summaryrefslogtreecommitdiff
path: root/libavcodec/wmaprodec.c (plain)
blob: 5c99628c52d28e868106ac849b3926bbab050ee8
1/*
2 * Wmapro compatible decoder
3 * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
4 * Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/**
24 * @file
25 * @brief wmapro decoder implementation
26 * Wmapro is an MDCT based codec comparable to wma standard or AAC.
27 * The decoding therefore consists of the following steps:
28 * - bitstream decoding
29 * - reconstruction of per-channel data
30 * - rescaling and inverse quantization
31 * - IMDCT
32 * - windowing and overlapp-add
33 *
34 * The compressed wmapro bitstream is split into individual packets.
35 * Every such packet contains one or more wma frames.
36 * The compressed frames may have a variable length and frames may
37 * cross packet boundaries.
38 * Common to all wmapro frames is the number of samples that are stored in
39 * a frame.
40 * The number of samples and a few other decode flags are stored
41 * as extradata that has to be passed to the decoder.
42 *
43 * The wmapro frames themselves are again split into a variable number of
44 * subframes. Every subframe contains the data for 2^N time domain samples
45 * where N varies between 7 and 12.
46 *
47 * Example wmapro bitstream (in samples):
48 *
49 * || packet 0 || packet 1 || packet 2 packets
50 * ---------------------------------------------------
51 * || frame 0 || frame 1 || frame 2 || frames
52 * ---------------------------------------------------
53 * || | | || | | | || || subframes of channel 0
54 * ---------------------------------------------------
55 * || | | || | | | || || subframes of channel 1
56 * ---------------------------------------------------
57 *
58 * The frame layouts for the individual channels of a wma frame does not need
59 * to be the same.
60 *
61 * However, if the offsets and lengths of several subframes of a frame are the
62 * same, the subframes of the channels can be grouped.
63 * Every group may then use special coding techniques like M/S stereo coding
64 * to improve the compression ratio. These channel transformations do not
65 * need to be applied to a whole subframe. Instead, they can also work on
66 * individual scale factor bands (see below).
67 * The coefficients that carry the audio signal in the frequency domain
68 * are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
69 * In addition to that, the encoder can switch to a runlevel coding scheme
70 * by transmitting subframe_length / 128 zero coefficients.
71 *
72 * Before the audio signal can be converted to the time domain, the
73 * coefficients have to be rescaled and inverse quantized.
74 * A subframe is therefore split into several scale factor bands that get
75 * scaled individually.
76 * Scale factors are submitted for every frame but they might be shared
77 * between the subframes of a channel. Scale factors are initially DPCM-coded.
78 * Once scale factors are shared, the differences are transmitted as runlevel
79 * codes.
80 * Every subframe length and offset combination in the frame layout shares a
81 * common quantization factor that can be adjusted for every channel by a
82 * modifier.
83 * After the inverse quantization, the coefficients get processed by an IMDCT.
84 * The resulting values are then windowed with a sine window and the first half
85 * of the values are added to the second half of the output from the previous
86 * subframe in order to reconstruct the output samples.
87 */
88
89#include <inttypes.h>
90
91#include "libavutil/ffmath.h"
92#include "libavutil/float_dsp.h"
93#include "libavutil/intfloat.h"
94#include "libavutil/intreadwrite.h"
95#include "avcodec.h"
96#include "internal.h"
97#include "get_bits.h"
98#include "put_bits.h"
99#include "wmaprodata.h"
100#include "sinewin.h"
101#include "wma.h"
102#include "wma_common.h"
103
104/** current decoder limitations */
105#define WMAPRO_MAX_CHANNELS 8 ///< max number of handled channels
106#define MAX_SUBFRAMES 32 ///< max number of subframes per channel
107#define MAX_BANDS 29 ///< max number of scale factor bands
108#define MAX_FRAMESIZE 32768 ///< maximum compressed frame size
109
110#define WMAPRO_BLOCK_MIN_BITS 6 ///< log2 of min block size
111#define WMAPRO_BLOCK_MAX_BITS 13 ///< log2 of max block size
112#define WMAPRO_BLOCK_MIN_SIZE (1 << WMAPRO_BLOCK_MIN_BITS) ///< minimum block size
113#define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS) ///< maximum block size
114#define WMAPRO_BLOCK_SIZES (WMAPRO_BLOCK_MAX_BITS - WMAPRO_BLOCK_MIN_BITS + 1) ///< possible block sizes
115
116
117#define VLCBITS 9
118#define SCALEVLCBITS 8
119#define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS)
120#define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS)
121#define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS)
122#define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS)
123#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS)
124
125static VLC sf_vlc; ///< scale factor DPCM vlc
126static VLC sf_rl_vlc; ///< scale factor run length vlc
127static VLC vec4_vlc; ///< 4 coefficients per symbol
128static VLC vec2_vlc; ///< 2 coefficients per symbol
129static VLC vec1_vlc; ///< 1 coefficient per symbol
130static VLC coef_vlc[2]; ///< coefficient run length vlc codes
131static float sin64[33]; ///< sine table for decorrelation
132
133/**
134 * @brief frame specific decoder context for a single channel
135 */
136typedef struct WMAProChannelCtx {
137 int16_t prev_block_len; ///< length of the previous block
138 uint8_t transmit_coefs;
139 uint8_t num_subframes;
140 uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples
141 uint16_t subframe_offset[MAX_SUBFRAMES]; ///< subframe positions in the current frame
142 uint8_t cur_subframe; ///< current subframe number
143 uint16_t decoded_samples; ///< number of already processed samples
144 uint8_t grouped; ///< channel is part of a group
145 int quant_step; ///< quantization step for the current subframe
146 int8_t reuse_sf; ///< share scale factors between subframes
147 int8_t scale_factor_step; ///< scaling step for the current subframe
148 int max_scale_factor; ///< maximum scale factor for the current subframe
149 int saved_scale_factors[2][MAX_BANDS]; ///< resampled and (previously) transmitted scale factor values
150 int8_t scale_factor_idx; ///< index for the transmitted scale factor values (used for resampling)
151 int* scale_factors; ///< pointer to the scale factor values used for decoding
152 uint8_t table_idx; ///< index in sf_offsets for the scale factor reference block
153 float* coeffs; ///< pointer to the subframe decode buffer
154 uint16_t num_vec_coeffs; ///< number of vector coded coefficients
155 DECLARE_ALIGNED(32, float, out)[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]; ///< output buffer
156} WMAProChannelCtx;
157
158/**
159 * @brief channel group for channel transformations
160 */
161typedef struct WMAProChannelGrp {
162 uint8_t num_channels; ///< number of channels in the group
163 int8_t transform; ///< transform on / off
164 int8_t transform_band[MAX_BANDS]; ///< controls if the transform is enabled for a certain band
165 float decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS];
166 float* channel_data[WMAPRO_MAX_CHANNELS]; ///< transformation coefficients
167} WMAProChannelGrp;
168
169/**
170 * @brief main decoder context
171 */
172typedef struct WMAProDecodeCtx {
173 /* generic decoder variables */
174 AVCodecContext* avctx; ///< codec context for av_log
175 AVFloatDSPContext *fdsp;
176 uint8_t frame_data[MAX_FRAMESIZE +
177 AV_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data
178 PutBitContext pb; ///< context for filling the frame_data buffer
179 FFTContext mdct_ctx[WMAPRO_BLOCK_SIZES]; ///< MDCT context per block size
180 DECLARE_ALIGNED(32, float, tmp)[WMAPRO_BLOCK_MAX_SIZE]; ///< IMDCT output buffer
181 const float* windows[WMAPRO_BLOCK_SIZES]; ///< windows for the different block sizes
182
183 /* frame size dependent frame information (set during initialization) */
184 uint32_t decode_flags; ///< used compression features
185 uint8_t len_prefix; ///< frame is prefixed with its length
186 uint8_t dynamic_range_compression; ///< frame contains DRC data
187 uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
188 uint16_t samples_per_frame; ///< number of samples to output
189 uint16_t log2_frame_size;
190 int8_t lfe_channel; ///< lfe channel index
191 uint8_t max_num_subframes;
192 uint8_t subframe_len_bits; ///< number of bits used for the subframe length
193 uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
194 uint16_t min_samples_per_subframe;
195 int8_t num_sfb[WMAPRO_BLOCK_SIZES]; ///< scale factor bands per block size
196 int16_t sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor band offsets (multiples of 4)
197 int8_t sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix
198 int16_t subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values
199
200 /* packet decode state */
201 GetBitContext pgb; ///< bitstream reader context for the packet
202 int next_packet_start; ///< start offset of the next wma packet in the demuxer packet
203 uint8_t packet_offset; ///< frame offset in the packet
204 uint8_t packet_sequence_number; ///< current packet number
205 int num_saved_bits; ///< saved number of bits
206 int frame_offset; ///< frame offset in the bit reservoir
207 int subframe_offset; ///< subframe offset in the bit reservoir
208 uint8_t packet_loss; ///< set in case of bitstream error
209 uint8_t packet_done; ///< set when a packet is fully decoded
210
211 /* frame decode state */
212 uint32_t frame_num; ///< current frame number (not used for decoding)
213 GetBitContext gb; ///< bitstream reader context
214 int buf_bit_size; ///< buffer size in bits
215 uint8_t drc_gain; ///< gain for the DRC tool
216 int8_t skip_frame; ///< skip output step
217 int8_t parsed_all_subframes; ///< all subframes decoded?
218 uint8_t skip_packets;
219
220 /* subframe/block decode state */
221 int16_t subframe_len; ///< current subframe length
222 int8_t nb_channels; ///< number of channels in stream (XMA1/2)
223 int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe
224 int8_t channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS];
225 int8_t num_bands; ///< number of scale factor bands
226 int8_t transmit_num_vec_coeffs; ///< number of vector coded coefficients is part of the bitstream
227 int16_t* cur_sfb_offsets; ///< sfb offsets for the current block
228 uint8_t table_idx; ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
229 int8_t esc_len; ///< length of escaped coefficients
230
231 uint8_t num_chgroups; ///< number of channel groups
232 WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS]; ///< channel group information
233
234 WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS]; ///< per channel data
235} WMAProDecodeCtx;
236
237typedef struct XMADecodeCtx {
238 WMAProDecodeCtx xma[4];
239 AVFrame *frames[4];
240 int current_stream;
241 float samples[8][512 * 64];
242 int offset[4];
243} XMADecodeCtx;
244
245/**
246 *@brief helper function to print the most important members of the context
247 *@param s context
248 */
249static av_cold void dump_context(WMAProDecodeCtx *s)
250{
251#define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b);
252#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %"PRIx32"\n", a, b);
253
254 PRINT("ed sample bit depth", s->bits_per_sample);
255 PRINT_HEX("ed decode flags", s->decode_flags);
256 PRINT("samples per frame", s->samples_per_frame);
257 PRINT("log2 frame size", s->log2_frame_size);
258 PRINT("max num subframes", s->max_num_subframes);
259 PRINT("len prefix", s->len_prefix);
260 PRINT("num channels", s->nb_channels);
261}
262
263/**
264 *@brief Uninitialize the decoder and free all resources.
265 *@param avctx codec context
266 *@return 0 on success, < 0 otherwise
267 */
268static av_cold int decode_end(WMAProDecodeCtx *s)
269{
270 int i;
271
272 av_freep(&s->fdsp);
273
274 for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
275 ff_mdct_end(&s->mdct_ctx[i]);
276
277 return 0;
278}
279
280static av_cold int wmapro_decode_end(AVCodecContext *avctx)
281{
282 WMAProDecodeCtx *s = avctx->priv_data;
283
284 decode_end(s);
285
286 return 0;
287}
288
289static av_cold int get_rate(AVCodecContext *avctx)
290{
291 if (avctx->codec_id != AV_CODEC_ID_WMAPRO) { // XXX: is this really only for XMA?
292 if (avctx->sample_rate > 44100)
293 return 48000;
294 else if (avctx->sample_rate > 32000)
295 return 44100;
296 else if (avctx->sample_rate > 24000)
297 return 32000;
298 return 24000;
299 }
300
301 return avctx->sample_rate;
302}
303
304/**
305 *@brief Initialize the decoder.
306 *@param avctx codec context
307 *@return 0 on success, -1 otherwise
308 */
309static av_cold int decode_init(WMAProDecodeCtx *s, AVCodecContext *avctx)
310{
311 uint8_t *edata_ptr = avctx->extradata;
312 unsigned int channel_mask;
313 int i, bits;
314 int log2_max_num_subframes;
315 int num_possible_block_sizes;
316
317 if (avctx->codec_id == AV_CODEC_ID_XMA1 || avctx->codec_id == AV_CODEC_ID_XMA2)
318 avctx->block_align = 2048;
319
320 if (!avctx->block_align) {
321 av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
322 return AVERROR(EINVAL);
323 }
324
325 s->avctx = avctx;
326
327 init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
328
329 avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
330
331 /** dump the extradata */
332 av_log(avctx, AV_LOG_DEBUG, "extradata:\n");
333 for (i = 0; i < avctx->extradata_size; i++)
334 av_log(avctx, AV_LOG_DEBUG, "[%x] ", avctx->extradata[i]);
335 av_log(avctx, AV_LOG_DEBUG, "\n");
336 if (avctx->codec_id == AV_CODEC_ID_XMA2 && (!avctx->extradata || avctx->extradata_size >= 6)) {
337 s->decode_flags = 0x10d6;
338 channel_mask = avctx->extradata ? AV_RL32(edata_ptr+2) : 0;
339 s->bits_per_sample = 16;
340 } else if (avctx->codec_id == AV_CODEC_ID_XMA1) {
341 s->decode_flags = 0x10d6;
342 s->bits_per_sample = 16;
343 channel_mask = 0;
344 } else if (avctx->codec_id == AV_CODEC_ID_WMAPRO && avctx->extradata_size >= 18) {
345 s->decode_flags = AV_RL16(edata_ptr+14);
346 channel_mask = AV_RL32(edata_ptr+2);
347 s->bits_per_sample = AV_RL16(edata_ptr);
348
349 if (s->bits_per_sample > 32 || s->bits_per_sample < 1) {
350 avpriv_request_sample(avctx, "bits per sample is %d", s->bits_per_sample);
351 return AVERROR_PATCHWELCOME;
352 }
353 } else {
354 avpriv_request_sample(avctx, "Unknown extradata size");
355 return AVERROR_PATCHWELCOME;
356 }
357
358 if (avctx->codec_id != AV_CODEC_ID_WMAPRO && avctx->channels > 2) {
359 s->nb_channels = 2;
360 } else {
361 s->nb_channels = avctx->channels;
362 }
363
364 /** generic init */
365 s->log2_frame_size = av_log2(avctx->block_align) + 4;
366 if (s->log2_frame_size > 25) {
367 avpriv_request_sample(avctx, "Large block align");
368 return AVERROR_PATCHWELCOME;
369 }
370
371 /** frame info */
372 if (avctx->codec_id != AV_CODEC_ID_WMAPRO)
373 s->skip_frame = 0;
374 else
375 s->skip_frame = 1; /* skip first frame */
376
377 s->packet_loss = 1;
378 s->len_prefix = (s->decode_flags & 0x40);
379
380 /** get frame len */
381 if (avctx->codec_id == AV_CODEC_ID_WMAPRO) {
382 bits = ff_wma_get_frame_len_bits(avctx->sample_rate, 3, s->decode_flags);
383 if (bits > WMAPRO_BLOCK_MAX_BITS) {
384 avpriv_request_sample(avctx, "14-bit block sizes");
385 return AVERROR_PATCHWELCOME;
386 }
387 s->samples_per_frame = 1 << bits;
388 } else {
389 s->samples_per_frame = 512;
390 }
391
392 /** subframe info */
393 log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3);
394 s->max_num_subframes = 1 << log2_max_num_subframes;
395 if (s->max_num_subframes == 16 || s->max_num_subframes == 4)
396 s->max_subframe_len_bit = 1;
397 s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
398
399 num_possible_block_sizes = log2_max_num_subframes + 1;
400 s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes;
401 s->dynamic_range_compression = (s->decode_flags & 0x80);
402
403 if (s->max_num_subframes > MAX_SUBFRAMES) {
404 av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %"PRId8"\n",
405 s->max_num_subframes);
406 return AVERROR_INVALIDDATA;
407 }
408
409 if (s->min_samples_per_subframe < WMAPRO_BLOCK_MIN_SIZE) {
410 av_log(avctx, AV_LOG_ERROR, "min_samples_per_subframe of %d too small\n",
411 s->min_samples_per_subframe);
412 return AVERROR_INVALIDDATA;
413 }
414
415 if (s->avctx->sample_rate <= 0) {
416 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
417 return AVERROR_INVALIDDATA;
418 }
419
420 if (s->nb_channels <= 0) {
421 av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n",
422 s->nb_channels);
423 return AVERROR_INVALIDDATA;
424 } else if (s->nb_channels > WMAPRO_MAX_CHANNELS) {
425 avpriv_request_sample(avctx,
426 "More than %d channels", WMAPRO_MAX_CHANNELS);
427 return AVERROR_PATCHWELCOME;
428 }
429
430 /** init previous block len */
431 for (i = 0; i < s->nb_channels; i++)
432 s->channel[i].prev_block_len = s->samples_per_frame;
433
434 /** extract lfe channel position */
435 s->lfe_channel = -1;
436
437 if (channel_mask & 8) {
438 unsigned int mask;
439 for (mask = 1; mask < 16; mask <<= 1) {
440 if (channel_mask & mask)
441 ++s->lfe_channel;
442 }
443 }
444
445 INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE,
446 scale_huffbits, 1, 1,
447 scale_huffcodes, 2, 2, 616);
448
449 INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE,
450 scale_rl_huffbits, 1, 1,
451 scale_rl_huffcodes, 4, 4, 1406);
452
453 INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE,
454 coef0_huffbits, 1, 1,
455 coef0_huffcodes, 4, 4, 2108);
456
457 INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE,
458 coef1_huffbits, 1, 1,
459 coef1_huffcodes, 4, 4, 3912);
460
461 INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE,
462 vec4_huffbits, 1, 1,
463 vec4_huffcodes, 2, 2, 604);
464
465 INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE,
466 vec2_huffbits, 1, 1,
467 vec2_huffcodes, 2, 2, 562);
468
469 INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE,
470 vec1_huffbits, 1, 1,
471 vec1_huffcodes, 2, 2, 562);
472
473 /** calculate number of scale factor bands and their offsets
474 for every possible block size */
475 for (i = 0; i < num_possible_block_sizes; i++) {
476 int subframe_len = s->samples_per_frame >> i;
477 int x;
478 int band = 1;
479 int rate = get_rate(avctx);
480
481 s->sfb_offsets[i][0] = 0;
482
483 for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) {
484 int offset = (subframe_len * 2 * critical_freq[x]) / rate + 2;
485 offset &= ~3;
486 if (offset > s->sfb_offsets[i][band - 1])
487 s->sfb_offsets[i][band++] = offset;
488
489 if (offset >= subframe_len)
490 break;
491 }
492 s->sfb_offsets[i][band - 1] = subframe_len;
493 s->num_sfb[i] = band - 1;
494 if (s->num_sfb[i] <= 0) {
495 av_log(avctx, AV_LOG_ERROR, "num_sfb invalid\n");
496 return AVERROR_INVALIDDATA;
497 }
498 }
499
500
501 /** Scale factors can be shared between blocks of different size
502 as every block has a different scale factor band layout.
503 The matrix sf_offsets is needed to find the correct scale factor.
504 */
505
506 for (i = 0; i < num_possible_block_sizes; i++) {
507 int b;
508 for (b = 0; b < s->num_sfb[i]; b++) {
509 int x;
510 int offset = ((s->sfb_offsets[i][b]
511 + s->sfb_offsets[i][b + 1] - 1) << i) >> 1;
512 for (x = 0; x < num_possible_block_sizes; x++) {
513 int v = 0;
514 while (s->sfb_offsets[x][v + 1] << x < offset) {
515 v++;
516 av_assert0(v < MAX_BANDS);
517 }
518 s->sf_offsets[i][x][b] = v;
519 }
520 }
521 }
522
523 s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
524 if (!s->fdsp)
525 return AVERROR(ENOMEM);
526
527 /** init MDCT, FIXME: only init needed sizes */
528 for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
529 ff_mdct_init(&s->mdct_ctx[i], WMAPRO_BLOCK_MIN_BITS+1+i, 1,
530 1.0 / (1 << (WMAPRO_BLOCK_MIN_BITS + i - 1))
531 / (1 << (s->bits_per_sample - 1)));
532
533 /** init MDCT windows: simple sine window */
534 for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) {
535 const int win_idx = WMAPRO_BLOCK_MAX_BITS - i;
536 ff_init_ff_sine_windows(win_idx);
537 s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx];
538 }
539
540 /** calculate subwoofer cutoff values */
541 for (i = 0; i < num_possible_block_sizes; i++) {
542 int block_size = s->samples_per_frame >> i;
543 int cutoff = (440*block_size + 3LL * (s->avctx->sample_rate >> 1) - 1)
544 / s->avctx->sample_rate;
545 s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size);
546 }
547
548 /** calculate sine values for the decorrelation matrix */
549 for (i = 0; i < 33; i++)
550 sin64[i] = sin(i*M_PI / 64.0);
551
552 if (avctx->debug & FF_DEBUG_BITSTREAM)
553 dump_context(s);
554
555 avctx->channel_layout = channel_mask;
556
557 return 0;
558}
559
560/**
561 *@brief Initialize the decoder.
562 *@param avctx codec context
563 *@return 0 on success, -1 otherwise
564 */
565static av_cold int wmapro_decode_init(AVCodecContext *avctx)
566{
567 WMAProDecodeCtx *s = avctx->priv_data;
568
569 return decode_init(s, avctx);
570}
571
572/**
573 *@brief Decode the subframe length.
574 *@param s context
575 *@param offset sample offset in the frame
576 *@return decoded subframe length on success, < 0 in case of an error
577 */
578static int decode_subframe_length(WMAProDecodeCtx *s, int offset)
579{
580 int frame_len_shift = 0;
581 int subframe_len;
582
583 /** no need to read from the bitstream when only one length is possible */
584 if (offset == s->samples_per_frame - s->min_samples_per_subframe)
585 return s->min_samples_per_subframe;
586
587 if (get_bits_left(&s->gb) < 1)
588 return AVERROR_INVALIDDATA;
589
590 /** 1 bit indicates if the subframe is of maximum length */
591 if (s->max_subframe_len_bit) {
592 if (get_bits1(&s->gb))
593 frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1);
594 } else
595 frame_len_shift = get_bits(&s->gb, s->subframe_len_bits);
596
597 subframe_len = s->samples_per_frame >> frame_len_shift;
598
599 /** sanity check the length */
600 if (subframe_len < s->min_samples_per_subframe ||
601 subframe_len > s->samples_per_frame) {
602 av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
603 subframe_len);
604 return AVERROR_INVALIDDATA;
605 }
606 return subframe_len;
607}
608
609/**
610 *@brief Decode how the data in the frame is split into subframes.
611 * Every WMA frame contains the encoded data for a fixed number of
612 * samples per channel. The data for every channel might be split
613 * into several subframes. This function will reconstruct the list of
614 * subframes for every channel.
615 *
616 * If the subframes are not evenly split, the algorithm estimates the
617 * channels with the lowest number of total samples.
618 * Afterwards, for each of these channels a bit is read from the
619 * bitstream that indicates if the channel contains a subframe with the
620 * next subframe size that is going to be read from the bitstream or not.
621 * If a channel contains such a subframe, the subframe size gets added to
622 * the channel's subframe list.
623 * The algorithm repeats these steps until the frame is properly divided
624 * between the individual channels.
625 *
626 *@param s context
627 *@return 0 on success, < 0 in case of an error
628 */
629static int decode_tilehdr(WMAProDecodeCtx *s)
630{
631 uint16_t num_samples[WMAPRO_MAX_CHANNELS] = { 0 };/**< sum of samples for all currently known subframes of a channel */
632 uint8_t contains_subframe[WMAPRO_MAX_CHANNELS]; /**< flag indicating if a channel contains the current subframe */
633 int channels_for_cur_subframe = s->nb_channels; /**< number of channels that contain the current subframe */
634 int fixed_channel_layout = 0; /**< flag indicating that all channels use the same subframe offsets and sizes */
635 int min_channel_len = 0; /**< smallest sum of samples (channels with this length will be processed first) */
636 int c;
637
638 /* Should never consume more than 3073 bits (256 iterations for the
639 * while loop when always the minimum amount of 128 samples is subtracted
640 * from missing samples in the 8 channel case).
641 * 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4)
642 */
643
644 /** reset tiling information */
645 for (c = 0; c < s->nb_channels; c++)
646 s->channel[c].num_subframes = 0;
647
648 if (s->max_num_subframes == 1 || get_bits1(&s->gb))
649 fixed_channel_layout = 1;
650
651 /** loop until the frame data is split between the subframes */
652 do {
653 int subframe_len;
654
655 /** check which channels contain the subframe */
656 for (c = 0; c < s->nb_channels; c++) {
657 if (num_samples[c] == min_channel_len) {
658 if (fixed_channel_layout || channels_for_cur_subframe == 1 ||
659 (min_channel_len == s->samples_per_frame - s->min_samples_per_subframe))
660 contains_subframe[c] = 1;
661 else
662 contains_subframe[c] = get_bits1(&s->gb);
663 } else
664 contains_subframe[c] = 0;
665 }
666
667 /** get subframe length, subframe_len == 0 is not allowed */
668 if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0)
669 return AVERROR_INVALIDDATA;
670
671 /** add subframes to the individual channels and find new min_channel_len */
672 min_channel_len += subframe_len;
673 for (c = 0; c < s->nb_channels; c++) {
674 WMAProChannelCtx* chan = &s->channel[c];
675
676 if (contains_subframe[c]) {
677 if (chan->num_subframes >= MAX_SUBFRAMES) {
678 av_log(s->avctx, AV_LOG_ERROR,
679 "broken frame: num subframes > 31\n");
680 return AVERROR_INVALIDDATA;
681 }
682 chan->subframe_len[chan->num_subframes] = subframe_len;
683 num_samples[c] += subframe_len;
684 ++chan->num_subframes;
685 if (num_samples[c] > s->samples_per_frame) {
686 av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
687 "channel len > samples_per_frame\n");
688 return AVERROR_INVALIDDATA;
689 }
690 } else if (num_samples[c] <= min_channel_len) {
691 if (num_samples[c] < min_channel_len) {
692 channels_for_cur_subframe = 0;
693 min_channel_len = num_samples[c];
694 }
695 ++channels_for_cur_subframe;
696 }
697 }
698 } while (min_channel_len < s->samples_per_frame);
699
700 for (c = 0; c < s->nb_channels; c++) {
701 int i;
702 int offset = 0;
703 for (i = 0; i < s->channel[c].num_subframes; i++) {
704 ff_dlog(s->avctx, "frame[%"PRIu32"] channel[%i] subframe[%i]"
705 " len %i\n", s->frame_num, c, i,
706 s->channel[c].subframe_len[i]);
707 s->channel[c].subframe_offset[i] = offset;
708 offset += s->channel[c].subframe_len[i];
709 }
710 }
711
712 return 0;
713}
714
715/**
716 *@brief Calculate a decorrelation matrix from the bitstream parameters.
717 *@param s codec context
718 *@param chgroup channel group for which the matrix needs to be calculated
719 */
720static void decode_decorrelation_matrix(WMAProDecodeCtx *s,
721 WMAProChannelGrp *chgroup)
722{
723 int i;
724 int offset = 0;
725 int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS];
726 memset(chgroup->decorrelation_matrix, 0, s->nb_channels *
727 s->nb_channels * sizeof(*chgroup->decorrelation_matrix));
728
729 for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++)
730 rotation_offset[i] = get_bits(&s->gb, 6);
731
732 for (i = 0; i < chgroup->num_channels; i++)
733 chgroup->decorrelation_matrix[chgroup->num_channels * i + i] =
734 get_bits1(&s->gb) ? 1.0 : -1.0;
735
736 for (i = 1; i < chgroup->num_channels; i++) {
737 int x;
738 for (x = 0; x < i; x++) {
739 int y;
740 for (y = 0; y < i + 1; y++) {
741 float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
742 float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
743 int n = rotation_offset[offset + x];
744 float sinv;
745 float cosv;
746
747 if (n < 32) {
748 sinv = sin64[n];
749 cosv = sin64[32 - n];
750 } else {
751 sinv = sin64[64 - n];
752 cosv = -sin64[n - 32];
753 }
754
755 chgroup->decorrelation_matrix[y + x * chgroup->num_channels] =
756 (v1 * sinv) - (v2 * cosv);
757 chgroup->decorrelation_matrix[y + i * chgroup->num_channels] =
758 (v1 * cosv) + (v2 * sinv);
759 }
760 }
761 offset += i;
762 }
763}
764
765/**
766 *@brief Decode channel transformation parameters
767 *@param s codec context
768 *@return >= 0 in case of success, < 0 in case of bitstream errors
769 */
770static int decode_channel_transform(WMAProDecodeCtx* s)
771{
772 int i;
773 /* should never consume more than 1921 bits for the 8 channel case
774 * 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS
775 * + MAX_CHANNELS + MAX_BANDS + 1)
776 */
777
778 /** in the one channel case channel transforms are pointless */
779 s->num_chgroups = 0;
780 if (s->nb_channels > 1) {
781 int remaining_channels = s->channels_for_cur_subframe;
782
783 if (get_bits1(&s->gb)) {
784 avpriv_request_sample(s->avctx,
785 "Channel transform bit");
786 return AVERROR_PATCHWELCOME;
787 }
788
789 for (s->num_chgroups = 0; remaining_channels &&
790 s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) {
791 WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups];
792 float** channel_data = chgroup->channel_data;
793 chgroup->num_channels = 0;
794 chgroup->transform = 0;
795
796 /** decode channel mask */
797 if (remaining_channels > 2) {
798 for (i = 0; i < s->channels_for_cur_subframe; i++) {
799 int channel_idx = s->channel_indexes_for_cur_subframe[i];
800 if (!s->channel[channel_idx].grouped
801 && get_bits1(&s->gb)) {
802 ++chgroup->num_channels;
803 s->channel[channel_idx].grouped = 1;
804 *channel_data++ = s->channel[channel_idx].coeffs;
805 }
806 }
807 } else {
808 chgroup->num_channels = remaining_channels;
809 for (i = 0; i < s->channels_for_cur_subframe; i++) {
810 int channel_idx = s->channel_indexes_for_cur_subframe[i];
811 if (!s->channel[channel_idx].grouped)
812 *channel_data++ = s->channel[channel_idx].coeffs;
813 s->channel[channel_idx].grouped = 1;
814 }
815 }
816
817 /** decode transform type */
818 if (chgroup->num_channels == 2) {
819 if (get_bits1(&s->gb)) {
820 if (get_bits1(&s->gb)) {
821 avpriv_request_sample(s->avctx,
822 "Unknown channel transform type");
823 return AVERROR_PATCHWELCOME;
824 }
825 } else {
826 chgroup->transform = 1;
827 if (s->nb_channels == 2) {
828 chgroup->decorrelation_matrix[0] = 1.0;
829 chgroup->decorrelation_matrix[1] = -1.0;
830 chgroup->decorrelation_matrix[2] = 1.0;
831 chgroup->decorrelation_matrix[3] = 1.0;
832 } else {
833 /** cos(pi/4) */
834 chgroup->decorrelation_matrix[0] = 0.70703125;
835 chgroup->decorrelation_matrix[1] = -0.70703125;
836 chgroup->decorrelation_matrix[2] = 0.70703125;
837 chgroup->decorrelation_matrix[3] = 0.70703125;
838 }
839 }
840 } else if (chgroup->num_channels > 2) {
841 if (get_bits1(&s->gb)) {
842 chgroup->transform = 1;
843 if (get_bits1(&s->gb)) {
844 decode_decorrelation_matrix(s, chgroup);
845 } else {
846 /** FIXME: more than 6 coupled channels not supported */
847 if (chgroup->num_channels > 6) {
848 avpriv_request_sample(s->avctx,
849 "Coupled channels > 6");
850 } else {
851 memcpy(chgroup->decorrelation_matrix,
852 default_decorrelation[chgroup->num_channels],
853 chgroup->num_channels * chgroup->num_channels *
854 sizeof(*chgroup->decorrelation_matrix));
855 }
856 }
857 }
858 }
859
860 /** decode transform on / off */
861 if (chgroup->transform) {
862 if (!get_bits1(&s->gb)) {
863 int i;
864 /** transform can be enabled for individual bands */
865 for (i = 0; i < s->num_bands; i++) {
866 chgroup->transform_band[i] = get_bits1(&s->gb);
867 }
868 } else {
869 memset(chgroup->transform_band, 1, s->num_bands);
870 }
871 }
872 remaining_channels -= chgroup->num_channels;
873 }
874 }
875 return 0;
876}
877
878/**
879 *@brief Extract the coefficients from the bitstream.
880 *@param s codec context
881 *@param c current channel number
882 *@return 0 on success, < 0 in case of bitstream errors
883 */
884static int decode_coeffs(WMAProDecodeCtx *s, int c)
885{
886 /* Integers 0..15 as single-precision floats. The table saves a
887 costly int to float conversion, and storing the values as
888 integers allows fast sign-flipping. */
889 static const uint32_t fval_tab[16] = {
890 0x00000000, 0x3f800000, 0x40000000, 0x40400000,
891 0x40800000, 0x40a00000, 0x40c00000, 0x40e00000,
892 0x41000000, 0x41100000, 0x41200000, 0x41300000,
893 0x41400000, 0x41500000, 0x41600000, 0x41700000,
894 };
895 int vlctable;
896 VLC* vlc;
897 WMAProChannelCtx* ci = &s->channel[c];
898 int rl_mode = 0;
899 int cur_coeff = 0;
900 int num_zeros = 0;
901 const uint16_t* run;
902 const float* level;
903
904 ff_dlog(s->avctx, "decode coefficients for channel %i\n", c);
905
906 vlctable = get_bits1(&s->gb);
907 vlc = &coef_vlc[vlctable];
908
909 if (vlctable) {
910 run = coef1_run;
911 level = coef1_level;
912 } else {
913 run = coef0_run;
914 level = coef0_level;
915 }
916
917 /** decode vector coefficients (consumes up to 167 bits per iteration for
918 4 vector coded large values) */
919 while ((s->transmit_num_vec_coeffs || !rl_mode) &&
920 (cur_coeff + 3 < ci->num_vec_coeffs)) {
921 uint32_t vals[4];
922 int i;
923 unsigned int idx;
924
925 idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH);
926
927 if (idx == HUFF_VEC4_SIZE - 1) {
928 for (i = 0; i < 4; i += 2) {
929 idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH);
930 if (idx == HUFF_VEC2_SIZE - 1) {
931 uint32_t v0, v1;
932 v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
933 if (v0 == HUFF_VEC1_SIZE - 1)
934 v0 += ff_wma_get_large_val(&s->gb);
935 v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
936 if (v1 == HUFF_VEC1_SIZE - 1)
937 v1 += ff_wma_get_large_val(&s->gb);
938 vals[i ] = av_float2int(v0);
939 vals[i+1] = av_float2int(v1);
940 } else {
941 vals[i] = fval_tab[symbol_to_vec2[idx] >> 4 ];
942 vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF];
943 }
944 }
945 } else {
946 vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12 ];
947 vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF];
948 vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF];
949 vals[3] = fval_tab[ symbol_to_vec4[idx] & 0xF];
950 }
951
952 /** decode sign */
953 for (i = 0; i < 4; i++) {
954 if (vals[i]) {
955 uint32_t sign = get_bits1(&s->gb) - 1;
956 AV_WN32A(&ci->coeffs[cur_coeff], vals[i] ^ sign << 31);
957 num_zeros = 0;
958 } else {
959 ci->coeffs[cur_coeff] = 0;
960 /** switch to run level mode when subframe_len / 128 zeros
961 were found in a row */
962 rl_mode |= (++num_zeros > s->subframe_len >> 8);
963 }
964 ++cur_coeff;
965 }
966 }
967
968 /** decode run level coded coefficients */
969 if (cur_coeff < s->subframe_len) {
970 memset(&ci->coeffs[cur_coeff], 0,
971 sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff));
972 if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc,
973 level, run, 1, ci->coeffs,
974 cur_coeff, s->subframe_len,
975 s->subframe_len, s->esc_len, 0))
976 return AVERROR_INVALIDDATA;
977 }
978
979 return 0;
980}
981
982/**
983 *@brief Extract scale factors from the bitstream.
984 *@param s codec context
985 *@return 0 on success, < 0 in case of bitstream errors
986 */
987static int decode_scale_factors(WMAProDecodeCtx* s)
988{
989 int i;
990
991 /** should never consume more than 5344 bits
992 * MAX_CHANNELS * (1 + MAX_BANDS * 23)
993 */
994
995 for (i = 0; i < s->channels_for_cur_subframe; i++) {
996 int c = s->channel_indexes_for_cur_subframe[i];
997 int* sf;
998 int* sf_end;
999 s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx];
1000 sf_end = s->channel[c].scale_factors + s->num_bands;
1001
1002 /** resample scale factors for the new block size
1003 * as the scale factors might need to be resampled several times
1004 * before some new values are transmitted, a backup of the last
1005 * transmitted scale factors is kept in saved_scale_factors
1006 */
1007 if (s->channel[c].reuse_sf) {
1008 const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx];
1009 int b;
1010 for (b = 0; b < s->num_bands; b++)
1011 s->channel[c].scale_factors[b] =
1012 s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++];
1013 }
1014
1015 if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) {
1016
1017 if (!s->channel[c].reuse_sf) {
1018 int val;
1019 /** decode DPCM coded scale factors */
1020 s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1;
1021 val = 45 / s->channel[c].scale_factor_step;
1022 for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) {
1023 val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60;
1024 *sf = val;
1025 }
1026 } else {
1027 int i;
1028 /** run level decode differences to the resampled factors */
1029 for (i = 0; i < s->num_bands; i++) {
1030 int idx;
1031 int skip;
1032 int val;
1033 int sign;
1034
1035 idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH);
1036
1037 if (!idx) {
1038 uint32_t code = get_bits(&s->gb, 14);
1039 val = code >> 6;
1040 sign = (code & 1) - 1;
1041 skip = (code & 0x3f) >> 1;
1042 } else if (idx == 1) {
1043 break;
1044 } else {
1045 skip = scale_rl_run[idx];
1046 val = scale_rl_level[idx];
1047 sign = get_bits1(&s->gb)-1;
1048 }
1049
1050 i += skip;
1051 if (i >= s->num_bands) {
1052 av_log(s->avctx, AV_LOG_ERROR,
1053 "invalid scale factor coding\n");
1054 return AVERROR_INVALIDDATA;
1055 }
1056 s->channel[c].scale_factors[i] += (val ^ sign) - sign;
1057 }
1058 }
1059 /** swap buffers */
1060 s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx;
1061 s->channel[c].table_idx = s->table_idx;
1062 s->channel[c].reuse_sf = 1;
1063 }
1064
1065 /** calculate new scale factor maximum */
1066 s->channel[c].max_scale_factor = s->channel[c].scale_factors[0];
1067 for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) {
1068 s->channel[c].max_scale_factor =
1069 FFMAX(s->channel[c].max_scale_factor, *sf);
1070 }
1071
1072 }
1073 return 0;
1074}
1075
1076/**
1077 *@brief Reconstruct the individual channel data.
1078 *@param s codec context
1079 */
1080static void inverse_channel_transform(WMAProDecodeCtx *s)
1081{
1082 int i;
1083
1084 for (i = 0; i < s->num_chgroups; i++) {
1085 if (s->chgroup[i].transform) {
1086 float data[WMAPRO_MAX_CHANNELS];
1087 const int num_channels = s->chgroup[i].num_channels;
1088 float** ch_data = s->chgroup[i].channel_data;
1089 float** ch_end = ch_data + num_channels;
1090 const int8_t* tb = s->chgroup[i].transform_band;
1091 int16_t* sfb;
1092
1093 /** multichannel decorrelation */
1094 for (sfb = s->cur_sfb_offsets;
1095 sfb < s->cur_sfb_offsets + s->num_bands; sfb++) {
1096 int y;
1097 if (*tb++ == 1) {
1098 /** multiply values with the decorrelation_matrix */
1099 for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) {
1100 const float* mat = s->chgroup[i].decorrelation_matrix;
1101 const float* data_end = data + num_channels;
1102 float* data_ptr = data;
1103 float** ch;
1104
1105 for (ch = ch_data; ch < ch_end; ch++)
1106 *data_ptr++ = (*ch)[y];
1107
1108 for (ch = ch_data; ch < ch_end; ch++) {
1109 float sum = 0;
1110 data_ptr = data;
1111 while (data_ptr < data_end)
1112 sum += *data_ptr++ * *mat++;
1113
1114 (*ch)[y] = sum;
1115 }
1116 }
1117 } else if (s->nb_channels == 2) {
1118 int len = FFMIN(sfb[1], s->subframe_len) - sfb[0];
1119 s->fdsp->vector_fmul_scalar(ch_data[0] + sfb[0],
1120 ch_data[0] + sfb[0],
1121 181.0 / 128, len);
1122 s->fdsp->vector_fmul_scalar(ch_data[1] + sfb[0],
1123 ch_data[1] + sfb[0],
1124 181.0 / 128, len);
1125 }
1126 }
1127 }
1128 }
1129}
1130
1131/**
1132 *@brief Apply sine window and reconstruct the output buffer.
1133 *@param s codec context
1134 */
1135static void wmapro_window(WMAProDecodeCtx *s)
1136{
1137 int i;
1138 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1139 int c = s->channel_indexes_for_cur_subframe[i];
1140 const float* window;
1141 int winlen = s->channel[c].prev_block_len;
1142 float* start = s->channel[c].coeffs - (winlen >> 1);
1143
1144 if (s->subframe_len < winlen) {
1145 start += (winlen - s->subframe_len) >> 1;
1146 winlen = s->subframe_len;
1147 }
1148
1149 window = s->windows[av_log2(winlen) - WMAPRO_BLOCK_MIN_BITS];
1150
1151 winlen >>= 1;
1152
1153 s->fdsp->vector_fmul_window(start, start, start + winlen,
1154 window, winlen);
1155
1156 s->channel[c].prev_block_len = s->subframe_len;
1157 }
1158}
1159
1160/**
1161 *@brief Decode a single subframe (block).
1162 *@param s codec context
1163 *@return 0 on success, < 0 when decoding failed
1164 */
1165static int decode_subframe(WMAProDecodeCtx *s)
1166{
1167 int offset = s->samples_per_frame;
1168 int subframe_len = s->samples_per_frame;
1169 int i;
1170 int total_samples = s->samples_per_frame * s->nb_channels;
1171 int transmit_coeffs = 0;
1172 int cur_subwoofer_cutoff;
1173
1174 s->subframe_offset = get_bits_count(&s->gb);
1175
1176 /** reset channel context and find the next block offset and size
1177 == the next block of the channel with the smallest number of
1178 decoded samples
1179 */
1180 for (i = 0; i < s->nb_channels; i++) {
1181 s->channel[i].grouped = 0;
1182 if (offset > s->channel[i].decoded_samples) {
1183 offset = s->channel[i].decoded_samples;
1184 subframe_len =
1185 s->channel[i].subframe_len[s->channel[i].cur_subframe];
1186 }
1187 }
1188
1189 ff_dlog(s->avctx,
1190 "processing subframe with offset %i len %i\n", offset, subframe_len);
1191
1192 /** get a list of all channels that contain the estimated block */
1193 s->channels_for_cur_subframe = 0;
1194 for (i = 0; i < s->nb_channels; i++) {
1195 const int cur_subframe = s->channel[i].cur_subframe;
1196 /** subtract already processed samples */
1197 total_samples -= s->channel[i].decoded_samples;
1198
1199 /** and count if there are multiple subframes that match our profile */
1200 if (offset == s->channel[i].decoded_samples &&
1201 subframe_len == s->channel[i].subframe_len[cur_subframe]) {
1202 total_samples -= s->channel[i].subframe_len[cur_subframe];
1203 s->channel[i].decoded_samples +=
1204 s->channel[i].subframe_len[cur_subframe];
1205 s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i;
1206 ++s->channels_for_cur_subframe;
1207 }
1208 }
1209
1210 /** check if the frame will be complete after processing the
1211 estimated block */
1212 if (!total_samples)
1213 s->parsed_all_subframes = 1;
1214
1215
1216 ff_dlog(s->avctx, "subframe is part of %i channels\n",
1217 s->channels_for_cur_subframe);
1218
1219 /** calculate number of scale factor bands and their offsets */
1220 s->table_idx = av_log2(s->samples_per_frame/subframe_len);
1221 s->num_bands = s->num_sfb[s->table_idx];
1222 s->cur_sfb_offsets = s->sfb_offsets[s->table_idx];
1223 cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx];
1224
1225 /** configure the decoder for the current subframe */
1226 offset += s->samples_per_frame >> 1;
1227
1228 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1229 int c = s->channel_indexes_for_cur_subframe[i];
1230
1231 s->channel[c].coeffs = &s->channel[c].out[offset];
1232 }
1233
1234 s->subframe_len = subframe_len;
1235 s->esc_len = av_log2(s->subframe_len - 1) + 1;
1236
1237 /** skip extended header if any */
1238 if (get_bits1(&s->gb)) {
1239 int num_fill_bits;
1240 if (!(num_fill_bits = get_bits(&s->gb, 2))) {
1241 int len = get_bits(&s->gb, 4);
1242 num_fill_bits = get_bitsz(&s->gb, len) + 1;
1243 }
1244
1245 if (num_fill_bits >= 0) {
1246 if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) {
1247 av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n");
1248 return AVERROR_INVALIDDATA;
1249 }
1250
1251 skip_bits_long(&s->gb, num_fill_bits);
1252 }
1253 }
1254
1255 /** no idea for what the following bit is used */
1256 if (get_bits1(&s->gb)) {
1257 avpriv_request_sample(s->avctx, "Reserved bit");
1258 return AVERROR_PATCHWELCOME;
1259 }
1260
1261
1262 if (decode_channel_transform(s) < 0)
1263 return AVERROR_INVALIDDATA;
1264
1265
1266 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1267 int c = s->channel_indexes_for_cur_subframe[i];
1268 if ((s->channel[c].transmit_coefs = get_bits1(&s->gb)))
1269 transmit_coeffs = 1;
1270 }
1271
1272 av_assert0(s->subframe_len <= WMAPRO_BLOCK_MAX_SIZE);
1273 if (transmit_coeffs) {
1274 int step;
1275 int quant_step = 90 * s->bits_per_sample >> 4;
1276
1277 /** decode number of vector coded coefficients */
1278 if ((s->transmit_num_vec_coeffs = get_bits1(&s->gb))) {
1279 int num_bits = av_log2((s->subframe_len + 3)/4) + 1;
1280 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1281 int c = s->channel_indexes_for_cur_subframe[i];
1282 int num_vec_coeffs = get_bits(&s->gb, num_bits) << 2;
1283 if (num_vec_coeffs > s->subframe_len) {
1284 av_log(s->avctx, AV_LOG_ERROR, "num_vec_coeffs %d is too large\n", num_vec_coeffs);
1285 return AVERROR_INVALIDDATA;
1286 }
1287 av_assert0(num_vec_coeffs + offset <= FF_ARRAY_ELEMS(s->channel[c].out));
1288 s->channel[c].num_vec_coeffs = num_vec_coeffs;
1289 }
1290 } else {
1291 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1292 int c = s->channel_indexes_for_cur_subframe[i];
1293 s->channel[c].num_vec_coeffs = s->subframe_len;
1294 }
1295 }
1296 /** decode quantization step */
1297 step = get_sbits(&s->gb, 6);
1298 quant_step += step;
1299 if (step == -32 || step == 31) {
1300 const int sign = (step == 31) - 1;
1301 int quant = 0;
1302 while (get_bits_count(&s->gb) + 5 < s->num_saved_bits &&
1303 (step = get_bits(&s->gb, 5)) == 31) {
1304 quant += 31;
1305 }
1306 quant_step += ((quant + step) ^ sign) - sign;
1307 }
1308 if (quant_step < 0) {
1309 av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n");
1310 }
1311
1312 /** decode quantization step modifiers for every channel */
1313
1314 if (s->channels_for_cur_subframe == 1) {
1315 s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step;
1316 } else {
1317 int modifier_len = get_bits(&s->gb, 3);
1318 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1319 int c = s->channel_indexes_for_cur_subframe[i];
1320 s->channel[c].quant_step = quant_step;
1321 if (get_bits1(&s->gb)) {
1322 if (modifier_len) {
1323 s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1;
1324 } else
1325 ++s->channel[c].quant_step;
1326 }
1327 }
1328 }
1329
1330 /** decode scale factors */
1331 if (decode_scale_factors(s) < 0)
1332 return AVERROR_INVALIDDATA;
1333 }
1334
1335 ff_dlog(s->avctx, "BITSTREAM: subframe header length was %i\n",
1336 get_bits_count(&s->gb) - s->subframe_offset);
1337
1338 /** parse coefficients */
1339 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1340 int c = s->channel_indexes_for_cur_subframe[i];
1341 if (s->channel[c].transmit_coefs &&
1342 get_bits_count(&s->gb) < s->num_saved_bits) {
1343 decode_coeffs(s, c);
1344 } else
1345 memset(s->channel[c].coeffs, 0,
1346 sizeof(*s->channel[c].coeffs) * subframe_len);
1347 }
1348
1349 ff_dlog(s->avctx, "BITSTREAM: subframe length was %i\n",
1350 get_bits_count(&s->gb) - s->subframe_offset);
1351
1352 if (transmit_coeffs) {
1353 FFTContext *mdct = &s->mdct_ctx[av_log2(subframe_len) - WMAPRO_BLOCK_MIN_BITS];
1354 /** reconstruct the per channel data */
1355 inverse_channel_transform(s);
1356 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1357 int c = s->channel_indexes_for_cur_subframe[i];
1358 const int* sf = s->channel[c].scale_factors;
1359 int b;
1360
1361 if (c == s->lfe_channel)
1362 memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) *
1363 (subframe_len - cur_subwoofer_cutoff));
1364
1365 /** inverse quantization and rescaling */
1366 for (b = 0; b < s->num_bands; b++) {
1367 const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len);
1368 const int exp = s->channel[c].quant_step -
1369 (s->channel[c].max_scale_factor - *sf++) *
1370 s->channel[c].scale_factor_step;
1371 const float quant = ff_exp10(exp / 20.0);
1372 int start = s->cur_sfb_offsets[b];
1373 s->fdsp->vector_fmul_scalar(s->tmp + start,
1374 s->channel[c].coeffs + start,
1375 quant, end - start);
1376 }
1377
1378 /** apply imdct (imdct_half == DCTIV with reverse) */
1379 mdct->imdct_half(mdct, s->channel[c].coeffs, s->tmp);
1380 }
1381 }
1382
1383 /** window and overlapp-add */
1384 wmapro_window(s);
1385
1386 /** handled one subframe */
1387 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1388 int c = s->channel_indexes_for_cur_subframe[i];
1389 if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
1390 av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
1391 return AVERROR_INVALIDDATA;
1392 }
1393 ++s->channel[c].cur_subframe;
1394 }
1395
1396 return 0;
1397}
1398
1399/**
1400 *@brief Decode one WMA frame.
1401 *@param s codec context
1402 *@return 0 if the trailer bit indicates that this is the last frame,
1403 * 1 if there are additional frames
1404 */
1405static int decode_frame(WMAProDecodeCtx *s, AVFrame *frame, int *got_frame_ptr)
1406{
1407 GetBitContext* gb = &s->gb;
1408 int more_frames = 0;
1409 int len = 0;
1410 int i;
1411
1412 /** get frame length */
1413 if (s->len_prefix)
1414 len = get_bits(gb, s->log2_frame_size);
1415
1416 ff_dlog(s->avctx, "decoding frame with length %x\n", len);
1417
1418 /** decode tile information */
1419 if (decode_tilehdr(s)) {
1420 s->packet_loss = 1;
1421 return 0;
1422 }
1423
1424 /** read postproc transform */
1425 if (s->nb_channels > 1 && get_bits1(gb)) {
1426 if (get_bits1(gb)) {
1427 for (i = 0; i < s->nb_channels * s->nb_channels; i++)
1428 skip_bits(gb, 4);
1429 }
1430 }
1431
1432 /** read drc info */
1433 if (s->dynamic_range_compression) {
1434 s->drc_gain = get_bits(gb, 8);
1435 ff_dlog(s->avctx, "drc_gain %i\n", s->drc_gain);
1436 }
1437
1438 /** no idea what these are for, might be the number of samples
1439 that need to be skipped at the beginning or end of a stream */
1440 if (get_bits1(gb)) {
1441 int av_unused skip;
1442
1443 /** usually true for the first frame */
1444 if (get_bits1(gb)) {
1445 skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
1446 ff_dlog(s->avctx, "start skip: %i\n", skip);
1447 }
1448
1449 /** sometimes true for the last frame */
1450 if (get_bits1(gb)) {
1451 skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
1452 ff_dlog(s->avctx, "end skip: %i\n", skip);
1453 }
1454
1455 }
1456
1457 ff_dlog(s->avctx, "BITSTREAM: frame header length was %i\n",
1458 get_bits_count(gb) - s->frame_offset);
1459
1460 /** reset subframe states */
1461 s->parsed_all_subframes = 0;
1462 for (i = 0; i < s->nb_channels; i++) {
1463 s->channel[i].decoded_samples = 0;
1464 s->channel[i].cur_subframe = 0;
1465 s->channel[i].reuse_sf = 0;
1466 }
1467
1468 /** decode all subframes */
1469 while (!s->parsed_all_subframes) {
1470 if (decode_subframe(s) < 0) {
1471 s->packet_loss = 1;
1472 return 0;
1473 }
1474 }
1475
1476 /** copy samples to the output buffer */
1477 for (i = 0; i < s->nb_channels; i++)
1478 memcpy(frame->extended_data[i], s->channel[i].out,
1479 s->samples_per_frame * sizeof(*s->channel[i].out));
1480
1481 for (i = 0; i < s->nb_channels; i++) {
1482 /** reuse second half of the IMDCT output for the next frame */
1483 memcpy(&s->channel[i].out[0],
1484 &s->channel[i].out[s->samples_per_frame],
1485 s->samples_per_frame * sizeof(*s->channel[i].out) >> 1);
1486 }
1487
1488 if (s->skip_frame) {
1489 s->skip_frame = 0;
1490 *got_frame_ptr = 0;
1491 av_frame_unref(frame);
1492 } else {
1493 *got_frame_ptr = 1;
1494 }
1495
1496 if (s->len_prefix) {
1497 if (len != (get_bits_count(gb) - s->frame_offset) + 2) {
1498 /** FIXME: not sure if this is always an error */
1499 av_log(s->avctx, AV_LOG_ERROR,
1500 "frame[%"PRIu32"] would have to skip %i bits\n",
1501 s->frame_num,
1502 len - (get_bits_count(gb) - s->frame_offset) - 1);
1503 s->packet_loss = 1;
1504 return 0;
1505 }
1506
1507 /** skip the rest of the frame data */
1508 skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);
1509 } else {
1510 while (get_bits_count(gb) < s->num_saved_bits && get_bits1(gb) == 0) {
1511 }
1512 }
1513
1514 /** decode trailer bit */
1515 more_frames = get_bits1(gb);
1516
1517 ++s->frame_num;
1518 return more_frames;
1519}
1520
1521/**
1522 *@brief Calculate remaining input buffer length.
1523 *@param s codec context
1524 *@param gb bitstream reader context
1525 *@return remaining size in bits
1526 */
1527static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb)
1528{
1529 return s->buf_bit_size - get_bits_count(gb);
1530}
1531
1532/**
1533 *@brief Fill the bit reservoir with a (partial) frame.
1534 *@param s codec context
1535 *@param gb bitstream reader context
1536 *@param len length of the partial frame
1537 *@param append decides whether to reset the buffer or not
1538 */
1539static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len,
1540 int append)
1541{
1542 int buflen;
1543
1544 /** when the frame data does not need to be concatenated, the input buffer
1545 is reset and additional bits from the previous frame are copied
1546 and skipped later so that a fast byte copy is possible */
1547
1548 if (!append) {
1549 s->frame_offset = get_bits_count(gb) & 7;
1550 s->num_saved_bits = s->frame_offset;
1551 init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
1552 }
1553
1554 buflen = (put_bits_count(&s->pb) + len + 8) >> 3;
1555
1556 if (len <= 0 || buflen > MAX_FRAMESIZE) {
1557 avpriv_request_sample(s->avctx, "Too small input buffer");
1558 s->packet_loss = 1;
1559 return;
1560 }
1561
1562 av_assert0(len <= put_bits_left(&s->pb));
1563
1564 s->num_saved_bits += len;
1565 if (!append) {
1566 avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
1567 s->num_saved_bits);
1568 } else {
1569 int align = 8 - (get_bits_count(gb) & 7);
1570 align = FFMIN(align, len);
1571 put_bits(&s->pb, align, get_bits(gb, align));
1572 len -= align;
1573 avpriv_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
1574 }
1575 skip_bits_long(gb, len);
1576
1577 {
1578 PutBitContext tmp = s->pb;
1579 flush_put_bits(&tmp);
1580 }
1581
1582 init_get_bits(&s->gb, s->frame_data, s->num_saved_bits);
1583 skip_bits(&s->gb, s->frame_offset);
1584}
1585
1586static int decode_packet(AVCodecContext *avctx, WMAProDecodeCtx *s,
1587 void *data, int *got_frame_ptr, AVPacket *avpkt)
1588{
1589 GetBitContext* gb = &s->pgb;
1590 const uint8_t* buf = avpkt->data;
1591 int buf_size = avpkt->size;
1592 int num_bits_prev_frame;
1593 int packet_sequence_number;
1594
1595 *got_frame_ptr = 0;
1596
1597 if (s->packet_done || s->packet_loss) {
1598 s->packet_done = 0;
1599
1600 /** sanity check for the buffer length */
1601 if (avctx->codec_id == AV_CODEC_ID_WMAPRO && buf_size < avctx->block_align) {
1602 av_log(avctx, AV_LOG_ERROR, "Input packet too small (%d < %d)\n",
1603 buf_size, avctx->block_align);
1604 return AVERROR_INVALIDDATA;
1605 }
1606
1607 if (avctx->codec_id == AV_CODEC_ID_WMAPRO) {
1608 s->next_packet_start = buf_size - avctx->block_align;
1609 buf_size = avctx->block_align;
1610 } else {
1611 s->next_packet_start = buf_size - FFMIN(buf_size, avctx->block_align);
1612 buf_size = FFMIN(buf_size, avctx->block_align);
1613 }
1614 s->buf_bit_size = buf_size << 3;
1615
1616 /** parse packet header */
1617 init_get_bits(gb, buf, s->buf_bit_size);
1618 if (avctx->codec_id != AV_CODEC_ID_XMA2) {
1619 packet_sequence_number = get_bits(gb, 4);
1620 skip_bits(gb, 2);
1621 } else {
1622 int num_frames = get_bits(gb, 6);
1623 ff_dlog(avctx, "packet[%d]: number of frames %d\n", avctx->frame_number, num_frames);
1624 packet_sequence_number = 0;
1625 }
1626
1627 /** get number of bits that need to be added to the previous frame */
1628 num_bits_prev_frame = get_bits(gb, s->log2_frame_size);
1629 if (avctx->codec_id != AV_CODEC_ID_WMAPRO) {
1630 skip_bits(gb, 3);
1631 s->skip_packets = get_bits(gb, 8);
1632 ff_dlog(avctx, "packet[%d]: skip packets %d\n", avctx->frame_number, s->skip_packets);
1633 }
1634
1635 ff_dlog(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number,
1636 num_bits_prev_frame);
1637
1638 /** check for packet loss */
1639 if (avctx->codec_id == AV_CODEC_ID_WMAPRO && !s->packet_loss &&
1640 ((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) {
1641 s->packet_loss = 1;
1642 av_log(avctx, AV_LOG_ERROR,
1643 "Packet loss detected! seq %"PRIx8" vs %x\n",
1644 s->packet_sequence_number, packet_sequence_number);
1645 }
1646 s->packet_sequence_number = packet_sequence_number;
1647
1648 if (num_bits_prev_frame > 0) {
1649 int remaining_packet_bits = s->buf_bit_size - get_bits_count(gb);
1650 if (num_bits_prev_frame >= remaining_packet_bits) {
1651 num_bits_prev_frame = remaining_packet_bits;
1652 s->packet_done = 1;
1653 }
1654
1655 /** append the previous frame data to the remaining data from the
1656 previous packet to create a full frame */
1657 save_bits(s, gb, num_bits_prev_frame, 1);
1658 ff_dlog(avctx, "accumulated %x bits of frame data\n",
1659 s->num_saved_bits - s->frame_offset);
1660
1661 /** decode the cross packet frame if it is valid */
1662 if (!s->packet_loss)
1663 decode_frame(s, data, got_frame_ptr);
1664 } else if (s->num_saved_bits - s->frame_offset) {
1665 ff_dlog(avctx, "ignoring %x previously saved bits\n",
1666 s->num_saved_bits - s->frame_offset);
1667 }
1668
1669 if (s->packet_loss) {
1670 /** reset number of saved bits so that the decoder
1671 does not start to decode incomplete frames in the
1672 s->len_prefix == 0 case */
1673 s->num_saved_bits = 0;
1674 s->packet_loss = 0;
1675 }
1676 } else {
1677 int frame_size;
1678 s->buf_bit_size = (avpkt->size - s->next_packet_start) << 3;
1679 init_get_bits(gb, avpkt->data, s->buf_bit_size);
1680 skip_bits(gb, s->packet_offset);
1681 if (s->len_prefix && remaining_bits(s, gb) > s->log2_frame_size &&
1682 (frame_size = show_bits(gb, s->log2_frame_size)) &&
1683 frame_size <= remaining_bits(s, gb)) {
1684 save_bits(s, gb, frame_size, 0);
1685 if (!s->packet_loss)
1686 s->packet_done = !decode_frame(s, data, got_frame_ptr);
1687 } else if (!s->len_prefix
1688 && s->num_saved_bits > get_bits_count(&s->gb)) {
1689 /** when the frames do not have a length prefix, we don't know
1690 the compressed length of the individual frames
1691 however, we know what part of a new packet belongs to the
1692 previous frame
1693 therefore we save the incoming packet first, then we append
1694 the "previous frame" data from the next packet so that
1695 we get a buffer that only contains full frames */
1696 s->packet_done = !decode_frame(s, data, got_frame_ptr);
1697 } else {
1698 s->packet_done = 1;
1699 }
1700 }
1701
1702 if (remaining_bits(s, gb) < 0) {
1703 av_log(avctx, AV_LOG_ERROR, "Overread %d\n", -remaining_bits(s, gb));
1704 s->packet_loss = 1;
1705 }
1706
1707 if (s->packet_done && !s->packet_loss &&
1708 remaining_bits(s, gb) > 0) {
1709 /** save the rest of the data so that it can be decoded
1710 with the next packet */
1711 save_bits(s, gb, remaining_bits(s, gb), 0);
1712 }
1713
1714 s->packet_offset = get_bits_count(gb) & 7;
1715 if (s->packet_loss)
1716 return AVERROR_INVALIDDATA;
1717
1718 return get_bits_count(gb) >> 3;
1719}
1720
1721/**
1722 *@brief Decode a single WMA packet.
1723 *@param avctx codec context
1724 *@param data the output buffer
1725 *@param avpkt input packet
1726 *@return number of bytes that were read from the input buffer
1727 */
1728static int wmapro_decode_packet(AVCodecContext *avctx, void *data,
1729 int *got_frame_ptr, AVPacket *avpkt)
1730{
1731 WMAProDecodeCtx *s = avctx->priv_data;
1732 AVFrame *frame = data;
1733 int ret;
1734
1735 /* get output buffer */
1736 frame->nb_samples = s->samples_per_frame;
1737 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
1738 s->packet_loss = 1;
1739 return 0;
1740 }
1741
1742 return decode_packet(avctx, s, data, got_frame_ptr, avpkt);
1743}
1744
1745static int xma_decode_packet(AVCodecContext *avctx, void *data,
1746 int *got_frame_ptr, AVPacket *avpkt)
1747{
1748 XMADecodeCtx *s = avctx->priv_data;
1749 int got_stream_frame_ptr = 0;
1750 AVFrame *frame = data;
1751 int i, ret, offset = INT_MAX;
1752
1753 ret = decode_packet(avctx, &s->xma[s->current_stream], s->frames[s->current_stream],
1754 &got_stream_frame_ptr, avpkt);
1755
1756 if (got_stream_frame_ptr) {
1757 memcpy(&s->samples[s->current_stream * 2 + 0][s->offset[s->current_stream] * 512],
1758 s->frames[s->current_stream]->extended_data[0], 512 * 4);
1759 if (avctx->channels > 1)
1760 memcpy(&s->samples[s->current_stream * 2 + 1][s->offset[s->current_stream] * 512],
1761 s->frames[s->current_stream]->extended_data[1], 512 * 4);
1762 s->offset[s->current_stream]++;
1763 } else if (ret < 0) {
1764 memset(s->offset, 0, sizeof(s->offset));
1765 s->current_stream = 0;
1766 return ret;
1767 }
1768
1769 if (s->xma[s->current_stream].packet_done ||
1770 s->xma[s->current_stream].packet_loss) {
1771 int bret;
1772
1773 if (s->xma[s->current_stream].skip_packets == 0) {
1774 ;
1775 } else if (s->xma[0].skip_packets == 0 && avctx->channels >= 2) {
1776 s->current_stream = 0;
1777 } else if (s->xma[1].skip_packets == 0 && avctx->channels >= 4) {
1778 s->current_stream = 1;
1779 } else if (s->xma[2].skip_packets == 0 && avctx->channels >= 6) {
1780 s->current_stream = 2;
1781 } else if (s->xma[3].skip_packets == 0 && avctx->channels == 8) {
1782 s->current_stream = 3;
1783 } else {
1784 int min[2];
1785
1786 min[0] = s->xma[0].skip_packets;
1787 min[1] = i = 0;
1788
1789 for (i = 1; i < avctx->channels / 2; i++) {
1790 if (s->xma[i].skip_packets < min[0]) {
1791 min[1] = i;
1792 min[0] = s->xma[i].skip_packets;
1793 }
1794 }
1795
1796 s->current_stream = min[1];
1797 }
1798
1799 for (i = 0; i < avctx->channels / 2; i++) {
1800 s->xma[i].skip_packets = FFMAX(0, s->xma[i].skip_packets - 1);
1801 }
1802
1803 for (i = 0; i < (avctx->channels + 1) / 2; i++) {
1804 offset = FFMIN(offset, s->offset[i]);
1805 }
1806
1807 if (offset > 0) {
1808 frame->nb_samples = 512 * offset;
1809 if ((bret = ff_get_buffer(avctx, frame, 0)) < 0)
1810 return bret;
1811
1812 for (i = 0; i < (avctx->channels + 1) / 2; i++) {
1813 memcpy(frame->extended_data[i * 2 + 0], s->samples[i * 2 + 0], frame->nb_samples * 4);
1814 if (avctx->channels > 1)
1815 memcpy(frame->extended_data[i * 2 + 1], s->samples[i * 2 + 1], frame->nb_samples * 4);
1816 s->offset[i] -= offset;
1817 if (s->offset[i]) {
1818 memmove(s->samples[i * 2 + 0], s->samples[i * 2 + 0] + frame->nb_samples, s->offset[i] * 4 * 512);
1819 if (avctx->channels > 1)
1820 memmove(s->samples[i * 2 + 1], s->samples[i * 2 + 1] + frame->nb_samples, s->offset[i] * 4 * 512);
1821 }
1822 }
1823
1824 *got_frame_ptr = 1;
1825 }
1826 }
1827
1828 return ret;
1829}
1830
1831static av_cold int xma_decode_init(AVCodecContext *avctx)
1832{
1833 XMADecodeCtx *s = avctx->priv_data;
1834 int i, ret;
1835
1836 if (avctx->channels <= 0 || avctx->channels > 8)
1837 return AVERROR_INVALIDDATA;
1838
1839 for (i = 0; i < (avctx->channels + 1) / 2; i++) {
1840 ret = decode_init(&s->xma[i], avctx);
1841 if (ret < 0)
1842 return ret;
1843 s->frames[i] = av_frame_alloc();
1844 if (!s->frames[i])
1845 return AVERROR(ENOMEM);
1846 s->frames[i]->nb_samples = 512;
1847 if ((ret = ff_get_buffer(avctx, s->frames[i], 0)) < 0) {
1848 return AVERROR(ENOMEM);
1849 }
1850
1851 }
1852
1853 return ret;
1854}
1855
1856static av_cold int xma_decode_end(AVCodecContext *avctx)
1857{
1858 XMADecodeCtx *s = avctx->priv_data;
1859 int i;
1860
1861 for (i = 0; i < avctx->channels / 2; i++) {
1862 decode_end(&s->xma[i]);
1863 av_frame_free(&s->frames[i]);
1864 }
1865
1866 return 0;
1867}
1868
1869static void flush(WMAProDecodeCtx *s)
1870{
1871 int i;
1872 /** reset output buffer as a part of it is used during the windowing of a
1873 new frame */
1874 for (i = 0; i < s->nb_channels; i++)
1875 memset(s->channel[i].out, 0, s->samples_per_frame *
1876 sizeof(*s->channel[i].out));
1877 s->packet_loss = 1;
1878 s->skip_packets = 0;
1879}
1880
1881
1882/**
1883 *@brief Clear decoder buffers (for seeking).
1884 *@param avctx codec context
1885 */
1886static void wmapro_flush(AVCodecContext *avctx)
1887{
1888 WMAProDecodeCtx *s = avctx->priv_data;
1889
1890 flush(s);
1891}
1892
1893static void xma_flush(AVCodecContext *avctx)
1894{
1895 XMADecodeCtx *s = avctx->priv_data;
1896 int i;
1897 for (i = 0; i < (avctx->channels + 1) / 2; i++)
1898 flush(&s->xma[i]);
1899
1900 memset(s->offset, 0, sizeof(s->offset));
1901 s->current_stream = 0;
1902}
1903
1904
1905/**
1906 *@brief wmapro decoder
1907 */
1908AVCodec ff_wmapro_decoder = {
1909 .name = "wmapro",
1910 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"),
1911 .type = AVMEDIA_TYPE_AUDIO,
1912 .id = AV_CODEC_ID_WMAPRO,
1913 .priv_data_size = sizeof(WMAProDecodeCtx),
1914 .init = wmapro_decode_init,
1915 .close = wmapro_decode_end,
1916 .decode = wmapro_decode_packet,
1917 .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
1918 .flush = wmapro_flush,
1919 .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1920 AV_SAMPLE_FMT_NONE },
1921};
1922
1923AVCodec ff_xma1_decoder = {
1924 .name = "xma1",
1925 .long_name = NULL_IF_CONFIG_SMALL("Xbox Media Audio 1"),
1926 .type = AVMEDIA_TYPE_AUDIO,
1927 .id = AV_CODEC_ID_XMA1,
1928 .priv_data_size = sizeof(XMADecodeCtx),
1929 .init = xma_decode_init,
1930 .close = xma_decode_end,
1931 .decode = xma_decode_packet,
1932 .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
1933 .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1934 AV_SAMPLE_FMT_NONE },
1935};
1936
1937AVCodec ff_xma2_decoder = {
1938 .name = "xma2",
1939 .long_name = NULL_IF_CONFIG_SMALL("Xbox Media Audio 2"),
1940 .type = AVMEDIA_TYPE_AUDIO,
1941 .id = AV_CODEC_ID_XMA2,
1942 .priv_data_size = sizeof(XMADecodeCtx),
1943 .init = xma_decode_init,
1944 .close = xma_decode_end,
1945 .decode = xma_decode_packet,
1946 .flush = xma_flush,
1947 .capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
1948 .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1949 AV_SAMPLE_FMT_NONE },
1950};
1951