summaryrefslogtreecommitdiff
path: root/libavfilter/vf_rotate.c (plain)
blob: 371ff7f722ba4ae04fd5d2d8f5c674f65d673e60
1/*
2 * Copyright (c) 2013 Stefano Sabatini
3 * Copyright (c) 2008 Vitor Sessak
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * rotation filter, partially based on the tests/rotozoom.c program
25*/
26
27#include "libavutil/avstring.h"
28#include "libavutil/eval.h"
29#include "libavutil/opt.h"
30#include "libavutil/intreadwrite.h"
31#include "libavutil/parseutils.h"
32#include "libavutil/pixdesc.h"
33
34#include "avfilter.h"
35#include "drawutils.h"
36#include "internal.h"
37#include "video.h"
38
39#include <float.h>
40
41static const char * const var_names[] = {
42 "in_w" , "iw", ///< width of the input video
43 "in_h" , "ih", ///< height of the input video
44 "out_w", "ow", ///< width of the input video
45 "out_h", "oh", ///< height of the input video
46 "hsub", "vsub",
47 "n", ///< number of frame
48 "t", ///< timestamp expressed in seconds
49 NULL
50};
51
52enum var_name {
53 VAR_IN_W , VAR_IW,
54 VAR_IN_H , VAR_IH,
55 VAR_OUT_W, VAR_OW,
56 VAR_OUT_H, VAR_OH,
57 VAR_HSUB, VAR_VSUB,
58 VAR_N,
59 VAR_T,
60 VAR_VARS_NB
61};
62
63typedef struct RotContext {
64 const AVClass *class;
65 double angle;
66 char *angle_expr_str; ///< expression for the angle
67 AVExpr *angle_expr; ///< parsed expression for the angle
68 char *outw_expr_str, *outh_expr_str;
69 int outh, outw;
70 uint8_t fillcolor[4]; ///< color expressed either in YUVA or RGBA colorspace for the padding area
71 char *fillcolor_str;
72 int fillcolor_enable;
73 int hsub, vsub;
74 int nb_planes;
75 int use_bilinear;
76 float sinx, cosx;
77 double var_values[VAR_VARS_NB];
78 FFDrawContext draw;
79 FFDrawColor color;
80 uint8_t *(*interpolate_bilinear)(uint8_t *dst_color,
81 const uint8_t *src, int src_linesize, int src_linestep,
82 int x, int y, int max_x, int max_y);
83} RotContext;
84
85typedef struct ThreadData {
86 AVFrame *in, *out;
87 int inw, inh;
88 int outw, outh;
89 int plane;
90 int xi, yi;
91 int xprime, yprime;
92 int c, s;
93} ThreadData;
94
95#define OFFSET(x) offsetof(RotContext, x)
96#define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
97
98static const AVOption rotate_options[] = {
99 { "angle", "set angle (in radians)", OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
100 { "a", "set angle (in radians)", OFFSET(angle_expr_str), AV_OPT_TYPE_STRING, {.str="0"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
101 { "out_w", "set output width expression", OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
102 { "ow", "set output width expression", OFFSET(outw_expr_str), AV_OPT_TYPE_STRING, {.str="iw"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
103 { "out_h", "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
104 { "oh", "set output height expression", OFFSET(outh_expr_str), AV_OPT_TYPE_STRING, {.str="ih"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
105 { "fillcolor", "set background fill color", OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
106 { "c", "set background fill color", OFFSET(fillcolor_str), AV_OPT_TYPE_STRING, {.str="black"}, CHAR_MIN, CHAR_MAX, .flags=FLAGS },
107 { "bilinear", "use bilinear interpolation", OFFSET(use_bilinear), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, .flags=FLAGS },
108 { NULL }
109};
110
111AVFILTER_DEFINE_CLASS(rotate);
112
113static av_cold int init(AVFilterContext *ctx)
114{
115 RotContext *rot = ctx->priv;
116
117 if (!strcmp(rot->fillcolor_str, "none"))
118 rot->fillcolor_enable = 0;
119 else if (av_parse_color(rot->fillcolor, rot->fillcolor_str, -1, ctx) >= 0)
120 rot->fillcolor_enable = 1;
121 else
122 return AVERROR(EINVAL);
123 return 0;
124}
125
126static av_cold void uninit(AVFilterContext *ctx)
127{
128 RotContext *rot = ctx->priv;
129
130 av_expr_free(rot->angle_expr);
131 rot->angle_expr = NULL;
132}
133
134static int query_formats(AVFilterContext *ctx)
135{
136 static const enum AVPixelFormat pix_fmts[] = {
137 AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
138 AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA,
139 AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA,
140 AV_PIX_FMT_0RGB, AV_PIX_FMT_RGB0,
141 AV_PIX_FMT_0BGR, AV_PIX_FMT_BGR0,
142 AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24,
143 AV_PIX_FMT_GRAY8,
144 AV_PIX_FMT_YUV410P,
145 AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P,
146 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ420P,
147 AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA420P,
148 AV_PIX_FMT_YUV420P10LE, AV_PIX_FMT_YUVA420P10LE,
149 AV_PIX_FMT_YUV444P10LE, AV_PIX_FMT_YUVA444P10LE,
150 AV_PIX_FMT_YUV420P12LE,
151 AV_PIX_FMT_YUV444P12LE,
152 AV_PIX_FMT_YUV444P16LE, AV_PIX_FMT_YUVA444P16LE,
153 AV_PIX_FMT_YUV420P16LE, AV_PIX_FMT_YUVA420P16LE,
154 AV_PIX_FMT_YUV444P9LE, AV_PIX_FMT_YUVA444P9LE,
155 AV_PIX_FMT_YUV420P9LE, AV_PIX_FMT_YUVA420P9LE,
156 AV_PIX_FMT_NONE
157 };
158
159 AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
160 if (!fmts_list)
161 return AVERROR(ENOMEM);
162 return ff_set_common_formats(ctx, fmts_list);
163}
164
165static double get_rotated_w(void *opaque, double angle)
166{
167 RotContext *rot = opaque;
168 double inw = rot->var_values[VAR_IN_W];
169 double inh = rot->var_values[VAR_IN_H];
170 float sinx = sin(angle);
171 float cosx = cos(angle);
172
173 return FFMAX(0, inh * sinx) + FFMAX(0, -inw * cosx) +
174 FFMAX(0, inw * cosx) + FFMAX(0, -inh * sinx);
175}
176
177static double get_rotated_h(void *opaque, double angle)
178{
179 RotContext *rot = opaque;
180 double inw = rot->var_values[VAR_IN_W];
181 double inh = rot->var_values[VAR_IN_H];
182 float sinx = sin(angle);
183 float cosx = cos(angle);
184
185 return FFMAX(0, -inh * cosx) + FFMAX(0, -inw * sinx) +
186 FFMAX(0, inh * cosx) + FFMAX(0, inw * sinx);
187}
188
189static double (* const func1[])(void *, double) = {
190 get_rotated_w,
191 get_rotated_h,
192 NULL
193};
194
195static const char * const func1_names[] = {
196 "rotw",
197 "roth",
198 NULL
199};
200
201#define FIXP (1<<16)
202#define FIXP2 (1<<20)
203#define INT_PI 3294199 //(M_PI * FIXP2)
204
205/**
206 * Compute the sin of a using integer values.
207 * Input is scaled by FIXP2 and output values are scaled by FIXP.
208 */
209static int64_t int_sin(int64_t a)
210{
211 int64_t a2, res = 0;
212 int i;
213 if (a < 0) a = INT_PI-a; // 0..inf
214 a %= 2 * INT_PI; // 0..2PI
215
216 if (a >= INT_PI*3/2) a -= 2*INT_PI; // -PI/2 .. 3PI/2
217 if (a >= INT_PI/2 ) a = INT_PI - a; // -PI/2 .. PI/2
218
219 /* compute sin using Taylor series approximated to the fifth term */
220 a2 = (a*a)/(FIXP2);
221 for (i = 2; i < 11; i += 2) {
222 res += a;
223 a = -a*a2 / (FIXP2*i*(i+1));
224 }
225 return (res + 8)>>4;
226}
227
228/**
229 * Interpolate the color in src at position x and y using bilinear
230 * interpolation.
231 */
232static uint8_t *interpolate_bilinear8(uint8_t *dst_color,
233 const uint8_t *src, int src_linesize, int src_linestep,
234 int x, int y, int max_x, int max_y)
235{
236 int int_x = av_clip(x>>16, 0, max_x);
237 int int_y = av_clip(y>>16, 0, max_y);
238 int frac_x = x&0xFFFF;
239 int frac_y = y&0xFFFF;
240 int i;
241 int int_x1 = FFMIN(int_x+1, max_x);
242 int int_y1 = FFMIN(int_y+1, max_y);
243
244 for (i = 0; i < src_linestep; i++) {
245 int s00 = src[src_linestep * int_x + i + src_linesize * int_y ];
246 int s01 = src[src_linestep * int_x1 + i + src_linesize * int_y ];
247 int s10 = src[src_linestep * int_x + i + src_linesize * int_y1];
248 int s11 = src[src_linestep * int_x1 + i + src_linesize * int_y1];
249 int s0 = (((1<<16) - frac_x)*s00 + frac_x*s01);
250 int s1 = (((1<<16) - frac_x)*s10 + frac_x*s11);
251
252 dst_color[i] = ((int64_t)((1<<16) - frac_y)*s0 + (int64_t)frac_y*s1) >> 32;
253 }
254
255 return dst_color;
256}
257
258/**
259 * Interpolate the color in src at position x and y using bilinear
260 * interpolation.
261 */
262static uint8_t *interpolate_bilinear16(uint8_t *dst_color,
263 const uint8_t *src, int src_linesize, int src_linestep,
264 int x, int y, int max_x, int max_y)
265{
266 int int_x = av_clip(x>>16, 0, max_x);
267 int int_y = av_clip(y>>16, 0, max_y);
268 int frac_x = x&0xFFFF;
269 int frac_y = y&0xFFFF;
270 int i;
271 int int_x1 = FFMIN(int_x+1, max_x);
272 int int_y1 = FFMIN(int_y+1, max_y);
273
274 for (i = 0; i < src_linestep; i+=2) {
275 int s00 = AV_RL16(&src[src_linestep * int_x + i + src_linesize * int_y ]);
276 int s01 = AV_RL16(&src[src_linestep * int_x1 + i + src_linesize * int_y ]);
277 int s10 = AV_RL16(&src[src_linestep * int_x + i + src_linesize * int_y1]);
278 int s11 = AV_RL16(&src[src_linestep * int_x1 + i + src_linesize * int_y1]);
279 int s0 = (((1<<16) - frac_x)*s00 + frac_x*s01);
280 int s1 = (((1<<16) - frac_x)*s10 + frac_x*s11);
281
282 AV_WL16(&dst_color[i], ((int64_t)((1<<16) - frac_y)*s0 + (int64_t)frac_y*s1) >> 32);
283 }
284
285 return dst_color;
286}
287
288static int config_props(AVFilterLink *outlink)
289{
290 AVFilterContext *ctx = outlink->src;
291 RotContext *rot = ctx->priv;
292 AVFilterLink *inlink = ctx->inputs[0];
293 const AVPixFmtDescriptor *pixdesc = av_pix_fmt_desc_get(inlink->format);
294 int ret;
295 double res;
296 char *expr;
297
298 ff_draw_init(&rot->draw, inlink->format, 0);
299 ff_draw_color(&rot->draw, &rot->color, rot->fillcolor);
300
301 rot->hsub = pixdesc->log2_chroma_w;
302 rot->vsub = pixdesc->log2_chroma_h;
303
304 if (pixdesc->comp[0].depth == 8)
305 rot->interpolate_bilinear = interpolate_bilinear8;
306 else
307 rot->interpolate_bilinear = interpolate_bilinear16;
308
309 rot->var_values[VAR_IN_W] = rot->var_values[VAR_IW] = inlink->w;
310 rot->var_values[VAR_IN_H] = rot->var_values[VAR_IH] = inlink->h;
311 rot->var_values[VAR_HSUB] = 1<<rot->hsub;
312 rot->var_values[VAR_VSUB] = 1<<rot->vsub;
313 rot->var_values[VAR_N] = NAN;
314 rot->var_values[VAR_T] = NAN;
315 rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = NAN;
316 rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = NAN;
317
318 av_expr_free(rot->angle_expr);
319 rot->angle_expr = NULL;
320 if ((ret = av_expr_parse(&rot->angle_expr, expr = rot->angle_expr_str, var_names,
321 func1_names, func1, NULL, NULL, 0, ctx)) < 0) {
322 av_log(ctx, AV_LOG_ERROR,
323 "Error occurred parsing angle expression '%s'\n", rot->angle_expr_str);
324 return ret;
325 }
326
327#define SET_SIZE_EXPR(name, opt_name) do { \
328 ret = av_expr_parse_and_eval(&res, expr = rot->name##_expr_str, \
329 var_names, rot->var_values, \
330 func1_names, func1, NULL, NULL, rot, 0, ctx); \
331 if (ret < 0 || isnan(res) || isinf(res) || res <= 0) { \
332 av_log(ctx, AV_LOG_ERROR, \
333 "Error parsing or evaluating expression for option %s: " \
334 "invalid expression '%s' or non-positive or indefinite value %f\n", \
335 opt_name, expr, res); \
336 return ret; \
337 } \
338} while (0)
339
340 /* evaluate width and height */
341 av_expr_parse_and_eval(&res, expr = rot->outw_expr_str, var_names, rot->var_values,
342 func1_names, func1, NULL, NULL, rot, 0, ctx);
343 rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res;
344 rot->outw = res + 0.5;
345 SET_SIZE_EXPR(outh, "out_h");
346 rot->var_values[VAR_OUT_H] = rot->var_values[VAR_OH] = res;
347 rot->outh = res + 0.5;
348
349 /* evaluate the width again, as it may depend on the evaluated output height */
350 SET_SIZE_EXPR(outw, "out_w");
351 rot->var_values[VAR_OUT_W] = rot->var_values[VAR_OW] = res;
352 rot->outw = res + 0.5;
353
354 /* compute number of planes */
355 rot->nb_planes = av_pix_fmt_count_planes(inlink->format);
356 outlink->w = rot->outw;
357 outlink->h = rot->outh;
358 return 0;
359}
360
361static av_always_inline void copy_elem(uint8_t *pout, const uint8_t *pin, int elem_size)
362{
363 int v;
364 switch (elem_size) {
365 case 1:
366 *pout = *pin;
367 break;
368 case 2:
369 *((uint16_t *)pout) = *((uint16_t *)pin);
370 break;
371 case 3:
372 v = AV_RB24(pin);
373 AV_WB24(pout, v);
374 break;
375 case 4:
376 *((uint32_t *)pout) = *((uint32_t *)pin);
377 break;
378 default:
379 memcpy(pout, pin, elem_size);
380 break;
381 }
382}
383
384static av_always_inline void simple_rotate_internal(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
385{
386 int i;
387 switch(angle) {
388 case 0:
389 memcpy(dst, src, elem_size * len);
390 break;
391 case 1:
392 for (i = 0; i<len; i++)
393 copy_elem(dst + i*elem_size, src + (len-i-1)*src_linesize, elem_size);
394 break;
395 case 2:
396 for (i = 0; i<len; i++)
397 copy_elem(dst + i*elem_size, src + (len-i-1)*elem_size, elem_size);
398 break;
399 case 3:
400 for (i = 0; i<len; i++)
401 copy_elem(dst + i*elem_size, src + i*src_linesize, elem_size);
402 break;
403 }
404}
405
406static av_always_inline void simple_rotate(uint8_t *dst, const uint8_t *src, int src_linesize, int angle, int elem_size, int len)
407{
408 switch(elem_size) {
409 case 1 : simple_rotate_internal(dst, src, src_linesize, angle, 1, len); break;
410 case 2 : simple_rotate_internal(dst, src, src_linesize, angle, 2, len); break;
411 case 3 : simple_rotate_internal(dst, src, src_linesize, angle, 3, len); break;
412 case 4 : simple_rotate_internal(dst, src, src_linesize, angle, 4, len); break;
413 default: simple_rotate_internal(dst, src, src_linesize, angle, elem_size, len); break;
414 }
415}
416
417#define TS2T(ts, tb) ((ts) == AV_NOPTS_VALUE ? NAN : (double)(ts)*av_q2d(tb))
418
419static int filter_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
420{
421 ThreadData *td = arg;
422 AVFrame *in = td->in;
423 AVFrame *out = td->out;
424 RotContext *rot = ctx->priv;
425 const int outw = td->outw, outh = td->outh;
426 const int inw = td->inw, inh = td->inh;
427 const int plane = td->plane;
428 const int xi = td->xi, yi = td->yi;
429 const int c = td->c, s = td->s;
430 const int start = (outh * job ) / nb_jobs;
431 const int end = (outh * (job+1)) / nb_jobs;
432 int xprime = td->xprime + start * s;
433 int yprime = td->yprime + start * c;
434 int i, j, x, y;
435
436 for (j = start; j < end; j++) {
437 x = xprime + xi + FIXP*(inw-1)/2;
438 y = yprime + yi + FIXP*(inh-1)/2;
439
440 if (fabs(rot->angle - 0) < FLT_EPSILON && outw == inw && outh == inh) {
441 simple_rotate(out->data[plane] + j * out->linesize[plane],
442 in->data[plane] + j * in->linesize[plane],
443 in->linesize[plane], 0, rot->draw.pixelstep[plane], outw);
444 } else if (fabs(rot->angle - M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
445 simple_rotate(out->data[plane] + j * out->linesize[plane],
446 in->data[plane] + j * rot->draw.pixelstep[plane],
447 in->linesize[plane], 1, rot->draw.pixelstep[plane], outw);
448 } else if (fabs(rot->angle - M_PI) < FLT_EPSILON && outw == inw && outh == inh) {
449 simple_rotate(out->data[plane] + j * out->linesize[plane],
450 in->data[plane] + (outh-j-1) * in->linesize[plane],
451 in->linesize[plane], 2, rot->draw.pixelstep[plane], outw);
452 } else if (fabs(rot->angle - 3*M_PI/2) < FLT_EPSILON && outw == inh && outh == inw) {
453 simple_rotate(out->data[plane] + j * out->linesize[plane],
454 in->data[plane] + (outh-j-1) * rot->draw.pixelstep[plane],
455 in->linesize[plane], 3, rot->draw.pixelstep[plane], outw);
456 } else {
457
458 for (i = 0; i < outw; i++) {
459 int32_t v;
460 int x1, y1;
461 uint8_t *pin, *pout;
462 x1 = x>>16;
463 y1 = y>>16;
464
465 /* the out-of-range values avoid border artifacts */
466 if (x1 >= -1 && x1 <= inw && y1 >= -1 && y1 <= inh) {
467 uint8_t inp_inv[4]; /* interpolated input value */
468 pout = out->data[plane] + j * out->linesize[plane] + i * rot->draw.pixelstep[plane];
469 if (rot->use_bilinear) {
470 pin = rot->interpolate_bilinear(inp_inv,
471 in->data[plane], in->linesize[plane], rot->draw.pixelstep[plane],
472 x, y, inw-1, inh-1);
473 } else {
474 int x2 = av_clip(x1, 0, inw-1);
475 int y2 = av_clip(y1, 0, inh-1);
476 pin = in->data[plane] + y2 * in->linesize[plane] + x2 * rot->draw.pixelstep[plane];
477 }
478 switch (rot->draw.pixelstep[plane]) {
479 case 1:
480 *pout = *pin;
481 break;
482 case 2:
483 v = AV_RL16(pin);
484 AV_WL16(pout, v);
485 break;
486 case 3:
487 v = AV_RB24(pin);
488 AV_WB24(pout, v);
489 break;
490 case 4:
491 *((uint32_t *)pout) = *((uint32_t *)pin);
492 break;
493 default:
494 memcpy(pout, pin, rot->draw.pixelstep[plane]);
495 break;
496 }
497 }
498 x += c;
499 y -= s;
500 }
501 }
502 xprime += s;
503 yprime += c;
504 }
505
506 return 0;
507}
508
509static int filter_frame(AVFilterLink *inlink, AVFrame *in)
510{
511 AVFilterContext *ctx = inlink->dst;
512 AVFilterLink *outlink = ctx->outputs[0];
513 AVFrame *out;
514 RotContext *rot = ctx->priv;
515 int angle_int, s, c, plane;
516 double res;
517
518 out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
519 if (!out) {
520 av_frame_free(&in);
521 return AVERROR(ENOMEM);
522 }
523 av_frame_copy_props(out, in);
524
525 rot->var_values[VAR_N] = inlink->frame_count_out;
526 rot->var_values[VAR_T] = TS2T(in->pts, inlink->time_base);
527 rot->angle = res = av_expr_eval(rot->angle_expr, rot->var_values, rot);
528
529 av_log(ctx, AV_LOG_DEBUG, "n:%f time:%f angle:%f/PI\n",
530 rot->var_values[VAR_N], rot->var_values[VAR_T], rot->angle/M_PI);
531
532 angle_int = res * FIXP * 16;
533 s = int_sin(angle_int);
534 c = int_sin(angle_int + INT_PI/2);
535
536 /* fill background */
537 if (rot->fillcolor_enable)
538 ff_fill_rectangle(&rot->draw, &rot->color, out->data, out->linesize,
539 0, 0, outlink->w, outlink->h);
540
541 for (plane = 0; plane < rot->nb_planes; plane++) {
542 int hsub = plane == 1 || plane == 2 ? rot->hsub : 0;
543 int vsub = plane == 1 || plane == 2 ? rot->vsub : 0;
544 const int outw = AV_CEIL_RSHIFT(outlink->w, hsub);
545 const int outh = AV_CEIL_RSHIFT(outlink->h, vsub);
546 ThreadData td = { .in = in, .out = out,
547 .inw = AV_CEIL_RSHIFT(inlink->w, hsub),
548 .inh = AV_CEIL_RSHIFT(inlink->h, vsub),
549 .outh = outh, .outw = outw,
550 .xi = -(outw-1) * c / 2, .yi = (outw-1) * s / 2,
551 .xprime = -(outh-1) * s / 2,
552 .yprime = -(outh-1) * c / 2,
553 .plane = plane, .c = c, .s = s };
554
555
556 ctx->internal->execute(ctx, filter_slice, &td, NULL, FFMIN(outh, ff_filter_get_nb_threads(ctx)));
557 }
558
559 av_frame_free(&in);
560 return ff_filter_frame(outlink, out);
561}
562
563static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
564 char *res, int res_len, int flags)
565{
566 RotContext *rot = ctx->priv;
567 int ret;
568
569 if (!strcmp(cmd, "angle") || !strcmp(cmd, "a")) {
570 AVExpr *old = rot->angle_expr;
571 ret = av_expr_parse(&rot->angle_expr, args, var_names,
572 NULL, NULL, NULL, NULL, 0, ctx);
573 if (ret < 0) {
574 av_log(ctx, AV_LOG_ERROR,
575 "Error when parsing the expression '%s' for angle command\n", args);
576 rot->angle_expr = old;
577 return ret;
578 }
579 av_expr_free(old);
580 } else
581 ret = AVERROR(ENOSYS);
582
583 return ret;
584}
585
586static const AVFilterPad rotate_inputs[] = {
587 {
588 .name = "default",
589 .type = AVMEDIA_TYPE_VIDEO,
590 .filter_frame = filter_frame,
591 },
592 { NULL }
593};
594
595static const AVFilterPad rotate_outputs[] = {
596 {
597 .name = "default",
598 .type = AVMEDIA_TYPE_VIDEO,
599 .config_props = config_props,
600 },
601 { NULL }
602};
603
604AVFilter ff_vf_rotate = {
605 .name = "rotate",
606 .description = NULL_IF_CONFIG_SMALL("Rotate the input image."),
607 .priv_size = sizeof(RotContext),
608 .init = init,
609 .uninit = uninit,
610 .query_formats = query_formats,
611 .process_command = process_command,
612 .inputs = rotate_inputs,
613 .outputs = rotate_outputs,
614 .priv_class = &rotate_class,
615 .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
616};
617