summaryrefslogtreecommitdiff
path: root/libavcodec/sbrdsp_fixed.c (plain)
blob: f4e3de0c71000795a083ca66ff238518b5b0c08b
1/*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 * Note: Rounding-to-nearest used unless otherwise stated
23 *
24 */
25
26#define USE_FIXED 1
27
28#include "aac.h"
29#include "config.h"
30#include "libavutil/attributes.h"
31#include "libavutil/intfloat.h"
32#include "sbrdsp.h"
33
34static SoftFloat sbr_sum_square_c(int (*x)[2], int n)
35{
36 SoftFloat ret;
37 int64_t accu = 0;
38 int i, nz, round;
39
40 for (i = 0; i < n; i += 2) {
41 // Larger values are inavlid and could cause overflows of accu.
42 av_assert2(FFABS(x[i + 0][0]) >> 29 == 0);
43 accu += (int64_t)x[i + 0][0] * x[i + 0][0];
44 av_assert2(FFABS(x[i + 0][1]) >> 29 == 0);
45 accu += (int64_t)x[i + 0][1] * x[i + 0][1];
46 av_assert2(FFABS(x[i + 1][0]) >> 29 == 0);
47 accu += (int64_t)x[i + 1][0] * x[i + 1][0];
48 av_assert2(FFABS(x[i + 1][1]) >> 29 == 0);
49 accu += (int64_t)x[i + 1][1] * x[i + 1][1];
50 }
51
52 i = (int)(accu >> 32);
53 if (i == 0) {
54 nz = 1;
55 } else {
56 nz = 0;
57 while (FFABS(i) < 0x40000000) {
58 i <<= 1;
59 nz++;
60 }
61 nz = 32 - nz;
62 }
63
64 round = 1 << (nz-1);
65 i = (int)((accu + round) >> nz);
66 i >>= 1;
67 ret = av_int2sf(i, 15 - nz);
68
69 return ret;
70}
71
72static void sbr_neg_odd_64_c(int *x)
73{
74 int i;
75 for (i = 1; i < 64; i += 2)
76 x[i] = -x[i];
77}
78
79static void sbr_qmf_pre_shuffle_c(int *z)
80{
81 int k;
82 z[64] = z[0];
83 z[65] = z[1];
84 for (k = 1; k < 32; k++) {
85 z[64+2*k ] = -z[64 - k];
86 z[64+2*k+1] = z[ k + 1];
87 }
88}
89
90static void sbr_qmf_post_shuffle_c(int W[32][2], const int *z)
91{
92 int k;
93 for (k = 0; k < 32; k++) {
94 W[k][0] = -z[63-k];
95 W[k][1] = z[k];
96 }
97}
98
99static void sbr_qmf_deint_neg_c(int *v, const int *src)
100{
101 int i;
102 for (i = 0; i < 32; i++) {
103 v[ i] = ( src[63 - 2*i ] + 0x10) >> 5;
104 v[63 - i] = (-src[63 - 2*i - 1] + 0x10) >> 5;
105 }
106}
107
108static av_always_inline SoftFloat autocorr_calc(int64_t accu)
109{
110 int nz, mant, expo, round;
111 int i = (int)(accu >> 32);
112 if (i == 0) {
113 nz = 1;
114 } else {
115 nz = 0;
116 while (FFABS(i) < 0x40000000) {
117 i <<= 1;
118 nz++;
119 }
120 nz = 32-nz;
121 }
122
123 round = 1 << (nz-1);
124 mant = (int)((accu + round) >> nz);
125 mant = (mant + 0x40)>>7;
126 mant <<= 6;
127 expo = nz + 15;
128 return av_int2sf(mant, 30 - expo);
129}
130
131static av_always_inline void autocorrelate(const int x[40][2], SoftFloat phi[3][2][2], int lag)
132{
133 int i;
134 int64_t real_sum, imag_sum;
135 int64_t accu_re = 0, accu_im = 0;
136
137 if (lag) {
138 for (i = 1; i < 38; i++) {
139 accu_re += (int64_t)x[i][0] * x[i+lag][0];
140 accu_re += (int64_t)x[i][1] * x[i+lag][1];
141 accu_im += (int64_t)x[i][0] * x[i+lag][1];
142 accu_im -= (int64_t)x[i][1] * x[i+lag][0];
143 }
144
145 real_sum = accu_re;
146 imag_sum = accu_im;
147
148 accu_re += (int64_t)x[ 0][0] * x[lag][0];
149 accu_re += (int64_t)x[ 0][1] * x[lag][1];
150 accu_im += (int64_t)x[ 0][0] * x[lag][1];
151 accu_im -= (int64_t)x[ 0][1] * x[lag][0];
152
153 phi[2-lag][1][0] = autocorr_calc(accu_re);
154 phi[2-lag][1][1] = autocorr_calc(accu_im);
155
156 if (lag == 1) {
157 accu_re = real_sum;
158 accu_im = imag_sum;
159 accu_re += (int64_t)x[38][0] * x[39][0];
160 accu_re += (int64_t)x[38][1] * x[39][1];
161 accu_im += (int64_t)x[38][0] * x[39][1];
162 accu_im -= (int64_t)x[38][1] * x[39][0];
163
164 phi[0][0][0] = autocorr_calc(accu_re);
165 phi[0][0][1] = autocorr_calc(accu_im);
166 }
167 } else {
168 for (i = 1; i < 38; i++) {
169 accu_re += (int64_t)x[i][0] * x[i][0];
170 accu_re += (int64_t)x[i][1] * x[i][1];
171 }
172 real_sum = accu_re;
173 accu_re += (int64_t)x[ 0][0] * x[ 0][0];
174 accu_re += (int64_t)x[ 0][1] * x[ 0][1];
175
176 phi[2][1][0] = autocorr_calc(accu_re);
177
178 accu_re = real_sum;
179 accu_re += (int64_t)x[38][0] * x[38][0];
180 accu_re += (int64_t)x[38][1] * x[38][1];
181
182 phi[1][0][0] = autocorr_calc(accu_re);
183 }
184}
185
186static void sbr_autocorrelate_c(const int x[40][2], SoftFloat phi[3][2][2])
187{
188 autocorrelate(x, phi, 0);
189 autocorrelate(x, phi, 1);
190 autocorrelate(x, phi, 2);
191}
192
193static void sbr_hf_gen_c(int (*X_high)[2], const int (*X_low)[2],
194 const int alpha0[2], const int alpha1[2],
195 int bw, int start, int end)
196{
197 int alpha[4];
198 int i;
199 int64_t accu;
200
201 accu = (int64_t)alpha0[0] * bw;
202 alpha[2] = (int)((accu + 0x40000000) >> 31);
203 accu = (int64_t)alpha0[1] * bw;
204 alpha[3] = (int)((accu + 0x40000000) >> 31);
205 accu = (int64_t)bw * bw;
206 bw = (int)((accu + 0x40000000) >> 31);
207 accu = (int64_t)alpha1[0] * bw;
208 alpha[0] = (int)((accu + 0x40000000) >> 31);
209 accu = (int64_t)alpha1[1] * bw;
210 alpha[1] = (int)((accu + 0x40000000) >> 31);
211
212 for (i = start; i < end; i++) {
213 accu = (int64_t)X_low[i][0] * 0x20000000;
214 accu += (int64_t)X_low[i - 2][0] * alpha[0];
215 accu -= (int64_t)X_low[i - 2][1] * alpha[1];
216 accu += (int64_t)X_low[i - 1][0] * alpha[2];
217 accu -= (int64_t)X_low[i - 1][1] * alpha[3];
218 X_high[i][0] = (int)((accu + 0x10000000) >> 29);
219
220 accu = (int64_t)X_low[i][1] * 0x20000000;
221 accu += (int64_t)X_low[i - 2][1] * alpha[0];
222 accu += (int64_t)X_low[i - 2][0] * alpha[1];
223 accu += (int64_t)X_low[i - 1][1] * alpha[2];
224 accu += (int64_t)X_low[i - 1][0] * alpha[3];
225 X_high[i][1] = (int)((accu + 0x10000000) >> 29);
226 }
227}
228
229static void sbr_hf_g_filt_c(int (*Y)[2], const int (*X_high)[40][2],
230 const SoftFloat *g_filt, int m_max, intptr_t ixh)
231{
232 int m, r;
233 int64_t accu;
234
235 for (m = 0; m < m_max; m++) {
236 r = 1 << (22-g_filt[m].exp);
237 accu = (int64_t)X_high[m][ixh][0] * ((g_filt[m].mant + 0x40)>>7);
238 Y[m][0] = (int)((accu + r) >> (23-g_filt[m].exp));
239
240 accu = (int64_t)X_high[m][ixh][1] * ((g_filt[m].mant + 0x40)>>7);
241 Y[m][1] = (int)((accu + r) >> (23-g_filt[m].exp));
242 }
243}
244
245static av_always_inline void sbr_hf_apply_noise(int (*Y)[2],
246 const SoftFloat *s_m,
247 const SoftFloat *q_filt,
248 int noise,
249 int phi_sign0,
250 int phi_sign1,
251 int m_max)
252{
253 int m;
254
255 for (m = 0; m < m_max; m++) {
256 int y0 = Y[m][0];
257 int y1 = Y[m][1];
258 noise = (noise + 1) & 0x1ff;
259 if (s_m[m].mant) {
260 int shift, round;
261
262 shift = 22 - s_m[m].exp;
263 if (shift < 30) {
264 round = 1 << (shift-1);
265 y0 += (s_m[m].mant * phi_sign0 + round) >> shift;
266 y1 += (s_m[m].mant * phi_sign1 + round) >> shift;
267 }
268 } else {
269 int shift, round, tmp;
270 int64_t accu;
271
272 shift = 22 - q_filt[m].exp;
273 if (shift < 30) {
274 round = 1 << (shift-1);
275
276 accu = (int64_t)q_filt[m].mant * ff_sbr_noise_table_fixed[noise][0];
277 tmp = (int)((accu + 0x40000000) >> 31);
278 y0 += (tmp + round) >> shift;
279
280 accu = (int64_t)q_filt[m].mant * ff_sbr_noise_table_fixed[noise][1];
281 tmp = (int)((accu + 0x40000000) >> 31);
282 y1 += (tmp + round) >> shift;
283 }
284 }
285 Y[m][0] = y0;
286 Y[m][1] = y1;
287 phi_sign1 = -phi_sign1;
288 }
289}
290
291#include "sbrdsp_template.c"
292