats[plane][y0>>2]++;\
545 s->stats[plane][y1>>2]++;
546#define WRITE2\
547 put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);\
548 put_bits(&s->pb, s->len[plane][y1], s->bits[plane][y1]);
549#define WRITE2_16\
550 put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
551 put_bits(&s->pb, 2, y0&3);\
552 put_bits(&s->pb, s->len[plane][y1>>2], s->bits[plane][y1>>2]);\
553 put_bits(&s->pb, 2, y1&3);
554
555 if (s->bps <= 8) {
556 if (s->flags & AV_CODEC_FLAG_PASS1) {
557 for (i = 0; i < count; i++) {
558 LOAD2;
559 STAT2;
560 }
561 if (width&1) {
562 LOADEND;
563 STATEND;
564 }
565 }
566 if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
567 return 0;
568
569 if (s->context) {
570 for (i = 0; i < count; i++) {
571 LOAD2;
572 STAT2;
573 WRITE2;
574 }
575 if (width&1) {
576 LOADEND;
577 STATEND;
578 WRITEEND;
579 }
580 } else {
581 for (i = 0; i < count; i++) {
582 LOAD2;
583 WRITE2;
584 }
585 if (width&1) {
586 LOADEND;
587 WRITEEND;
588 }
589 }
590 } else if (s->bps <= 14) {
591 int mask = s->n - 1;
592 if (s->flags & AV_CODEC_FLAG_PASS1) {
593 for (i = 0; i < count; i++) {
594 LOAD2_14;
595 STAT2;
596 }
597 if (width&1) {
598 LOADEND_14;
599 STATEND;
600 }
601 }
602 if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
603 return 0;
604
605 if (s->context) {
606 for (i = 0; i < count; i++) {
607 LOAD2_14;
608 STAT2;
609 WRITE2;
610 }
611 if (width&1) {
612 LOADEND_14;
613 STATEND;
614 WRITEEND;
615 }
616 } else {
617 for (i = 0; i < count; i++) {
618 LOAD2_14;
619 WRITE2;
620 }
621 if (width&1) {
622 LOADEND_14;
623 WRITEEND;
624 }
625 }
626 } else {
627 if (s->flags & AV_CODEC_FLAG_PASS1) {
628 for (i = 0; i < count; i++) {
629 LOAD2_16;
630 STAT2_16;
631 }
632 if (width&1) {
633 LOADEND_16;
634 STATEND_16;
635 }
636 }
637 if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
638 return 0;
639
640 if (s->context) {
641 for (i = 0; i < count; i++) {
642 LOAD2_16;
643 STAT2_16;
644 WRITE2_16;
645 }
646 if (width&1) {
647 LOADEND_16;
648 STATEND_16;
649 WRITEEND_16;
650 }
651 } else {
652 for (i = 0; i < count; i++) {
653 LOAD2_16;
654 WRITE2_16;
655 }
656 if (width&1) {
657 LOADEND_16;
658 WRITEEND_16;
659 }
660 }
661 }
662#undef LOAD2
663#undef STAT2
664#undef WRITE2
665 return 0;
666}
667
668static int encode_gray_bitstream(HYuvContext *s, int count)
669{
670 int i;
671
672 if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
673 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
674 return -1;
675 }
676
677#define LOAD2\
678 int y0 = s->temp[0][2 * i];\
679 int y1 = s->temp[0][2 * i + 1];
680#define STAT2\
681 s->stats[0][y0]++;\
682 s->stats[0][y1]++;
683#define WRITE2\
684 put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
685 put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
686
687 count /= 2;
688
689 if (s->flags & AV_CODEC_FLAG_PASS1) {
690 for (i = 0; i < count; i++) {
691 LOAD2;
692 STAT2;
693 }
694 }
695 if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
696 return 0;
697
698 if (s->context) {
699 for (i = 0; i < count; i++) {
700 LOAD2;
701 STAT2;
702 WRITE2;
703 }
704 } else {
705 for (i = 0; i < count; i++) {
706 LOAD2;
707 WRITE2;
708 }
709 }
710 return 0;
711}
712
713static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
714{
715 int i;
716
717 if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) <
718 4 * planes * count) {
719 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
720 return -1;
721 }
722
723#define LOAD_GBRA \
724 int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G]; \
725 int b =(s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g) & 0xFF;\
726 int r =(s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g) & 0xFF;\
727 int a = s->temp[0][planes * i + A];
728
729#define STAT_BGRA \
730 s->stats[0][b]++; \
731 s->stats[1][g]++; \
732 s->stats[2][r]++; \
733 if (planes == 4) \
734 s->stats[2][a]++;
735
736#define WRITE_GBRA \
737 put_bits(&s->pb, s->len[1][g], s->bits[1][g]); \
738 put_bits(&s->pb, s->len[0][b], s->bits[0][b]); \
739 put_bits(&s->pb, s->len[2][r], s->bits[2][r]); \
740 if (planes == 4) \
741 put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
742
743 if ((s->flags & AV_CODEC_FLAG_PASS1) &&
744 (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) {
745 for (i = 0; i < count; i++) {
746 LOAD_GBRA;
747 STAT_BGRA;
748 }
749 } else if (s->context || (s->flags & AV_CODEC_FLAG_PASS1)) {
750 for (i = 0; i < count; i++) {
751 LOAD_GBRA;
752 STAT_BGRA;
753 WRITE_GBRA;
754 }
755 } else {
756 for (i = 0; i < count; i++) {
757 LOAD_GBRA;
758 WRITE_GBRA;
759 }
760 }
761 return 0;
762}
763
764static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
765 const AVFrame *pict, int *got_packet)
766{
767 HYuvContext *s = avctx->priv_data;
768 const int width = s->width;
769 const int width2 = s->width>>1;
770 const int height = s->height;
771 const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
772 const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
773 const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
774 const AVFrame * const p = pict;
775 int i, j, size = 0, ret;
776
777 if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + AV_INPUT_BUFFER_MIN_SIZE, 0)) < 0)
778 return ret;
779
780 if (s->context) {
781 size = store_huffman_tables(s, pkt->data);
782 if (size < 0)
783 return size;
784
785 for (i = 0; i < 4; i++)
786 for (j = 0; j < s->vlc_n; j++)
787 s->stats[i][j] >>= 1;
788 }
789
790 init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
791
792 if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
793 avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
794 int lefty, leftu, leftv, y, cy;
795
796 put_bits(&s->pb, 8, leftv = p->data[2][0]);
797 put_bits(&s->pb, 8, lefty = p->data[0][1]);
798 put_bits(&s->pb, 8, leftu = p->data[1][0]);
799 put_bits(&s->pb, 8, p->data[0][0]);
800
801 lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
802 leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
803 leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
804
805 encode_422_bitstream(s, 2, width-2);
806
807 if (s->predictor==MEDIAN) {
808 int lefttopy, lefttopu, lefttopv;
809 cy = y = 1;
810 if (s->interlaced) {
811 lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
812 leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
813 leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
814
815 encode_422_bitstream(s, 0, width);
816 y++; cy++;
817 }
818
819 lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
820 leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
821 leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
822
823 encode_422_bitstream(s, 0, 4);
824
825 lefttopy = p->data[0][3];
826 lefttopu = p->data[1][1];
827 lefttopv = p->data[2][1];
828 s->llvidencdsp.sub_median_pred(s->temp[0], p->data[0] + 4, p->data[0] + fake_ystride + 4, width - 4, &lefty, &lefttopy);
829 s->llvidencdsp.sub_median_pred(s->temp[1], p->data[1] + 2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
830 s->llvidencdsp.sub_median_pred(s->temp[2], p->data[2] + 2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
831 encode_422_bitstream(s, 0, width - 4);
832 y++; cy++;
833
834 for (; y < height; y++,cy++) {
835 uint8_t *ydst, *udst, *vdst;
836
837 if (s->bitstream_bpp == 12) {
838 while (2 * cy > y) {
839 ydst = p->data[0] + p->linesize[0] * y;
840 s->llvidencdsp.sub_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
841 encode_gray_bitstream(s, width);
842 y++;
843 }
844 if (y >= height) break;
845 }
846 ydst = p->data[0] + p->linesize[0] * y;
847 udst = p->data[1] + p->linesize[1] * cy;
848 vdst = p->data[2] + p->linesize[2] * cy;
849
850 s->llvidencdsp.sub_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
851 s->llvidencdsp.sub_median_pred(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
852 s->llvidencdsp.sub_median_pred(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
853
854 encode_422_bitstream(s, 0, width);
855 }
856 } else {
857 for (cy = y = 1; y < height; y++, cy++) {
858 uint8_t *ydst, *udst, *vdst;
859
860 /* encode a luma only line & y++ */
861 if (s->bitstream_bpp == 12) {
862 ydst = p->data[0] + p->linesize[0] * y;
863
864 if (s->predictor == PLANE && s->interlaced < y) {
865 s->llvidencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
866
867 lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
868 } else {
869 lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
870 }
871 encode_gray_bitstream(s, width);
872 y++;
873 if (y >= height) break;
874 }
875
876 ydst = p->data[0] + p->linesize[0] * y;
877 udst = p->data[1] + p->linesize[1] * cy;
878 vdst = p->data[2] + p->linesize[2] * cy;
879
880 if (s->predictor == PLANE && s->interlaced < cy) {
881 s->llvidencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
882 s->llvidencdsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
883 s->llvidencdsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
884
885 lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
886 leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
887 leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
888 } else {
889 lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
890 leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
891 leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
892 }
893
894 encode_422_bitstream(s, 0, width);
895 }
896 }
897 } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
898 uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
899 const int stride = -p->linesize[0];
900 const int fake_stride = -fake_ystride;
901 int y;
902 int leftr, leftg, leftb, lefta;
903
904 put_bits(&s->pb, 8, lefta = data[A]);
905 put_bits(&s->pb, 8, leftr = data[R]);
906 put_bits(&s->pb, 8, leftg = data[G]);
907 put_bits(&s->pb, 8, leftb = data[B]);
908
909 sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
910 &leftr, &leftg, &leftb, &lefta);
911 encode_bgra_bitstream(s, width - 1, 4);
912
913 for (y = 1; y < s->height; y++) {
914 uint8_t *dst = data + y*stride;
915 if (s->predictor == PLANE && s->interlaced < y) {
916 s->llvidencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
917 sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
918 &leftr, &leftg, &leftb, &lefta);
919 } else {
920 sub_left_prediction_bgr32(s, s->temp[0], dst, width,
921 &leftr, &leftg, &leftb, &lefta);
922 }
923 encode_bgra_bitstream(s, width, 4);
924 }
925 } else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
926 uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
927 const int stride = -p->linesize[0];
928 const int fake_stride = -fake_ystride;
929 int y;
930 int leftr, leftg, leftb;
931
932 put_bits(&s->pb, 8, leftr = data[0]);
933 put_bits(&s->pb, 8, leftg = data[1]);
934 put_bits(&s->pb, 8, leftb = data[2]);
935 put_bits(&s->pb, 8, 0);
936
937 sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
938 &leftr, &leftg, &leftb);
939 encode_bgra_bitstream(s, width-1, 3);
940
941 for (y = 1; y < s->height; y++) {
942 uint8_t *dst = data + y * stride;
943 if (s->predictor == PLANE && s->interlaced < y) {
944 s->llvidencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
945 width * 3);
946 sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
947 &leftr, &leftg, &leftb);
948 } else {
949 sub_left_prediction_rgb24(s, s->temp[0], dst, width,
950 &leftr, &leftg, &leftb);
951 }
952 encode_bgra_bitstream(s, width, 3);
953 }
954 } else if (s->version > 2) {
955 int plane;
956 for (plane = 0; plane < 1 + 2*s->chroma + s->alpha; plane++) {
957 int left, y;
958 int w = width;
959 int h = height;
960 int fake_stride = fake_ystride;
961
962 if (s->chroma && (plane == 1 || plane == 2)) {
963 w >>= s->chroma_h_shift;
964 h >>= s->chroma_v_shift;
965 fake_stride = plane == 1 ? fake_ustride : fake_vstride;
966 }
967
968 left = sub_left_prediction(s, s->temp[0], p->data[plane], w , 0);
969
970 encode_plane_bitstream(s, w, plane);
971
972 if (s->predictor==MEDIAN) {
973 int lefttop;
974 y = 1;
975 if (s->interlaced) {
976 left = sub_left_prediction(s, s->temp[0], p->data[plane] + p->linesize[plane], w , left);
977
978 encode_plane_bitstream(s, w, plane);
979 y++;
980 }
981
982 lefttop = p->data[plane][0];
983
984 for (; y < h; y++) {
985 uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
986
987 sub_median_prediction(s, s->temp[0], dst - fake_stride, dst, w , &left, &lefttop);
988
989 encode_plane_bitstream(s, w, plane);
990 }
991 } else {
992 for (y = 1; y < h; y++) {
993 uint8_t *dst = p->data[plane] + p->linesize[plane] * y;
994
995 if (s->predictor == PLANE && s->interlaced < y) {
996 diff_bytes(s, s->temp[1], dst, dst - fake_stride, w);
997
998 left = sub_left_prediction(s, s->temp[0], s->temp[1], w , left);
999 } else {
1000 left = sub_left_prediction(s, s->temp[0], dst, w , left);
1001 }
1002
1003 encode_plane_bitstream(s, w, plane);
1004 }
1005 }
1006 }
1007 } else {
1008 av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
1009 }
1010 emms_c();
1011
1012 size += (put_bits_count(&s->pb) + 31) / 8;
1013 put_bits(&s->pb, 16, 0);
1014 put_bits(&s->pb, 15, 0);
1015 size /= 4;
1016
1017 if ((s->flags & AV_CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
1018 int j;
1019 char *p = avctx->stats_out;
1020 char *end = p + STATS_OUT_SIZE;
1021 for (i = 0; i < 4; i++) {
1022 for (j = 0; j < s->vlc_n; j++) {
1023 snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
1024 p += strlen(p);
1025 s->stats[i][j]= 0;
1026 }
1027 snprintf(p, end-p, "\n");
1028 p++;
1029 if (end <= p)
1030 return AVERROR(ENOMEM);
1031 }
1032 } else if (avctx->stats_out)
1033 avctx->stats_out[0] = '\0';
1034 if (!(s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) {
1035 flush_put_bits(&s->pb);
1036 s->bdsp.bswap_buf((uint32_t *) pkt->data, (uint32_t *) pkt->data, size);
1037 }
1038
1039 s->picture_number++;
1040
1041 pkt->size = size * 4;
1042 pkt->flags |= AV_PKT_FLAG_KEY;
1043 *got_packet = 1;
1044
1045 return 0;
1046}
1047
1048static av_cold int encode_end(AVCodecContext *avctx)
1049{
1050 HYuvContext *s = avctx->priv_data;
1051
1052 ff_huffyuv_common_end(s);
1053
1054 av_freep(&avctx->extradata);
1055 av_freep(&avctx->stats_out);
1056
1057 return 0;
1058}
1059
1060#define OFFSET(x) offsetof(HYuvContext, x)
1061#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1062
1063#define COMMON_OPTIONS \
1064 { "non_deterministic", "Allow multithreading for e.g. context=1 at the expense of determinism", \
1065 OFFSET(non_determ), AV_OPT_TYPE_BOOL, { .i64 = 1 }, \
1066 0, 1, VE }, \
1067 { "pred", "Prediction method", OFFSET(predictor), AV_OPT_TYPE_INT, { .i64 = LEFT }, LEFT, MEDIAN, VE, "pred" }, \
1068 { "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, INT_MIN, INT_MAX, VE, "pred" }, \
1069 { "plane", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PLANE }, INT_MIN, INT_MAX, VE, "pred" }, \
1070 { "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, INT_MIN, INT_MAX, VE, "pred" }, \
1071
1072static const AVOption normal_options[] = {
1073 COMMON_OPTIONS
1074 { NULL },
1075};
1076
1077static const AVOption ff_options[] = {
1078 COMMON_OPTIONS
1079 { "context", "Set per-frame huffman tables", OFFSET(context), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1080 { NULL },
1081};
1082
1083static const AVClass normal_class = {
1084 .class_name = "huffyuv",
1085 .item_name = av_default_item_name,
1086 .option = normal_options,
1087 .version = LIBAVUTIL_VERSION_INT,
1088};
1089
1090static const AVClass ff_class = {
1091 .class_name = "ffvhuff",
1092 .item_name = av_default_item_name,
1093 .option = ff_options,
1094 .version = LIBAVUTIL_VERSION_INT,
1095};
1096
1097AVCodec ff_huffyuv_encoder = {
1098 .name = "huffyuv",
1099 .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
1100 .type = AVMEDIA_TYPE_VIDEO,
1101 .id = AV_CODEC_ID_HUFFYUV,
1102 .priv_data_size = sizeof(HYuvContext),
1103 .init = encode_init,
1104 .encode2 = encode_frame,
1105 .close = encode_end,
1106 .capabilities = AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_INTRA_ONLY,
1107 .priv_class = &normal_class,
1108 .pix_fmts = (const enum AVPixelFormat[]){
1109 AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
1110 AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
1111 },
1112 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
1113 FF_CODEC_CAP_INIT_CLEANUP,
1114};
1115
1116#if CONFIG_FFVHUFF_ENCODER
1117AVCodec ff_ffvhuff_encoder = {
1118 .name = "ffvhuff",
1119 .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
1120 .type = AVMEDIA_TYPE_VIDEO,
1121 .id = AV_CODEC_ID_FFVHUFF,
1122 .priv_data_size = sizeof(HYuvContext),
1123 .init = encode_init,
1124 .encode2 = encode_frame,
1125 .close = encode_end,
1126 .capabilities = AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_INTRA_ONLY,
1127 .priv_class = &ff_class,
1128 .pix_fmts = (const enum AVPixelFormat[]){
1129 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV411P,
1130 AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P,
1131 AV_PIX_FMT_GBRP,
1132 AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14,
1133 AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY16,
1134 AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
1135 AV_PIX_FMT_GBRAP,
1136 AV_PIX_FMT_GRAY8A,
1137 AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16,
1138 AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16,
1139 AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
1140 AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
1141 AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P16,
1142 AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P16,
1143 AV_PIX_FMT_RGB24,
1144 AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
1145 },
1146 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
1147 FF_CODEC_CAP_INIT_CLEANUP,
1148};
1149#endif
1150