summaryrefslogtreecommitdiff
path: root/libavcodec/opus_pvq.c (plain)
blob: ce93c4731d659e62ae6fd19b8ae32f852dbe6697
1/*
2 * Copyright (c) 2012 Andrew D'Addesio
3 * Copyright (c) 2013-2014 Mozilla Corporation
4 * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23#include "opustab.h"
24#include "opus_pvq.h"
25
26#define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
27#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
28
29static inline int16_t celt_cos(int16_t x)
30{
31 x = (MUL16(x, x) + 4096) >> 13;
32 x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
33 return 1+x;
34}
35
36static inline int celt_log2tan(int isin, int icos)
37{
38 int lc, ls;
39 lc = opus_ilog(icos);
40 ls = opus_ilog(isin);
41 icos <<= 15 - lc;
42 isin <<= 15 - ls;
43 return (ls << 11) - (lc << 11) +
44 ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
45 ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
46}
47
48static inline int celt_bits2pulses(const uint8_t *cache, int bits)
49{
50 // TODO: Find the size of cache and make it into an array in the parameters list
51 int i, low = 0, high;
52
53 high = cache[0];
54 bits--;
55
56 for (i = 0; i < 6; i++) {
57 int center = (low + high + 1) >> 1;
58 if (cache[center] >= bits)
59 high = center;
60 else
61 low = center;
62 }
63
64 return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
65}
66
67static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
68{
69 // TODO: Find the size of cache and make it into an array in the parameters list
70 return (pulses == 0) ? 0 : cache[pulses] + 1;
71}
72
73static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
74 int N, float g)
75{
76 int i;
77 for (i = 0; i < N; i++)
78 X[i] = g * iy[i];
79}
80
81static void celt_exp_rotation_impl(float *X, uint32_t len, uint32_t stride,
82 float c, float s)
83{
84 float *Xptr;
85 int i;
86
87 Xptr = X;
88 for (i = 0; i < len - stride; i++) {
89 float x1, x2;
90 x1 = Xptr[0];
91 x2 = Xptr[stride];
92 Xptr[stride] = c * x2 + s * x1;
93 *Xptr++ = c * x1 - s * x2;
94 }
95
96 Xptr = &X[len - 2 * stride - 1];
97 for (i = len - 2 * stride - 1; i >= 0; i--) {
98 float x1, x2;
99 x1 = Xptr[0];
100 x2 = Xptr[stride];
101 Xptr[stride] = c * x2 + s * x1;
102 *Xptr-- = c * x1 - s * x2;
103 }
104}
105
106static inline void celt_exp_rotation(float *X, uint32_t len,
107 uint32_t stride, uint32_t K,
108 enum CeltSpread spread, const int encode)
109{
110 uint32_t stride2 = 0;
111 float c, s;
112 float gain, theta;
113 int i;
114
115 if (2*K >= len || spread == CELT_SPREAD_NONE)
116 return;
117
118 gain = (float)len / (len + (20 - 5*spread) * K);
119 theta = M_PI * gain * gain / 4;
120
121 c = cosf(theta);
122 s = sinf(theta);
123
124 if (len >= stride << 3) {
125 stride2 = 1;
126 /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
127 It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
128 while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
129 stride2++;
130 }
131
132 /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
133 extract_collapse_mask().*/
134 len /= stride;
135 for (i = 0; i < stride; i++) {
136 if (encode) {
137 celt_exp_rotation_impl(X + i * len, len, 1, c, -s);
138 if (stride2)
139 celt_exp_rotation_impl(X + i * len, len, stride2, s, -c);
140 } else {
141 if (stride2)
142 celt_exp_rotation_impl(X + i * len, len, stride2, s, c);
143 celt_exp_rotation_impl(X + i * len, len, 1, c, s);
144 }
145 }
146}
147
148static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B)
149{
150 uint32_t collapse_mask;
151 int N0;
152 int i, j;
153
154 if (B <= 1)
155 return 1;
156
157 /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
158 exp_rotation().*/
159 N0 = N/B;
160 collapse_mask = 0;
161 for (i = 0; i < B; i++)
162 for (j = 0; j < N0; j++)
163 collapse_mask |= (iy[i*N0+j]!=0)<<i;
164 return collapse_mask;
165}
166
167static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
168{
169 int i;
170 float xp = 0, side = 0;
171 float E[2];
172 float mid2;
173 float t, gain[2];
174
175 /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
176 for (i = 0; i < N; i++) {
177 xp += X[i] * Y[i];
178 side += Y[i] * Y[i];
179 }
180
181 /* Compensating for the mid normalization */
182 xp *= mid;
183 mid2 = mid;
184 E[0] = mid2 * mid2 + side - 2 * xp;
185 E[1] = mid2 * mid2 + side + 2 * xp;
186 if (E[0] < 6e-4f || E[1] < 6e-4f) {
187 for (i = 0; i < N; i++)
188 Y[i] = X[i];
189 return;
190 }
191
192 t = E[0];
193 gain[0] = 1.0f / sqrtf(t);
194 t = E[1];
195 gain[1] = 1.0f / sqrtf(t);
196
197 for (i = 0; i < N; i++) {
198 float value[2];
199 /* Apply mid scaling (side is already scaled) */
200 value[0] = mid * X[i];
201 value[1] = Y[i];
202 X[i] = gain[0] * (value[0] - value[1]);
203 Y[i] = gain[1] * (value[0] + value[1]);
204 }
205}
206
207static void celt_interleave_hadamard(float *tmp, float *X, int N0,
208 int stride, int hadamard)
209{
210 int i, j;
211 int N = N0*stride;
212
213 if (hadamard) {
214 const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2;
215 for (i = 0; i < stride; i++)
216 for (j = 0; j < N0; j++)
217 tmp[j*stride+i] = X[ordery[i]*N0+j];
218 } else {
219 for (i = 0; i < stride; i++)
220 for (j = 0; j < N0; j++)
221 tmp[j*stride+i] = X[i*N0+j];
222 }
223
224 for (i = 0; i < N; i++)
225 X[i] = tmp[i];
226}
227
228static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
229 int stride, int hadamard)
230{
231 int i, j;
232 int N = N0*stride;
233
234 if (hadamard) {
235 const uint8_t *ordery = ff_celt_hadamard_ordery + stride - 2;
236 for (i = 0; i < stride; i++)
237 for (j = 0; j < N0; j++)
238 tmp[ordery[i]*N0+j] = X[j*stride+i];
239 } else {
240 for (i = 0; i < stride; i++)
241 for (j = 0; j < N0; j++)
242 tmp[i*N0+j] = X[j*stride+i];
243 }
244
245 for (i = 0; i < N; i++)
246 X[i] = tmp[i];
247}
248
249static void celt_haar1(float *X, int N0, int stride)
250{
251 int i, j;
252 N0 >>= 1;
253 for (i = 0; i < stride; i++) {
254 for (j = 0; j < N0; j++) {
255 float x0 = X[stride * (2 * j + 0) + i];
256 float x1 = X[stride * (2 * j + 1) + i];
257 X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
258 X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
259 }
260 }
261}
262
263static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
264 int dualstereo)
265{
266 int qn, qb;
267 int N2 = 2 * N - 1;
268 if (dualstereo && N == 2)
269 N2--;
270
271 /* The upper limit ensures that in a stereo split with itheta==16384, we'll
272 * always have enough bits left over to code at least one pulse in the
273 * side; otherwise it would collapse, since it doesn't get folded. */
274 qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
275 qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
276 return qn;
277}
278
279/* Convert the quantized vector to an index */
280static inline uint32_t celt_icwrsi(uint32_t N, uint32_t K, const int *y)
281{
282 int i, idx = 0, sum = 0;
283 for (i = N - 1; i >= 0; i--) {
284 const uint32_t i_s = CELT_PVQ_U(N - i, sum + FFABS(y[i]) + 1);
285 idx += CELT_PVQ_U(N - i, sum) + (y[i] < 0)*i_s;
286 sum += FFABS(y[i]);
287 }
288 return idx;
289}
290
291// this code was adapted from libopus
292static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y)
293{
294 uint64_t norm = 0;
295 uint32_t p;
296 int s, val;
297 int k0;
298
299 while (N > 2) {
300 uint32_t q;
301
302 /*Lots of pulses case:*/
303 if (K >= N) {
304 const uint32_t *row = ff_celt_pvq_u_row[N];
305
306 /* Are the pulses in this dimension negative? */
307 p = row[K + 1];
308 s = -(i >= p);
309 i -= p & s;
310
311 /*Count how many pulses were placed in this dimension.*/
312 k0 = K;
313 q = row[N];
314 if (q > i) {
315 K = N;
316 do {
317 p = ff_celt_pvq_u_row[--K][N];
318 } while (p > i);
319 } else
320 for (p = row[K]; p > i; p = row[K])
321 K--;
322
323 i -= p;
324 val = (k0 - K + s) ^ s;
325 norm += val * val;
326 *y++ = val;
327 } else { /*Lots of dimensions case:*/
328 /*Are there any pulses in this dimension at all?*/
329 p = ff_celt_pvq_u_row[K ][N];
330 q = ff_celt_pvq_u_row[K + 1][N];
331
332 if (p <= i && i < q) {
333 i -= p;
334 *y++ = 0;
335 } else {
336 /*Are the pulses in this dimension negative?*/
337 s = -(i >= q);
338 i -= q & s;
339
340 /*Count how many pulses were placed in this dimension.*/
341 k0 = K;
342 do p = ff_celt_pvq_u_row[--K][N];
343 while (p > i);
344
345 i -= p;
346 val = (k0 - K + s) ^ s;
347 norm += val * val;
348 *y++ = val;
349 }
350 }
351 N--;
352 }
353
354 /* N == 2 */
355 p = 2 * K + 1;
356 s = -(i >= p);
357 i -= p & s;
358 k0 = K;
359 K = (i + 1) / 2;
360
361 if (K)
362 i -= 2 * K - 1;
363
364 val = (k0 - K + s) ^ s;
365 norm += val * val;
366 *y++ = val;
367
368 /* N==1 */
369 s = -i;
370 val = (K + s) ^ s;
371 norm += val * val;
372 *y = val;
373
374 return norm;
375}
376
377static inline void celt_encode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
378{
379 ff_opus_rc_enc_uint(rc, celt_icwrsi(N, K, y), CELT_PVQ_V(N, K));
380}
381
382static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
383{
384 const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
385 return celt_cwrsi(N, K, idx, y);
386}
387
388/*
389 * Faster than libopus's search, operates entirely in the signed domain.
390 * Slightly worse/better depending on N, K and the input vector.
391 */
392static void celt_pvq_search(float *X, int *y, int K, int N)
393{
394 int i;
395 float res = 0.0f, y_norm = 0.0f, xy_norm = 0.0f;
396
397 for (i = 0; i < N; i++)
398 res += FFABS(X[i]);
399
400 res = K/(res + FLT_EPSILON);
401
402 for (i = 0; i < N; i++) {
403 y[i] = lrintf(res*X[i]);
404 y_norm += y[i]*y[i];
405 xy_norm += y[i]*X[i];
406 K -= FFABS(y[i]);
407 }
408
409 while (K) {
410 int max_idx = 0, phase = FFSIGN(K);
411 float max_den = 1.0f, max_num = 0.0f;
412 y_norm += 1.0f;
413
414 for (i = 0; i < N; i++) {
415 /* If the sum has been overshot and the best place has 0 pulses allocated
416 * to it, attempting to decrease it further will actually increase the
417 * sum. Prevent this by disregarding any 0 positions when decrementing. */
418 const int ca = 1 ^ ((y[i] == 0) & (phase < 0));
419 float xy_new = xy_norm + 1*phase*FFABS(X[i]);
420 float y_new = y_norm + 2*phase*FFABS(y[i]);
421 xy_new = xy_new * xy_new;
422 if (ca && (max_den*xy_new) > (y_new*max_num)) {
423 max_den = y_new;
424 max_num = xy_new;
425 max_idx = i;
426 }
427 }
428
429 K -= phase;
430
431 phase *= FFSIGN(X[max_idx]);
432 xy_norm += 1*phase*X[max_idx];
433 y_norm += 2*phase*y[max_idx];
434 y[max_idx] += phase;
435 }
436}
437
438static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
439 enum CeltSpread spread, uint32_t blocks, float gain)
440{
441 int y[176];
442
443 celt_exp_rotation(X, N, blocks, K, spread, 1);
444 celt_pvq_search(X, y, K, N);
445 celt_encode_pulses(rc, y, N, K);
446 return celt_extract_collapse_mask(y, N, blocks);
447}
448
449/** Decode pulse vector and combine the result with the pitch vector to produce
450 the final normalised signal in the current band. */
451static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
452 enum CeltSpread spread, uint32_t blocks, float gain)
453{
454 int y[176];
455
456 gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
457 celt_normalize_residual(y, X, N, gain);
458 celt_exp_rotation(X, N, blocks, K, spread, 0);
459 return celt_extract_collapse_mask(y, N, blocks);
460}
461
462uint32_t ff_celt_decode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
463 float *X, float *Y, int N, int b, uint32_t blocks,
464 float *lowband, int duration, float *lowband_out, int level,
465 float gain, float *lowband_scratch, int fill)
466{
467 const uint8_t *cache;
468 int dualstereo, split;
469 int imid = 0, iside = 0;
470 uint32_t N0 = N;
471 int N_B;
472 int N_B0;
473 int B0 = blocks;
474 int time_divide = 0;
475 int recombine = 0;
476 int inv = 0;
477 float mid = 0, side = 0;
478 int longblocks = (B0 == 1);
479 uint32_t cm = 0;
480
481 N_B0 = N_B = N / blocks;
482 split = dualstereo = (Y != NULL);
483
484 if (N == 1) {
485 /* special case for one sample */
486 int i;
487 float *x = X;
488 for (i = 0; i <= dualstereo; i++) {
489 int sign = 0;
490 if (f->remaining2 >= 1<<3) {
491 sign = ff_opus_rc_get_raw(rc, 1);
492 f->remaining2 -= 1 << 3;
493 b -= 1 << 3;
494 }
495 x[0] = sign ? -1.0f : 1.0f;
496 x = Y;
497 }
498 if (lowband_out)
499 lowband_out[0] = X[0];
500 return 1;
501 }
502
503 if (!dualstereo && level == 0) {
504 int tf_change = f->tf_change[band];
505 int k;
506 if (tf_change > 0)
507 recombine = tf_change;
508 /* Band recombining to increase frequency resolution */
509
510 if (lowband &&
511 (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
512 int j;
513 for (j = 0; j < N; j++)
514 lowband_scratch[j] = lowband[j];
515 lowband = lowband_scratch;
516 }
517
518 for (k = 0; k < recombine; k++) {
519 if (lowband)
520 celt_haar1(lowband, N >> k, 1 << k);
521 fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
522 }
523 blocks >>= recombine;
524 N_B <<= recombine;
525
526 /* Increasing the time resolution */
527 while ((N_B & 1) == 0 && tf_change < 0) {
528 if (lowband)
529 celt_haar1(lowband, N_B, blocks);
530 fill |= fill << blocks;
531 blocks <<= 1;
532 N_B >>= 1;
533 time_divide++;
534 tf_change++;
535 }
536 B0 = blocks;
537 N_B0 = N_B;
538
539 /* Reorganize the samples in time order instead of frequency order */
540 if (B0 > 1 && lowband)
541 celt_deinterleave_hadamard(f->scratch, lowband, N_B >> recombine,
542 B0 << recombine, longblocks);
543 }
544
545 /* If we need 1.5 more bit than we can produce, split the band in two. */
546 cache = ff_celt_cache_bits +
547 ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
548 if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
549 N >>= 1;
550 Y = X + N;
551 split = 1;
552 duration -= 1;
553 if (blocks == 1)
554 fill = (fill & 1) | (fill << 1);
555 blocks = (blocks + 1) >> 1;
556 }
557
558 if (split) {
559 int qn;
560 int itheta = 0;
561 int mbits, sbits, delta;
562 int qalloc;
563 int pulse_cap;
564 int offset;
565 int orig_fill;
566 int tell;
567
568 /* Decide on the resolution to give to the split parameter theta */
569 pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
570 offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
571 CELT_QTHETA_OFFSET);
572 qn = (dualstereo && band >= f->intensity_stereo) ? 1 :
573 celt_compute_qn(N, b, offset, pulse_cap, dualstereo);
574 tell = opus_rc_tell_frac(rc);
575 if (qn != 1) {
576 /* Entropy coding of the angle. We use a uniform pdf for the
577 time split, a step for stereo, and a triangular one for the rest. */
578 if (dualstereo && N > 2)
579 itheta = ff_opus_rc_dec_uint_step(rc, qn/2);
580 else if (dualstereo || B0 > 1)
581 itheta = ff_opus_rc_dec_uint(rc, qn+1);
582 else
583 itheta = ff_opus_rc_dec_uint_tri(rc, qn);
584 itheta = itheta * 16384 / qn;
585 /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
586 Let's do that at higher complexity */
587 } else if (dualstereo) {
588 inv = (b > 2 << 3 && f->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0;
589 itheta = 0;
590 }
591 qalloc = opus_rc_tell_frac(rc) - tell;
592 b -= qalloc;
593
594 orig_fill = fill;
595 if (itheta == 0) {
596 imid = 32767;
597 iside = 0;
598 fill = av_mod_uintp2(fill, blocks);
599 delta = -16384;
600 } else if (itheta == 16384) {
601 imid = 0;
602 iside = 32767;
603 fill &= ((1 << blocks) - 1) << blocks;
604 delta = 16384;
605 } else {
606 imid = celt_cos(itheta);
607 iside = celt_cos(16384-itheta);
608 /* This is the mid vs side allocation that minimizes squared error
609 in that band. */
610 delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
611 }
612
613 mid = imid / 32768.0f;
614 side = iside / 32768.0f;
615
616 /* This is a special case for N=2 that only works for stereo and takes
617 advantage of the fact that mid and side are orthogonal to encode
618 the side with just one bit. */
619 if (N == 2 && dualstereo) {
620 int c;
621 int sign = 0;
622 float tmp;
623 float *x2, *y2;
624 mbits = b;
625 /* Only need one bit for the side */
626 sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
627 mbits -= sbits;
628 c = (itheta > 8192);
629 f->remaining2 -= qalloc+sbits;
630
631 x2 = c ? Y : X;
632 y2 = c ? X : Y;
633 if (sbits)
634 sign = ff_opus_rc_get_raw(rc, 1);
635 sign = 1 - 2 * sign;
636 /* We use orig_fill here because we want to fold the side, but if
637 itheta==16384, we'll have cleared the low bits of fill. */
638 cm = ff_celt_decode_band(f, rc, band, x2, NULL, N, mbits, blocks,
639 lowband, duration, lowband_out, level, gain,
640 lowband_scratch, orig_fill);
641 /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
642 and there's no need to worry about mixing with the other channel. */
643 y2[0] = -sign * x2[1];
644 y2[1] = sign * x2[0];
645 X[0] *= mid;
646 X[1] *= mid;
647 Y[0] *= side;
648 Y[1] *= side;
649 tmp = X[0];
650 X[0] = tmp - Y[0];
651 Y[0] = tmp + Y[0];
652 tmp = X[1];
653 X[1] = tmp - Y[1];
654 Y[1] = tmp + Y[1];
655 } else {
656 /* "Normal" split code */
657 float *next_lowband2 = NULL;
658 float *next_lowband_out1 = NULL;
659 int next_level = 0;
660 int rebalance;
661
662 /* Give more bits to low-energy MDCTs than they would
663 * otherwise deserve */
664 if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) {
665 if (itheta > 8192)
666 /* Rough approximation for pre-echo masking */
667 delta -= delta >> (4 - duration);
668 else
669 /* Corresponds to a forward-masking slope of
670 * 1.5 dB per 10 ms */
671 delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
672 }
673 mbits = av_clip((b - delta) / 2, 0, b);
674 sbits = b - mbits;
675 f->remaining2 -= qalloc;
676
677 if (lowband && !dualstereo)
678 next_lowband2 = lowband + N; /* >32-bit split case */
679
680 /* Only stereo needs to pass on lowband_out.
681 * Otherwise, it's handled at the end */
682 if (dualstereo)
683 next_lowband_out1 = lowband_out;
684 else
685 next_level = level + 1;
686
687 rebalance = f->remaining2;
688 if (mbits >= sbits) {
689 /* In stereo mode, we do not apply a scaling to the mid
690 * because we need the normalized mid for folding later */
691 cm = ff_celt_decode_band(f, rc, band, X, NULL, N, mbits, blocks,
692 lowband, duration, next_lowband_out1,
693 next_level, dualstereo ? 1.0f : (gain * mid),
694 lowband_scratch, fill);
695
696 rebalance = mbits - (rebalance - f->remaining2);
697 if (rebalance > 3 << 3 && itheta != 0)
698 sbits += rebalance - (3 << 3);
699
700 /* For a stereo split, the high bits of fill are always zero,
701 * so no folding will be done to the side. */
702 cm |= ff_celt_decode_band(f, rc, band, Y, NULL, N, sbits, blocks,
703 next_lowband2, duration, NULL,
704 next_level, gain * side, NULL,
705 fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
706 } else {
707 /* For a stereo split, the high bits of fill are always zero,
708 * so no folding will be done to the side. */
709 cm = ff_celt_decode_band(f, rc, band, Y, NULL, N, sbits, blocks,
710 next_lowband2, duration, NULL,
711 next_level, gain * side, NULL,
712 fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
713
714 rebalance = sbits - (rebalance - f->remaining2);
715 if (rebalance > 3 << 3 && itheta != 16384)
716 mbits += rebalance - (3 << 3);
717
718 /* In stereo mode, we do not apply a scaling to the mid because
719 * we need the normalized mid for folding later */
720 cm |= ff_celt_decode_band(f, rc, band, X, NULL, N, mbits, blocks,
721 lowband, duration, next_lowband_out1,
722 next_level, dualstereo ? 1.0f : (gain * mid),
723 lowband_scratch, fill);
724 }
725 }
726 } else {
727 /* This is the basic no-split case */
728 uint32_t q = celt_bits2pulses(cache, b);
729 uint32_t curr_bits = celt_pulses2bits(cache, q);
730 f->remaining2 -= curr_bits;
731
732 /* Ensures we can never bust the budget */
733 while (f->remaining2 < 0 && q > 0) {
734 f->remaining2 += curr_bits;
735 curr_bits = celt_pulses2bits(cache, --q);
736 f->remaining2 -= curr_bits;
737 }
738
739 if (q != 0) {
740 /* Finally do the actual quantization */
741 cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
742 f->spread, blocks, gain);
743 } else {
744 /* If there's no pulse, fill the band anyway */
745 int j;
746 uint32_t cm_mask = (1 << blocks) - 1;
747 fill &= cm_mask;
748 if (!fill) {
749 for (j = 0; j < N; j++)
750 X[j] = 0.0f;
751 } else {
752 if (!lowband) {
753 /* Noise */
754 for (j = 0; j < N; j++)
755 X[j] = (((int32_t)celt_rng(f)) >> 20);
756 cm = cm_mask;
757 } else {
758 /* Folded spectrum */
759 for (j = 0; j < N; j++) {
760 /* About 48 dB below the "normal" folding level */
761 X[j] = lowband[j] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
762 }
763 cm = fill;
764 }
765 celt_renormalize_vector(X, N, gain);
766 }
767 }
768 }
769
770 /* This code is used by the decoder and by the resynthesis-enabled encoder */
771 if (dualstereo) {
772 int j;
773 if (N != 2)
774 celt_stereo_merge(X, Y, mid, N);
775 if (inv) {
776 for (j = 0; j < N; j++)
777 Y[j] *= -1;
778 }
779 } else if (level == 0) {
780 int k;
781
782 /* Undo the sample reorganization going from time order to frequency order */
783 if (B0 > 1)
784 celt_interleave_hadamard(f->scratch, X, N_B>>recombine,
785 B0<<recombine, longblocks);
786
787 /* Undo time-freq changes that we did earlier */
788 N_B = N_B0;
789 blocks = B0;
790 for (k = 0; k < time_divide; k++) {
791 blocks >>= 1;
792 N_B <<= 1;
793 cm |= cm >> blocks;
794 celt_haar1(X, N_B, blocks);
795 }
796
797 for (k = 0; k < recombine; k++) {
798 cm = ff_celt_bit_deinterleave[cm];
799 celt_haar1(X, N0>>k, 1<<k);
800 }
801 blocks <<= recombine;
802
803 /* Scale output for later folding */
804 if (lowband_out) {
805 int j;
806 float n = sqrtf(N0);
807 for (j = 0; j < N0; j++)
808 lowband_out[j] = n * X[j];
809 }
810 cm = av_mod_uintp2(cm, blocks);
811 }
812
813 return cm;
814}
815
816/* This has to be, AND MUST BE done by the psychoacoustic system, this has a very
817 * big impact on the entire quantization and especially huge on transients */
818static int celt_calc_theta(const float *X, const float *Y, int coupling, int N)
819{
820 int j;
821 float e[2] = { 0.0f, 0.0f };
822 for (j = 0; j < N; j++) {
823 if (coupling) { /* Coupling case */
824 e[0] += (X[j] + Y[j])*(X[j] + Y[j]);
825 e[1] += (X[j] - Y[j])*(X[j] - Y[j]);
826 } else {
827 e[0] += X[j]*X[j];
828 e[1] += Y[j]*Y[j];
829 }
830 }
831 return lrintf(32768.0f*atan2f(sqrtf(e[1]), sqrtf(e[0]))/M_PI);
832}
833
834static void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, int N)
835{
836 int i;
837 const float energy_n = 1.0f/(sqrtf(e_l*e_l + e_r*e_r) + FLT_EPSILON);
838 e_l *= energy_n;
839 e_r *= energy_n;
840 for (i = 0; i < N; i++)
841 X[i] = e_l*X[i] + e_r*Y[i];
842}
843
844static void celt_stereo_ms_decouple(float *X, float *Y, int N)
845{
846 int i;
847 const float decouple_norm = 1.0f/sqrtf(2.0f);
848 for (i = 0; i < N; i++) {
849 const float Xret = X[i];
850 X[i] = (X[i] + Y[i])*decouple_norm;
851 Y[i] = (Y[i] - Xret)*decouple_norm;
852 }
853}
854
855uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band,
856 float *X, float *Y, int N, int b, uint32_t blocks,
857 float *lowband, int duration, float *lowband_out, int level,
858 float gain, float *lowband_scratch, int fill)
859{
860 const uint8_t *cache;
861 int dualstereo, split;
862 int imid = 0, iside = 0;
863 //uint32_t N0 = N;
864 int N_B = N / blocks;
865 //int N_B0 = N_B;
866 int B0 = blocks;
867 int time_divide = 0;
868 int recombine = 0;
869 int inv = 0;
870 float mid = 0, side = 0;
871 int longblocks = (B0 == 1);
872 uint32_t cm = 0;
873
874 split = dualstereo = (Y != NULL);
875
876 if (N == 1) {
877 /* special case for one sample - the decoder's output will be +- 1.0f!!! */
878 int i;
879 float *x = X;
880 for (i = 0; i <= dualstereo; i++) {
881 if (f->remaining2 >= 1<<3) {
882 ff_opus_rc_put_raw(rc, x[0] < 0, 1);
883 f->remaining2 -= 1 << 3;
884 b -= 1 << 3;
885 }
886 x = Y;
887 }
888 if (lowband_out)
889 lowband_out[0] = X[0];
890 return 1;
891 }
892
893 if (!dualstereo && level == 0) {
894 int tf_change = f->tf_change[band];
895 int k;
896 if (tf_change > 0)
897 recombine = tf_change;
898 /* Band recombining to increase frequency resolution */
899
900 if (lowband &&
901 (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
902 int j;
903 for (j = 0; j < N; j++)
904 lowband_scratch[j] = lowband[j];
905 lowband = lowband_scratch;
906 }
907
908 for (k = 0; k < recombine; k++) {
909 celt_haar1(X, N >> k, 1 << k);
910 fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
911 }
912 blocks >>= recombine;
913 N_B <<= recombine;
914
915 /* Increasing the time resolution */
916 while ((N_B & 1) == 0 && tf_change < 0) {
917 celt_haar1(X, N_B, blocks);
918 fill |= fill << blocks;
919 blocks <<= 1;
920 N_B >>= 1;
921 time_divide++;
922 tf_change++;
923 }
924 B0 = blocks;
925 //N_B0 = N_B;
926
927 /* Reorganize the samples in time order instead of frequency order */
928 if (B0 > 1)
929 celt_deinterleave_hadamard(f->scratch, X, N_B >> recombine,
930 B0 << recombine, longblocks);
931 }
932
933 /* If we need 1.5 more bit than we can produce, split the band in two. */
934 cache = ff_celt_cache_bits +
935 ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
936 if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
937 N >>= 1;
938 Y = X + N;
939 split = 1;
940 duration -= 1;
941 if (blocks == 1)
942 fill = (fill & 1) | (fill << 1);
943 blocks = (blocks + 1) >> 1;
944 }
945
946 if (split) {
947 int qn;
948 int itheta = celt_calc_theta(X, Y, dualstereo, N);
949 int mbits, sbits, delta;
950 int qalloc;
951 int pulse_cap;
952 int offset;
953 int orig_fill;
954 int tell;
955
956 /* Decide on the resolution to give to the split parameter theta */
957 pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
958 offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
959 CELT_QTHETA_OFFSET);
960 qn = (dualstereo && band >= f->intensity_stereo) ? 1 :
961 celt_compute_qn(N, b, offset, pulse_cap, dualstereo);
962 tell = opus_rc_tell_frac(rc);
963
964 if (qn != 1) {
965
966 itheta = (itheta*qn + 8192) >> 14;
967
968 /* Entropy coding of the angle. We use a uniform pdf for the
969 * time split, a step for stereo, and a triangular one for the rest. */
970 if (dualstereo && N > 2)
971 ff_opus_rc_enc_uint_step(rc, itheta, qn / 2);
972 else if (dualstereo || B0 > 1)
973 ff_opus_rc_enc_uint(rc, itheta, qn + 1);
974 else
975 ff_opus_rc_enc_uint_tri(rc, itheta, qn);
976 itheta = itheta * 16384 / qn;
977
978 if (dualstereo) {
979 if (itheta == 0)
980 celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], f->block[1].lin_energy[band], N);
981 else
982 celt_stereo_ms_decouple(X, Y, N);
983 }
984 } else if (dualstereo) {
985 inv = itheta > 8192;
986 if (inv)
987 {
988 int j;
989 for (j=0;j<N;j++)
990 Y[j] = -Y[j];
991 }
992 celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], f->block[1].lin_energy[band], N);
993
994 if (b > 2 << 3 && f->remaining2 > 2 << 3) {
995 ff_opus_rc_enc_log(rc, inv, 2);
996 } else {
997 inv = 0;
998 }
999
1000 itheta = 0;
1001 }
1002 qalloc = opus_rc_tell_frac(rc) - tell;
1003 b -= qalloc;
1004
1005 orig_fill = fill;
1006 if (itheta == 0) {
1007 imid = 32767;
1008 iside = 0;
1009 fill = av_mod_uintp2(fill, blocks);
1010 delta = -16384;
1011 } else if (itheta == 16384) {
1012 imid = 0;
1013 iside = 32767;
1014 fill &= ((1 << blocks) - 1) << blocks;
1015 delta = 16384;
1016 } else {
1017 imid = celt_cos(itheta);
1018 iside = celt_cos(16384-itheta);
1019 /* This is the mid vs side allocation that minimizes squared error
1020 in that band. */
1021 delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
1022 }
1023
1024 mid = imid / 32768.0f;
1025 side = iside / 32768.0f;
1026
1027 /* This is a special case for N=2 that only works for stereo and takes
1028 advantage of the fact that mid and side are orthogonal to encode
1029 the side with just one bit. */
1030 if (N == 2 && dualstereo) {
1031 int c;
1032 int sign = 0;
1033 float tmp;
1034 float *x2, *y2;
1035 mbits = b;
1036 /* Only need one bit for the side */
1037 sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
1038 mbits -= sbits;
1039 c = (itheta > 8192);
1040 f->remaining2 -= qalloc+sbits;
1041
1042 x2 = c ? Y : X;
1043 y2 = c ? X : Y;
1044 if (sbits) {
1045 sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
1046 ff_opus_rc_put_raw(rc, sign, 1);
1047 }
1048 sign = 1 - 2 * sign;
1049 /* We use orig_fill here because we want to fold the side, but if
1050 itheta==16384, we'll have cleared the low bits of fill. */
1051 cm = ff_celt_encode_band(f, rc, band, x2, NULL, N, mbits, blocks,
1052 lowband, duration, lowband_out, level, gain,
1053 lowband_scratch, orig_fill);
1054 /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
1055 and there's no need to worry about mixing with the other channel. */
1056 y2[0] = -sign * x2[1];
1057 y2[1] = sign * x2[0];
1058 X[0] *= mid;
1059 X[1] *= mid;
1060 Y[0] *= side;
1061 Y[1] *= side;
1062 tmp = X[0];
1063 X[0] = tmp - Y[0];
1064 Y[0] = tmp + Y[0];
1065 tmp = X[1];
1066 X[1] = tmp - Y[1];
1067 Y[1] = tmp + Y[1];
1068 } else {
1069 /* "Normal" split code */
1070 float *next_lowband2 = NULL;
1071 float *next_lowband_out1 = NULL;
1072 int next_level = 0;
1073 int rebalance;
1074
1075 /* Give more bits to low-energy MDCTs than they would
1076 * otherwise deserve */
1077 if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) {
1078 if (itheta > 8192)
1079 /* Rough approximation for pre-echo masking */
1080 delta -= delta >> (4 - duration);
1081 else
1082 /* Corresponds to a forward-masking slope of
1083 * 1.5 dB per 10 ms */
1084 delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
1085 }
1086 mbits = av_clip((b - delta) / 2, 0, b);
1087 sbits = b - mbits;
1088 f->remaining2 -= qalloc;
1089
1090 if (lowband && !dualstereo)
1091 next_lowband2 = lowband + N; /* >32-bit split case */
1092
1093 /* Only stereo needs to pass on lowband_out.
1094 * Otherwise, it's handled at the end */
1095 if (dualstereo)
1096 next_lowband_out1 = lowband_out;
1097 else
1098 next_level = level + 1;
1099
1100 rebalance = f->remaining2;
1101 if (mbits >= sbits) {
1102 /* In stereo mode, we do not apply a scaling to the mid
1103 * because we need the normalized mid for folding later */
1104 cm = ff_celt_encode_band(f, rc, band, X, NULL, N, mbits, blocks,
1105 lowband, duration, next_lowband_out1,
1106 next_level, dualstereo ? 1.0f : (gain * mid),
1107 lowband_scratch, fill);
1108
1109 rebalance = mbits - (rebalance - f->remaining2);
1110 if (rebalance > 3 << 3 && itheta != 0)
1111 sbits += rebalance - (3 << 3);
1112
1113 /* For a stereo split, the high bits of fill are always zero,
1114 * so no folding will be done to the side. */
1115 cm |= ff_celt_encode_band(f, rc, band, Y, NULL, N, sbits, blocks,
1116 next_lowband2, duration, NULL,
1117 next_level, gain * side, NULL,
1118 fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
1119 } else {
1120 /* For a stereo split, the high bits of fill are always zero,
1121 * so no folding will be done to the side. */
1122 cm = ff_celt_encode_band(f, rc, band, Y, NULL, N, sbits, blocks,
1123 next_lowband2, duration, NULL,
1124 next_level, gain * side, NULL,
1125 fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
1126
1127 rebalance = sbits - (rebalance - f->remaining2);
1128 if (rebalance > 3 << 3 && itheta != 16384)
1129 mbits += rebalance - (3 << 3);
1130
1131 /* In stereo mode, we do not apply a scaling to the mid because
1132 * we need the normalized mid for folding later */
1133 cm |= ff_celt_encode_band(f, rc, band, X, NULL, N, mbits, blocks,
1134 lowband, duration, next_lowband_out1,
1135 next_level, dualstereo ? 1.0f : (gain * mid),
1136 lowband_scratch, fill);
1137 }
1138 }
1139 } else {
1140 /* This is the basic no-split case */
1141 uint32_t q = celt_bits2pulses(cache, b);
1142 uint32_t curr_bits = celt_pulses2bits(cache, q);
1143 f->remaining2 -= curr_bits;
1144
1145 /* Ensures we can never bust the budget */
1146 while (f->remaining2 < 0 && q > 0) {
1147 f->remaining2 += curr_bits;
1148 curr_bits = celt_pulses2bits(cache, --q);
1149 f->remaining2 -= curr_bits;
1150 }
1151
1152 if (q != 0) {
1153 /* Finally do the actual quantization */
1154 cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
1155 f->spread, blocks, gain);
1156 }
1157 }
1158
1159 return cm;
1160}
1161