summaryrefslogtreecommitdiff
path: root/libavcodec/lpc.c (plain)
blob: f8da1e12667773cb394297bde8fba41d07959251
1/*
2 * LPC utility code
3 * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22#include "libavutil/common.h"
23#include "libavutil/lls.h"
24
25#define LPC_USE_DOUBLE
26#include "lpc.h"
27#include "libavutil/avassert.h"
28
29
30/**
31 * Apply Welch window function to audio block
32 */
33static void lpc_apply_welch_window_c(const int32_t *data, int len,
34 double *w_data)
35{
36 int i, n2;
37 double w;
38 double c;
39
40 n2 = (len >> 1);
41 c = 2.0 / (len - 1.0);
42
43 if (len & 1) {
44 for(i=0; i<n2; i++) {
45 w = c - i - 1.0;
46 w = 1.0 - (w * w);
47 w_data[i] = data[i] * w;
48 w_data[len-1-i] = data[len-1-i] * w;
49 }
50 return;
51 }
52
53 w_data+=n2;
54 data+=n2;
55 for(i=0; i<n2; i++) {
56 w = c - n2 + i;
57 w = 1.0 - (w * w);
58 w_data[-i-1] = data[-i-1] * w;
59 w_data[+i ] = data[+i ] * w;
60 }
61}
62
63/**
64 * Calculate autocorrelation data from audio samples
65 * A Welch window function is applied before calculation.
66 */
67static void lpc_compute_autocorr_c(const double *data, int len, int lag,
68 double *autoc)
69{
70 int i, j;
71
72 for(j=0; j<lag; j+=2){
73 double sum0 = 1.0, sum1 = 1.0;
74 for(i=j; i<len; i++){
75 sum0 += data[i] * data[i-j];
76 sum1 += data[i] * data[i-j-1];
77 }
78 autoc[j ] = sum0;
79 autoc[j+1] = sum1;
80 }
81
82 if(j==lag){
83 double sum = 1.0;
84 for(i=j-1; i<len; i+=2){
85 sum += data[i ] * data[i-j ]
86 + data[i+1] * data[i-j+1];
87 }
88 autoc[j] = sum;
89 }
90}
91
92/**
93 * Quantize LPC coefficients
94 */
95static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
96 int32_t *lpc_out, int *shift, int min_shift,
97 int max_shift, int zero_shift)
98{
99 int i;
100 double cmax, error;
101 int32_t qmax;
102 int sh;
103
104 /* define maximum levels */
105 qmax = (1 << (precision - 1)) - 1;
106
107 /* find maximum coefficient value */
108 cmax = 0.0;
109 for(i=0; i<order; i++) {
110 cmax= FFMAX(cmax, fabs(lpc_in[i]));
111 }
112
113 /* if maximum value quantizes to zero, return all zeros */
114 if(cmax * (1 << max_shift) < 1.0) {
115 *shift = zero_shift;
116 memset(lpc_out, 0, sizeof(int32_t) * order);
117 return;
118 }
119
120 /* calculate level shift which scales max coeff to available bits */
121 sh = max_shift;
122 while((cmax * (1 << sh) > qmax) && (sh > min_shift)) {
123 sh--;
124 }
125
126 /* since negative shift values are unsupported in decoder, scale down
127 coefficients instead */
128 if(sh == 0 && cmax > qmax) {
129 double scale = ((double)qmax) / cmax;
130 for(i=0; i<order; i++) {
131 lpc_in[i] *= scale;
132 }
133 }
134
135 /* output quantized coefficients and level shift */
136 error=0;
137 for(i=0; i<order; i++) {
138 error -= lpc_in[i] * (1 << sh);
139 lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
140 error -= lpc_out[i];
141 }
142 *shift = sh;
143}
144
145static int estimate_best_order(double *ref, int min_order, int max_order)
146{
147 int i, est;
148
149 est = min_order;
150 for(i=max_order-1; i>=min_order-1; i--) {
151 if(ref[i] > 0.10) {
152 est = i+1;
153 break;
154 }
155 }
156 return est;
157}
158
159int ff_lpc_calc_ref_coefs(LPCContext *s,
160 const int32_t *samples, int order, double *ref)
161{
162 double autoc[MAX_LPC_ORDER + 1];
163
164 s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples);
165 s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc);
166 compute_ref_coefs(autoc, order, ref, NULL);
167
168 return order;
169}
170
171double ff_lpc_calc_ref_coefs_f(LPCContext *s, const float *samples, int len,
172 int order, double *ref)
173{
174 int i;
175 double signal = 0.0f, avg_err = 0.0f;
176 double autoc[MAX_LPC_ORDER+1] = {0}, error[MAX_LPC_ORDER+1] = {0};
177 const double a = 0.5f, b = 1.0f - a;
178
179 /* Apply windowing */
180 for (i = 0; i <= len / 2; i++) {
181 double weight = a - b*cos((2*M_PI*i)/(len - 1));
182 s->windowed_samples[i] = weight*samples[i];
183 s->windowed_samples[len-1-i] = weight*samples[len-1-i];
184 }
185
186 s->lpc_compute_autocorr(s->windowed_samples, len, order, autoc);
187 signal = autoc[0];
188 compute_ref_coefs(autoc, order, ref, error);
189 for (i = 0; i < order; i++)
190 avg_err = (avg_err + error[i])/2.0f;
191 return signal/avg_err;
192}
193
194/**
195 * Calculate LPC coefficients for multiple orders
196 *
197 * @param lpc_type LPC method for determining coefficients,
198 * see #FFLPCType for details
199 */
200int ff_lpc_calc_coefs(LPCContext *s,
201 const int32_t *samples, int blocksize, int min_order,
202 int max_order, int precision,
203 int32_t coefs[][MAX_LPC_ORDER], int *shift,
204 enum FFLPCType lpc_type, int lpc_passes,
205 int omethod, int min_shift, int max_shift, int zero_shift)
206{
207 double autoc[MAX_LPC_ORDER+1];
208 double ref[MAX_LPC_ORDER] = { 0 };
209 double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
210 int i, j, pass = 0;
211 int opt_order;
212
213 av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
214 lpc_type > FF_LPC_TYPE_FIXED);
215 av_assert0(lpc_type == FF_LPC_TYPE_CHOLESKY || lpc_type == FF_LPC_TYPE_LEVINSON);
216
217 /* reinit LPC context if parameters have changed */
218 if (blocksize != s->blocksize || max_order != s->max_order ||
219 lpc_type != s->lpc_type) {
220 ff_lpc_end(s);
221 ff_lpc_init(s, blocksize, max_order, lpc_type);
222 }
223
224 if(lpc_passes <= 0)
225 lpc_passes = 2;
226
227 if (lpc_type == FF_LPC_TYPE_LEVINSON || (lpc_type == FF_LPC_TYPE_CHOLESKY && lpc_passes > 1)) {
228 s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples);
229
230 s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc);
231
232 compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
233
234 for(i=0; i<max_order; i++)
235 ref[i] = fabs(lpc[i][i]);
236
237 pass++;
238 }
239
240 if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
241 LLSModel *m = s->lls_models;
242 LOCAL_ALIGNED(32, double, var, [FFALIGN(MAX_LPC_ORDER+1,4)]);
243 double av_uninit(weight);
244 memset(var, 0, FFALIGN(MAX_LPC_ORDER+1,4)*sizeof(*var));
245
246 for(j=0; j<max_order; j++)
247 m[0].coeff[max_order-1][j] = -lpc[max_order-1][j];
248
249 for(; pass<lpc_passes; pass++){
250 avpriv_init_lls(&m[pass&1], max_order);
251
252 weight=0;
253 for(i=max_order; i<blocksize; i++){
254 for(j=0; j<=max_order; j++)
255 var[j]= samples[i-j];
256
257 if(pass){
258 double eval, inv, rinv;
259 eval= m[pass&1].evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
260 eval= (512>>pass) + fabs(eval - var[0]);
261 inv = 1/eval;
262 rinv = sqrt(inv);
263 for(j=0; j<=max_order; j++)
264 var[j] *= rinv;
265 weight += inv;
266 }else
267 weight++;
268
269 m[pass&1].update_lls(&m[pass&1], var);
270 }
271 avpriv_solve_lls(&m[pass&1], 0.001, 0);
272 }
273
274 for(i=0; i<max_order; i++){
275 for(j=0; j<max_order; j++)
276 lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
277 ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
278 }
279 for(i=max_order-1; i>0; i--)
280 ref[i] = ref[i-1] - ref[i];
281 }
282
283 opt_order = max_order;
284
285 if(omethod == ORDER_METHOD_EST) {
286 opt_order = estimate_best_order(ref, min_order, max_order);
287 i = opt_order-1;
288 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
289 min_shift, max_shift, zero_shift);
290 } else {
291 for(i=min_order-1; i<max_order; i++) {
292 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
293 min_shift, max_shift, zero_shift);
294 }
295 }
296
297 return opt_order;
298}
299
300av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
301 enum FFLPCType lpc_type)
302{
303 s->blocksize = blocksize;
304 s->max_order = max_order;
305 s->lpc_type = lpc_type;
306
307 s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) *
308 sizeof(*s->windowed_samples));
309 if (!s->windowed_buffer)
310 return AVERROR(ENOMEM);
311 s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4);
312
313 s->lpc_apply_welch_window = lpc_apply_welch_window_c;
314 s->lpc_compute_autocorr = lpc_compute_autocorr_c;
315
316 if (ARCH_X86)
317 ff_lpc_init_x86(s);
318
319 return 0;
320}
321
322av_cold void ff_lpc_end(LPCContext *s)
323{
324 av_freep(&s->windowed_buffer);
325}
326