summaryrefslogtreecommitdiff
path: root/libavfilter/vf_paletteuse.c (plain)
blob: e8dde572cdc19dabfeef4a4c484c9a7bb7afe303
1/*
2 * Copyright (c) 2015 Stupeflix
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21/**
22 * @file
23 * Use a palette to downsample an input video stream.
24 */
25
26#include "libavutil/bprint.h"
27#include "libavutil/internal.h"
28#include "libavutil/opt.h"
29#include "libavutil/qsort.h"
30#include "dualinput.h"
31#include "avfilter.h"
32
33enum dithering_mode {
34 DITHERING_NONE,
35 DITHERING_BAYER,
36 DITHERING_HECKBERT,
37 DITHERING_FLOYD_STEINBERG,
38 DITHERING_SIERRA2,
39 DITHERING_SIERRA2_4A,
40 NB_DITHERING
41};
42
43enum color_search_method {
44 COLOR_SEARCH_NNS_ITERATIVE,
45 COLOR_SEARCH_NNS_RECURSIVE,
46 COLOR_SEARCH_BRUTEFORCE,
47 NB_COLOR_SEARCHES
48};
49
50enum diff_mode {
51 DIFF_MODE_NONE,
52 DIFF_MODE_RECTANGLE,
53 NB_DIFF_MODE
54};
55
56struct color_node {
57 uint8_t val[3];
58 uint8_t palette_id;
59 int split;
60 int left_id, right_id;
61};
62
63#define NBITS 5
64#define CACHE_SIZE (1<<(3*NBITS))
65
66struct cached_color {
67 uint32_t color;
68 uint8_t pal_entry;
69};
70
71struct cache_node {
72 struct cached_color *entries;
73 int nb_entries;
74};
75
76struct PaletteUseContext;
77
78typedef int (*set_frame_func)(struct PaletteUseContext *s, AVFrame *out, AVFrame *in,
79 int x_start, int y_start, int width, int height);
80
81typedef struct PaletteUseContext {
82 const AVClass *class;
83 FFDualInputContext dinput;
84 struct cache_node cache[CACHE_SIZE]; /* lookup cache */
85 struct color_node map[AVPALETTE_COUNT]; /* 3D-Tree (KD-Tree with K=3) for reverse colormap */
86 uint32_t palette[AVPALETTE_COUNT];
87 int palette_loaded;
88 int dither;
89 int new;
90 set_frame_func set_frame;
91 int bayer_scale;
92 int ordered_dither[8*8];
93 int diff_mode;
94 AVFrame *last_in;
95 AVFrame *last_out;
96
97 /* debug options */
98 char *dot_filename;
99 int color_search_method;
100 int calc_mean_err;
101 uint64_t total_mean_err;
102 int debug_accuracy;
103} PaletteUseContext;
104
105#define OFFSET(x) offsetof(PaletteUseContext, x)
106#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
107static const AVOption paletteuse_options[] = {
108 { "dither", "select dithering mode", OFFSET(dither), AV_OPT_TYPE_INT, {.i64=DITHERING_SIERRA2_4A}, 0, NB_DITHERING-1, FLAGS, "dithering_mode" },
109 { "bayer", "ordered 8x8 bayer dithering (deterministic)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_BAYER}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
110 { "heckbert", "dithering as defined by Paul Heckbert in 1982 (simple error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_HECKBERT}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
111 { "floyd_steinberg", "Floyd and Steingberg dithering (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_FLOYD_STEINBERG}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
112 { "sierra2", "Frankie Sierra dithering v2 (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
113 { "sierra2_4a", "Frankie Sierra dithering v2 \"Lite\" (error diffusion)", 0, AV_OPT_TYPE_CONST, {.i64=DITHERING_SIERRA2_4A}, INT_MIN, INT_MAX, FLAGS, "dithering_mode" },
114 { "bayer_scale", "set scale for bayer dithering", OFFSET(bayer_scale), AV_OPT_TYPE_INT, {.i64=2}, 0, 5, FLAGS },
115 { "diff_mode", "set frame difference mode", OFFSET(diff_mode), AV_OPT_TYPE_INT, {.i64=DIFF_MODE_NONE}, 0, NB_DIFF_MODE-1, FLAGS, "diff_mode" },
116 { "rectangle", "process smallest different rectangle", 0, AV_OPT_TYPE_CONST, {.i64=DIFF_MODE_RECTANGLE}, INT_MIN, INT_MAX, FLAGS, "diff_mode" },
117
118 /* following are the debug options, not part of the official API */
119 { "debug_kdtree", "save Graphviz graph of the kdtree in specified file", OFFSET(dot_filename), AV_OPT_TYPE_STRING, {.str=NULL}, CHAR_MIN, CHAR_MAX, FLAGS },
120 { "color_search", "set reverse colormap color search method", OFFSET(color_search_method), AV_OPT_TYPE_INT, {.i64=COLOR_SEARCH_NNS_ITERATIVE}, 0, NB_COLOR_SEARCHES-1, FLAGS, "search" },
121 { "nns_iterative", "iterative search", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_NNS_ITERATIVE}, INT_MIN, INT_MAX, FLAGS, "search" },
122 { "nns_recursive", "recursive search", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_NNS_RECURSIVE}, INT_MIN, INT_MAX, FLAGS, "search" },
123 { "bruteforce", "brute-force into the palette", 0, AV_OPT_TYPE_CONST, {.i64=COLOR_SEARCH_BRUTEFORCE}, INT_MIN, INT_MAX, FLAGS, "search" },
124 { "mean_err", "compute and print mean error", OFFSET(calc_mean_err), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
125 { "debug_accuracy", "test color search accuracy", OFFSET(debug_accuracy), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
126 { "new", "take new palette for each output frame", OFFSET(new), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
127 { NULL }
128};
129
130AVFILTER_DEFINE_CLASS(paletteuse);
131
132static int query_formats(AVFilterContext *ctx)
133{
134 static const enum AVPixelFormat in_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
135 static const enum AVPixelFormat inpal_fmts[] = {AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE};
136 static const enum AVPixelFormat out_fmts[] = {AV_PIX_FMT_PAL8, AV_PIX_FMT_NONE};
137 int ret;
138 AVFilterFormats *in = ff_make_format_list(in_fmts);
139 AVFilterFormats *inpal = ff_make_format_list(inpal_fmts);
140 AVFilterFormats *out = ff_make_format_list(out_fmts);
141 if (!in || !inpal || !out) {
142 av_freep(&in);
143 av_freep(&inpal);
144 av_freep(&out);
145 return AVERROR(ENOMEM);
146 }
147 if ((ret = ff_formats_ref(in , &ctx->inputs[0]->out_formats)) < 0 ||
148 (ret = ff_formats_ref(inpal, &ctx->inputs[1]->out_formats)) < 0 ||
149 (ret = ff_formats_ref(out , &ctx->outputs[0]->in_formats)) < 0)
150 return ret;
151 return 0;
152}
153
154static av_always_inline int dither_color(uint32_t px, int er, int eg, int eb, int scale, int shift)
155{
156 return av_clip_uint8((px >> 16 & 0xff) + ((er * scale) / (1<<shift))) << 16
157 | av_clip_uint8((px >> 8 & 0xff) + ((eg * scale) / (1<<shift))) << 8
158 | av_clip_uint8((px & 0xff) + ((eb * scale) / (1<<shift)));
159}
160
161static av_always_inline int diff(const uint8_t *c1, const uint8_t *c2)
162{
163 // XXX: try L*a*b with CIE76 (dL*dL + da*da + db*db)
164 const int dr = c1[0] - c2[0];
165 const int dg = c1[1] - c2[1];
166 const int db = c1[2] - c2[2];
167 return dr*dr + dg*dg + db*db;
168}
169
170static av_always_inline uint8_t colormap_nearest_bruteforce(const uint32_t *palette, const uint8_t *rgb)
171{
172 int i, pal_id = -1, min_dist = INT_MAX;
173
174 for (i = 0; i < AVPALETTE_COUNT; i++) {
175 const uint32_t c = palette[i];
176
177 if ((c & 0xff000000) == 0xff000000) { // ignore transparent entry
178 const uint8_t palrgb[] = {
179 palette[i]>>16 & 0xff,
180 palette[i]>> 8 & 0xff,
181 palette[i] & 0xff,
182 };
183 const int d = diff(palrgb, rgb);
184 if (d < min_dist) {
185 pal_id = i;
186 min_dist = d;
187 }
188 }
189 }
190 return pal_id;
191}
192
193/* Recursive form, simpler but a bit slower. Kept for reference. */
194struct nearest_color {
195 int node_pos;
196 int dist_sqd;
197};
198
199static void colormap_nearest_node(const struct color_node *map,
200 const int node_pos,
201 const uint8_t *target,
202 struct nearest_color *nearest)
203{
204 const struct color_node *kd = map + node_pos;
205 const int s = kd->split;
206 int dx, nearer_kd_id, further_kd_id;
207 const uint8_t *current = kd->val;
208 const int current_to_target = diff(target, current);
209
210 if (current_to_target < nearest->dist_sqd) {
211 nearest->node_pos = node_pos;
212 nearest->dist_sqd = current_to_target;
213 }
214
215 if (kd->left_id != -1 || kd->right_id != -1) {
216 dx = target[s] - current[s];
217
218 if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id;
219 else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id;
220
221 if (nearer_kd_id != -1)
222 colormap_nearest_node(map, nearer_kd_id, target, nearest);
223
224 if (further_kd_id != -1 && dx*dx < nearest->dist_sqd)
225 colormap_nearest_node(map, further_kd_id, target, nearest);
226 }
227}
228
229static av_always_inline uint8_t colormap_nearest_recursive(const struct color_node *node, const uint8_t *rgb)
230{
231 struct nearest_color res = {.dist_sqd = INT_MAX, .node_pos = -1};
232 colormap_nearest_node(node, 0, rgb, &res);
233 return node[res.node_pos].palette_id;
234}
235
236struct stack_node {
237 int color_id;
238 int dx2;
239};
240
241static av_always_inline uint8_t colormap_nearest_iterative(const struct color_node *root, const uint8_t *target)
242{
243 int pos = 0, best_node_id = -1, best_dist = INT_MAX, cur_color_id = 0;
244 struct stack_node nodes[16];
245 struct stack_node *node = &nodes[0];
246
247 for (;;) {
248
249 const struct color_node *kd = &root[cur_color_id];
250 const uint8_t *current = kd->val;
251 const int current_to_target = diff(target, current);
252
253 /* Compare current color node to the target and update our best node if
254 * it's actually better. */
255 if (current_to_target < best_dist) {
256 best_node_id = cur_color_id;
257 if (!current_to_target)
258 goto end; // exact match, we can return immediately
259 best_dist = current_to_target;
260 }
261
262 /* Check if it's not a leaf */
263 if (kd->left_id != -1 || kd->right_id != -1) {
264 const int split = kd->split;
265 const int dx = target[split] - current[split];
266 int nearer_kd_id, further_kd_id;
267
268 /* Define which side is the most interesting. */
269 if (dx <= 0) nearer_kd_id = kd->left_id, further_kd_id = kd->right_id;
270 else nearer_kd_id = kd->right_id, further_kd_id = kd->left_id;
271
272 if (nearer_kd_id != -1) {
273 if (further_kd_id != -1) {
274 /* Here, both paths are defined, so we push a state for
275 * when we are going back. */
276 node->color_id = further_kd_id;
277 node->dx2 = dx*dx;
278 pos++;
279 node++;
280 }
281 /* We can now update current color with the most probable path
282 * (no need to create a state since there is nothing to save
283 * anymore). */
284 cur_color_id = nearer_kd_id;
285 continue;
286 } else if (dx*dx < best_dist) {
287 /* The nearest path isn't available, so there is only one path
288 * possible and it's the least probable. We enter it only if the
289 * distance from the current point to the hyper rectangle is
290 * less than our best distance. */
291 cur_color_id = further_kd_id;
292 continue;
293 }
294 }
295
296 /* Unstack as much as we can, typically as long as the least probable
297 * branch aren't actually probable. */
298 do {
299 if (--pos < 0)
300 goto end;
301 node--;
302 } while (node->dx2 >= best_dist);
303
304 /* We got a node where the least probable branch might actually contain
305 * a relevant color. */
306 cur_color_id = node->color_id;
307 }
308
309end:
310 return root[best_node_id].palette_id;
311}
312
313#define COLORMAP_NEAREST(search, palette, root, target) \
314 search == COLOR_SEARCH_NNS_ITERATIVE ? colormap_nearest_iterative(root, target) : \
315 search == COLOR_SEARCH_NNS_RECURSIVE ? colormap_nearest_recursive(root, target) : \
316 colormap_nearest_bruteforce(palette, target)
317
318/**
319 * Check if the requested color is in the cache already. If not, find it in the
320 * color tree and cache it.
321 * Note: r, g, and b are the component of c but are passed as well to avoid
322 * recomputing them (they are generally computed by the caller for other uses).
323 */
324static av_always_inline int color_get(struct cache_node *cache, uint32_t color,
325 uint8_t r, uint8_t g, uint8_t b,
326 const struct color_node *map,
327 const uint32_t *palette,
328 const enum color_search_method search_method)
329{
330 int i;
331 const uint8_t rgb[] = {r, g, b};
332 const uint8_t rhash = r & ((1<<NBITS)-1);
333 const uint8_t ghash = g & ((1<<NBITS)-1);
334 const uint8_t bhash = b & ((1<<NBITS)-1);
335 const unsigned hash = rhash<<(NBITS*2) | ghash<<NBITS | bhash;
336 struct cache_node *node = &cache[hash];
337 struct cached_color *e;
338
339 for (i = 0; i < node->nb_entries; i++) {
340 e = &node->entries[i];
341 if (e->color == color)
342 return e->pal_entry;
343 }
344
345 e = av_dynarray2_add((void**)&node->entries, &node->nb_entries,
346 sizeof(*node->entries), NULL);
347 if (!e)
348 return AVERROR(ENOMEM);
349 e->color = color;
350 e->pal_entry = COLORMAP_NEAREST(search_method, palette, map, rgb);
351 return e->pal_entry;
352}
353
354static av_always_inline int get_dst_color_err(struct cache_node *cache,
355 uint32_t c, const struct color_node *map,
356 const uint32_t *palette,
357 int *er, int *eg, int *eb,
358 const enum color_search_method search_method)
359{
360 const uint8_t r = c >> 16 & 0xff;
361 const uint8_t g = c >> 8 & 0xff;
362 const uint8_t b = c & 0xff;
363 const int dstx = color_get(cache, c, r, g, b, map, palette, search_method);
364 const uint32_t dstc = palette[dstx];
365 *er = r - (dstc >> 16 & 0xff);
366 *eg = g - (dstc >> 8 & 0xff);
367 *eb = b - (dstc & 0xff);
368 return dstx;
369}
370
371static av_always_inline int set_frame(PaletteUseContext *s, AVFrame *out, AVFrame *in,
372 int x_start, int y_start, int w, int h,
373 enum dithering_mode dither,
374 const enum color_search_method search_method)
375{
376 int x, y;
377 const struct color_node *map = s->map;
378 struct cache_node *cache = s->cache;
379 const uint32_t *palette = s->palette;
380 const int src_linesize = in ->linesize[0] >> 2;
381 const int dst_linesize = out->linesize[0];
382 uint32_t *src = ((uint32_t *)in ->data[0]) + y_start*src_linesize;
383 uint8_t *dst = out->data[0] + y_start*dst_linesize;
384
385 w += x_start;
386 h += y_start;
387
388 for (y = y_start; y < h; y++) {
389 for (x = x_start; x < w; x++) {
390 int er, eg, eb;
391
392 if (dither == DITHERING_BAYER) {
393 const int d = s->ordered_dither[(y & 7)<<3 | (x & 7)];
394 const uint8_t r8 = src[x] >> 16 & 0xff;
395 const uint8_t g8 = src[x] >> 8 & 0xff;
396 const uint8_t b8 = src[x] & 0xff;
397 const uint8_t r = av_clip_uint8(r8 + d);
398 const uint8_t g = av_clip_uint8(g8 + d);
399 const uint8_t b = av_clip_uint8(b8 + d);
400 const uint32_t c = r<<16 | g<<8 | b;
401 const int color = color_get(cache, c, r, g, b, map, palette, search_method);
402
403 if (color < 0)
404 return color;
405 dst[x] = color;
406
407 } else if (dither == DITHERING_HECKBERT) {
408 const int right = x < w - 1, down = y < h - 1;
409 const int color = get_dst_color_err(cache, src[x], map, palette, &er, &eg, &eb, search_method);
410
411 if (color < 0)
412 return color;
413 dst[x] = color;
414
415 if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 3, 3);
416 if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 3, 3);
417 if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 2, 3);
418
419 } else if (dither == DITHERING_FLOYD_STEINBERG) {
420 const int right = x < w - 1, down = y < h - 1, left = x > x_start;
421 const int color = get_dst_color_err(cache, src[x], map, palette, &er, &eg, &eb, search_method);
422
423 if (color < 0)
424 return color;
425 dst[x] = color;
426
427 if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 7, 4);
428 if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 3, 4);
429 if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 5, 4);
430 if (right && down) src[src_linesize + x + 1] = dither_color(src[src_linesize + x + 1], er, eg, eb, 1, 4);
431
432 } else if (dither == DITHERING_SIERRA2) {
433 const int right = x < w - 1, down = y < h - 1, left = x > x_start;
434 const int right2 = x < w - 2, left2 = x > x_start + 1;
435 const int color = get_dst_color_err(cache, src[x], map, palette, &er, &eg, &eb, search_method);
436
437 if (color < 0)
438 return color;
439 dst[x] = color;
440
441 if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 4, 4);
442 if (right2) src[ x + 2] = dither_color(src[ x + 2], er, eg, eb, 3, 4);
443
444 if (down) {
445 if (left2) src[ src_linesize + x - 2] = dither_color(src[ src_linesize + x - 2], er, eg, eb, 1, 4);
446 if (left) src[ src_linesize + x - 1] = dither_color(src[ src_linesize + x - 1], er, eg, eb, 2, 4);
447 src[ src_linesize + x ] = dither_color(src[ src_linesize + x ], er, eg, eb, 3, 4);
448 if (right) src[ src_linesize + x + 1] = dither_color(src[ src_linesize + x + 1], er, eg, eb, 2, 4);
449 if (right2) src[ src_linesize + x + 2] = dither_color(src[ src_linesize + x + 2], er, eg, eb, 1, 4);
450 }
451
452 } else if (dither == DITHERING_SIERRA2_4A) {
453 const int right = x < w - 1, down = y < h - 1, left = x > x_start;
454 const int color = get_dst_color_err(cache, src[x], map, palette, &er, &eg, &eb, search_method);
455
456 if (color < 0)
457 return color;
458 dst[x] = color;
459
460 if (right) src[ x + 1] = dither_color(src[ x + 1], er, eg, eb, 2, 2);
461 if (left && down) src[src_linesize + x - 1] = dither_color(src[src_linesize + x - 1], er, eg, eb, 1, 2);
462 if ( down) src[src_linesize + x ] = dither_color(src[src_linesize + x ], er, eg, eb, 1, 2);
463
464 } else {
465 const uint8_t r = src[x] >> 16 & 0xff;
466 const uint8_t g = src[x] >> 8 & 0xff;
467 const uint8_t b = src[x] & 0xff;
468 const int color = color_get(cache, src[x] & 0xffffff, r, g, b, map, palette, search_method);
469
470 if (color < 0)
471 return color;
472 dst[x] = color;
473 }
474 }
475 src += src_linesize;
476 dst += dst_linesize;
477 }
478 return 0;
479}
480
481#define INDENT 4
482static void disp_node(AVBPrint *buf,
483 const struct color_node *map,
484 int parent_id, int node_id,
485 int depth)
486{
487 const struct color_node *node = &map[node_id];
488 const uint32_t fontcolor = node->val[0] > 0x50 &&
489 node->val[1] > 0x50 &&
490 node->val[2] > 0x50 ? 0 : 0xffffff;
491 av_bprintf(buf, "%*cnode%d ["
492 "label=\"%c%02X%c%02X%c%02X%c\" "
493 "fillcolor=\"#%02x%02x%02x\" "
494 "fontcolor=\"#%06"PRIX32"\"]\n",
495 depth*INDENT, ' ', node->palette_id,
496 "[ "[node->split], node->val[0],
497 "][ "[node->split], node->val[1],
498 " ]["[node->split], node->val[2],
499 " ]"[node->split],
500 node->val[0], node->val[1], node->val[2],
501 fontcolor);
502 if (parent_id != -1)
503 av_bprintf(buf, "%*cnode%d -> node%d\n", depth*INDENT, ' ',
504 map[parent_id].palette_id, node->palette_id);
505 if (node->left_id != -1) disp_node(buf, map, node_id, node->left_id, depth + 1);
506 if (node->right_id != -1) disp_node(buf, map, node_id, node->right_id, depth + 1);
507}
508
509// debug_kdtree=kdtree.dot -> dot -Tpng kdtree.dot > kdtree.png
510static int disp_tree(const struct color_node *node, const char *fname)
511{
512 AVBPrint buf;
513 FILE *f = av_fopen_utf8(fname, "w");
514
515 if (!f) {
516 int ret = AVERROR(errno);
517 av_log(NULL, AV_LOG_ERROR, "Cannot open file '%s' for writing: %s\n",
518 fname, av_err2str(ret));
519 return ret;
520 }
521
522 av_bprint_init(&buf, 0, AV_BPRINT_SIZE_UNLIMITED);
523
524 av_bprintf(&buf, "digraph {\n");
525 av_bprintf(&buf, " node [style=filled fontsize=10 shape=box]\n");
526 disp_node(&buf, node, -1, 0, 0);
527 av_bprintf(&buf, "}\n");
528
529 fwrite(buf.str, 1, buf.len, f);
530 fclose(f);
531 av_bprint_finalize(&buf, NULL);
532 return 0;
533}
534
535static int debug_accuracy(const struct color_node *node, const uint32_t *palette,
536 const enum color_search_method search_method)
537{
538 int r, g, b, ret = 0;
539
540 for (r = 0; r < 256; r++) {
541 for (g = 0; g < 256; g++) {
542 for (b = 0; b < 256; b++) {
543 const uint8_t rgb[] = {r, g, b};
544 const int r1 = COLORMAP_NEAREST(search_method, palette, node, rgb);
545 const int r2 = colormap_nearest_bruteforce(palette, rgb);
546 if (r1 != r2) {
547 const uint32_t c1 = palette[r1];
548 const uint32_t c2 = palette[r2];
549 const uint8_t palrgb1[] = { c1>>16 & 0xff, c1>> 8 & 0xff, c1 & 0xff };
550 const uint8_t palrgb2[] = { c2>>16 & 0xff, c2>> 8 & 0xff, c2 & 0xff };
551 const int d1 = diff(palrgb1, rgb);
552 const int d2 = diff(palrgb2, rgb);
553 if (d1 != d2) {
554 av_log(NULL, AV_LOG_ERROR,
555 "/!\\ %02X%02X%02X: %d ! %d (%06"PRIX32" ! %06"PRIX32") / dist: %d ! %d\n",
556 r, g, b, r1, r2, c1 & 0xffffff, c2 & 0xffffff, d1, d2);
557 ret = 1;
558 }
559 }
560 }
561 }
562 }
563 return ret;
564}
565
566struct color {
567 uint32_t value;
568 uint8_t pal_id;
569};
570
571struct color_rect {
572 uint8_t min[3];
573 uint8_t max[3];
574};
575
576typedef int (*cmp_func)(const void *, const void *);
577
578#define DECLARE_CMP_FUNC(name, pos) \
579static int cmp_##name(const void *pa, const void *pb) \
580{ \
581 const struct color *a = pa; \
582 const struct color *b = pb; \
583 return (a->value >> (8 * (2 - (pos))) & 0xff) \
584 - (b->value >> (8 * (2 - (pos))) & 0xff); \
585}
586
587DECLARE_CMP_FUNC(r, 0)
588DECLARE_CMP_FUNC(g, 1)
589DECLARE_CMP_FUNC(b, 2)
590
591static const cmp_func cmp_funcs[] = {cmp_r, cmp_g, cmp_b};
592
593static int get_next_color(const uint8_t *color_used, const uint32_t *palette,
594 int *component, const struct color_rect *box)
595{
596 int wr, wg, wb;
597 int i, longest = 0;
598 unsigned nb_color = 0;
599 struct color_rect ranges;
600 struct color tmp_pal[256];
601 cmp_func cmpf;
602
603 ranges.min[0] = ranges.min[1] = ranges.min[2] = 0xff;
604 ranges.max[0] = ranges.max[1] = ranges.max[2] = 0x00;
605
606 for (i = 0; i < AVPALETTE_COUNT; i++) {
607 const uint32_t c = palette[i];
608 const uint8_t r = c >> 16 & 0xff;
609 const uint8_t g = c >> 8 & 0xff;
610 const uint8_t b = c & 0xff;
611
612 if (color_used[i] ||
613 r < box->min[0] || g < box->min[1] || b < box->min[2] ||
614 r > box->max[0] || g > box->max[1] || b > box->max[2])
615 continue;
616
617 if (r < ranges.min[0]) ranges.min[0] = r;
618 if (g < ranges.min[1]) ranges.min[1] = g;
619 if (b < ranges.min[2]) ranges.min[2] = b;
620
621 if (r > ranges.max[0]) ranges.max[0] = r;
622 if (g > ranges.max[1]) ranges.max[1] = g;
623 if (b > ranges.max[2]) ranges.max[2] = b;
624
625 tmp_pal[nb_color].value = c;
626 tmp_pal[nb_color].pal_id = i;
627
628 nb_color++;
629 }
630
631 if (!nb_color)
632 return -1;
633
634 /* define longest axis that will be the split component */
635 wr = ranges.max[0] - ranges.min[0];
636 wg = ranges.max[1] - ranges.min[1];
637 wb = ranges.max[2] - ranges.min[2];
638 if (wr >= wg && wr >= wb) longest = 0;
639 if (wg >= wr && wg >= wb) longest = 1;
640 if (wb >= wr && wb >= wg) longest = 2;
641 cmpf = cmp_funcs[longest];
642 *component = longest;
643
644 /* sort along this axis to get median */
645 AV_QSORT(tmp_pal, nb_color, struct color, cmpf);
646
647 return tmp_pal[nb_color >> 1].pal_id;
648}
649
650static int colormap_insert(struct color_node *map,
651 uint8_t *color_used,
652 int *nb_used,
653 const uint32_t *palette,
654 const struct color_rect *box)
655{
656 uint32_t c;
657 int component, cur_id;
658 int node_left_id = -1, node_right_id = -1;
659 struct color_node *node;
660 struct color_rect box1, box2;
661 const int pal_id = get_next_color(color_used, palette, &component, box);
662
663 if (pal_id < 0)
664 return -1;
665
666 /* create new node with that color */
667 cur_id = (*nb_used)++;
668 c = palette[pal_id];
669 node = &map[cur_id];
670 node->split = component;
671 node->palette_id = pal_id;
672 node->val[0] = c>>16 & 0xff;
673 node->val[1] = c>> 8 & 0xff;
674 node->val[2] = c & 0xff;
675
676 color_used[pal_id] = 1;
677
678 /* get the two boxes this node creates */
679 box1 = box2 = *box;
680 box1.max[component] = node->val[component];
681 box2.min[component] = node->val[component] + 1;
682
683 node_left_id = colormap_insert(map, color_used, nb_used, palette, &box1);
684
685 if (box2.min[component] <= box2.max[component])
686 node_right_id = colormap_insert(map, color_used, nb_used, palette, &box2);
687
688 node->left_id = node_left_id;
689 node->right_id = node_right_id;
690
691 return cur_id;
692}
693
694static int cmp_pal_entry(const void *a, const void *b)
695{
696 const int c1 = *(const uint32_t *)a & 0xffffff;
697 const int c2 = *(const uint32_t *)b & 0xffffff;
698 return c1 - c2;
699}
700
701static void load_colormap(PaletteUseContext *s)
702{
703 int i, nb_used = 0;
704 uint8_t color_used[AVPALETTE_COUNT] = {0};
705 uint32_t last_color = 0;
706 struct color_rect box;
707
708 /* disable transparent colors and dups */
709 qsort(s->palette, AVPALETTE_COUNT, sizeof(*s->palette), cmp_pal_entry);
710 for (i = 0; i < AVPALETTE_COUNT; i++) {
711 const uint32_t c = s->palette[i];
712 if (i != 0 && c == last_color) {
713 color_used[i] = 1;
714 continue;
715 }
716 last_color = c;
717 if ((c & 0xff000000) != 0xff000000) {
718 color_used[i] = 1; // ignore transparent color(s)
719 continue;
720 }
721 }
722
723 box.min[0] = box.min[1] = box.min[2] = 0x00;
724 box.max[0] = box.max[1] = box.max[2] = 0xff;
725
726 colormap_insert(s->map, color_used, &nb_used, s->palette, &box);
727
728 if (s->dot_filename)
729 disp_tree(s->map, s->dot_filename);
730
731 if (s->debug_accuracy) {
732 if (!debug_accuracy(s->map, s->palette, s->color_search_method))
733 av_log(NULL, AV_LOG_INFO, "Accuracy check passed\n");
734 }
735}
736
737static void debug_mean_error(PaletteUseContext *s, const AVFrame *in1,
738 const AVFrame *in2, int frame_count)
739{
740 int x, y;
741 const uint32_t *palette = s->palette;
742 uint32_t *src1 = (uint32_t *)in1->data[0];
743 uint8_t *src2 = in2->data[0];
744 const int src1_linesize = in1->linesize[0] >> 2;
745 const int src2_linesize = in2->linesize[0];
746 const float div = in1->width * in1->height * 3;
747 unsigned mean_err = 0;
748
749 for (y = 0; y < in1->height; y++) {
750 for (x = 0; x < in1->width; x++) {
751 const uint32_t c1 = src1[x];
752 const uint32_t c2 = palette[src2[x]];
753 const uint8_t rgb1[] = {c1 >> 16 & 0xff, c1 >> 8 & 0xff, c1 & 0xff};
754 const uint8_t rgb2[] = {c2 >> 16 & 0xff, c2 >> 8 & 0xff, c2 & 0xff};
755 mean_err += diff(rgb1, rgb2);
756 }
757 src1 += src1_linesize;
758 src2 += src2_linesize;
759 }
760
761 s->total_mean_err += mean_err;
762
763 av_log(NULL, AV_LOG_INFO, "MEP:%.3f TotalMEP:%.3f\n",
764 mean_err / div, s->total_mean_err / (div * frame_count));
765}
766
767static void set_processing_window(enum diff_mode diff_mode,
768 const AVFrame *prv_src, const AVFrame *cur_src,
769 const AVFrame *prv_dst, AVFrame *cur_dst,
770 int *xp, int *yp, int *wp, int *hp)
771{
772 int x_start = 0, y_start = 0;
773 int width = cur_src->width;
774 int height = cur_src->height;
775
776 if (prv_src && diff_mode == DIFF_MODE_RECTANGLE) {
777 int y;
778 int x_end = cur_src->width - 1,
779 y_end = cur_src->height - 1;
780 const uint32_t *prv_srcp = (const uint32_t *)prv_src->data[0];
781 const uint32_t *cur_srcp = (const uint32_t *)cur_src->data[0];
782 const uint8_t *prv_dstp = prv_dst->data[0];
783 uint8_t *cur_dstp = cur_dst->data[0];
784
785 const int prv_src_linesize = prv_src->linesize[0] >> 2;
786 const int cur_src_linesize = cur_src->linesize[0] >> 2;
787 const int prv_dst_linesize = prv_dst->linesize[0];
788 const int cur_dst_linesize = cur_dst->linesize[0];
789
790 /* skip common lines */
791 while (y_start < y_end && !memcmp(prv_srcp + y_start*prv_src_linesize,
792 cur_srcp + y_start*cur_src_linesize,
793 cur_src->width * 4)) {
794 memcpy(cur_dstp + y_start*cur_dst_linesize,
795 prv_dstp + y_start*prv_dst_linesize,
796 cur_dst->width);
797 y_start++;
798 }
799 while (y_end > y_start && !memcmp(prv_srcp + y_end*prv_src_linesize,
800 cur_srcp + y_end*cur_src_linesize,
801 cur_src->width * 4)) {
802 memcpy(cur_dstp + y_end*cur_dst_linesize,
803 prv_dstp + y_end*prv_dst_linesize,
804 cur_dst->width);
805 y_end--;
806 }
807
808 height = y_end + 1 - y_start;
809
810 /* skip common columns */
811 while (x_start < x_end) {
812 int same_column = 1;
813 for (y = y_start; y <= y_end; y++) {
814 if (prv_srcp[y*prv_src_linesize + x_start] != cur_srcp[y*cur_src_linesize + x_start]) {
815 same_column = 0;
816 break;
817 }
818 }
819 if (!same_column)
820 break;
821 x_start++;
822 }
823 while (x_end > x_start) {
824 int same_column = 1;
825 for (y = y_start; y <= y_end; y++) {
826 if (prv_srcp[y*prv_src_linesize + x_end] != cur_srcp[y*cur_src_linesize + x_end]) {
827 same_column = 0;
828 break;
829 }
830 }
831 if (!same_column)
832 break;
833 x_end--;
834 }
835 width = x_end + 1 - x_start;
836
837 if (x_start) {
838 for (y = y_start; y <= y_end; y++)
839 memcpy(cur_dstp + y*cur_dst_linesize,
840 prv_dstp + y*prv_dst_linesize, x_start);
841 }
842 if (x_end != cur_src->width - 1) {
843 const int copy_len = cur_src->width - 1 - x_end;
844 for (y = y_start; y <= y_end; y++)
845 memcpy(cur_dstp + y*cur_dst_linesize + x_end + 1,
846 prv_dstp + y*prv_dst_linesize + x_end + 1,
847 copy_len);
848 }
849 }
850 *xp = x_start;
851 *yp = y_start;
852 *wp = width;
853 *hp = height;
854}
855
856static AVFrame *apply_palette(AVFilterLink *inlink, AVFrame *in)
857{
858 int x, y, w, h;
859 AVFilterContext *ctx = inlink->dst;
860 PaletteUseContext *s = ctx->priv;
861 AVFilterLink *outlink = inlink->dst->outputs[0];
862
863 AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
864 if (!out) {
865 av_frame_free(&in);
866 return NULL;
867 }
868 av_frame_copy_props(out, in);
869
870 set_processing_window(s->diff_mode, s->last_in, in,
871 s->last_out, out, &x, &y, &w, &h);
872 av_frame_free(&s->last_in);
873 av_frame_free(&s->last_out);
874 s->last_in = av_frame_clone(in);
875 s->last_out = av_frame_clone(out);
876 if (!s->last_in || !s->last_out ||
877 av_frame_make_writable(s->last_in) < 0) {
878 av_frame_free(&in);
879 av_frame_free(&out);
880 return NULL;
881 }
882
883 ff_dlog(ctx, "%dx%d rect: (%d;%d) -> (%d,%d) [area:%dx%d]\n",
884 w, h, x, y, x+w, y+h, in->width, in->height);
885
886 if (s->set_frame(s, out, in, x, y, w, h) < 0) {
887 av_frame_free(&out);
888 return NULL;
889 }
890 memcpy(out->data[1], s->palette, AVPALETTE_SIZE);
891 if (s->calc_mean_err)
892 debug_mean_error(s, in, out, inlink->frame_count_out);
893 av_frame_free(&in);
894 return out;
895}
896
897static int config_output(AVFilterLink *outlink)
898{
899 int ret;
900 AVFilterContext *ctx = outlink->src;
901 PaletteUseContext *s = ctx->priv;
902
903 outlink->w = ctx->inputs[0]->w;
904 outlink->h = ctx->inputs[0]->h;
905
906 outlink->time_base = ctx->inputs[0]->time_base;
907 if ((ret = ff_dualinput_init(ctx, &s->dinput)) < 0)
908 return ret;
909 return 0;
910}
911
912static int config_input_palette(AVFilterLink *inlink)
913{
914 AVFilterContext *ctx = inlink->dst;
915
916 if (inlink->w * inlink->h != AVPALETTE_COUNT) {
917 av_log(ctx, AV_LOG_ERROR,
918 "Palette input must contain exactly %d pixels. "
919 "Specified input has %dx%d=%d pixels\n",
920 AVPALETTE_COUNT, inlink->w, inlink->h,
921 inlink->w * inlink->h);
922 return AVERROR(EINVAL);
923 }
924 return 0;
925}
926
927static void load_palette(PaletteUseContext *s, const AVFrame *palette_frame)
928{
929 int i, x, y;
930 const uint32_t *p = (const uint32_t *)palette_frame->data[0];
931 const int p_linesize = palette_frame->linesize[0] >> 2;
932
933 if (s->new) {
934 memset(s->palette, 0, sizeof(s->palette));
935 memset(s->map, 0, sizeof(s->map));
936 for (i = 0; i < CACHE_SIZE; i++)
937 av_freep(&s->cache[i].entries);
938 memset(s->cache, 0, sizeof(s->cache));
939 }
940
941 i = 0;
942 for (y = 0; y < palette_frame->height; y++) {
943 for (x = 0; x < palette_frame->width; x++)
944 s->palette[i++] = p[x];
945 p += p_linesize;
946 }
947
948 load_colormap(s);
949
950 if (!s->new)
951 s->palette_loaded = 1;
952}
953
954static AVFrame *load_apply_palette(AVFilterContext *ctx, AVFrame *main,
955 const AVFrame *second)
956{
957 AVFilterLink *inlink = ctx->inputs[0];
958 PaletteUseContext *s = ctx->priv;
959 if (!s->palette_loaded) {
960 load_palette(s, second);
961 }
962 return apply_palette(inlink, main);
963}
964
965static int filter_frame(AVFilterLink *inlink, AVFrame *in)
966{
967 PaletteUseContext *s = inlink->dst->priv;
968 return ff_dualinput_filter_frame(&s->dinput, inlink, in);
969}
970
971#define DEFINE_SET_FRAME(color_search, name, value) \
972static int set_frame_##name(PaletteUseContext *s, AVFrame *out, AVFrame *in, \
973 int x_start, int y_start, int w, int h) \
974{ \
975 return set_frame(s, out, in, x_start, y_start, w, h, value, color_search); \
976}
977
978#define DEFINE_SET_FRAME_COLOR_SEARCH(color_search, color_search_macro) \
979 DEFINE_SET_FRAME(color_search_macro, color_search##_##none, DITHERING_NONE) \
980 DEFINE_SET_FRAME(color_search_macro, color_search##_##bayer, DITHERING_BAYER) \
981 DEFINE_SET_FRAME(color_search_macro, color_search##_##heckbert, DITHERING_HECKBERT) \
982 DEFINE_SET_FRAME(color_search_macro, color_search##_##floyd_steinberg, DITHERING_FLOYD_STEINBERG) \
983 DEFINE_SET_FRAME(color_search_macro, color_search##_##sierra2, DITHERING_SIERRA2) \
984 DEFINE_SET_FRAME(color_search_macro, color_search##_##sierra2_4a, DITHERING_SIERRA2_4A) \
985
986DEFINE_SET_FRAME_COLOR_SEARCH(nns_iterative, COLOR_SEARCH_NNS_ITERATIVE)
987DEFINE_SET_FRAME_COLOR_SEARCH(nns_recursive, COLOR_SEARCH_NNS_RECURSIVE)
988DEFINE_SET_FRAME_COLOR_SEARCH(bruteforce, COLOR_SEARCH_BRUTEFORCE)
989
990#define DITHERING_ENTRIES(color_search) { \
991 set_frame_##color_search##_none, \
992 set_frame_##color_search##_bayer, \
993 set_frame_##color_search##_heckbert, \
994 set_frame_##color_search##_floyd_steinberg, \
995 set_frame_##color_search##_sierra2, \
996 set_frame_##color_search##_sierra2_4a, \
997}
998
999static const set_frame_func set_frame_lut[NB_COLOR_SEARCHES][NB_DITHERING] = {
1000 DITHERING_ENTRIES(nns_iterative),
1001 DITHERING_ENTRIES(nns_recursive),
1002 DITHERING_ENTRIES(bruteforce),
1003};
1004
1005static int dither_value(int p)
1006{
1007 const int q = p ^ (p >> 3);
1008 return (p & 4) >> 2 | (q & 4) >> 1 \
1009 | (p & 2) << 1 | (q & 2) << 2 \
1010 | (p & 1) << 4 | (q & 1) << 5;
1011}
1012
1013static av_cold int init(AVFilterContext *ctx)
1014{
1015 PaletteUseContext *s = ctx->priv;
1016 s->dinput.repeatlast = 1; // only 1 frame in the palette
1017 s->dinput.skip_initial_unpaired = 1;
1018 s->dinput.process = load_apply_palette;
1019
1020 s->set_frame = set_frame_lut[s->color_search_method][s->dither];
1021
1022 if (s->dither == DITHERING_BAYER) {
1023 int i;
1024 const int delta = 1 << (5 - s->bayer_scale); // to avoid too much luma
1025
1026 for (i = 0; i < FF_ARRAY_ELEMS(s->ordered_dither); i++)
1027 s->ordered_dither[i] = (dither_value(i) >> s->bayer_scale) - delta;
1028 }
1029
1030 return 0;
1031}
1032
1033static int request_frame(AVFilterLink *outlink)
1034{
1035 PaletteUseContext *s = outlink->src->priv;
1036 return ff_dualinput_request_frame(&s->dinput, outlink);
1037}
1038
1039static av_cold void uninit(AVFilterContext *ctx)
1040{
1041 int i;
1042 PaletteUseContext *s = ctx->priv;
1043
1044 ff_dualinput_uninit(&s->dinput);
1045 for (i = 0; i < CACHE_SIZE; i++)
1046 av_freep(&s->cache[i].entries);
1047 av_frame_free(&s->last_in);
1048 av_frame_free(&s->last_out);
1049}
1050
1051static const AVFilterPad paletteuse_inputs[] = {
1052 {
1053 .name = "default",
1054 .type = AVMEDIA_TYPE_VIDEO,
1055 .filter_frame = filter_frame,
1056 .needs_writable = 1, // for error diffusal dithering
1057 },{
1058 .name = "palette",
1059 .type = AVMEDIA_TYPE_VIDEO,
1060 .config_props = config_input_palette,
1061 .filter_frame = filter_frame,
1062 },
1063 { NULL }
1064};
1065
1066static const AVFilterPad paletteuse_outputs[] = {
1067 {
1068 .name = "default",
1069 .type = AVMEDIA_TYPE_VIDEO,
1070 .config_props = config_output,
1071 .request_frame = request_frame,
1072 },
1073 { NULL }
1074};
1075
1076AVFilter ff_vf_paletteuse = {
1077 .name = "paletteuse",
1078 .description = NULL_IF_CONFIG_SMALL("Use a palette to downsample an input video stream."),
1079 .priv_size = sizeof(PaletteUseContext),
1080 .query_formats = query_formats,
1081 .init = init,
1082 .uninit = uninit,
1083 .inputs = paletteuse_inputs,
1084 .outputs = paletteuse_outputs,
1085 .priv_class = &paletteuse_class,
1086};
1087