summaryrefslogtreecommitdiff
path: root/libavfilter/vsrc_life.c (plain)
blob: afe805a67521e55d493baa5c9ebd410e7bd49871
1/*
2 * Copyright (c) Stefano Sabatini 2010
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21/**
22 * @file
23 * life video source, based on John Conways' Life Game
24 */
25
26/* #define DEBUG */
27
28#include "libavutil/file.h"
29#include "libavutil/internal.h"
30#include "libavutil/intreadwrite.h"
31#include "libavutil/lfg.h"
32#include "libavutil/opt.h"
33#include "libavutil/parseutils.h"
34#include "libavutil/random_seed.h"
35#include "libavutil/avstring.h"
36#include "avfilter.h"
37#include "internal.h"
38#include "formats.h"
39#include "video.h"
40
41typedef struct {
42 const AVClass *class;
43 int w, h;
44 char *filename;
45 char *rule_str;
46 uint8_t *file_buf;
47 size_t file_bufsize;
48
49 /**
50 * The two grid state buffers.
51 *
52 * A 0xFF (ALIVE_CELL) value means the cell is alive (or new born), while
53 * the decreasing values from 0xFE to 0 means the cell is dead; the range
54 * of values is used for the slow death effect, or mold (0xFE means dead,
55 * 0xFD means very dead, 0xFC means very very dead... and 0x00 means
56 * definitely dead/mold).
57 */
58 uint8_t *buf[2];
59
60 uint8_t buf_idx;
61 uint16_t stay_rule; ///< encode the behavior for filled cells
62 uint16_t born_rule; ///< encode the behavior for empty cells
63 uint64_t pts;
64 AVRational frame_rate;
65 double random_fill_ratio;
66 uint32_t random_seed;
67 int stitch;
68 int mold;
69 uint8_t life_color[4];
70 uint8_t death_color[4];
71 uint8_t mold_color[4];
72 AVLFG lfg;
73 void (*draw)(AVFilterContext*, AVFrame*);
74} LifeContext;
75
76#define ALIVE_CELL 0xFF
77#define OFFSET(x) offsetof(LifeContext, x)
78#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
79
80static const AVOption life_options[] = {
81 { "filename", "set source file", OFFSET(filename), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS },
82 { "f", "set source file", OFFSET(filename), AV_OPT_TYPE_STRING, {.str = NULL}, 0, 0, FLAGS },
83 { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = NULL}, 0, 0, FLAGS },
84 { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = NULL}, 0, 0, FLAGS },
85 { "rate", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT_MAX, FLAGS },
86 { "r", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT_MAX, FLAGS },
87 { "rule", "set rule", OFFSET(rule_str), AV_OPT_TYPE_STRING, {.str = "B3/S23"}, CHAR_MIN, CHAR_MAX, FLAGS },
88 { "random_fill_ratio", "set fill ratio for filling initial grid randomly", OFFSET(random_fill_ratio), AV_OPT_TYPE_DOUBLE, {.dbl=1/M_PHI}, 0, 1, FLAGS },
89 { "ratio", "set fill ratio for filling initial grid randomly", OFFSET(random_fill_ratio), AV_OPT_TYPE_DOUBLE, {.dbl=1/M_PHI}, 0, 1, FLAGS },
90 { "random_seed", "set the seed for filling the initial grid randomly", OFFSET(random_seed), AV_OPT_TYPE_INT, {.i64=-1}, -1, UINT32_MAX, FLAGS },
91 { "seed", "set the seed for filling the initial grid randomly", OFFSET(random_seed), AV_OPT_TYPE_INT, {.i64=-1}, -1, UINT32_MAX, FLAGS },
92 { "stitch", "stitch boundaries", OFFSET(stitch), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, FLAGS },
93 { "mold", "set mold speed for dead cells", OFFSET(mold), AV_OPT_TYPE_INT, {.i64=0}, 0, 0xFF, FLAGS },
94 { "life_color", "set life color", OFFSET( life_color), AV_OPT_TYPE_COLOR, {.str="white"}, CHAR_MIN, CHAR_MAX, FLAGS },
95 { "death_color", "set death color", OFFSET(death_color), AV_OPT_TYPE_COLOR, {.str="black"}, CHAR_MIN, CHAR_MAX, FLAGS },
96 { "mold_color", "set mold color", OFFSET( mold_color), AV_OPT_TYPE_COLOR, {.str="black"}, CHAR_MIN, CHAR_MAX, FLAGS },
97 { NULL }
98};
99
100AVFILTER_DEFINE_CLASS(life);
101
102static int parse_rule(uint16_t *born_rule, uint16_t *stay_rule,
103 const char *rule_str, void *log_ctx)
104{
105 char *tail;
106 const char *p = rule_str;
107 *born_rule = 0;
108 *stay_rule = 0;
109
110 if (strchr("bBsS", *p)) {
111 /* parse rule as a Born / Stay Alive code, see
112 * http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life */
113 do {
114 uint16_t *rule = (*p == 'b' || *p == 'B') ? born_rule : stay_rule;
115 p++;
116 while (*p >= '0' && *p <= '8') {
117 *rule += 1<<(*p - '0');
118 p++;
119 }
120 if (*p != '/')
121 break;
122 p++;
123 } while (strchr("bBsS", *p));
124
125 if (*p)
126 goto error;
127 } else {
128 /* parse rule as a number, expressed in the form STAY|(BORN<<9),
129 * where STAY and BORN encode the corresponding 9-bits rule */
130 long int rule = strtol(rule_str, &tail, 10);
131 if (*tail)
132 goto error;
133 *born_rule = ((1<<9)-1) & rule;
134 *stay_rule = rule >> 9;
135 }
136
137 return 0;
138
139error:
140 av_log(log_ctx, AV_LOG_ERROR, "Invalid rule code '%s' provided\n", rule_str);
141 return AVERROR(EINVAL);
142}
143
144#ifdef DEBUG
145static void show_life_grid(AVFilterContext *ctx)
146{
147 LifeContext *life = ctx->priv;
148 int i, j;
149
150 char *line = av_malloc(life->w + 1);
151 if (!line)
152 return;
153 for (i = 0; i < life->h; i++) {
154 for (j = 0; j < life->w; j++)
155 line[j] = life->buf[life->buf_idx][i*life->w + j] == ALIVE_CELL ? '@' : ' ';
156 line[j] = 0;
157 av_log(ctx, AV_LOG_DEBUG, "%3d: %s\n", i, line);
158 }
159 av_free(line);
160}
161#endif
162
163static int init_pattern_from_file(AVFilterContext *ctx)
164{
165 LifeContext *life = ctx->priv;
166 char *p;
167 int ret, i, i0, j, h = 0, w, max_w = 0;
168
169 if ((ret = av_file_map(life->filename, &life->file_buf, &life->file_bufsize,
170 0, ctx)) < 0)
171 return ret;
172 av_freep(&life->filename);
173
174 /* prescan file to get the number of lines and the maximum width */
175 w = 0;
176 for (i = 0; i < life->file_bufsize; i++) {
177 if (life->file_buf[i] == '\n') {
178 h++; max_w = FFMAX(w, max_w); w = 0;
179 } else {
180 w++;
181 }
182 }
183 av_log(ctx, AV_LOG_DEBUG, "h:%d max_w:%d\n", h, max_w);
184
185 if (life->w) {
186 if (max_w > life->w || h > life->h) {
187 av_log(ctx, AV_LOG_ERROR,
188 "The specified size is %dx%d which cannot contain the provided file size of %dx%d\n",
189 life->w, life->h, max_w, h);
190 return AVERROR(EINVAL);
191 }
192 } else {
193 /* size was not specified, set it to size of the grid */
194 life->w = max_w;
195 life->h = h;
196 }
197
198 if (!(life->buf[0] = av_calloc(life->h * life->w, sizeof(*life->buf[0]))) ||
199 !(life->buf[1] = av_calloc(life->h * life->w, sizeof(*life->buf[1])))) {
200 av_freep(&life->buf[0]);
201 av_freep(&life->buf[1]);
202 return AVERROR(ENOMEM);
203 }
204
205 /* fill buf[0] */
206 p = life->file_buf;
207 for (i0 = 0, i = (life->h - h)/2; i0 < h; i0++, i++) {
208 for (j = (life->w - max_w)/2;; j++) {
209 av_log(ctx, AV_LOG_DEBUG, "%d:%d %c\n", i, j, *p == '\n' ? 'N' : *p);
210 if (*p == '\n') {
211 p++; break;
212 } else
213 life->buf[0][i*life->w + j] = av_isgraph(*(p++)) ? ALIVE_CELL : 0;
214 }
215 }
216 life->buf_idx = 0;
217
218 return 0;
219}
220
221static av_cold int init(AVFilterContext *ctx)
222{
223 LifeContext *life = ctx->priv;
224 int ret;
225
226 if (!life->w && !life->filename)
227 av_opt_set(life, "size", "320x240", 0);
228
229 if ((ret = parse_rule(&life->born_rule, &life->stay_rule, life->rule_str, ctx)) < 0)
230 return ret;
231
232 if (!life->mold && memcmp(life->mold_color, "\x00\x00\x00", 3))
233 av_log(ctx, AV_LOG_WARNING,
234 "Mold color is set while mold isn't, ignoring the color.\n");
235
236 if (!life->filename) {
237 /* fill the grid randomly */
238 int i;
239
240 if (!(life->buf[0] = av_calloc(life->h * life->w, sizeof(*life->buf[0]))) ||
241 !(life->buf[1] = av_calloc(life->h * life->w, sizeof(*life->buf[1])))) {
242 av_freep(&life->buf[0]);
243 av_freep(&life->buf[1]);
244 return AVERROR(ENOMEM);
245 }
246 if (life->random_seed == -1)
247 life->random_seed = av_get_random_seed();
248
249 av_lfg_init(&life->lfg, life->random_seed);
250
251 for (i = 0; i < life->w * life->h; i++) {
252 double r = (double)av_lfg_get(&life->lfg) / UINT32_MAX;
253 if (r <= life->random_fill_ratio)
254 life->buf[0][i] = ALIVE_CELL;
255 }
256 life->buf_idx = 0;
257 } else {
258 if ((ret = init_pattern_from_file(ctx)) < 0)
259 return ret;
260 }
261
262 av_log(ctx, AV_LOG_VERBOSE,
263 "s:%dx%d r:%d/%d rule:%s stay_rule:%d born_rule:%d stitch:%d seed:%"PRIu32"\n",
264 life->w, life->h, life->frame_rate.num, life->frame_rate.den,
265 life->rule_str, life->stay_rule, life->born_rule, life->stitch,
266 life->random_seed);
267 return 0;
268}
269
270static av_cold void uninit(AVFilterContext *ctx)
271{
272 LifeContext *life = ctx->priv;
273
274 av_file_unmap(life->file_buf, life->file_bufsize);
275 av_freep(&life->rule_str);
276 av_freep(&life->buf[0]);
277 av_freep(&life->buf[1]);
278}
279
280static int config_props(AVFilterLink *outlink)
281{
282 LifeContext *life = outlink->src->priv;
283
284 outlink->w = life->w;
285 outlink->h = life->h;
286 outlink->time_base = av_inv_q(life->frame_rate);
287
288 return 0;
289}
290
291static void evolve(AVFilterContext *ctx)
292{
293 LifeContext *life = ctx->priv;
294 int i, j;
295 uint8_t *oldbuf = life->buf[ life->buf_idx];
296 uint8_t *newbuf = life->buf[!life->buf_idx];
297
298 enum { NW, N, NE, W, E, SW, S, SE };
299
300 /* evolve the grid */
301 for (i = 0; i < life->h; i++) {
302 for (j = 0; j < life->w; j++) {
303 int pos[8][2], n, alive, cell;
304 if (life->stitch) {
305 pos[NW][0] = (i-1) < 0 ? life->h-1 : i-1; pos[NW][1] = (j-1) < 0 ? life->w-1 : j-1;
306 pos[N ][0] = (i-1) < 0 ? life->h-1 : i-1; pos[N ][1] = j ;
307 pos[NE][0] = (i-1) < 0 ? life->h-1 : i-1; pos[NE][1] = (j+1) == life->w ? 0 : j+1;
308 pos[W ][0] = i ; pos[W ][1] = (j-1) < 0 ? life->w-1 : j-1;
309 pos[E ][0] = i ; pos[E ][1] = (j+1) == life->w ? 0 : j+1;
310 pos[SW][0] = (i+1) == life->h ? 0 : i+1; pos[SW][1] = (j-1) < 0 ? life->w-1 : j-1;
311 pos[S ][0] = (i+1) == life->h ? 0 : i+1; pos[S ][1] = j ;
312 pos[SE][0] = (i+1) == life->h ? 0 : i+1; pos[SE][1] = (j+1) == life->w ? 0 : j+1;
313 } else {
314 pos[NW][0] = (i-1) < 0 ? -1 : i-1; pos[NW][1] = (j-1) < 0 ? -1 : j-1;
315 pos[N ][0] = (i-1) < 0 ? -1 : i-1; pos[N ][1] = j ;
316 pos[NE][0] = (i-1) < 0 ? -1 : i-1; pos[NE][1] = (j+1) == life->w ? -1 : j+1;
317 pos[W ][0] = i ; pos[W ][1] = (j-1) < 0 ? -1 : j-1;
318 pos[E ][0] = i ; pos[E ][1] = (j+1) == life->w ? -1 : j+1;
319 pos[SW][0] = (i+1) == life->h ? -1 : i+1; pos[SW][1] = (j-1) < 0 ? -1 : j-1;
320 pos[S ][0] = (i+1) == life->h ? -1 : i+1; pos[S ][1] = j ;
321 pos[SE][0] = (i+1) == life->h ? -1 : i+1; pos[SE][1] = (j+1) == life->w ? -1 : j+1;
322 }
323
324 /* compute the number of live neighbor cells */
325 n = (pos[NW][0] == -1 || pos[NW][1] == -1 ? 0 : oldbuf[pos[NW][0]*life->w + pos[NW][1]] == ALIVE_CELL) +
326 (pos[N ][0] == -1 || pos[N ][1] == -1 ? 0 : oldbuf[pos[N ][0]*life->w + pos[N ][1]] == ALIVE_CELL) +
327 (pos[NE][0] == -1 || pos[NE][1] == -1 ? 0 : oldbuf[pos[NE][0]*life->w + pos[NE][1]] == ALIVE_CELL) +
328 (pos[W ][0] == -1 || pos[W ][1] == -1 ? 0 : oldbuf[pos[W ][0]*life->w + pos[W ][1]] == ALIVE_CELL) +
329 (pos[E ][0] == -1 || pos[E ][1] == -1 ? 0 : oldbuf[pos[E ][0]*life->w + pos[E ][1]] == ALIVE_CELL) +
330 (pos[SW][0] == -1 || pos[SW][1] == -1 ? 0 : oldbuf[pos[SW][0]*life->w + pos[SW][1]] == ALIVE_CELL) +
331 (pos[S ][0] == -1 || pos[S ][1] == -1 ? 0 : oldbuf[pos[S ][0]*life->w + pos[S ][1]] == ALIVE_CELL) +
332 (pos[SE][0] == -1 || pos[SE][1] == -1 ? 0 : oldbuf[pos[SE][0]*life->w + pos[SE][1]] == ALIVE_CELL);
333 cell = oldbuf[i*life->w + j];
334 alive = 1<<n & (cell == ALIVE_CELL ? life->stay_rule : life->born_rule);
335 if (alive) *newbuf = ALIVE_CELL; // new cell is alive
336 else if (cell) *newbuf = cell - 1; // new cell is dead and in the process of mold
337 else *newbuf = 0; // new cell is definitely dead
338 ff_dlog(ctx, "i:%d j:%d live_neighbors:%d cell:%d -> cell:%d\n", i, j, n, cell, *newbuf);
339 newbuf++;
340 }
341 }
342
343 life->buf_idx = !life->buf_idx;
344}
345
346static void fill_picture_monoblack(AVFilterContext *ctx, AVFrame *picref)
347{
348 LifeContext *life = ctx->priv;
349 uint8_t *buf = life->buf[life->buf_idx];
350 int i, j, k;
351
352 /* fill the output picture with the old grid buffer */
353 for (i = 0; i < life->h; i++) {
354 uint8_t byte = 0;
355 uint8_t *p = picref->data[0] + i * picref->linesize[0];
356 for (k = 0, j = 0; j < life->w; j++) {
357 byte |= (buf[i*life->w+j] == ALIVE_CELL)<<(7-k++);
358 if (k==8 || j == life->w-1) {
359 k = 0;
360 *p++ = byte;
361 byte = 0;
362 }
363 }
364 }
365}
366
367// divide by 255 and round to nearest
368// apply a fast variant: (X+127)/255 = ((X+127)*257+257)>>16 = ((X+128)*257)>>16
369#define FAST_DIV255(x) ((((x) + 128) * 257) >> 16)
370
371static void fill_picture_rgb(AVFilterContext *ctx, AVFrame *picref)
372{
373 LifeContext *life = ctx->priv;
374 uint8_t *buf = life->buf[life->buf_idx];
375 int i, j;
376
377 /* fill the output picture with the old grid buffer */
378 for (i = 0; i < life->h; i++) {
379 uint8_t *p = picref->data[0] + i * picref->linesize[0];
380 for (j = 0; j < life->w; j++) {
381 uint8_t v = buf[i*life->w + j];
382 if (life->mold && v != ALIVE_CELL) {
383 const uint8_t *c1 = life-> mold_color;
384 const uint8_t *c2 = life->death_color;
385 int death_age = FFMIN((0xff - v) * life->mold, 0xff);
386 *p++ = FAST_DIV255((c2[0] << 8) + ((int)c1[0] - (int)c2[0]) * death_age);
387 *p++ = FAST_DIV255((c2[1] << 8) + ((int)c1[1] - (int)c2[1]) * death_age);
388 *p++ = FAST_DIV255((c2[2] << 8) + ((int)c1[2] - (int)c2[2]) * death_age);
389 } else {
390 const uint8_t *c = v == ALIVE_CELL ? life->life_color : life->death_color;
391 AV_WB24(p, c[0]<<16 | c[1]<<8 | c[2]);
392 p += 3;
393 }
394 }
395 }
396}
397
398static int request_frame(AVFilterLink *outlink)
399{
400 LifeContext *life = outlink->src->priv;
401 AVFrame *picref = ff_get_video_buffer(outlink, life->w, life->h);
402 if (!picref)
403 return AVERROR(ENOMEM);
404 picref->sample_aspect_ratio = (AVRational) {1, 1};
405 picref->pts = life->pts++;
406
407 life->draw(outlink->src, picref);
408 evolve(outlink->src);
409#ifdef DEBUG
410 show_life_grid(outlink->src);
411#endif
412 return ff_filter_frame(outlink, picref);
413}
414
415static int query_formats(AVFilterContext *ctx)
416{
417 LifeContext *life = ctx->priv;
418 enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_NONE, AV_PIX_FMT_NONE };
419 AVFilterFormats *fmts_list;
420
421 if (life->mold || memcmp(life-> life_color, "\xff\xff\xff", 3)
422 || memcmp(life->death_color, "\x00\x00\x00", 3)) {
423 pix_fmts[0] = AV_PIX_FMT_RGB24;
424 life->draw = fill_picture_rgb;
425 } else {
426 pix_fmts[0] = AV_PIX_FMT_MONOBLACK;
427 life->draw = fill_picture_monoblack;
428 }
429
430 fmts_list = ff_make_format_list(pix_fmts);
431 return ff_set_common_formats(ctx, fmts_list);
432}
433
434static const AVFilterPad life_outputs[] = {
435 {
436 .name = "default",
437 .type = AVMEDIA_TYPE_VIDEO,
438 .request_frame = request_frame,
439 .config_props = config_props,
440 },
441 { NULL}
442};
443
444AVFilter ff_vsrc_life = {
445 .name = "life",
446 .description = NULL_IF_CONFIG_SMALL("Create life."),
447 .priv_size = sizeof(LifeContext),
448 .priv_class = &life_class,
449 .init = init,
450 .uninit = uninit,
451 .query_formats = query_formats,
452 .inputs = NULL,
453 .outputs = life_outputs,
454};
455