summaryrefslogtreecommitdiff
path: root/ntfsprogs/ntfsfix.c (plain)
blob: eaf474c5f05ad0f7e110e06d8aae9f79e204e984
1/**
2 * ntfsfix - Part of the Linux-NTFS project.
3 *
4 * Copyright (c) 2000-2006 Anton Altaparmakov
5 * Copyright (c) 2002-2006 Szabolcs Szakacsits
6 * Copyright (c) 2007 Yura Pakhuchiy
7 * Copyright (c) 2011-2012 Jean-Pierre Andre
8 *
9 * This utility fixes some common NTFS problems, resets the NTFS journal file
10 * and schedules an NTFS consistency check for the first boot into Windows.
11 *
12 * Anton Altaparmakov <aia21@cantab.net>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with this program (in the main directory of the Linux-NTFS source
26 * in the file COPYING); if not, write to the Free Software Foundation,
27 * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 */
29
30/*
31 * WARNING: This program might not work on architectures which do not allow
32 * unaligned access. For those, the program would need to start using
33 * get/put_unaligned macros (#include <asm/unaligned.h>), but not doing it yet,
34 * since NTFS really mostly applies to ia32 only, which does allow unaligned
35 * accesses. We might not actually have a problem though, since the structs are
36 * defined as being packed so that might be enough for gcc to insert the
37 * correct code.
38 *
39 * If anyone using a non-little endian and/or an aligned access only CPU tries
40 * this program please let me know whether it works or not!
41 *
42 * Anton Altaparmakov <aia21@cantab.net>
43 */
44
45#include "config.h"
46
47#ifdef HAVE_UNISTD_H
48#include <unistd.h>
49#endif
50#ifdef HAVE_STDLIB_H
51#include <stdlib.h>
52#endif
53#ifdef HAVE_STDIO_H
54#include <stdio.h>
55#endif
56#ifdef HAVE_FCNTL_H
57#include <fcntl.h>
58#endif
59#ifdef HAVE_ERRNO_H
60#include <errno.h>
61#endif
62#ifdef HAVE_STRING_H
63#include <string.h>
64#endif
65#ifdef HAVE_GETOPT_H
66#include <getopt.h>
67#endif
68
69#include "types.h"
70#include "attrib.h"
71#include "volume.h"
72#include "bootsect.h"
73#include "mft.h"
74#include "device.h"
75#include "logfile.h"
76#include "runlist.h"
77#include "mst.h"
78#include "utils.h"
79/* #include "version.h" */
80#include "logging.h"
81#include "misc.h"
82
83#ifdef NO_NTFS_DEVICE_DEFAULT_IO_OPS
84# error "No default device io operations! Cannot build ntfsfix. \
85You need to run ./configure without the --disable-default-device-io-ops \
86switch if you want to be able to build the NTFS utilities."
87#endif
88
89static const char *EXEC_NAME = "ntfsfix";
90static const char OK[] = "OK\n";
91static const char FAILED[] = "FAILED\n";
92static const char FOUND[] = "FOUND\n";
93
94#define DEFAULT_SECTOR_SIZE 512
95
96static struct {
97 char *volume;
98 BOOL no_action;
99 BOOL clear_bad_sectors;
100 BOOL clear_dirty;
101} opt;
102
103/*
104 * Definitions for fixing the self-located MFT bug
105 */
106
107#define SELFLOC_LIMIT 16
108
109struct MFT_SELF_LOCATED {
110 ntfs_volume *vol;
111 MFT_RECORD *mft0;
112 MFT_RECORD *mft1;
113 MFT_RECORD *mft2;
114 ATTR_LIST_ENTRY *attrlist;
115 ATTR_LIST_ENTRY *attrlist_to_ref1;
116 MFT_REF mft_ref0;
117 MFT_REF mft_ref1;
118 LCN attrlist_lcn;
119 BOOL attrlist_resident;
120} ;
121
122/**
123 * usage
124 */
125__attribute__((noreturn))
126static void usage(void)
127{
128 ntfs_log_info("%s v%s (libntfs-3g)\n"
129 "\n"
130 "Usage: %s [options] device\n"
131 " Attempt to fix an NTFS partition.\n"
132 "\n"
133 " -b, --clear-bad-sectors Clear the bad sector list\n"
134 " -d, --clear-dirty Clear the volume dirty flag\n"
135 " -h, --help Display this help\n"
136 " -n, --no-action Do not write anything\n"
137 " -V, --version Display version information\n"
138 "\n"
139 "For example: %s /dev/hda6\n\n",
140 EXEC_NAME, VERSION, EXEC_NAME,
141 EXEC_NAME);
142 ntfs_log_info("%s%s", ntfs_bugs, ntfs_home);
143 exit(1);
144}
145
146/**
147 * version
148 */
149__attribute__((noreturn))
150static void version(void)
151{
152 ntfs_log_info("%s v%s\n\n"
153 "Attempt to fix an NTFS partition.\n\n"
154 "Copyright (c) 2000-2006 Anton Altaparmakov\n"
155 "Copyright (c) 2002-2006 Szabolcs Szakacsits\n"
156 "Copyright (c) 2007 Yura Pakhuchiy\n\n"
157 "Copyright (c) 2011 Jean-Pierre Andre\n\n",
158 EXEC_NAME, VERSION);
159 ntfs_log_info("%s\n%s%s", ntfs_gpl, ntfs_bugs, ntfs_home);
160 exit(1);
161}
162
163/**
164 * parse_options
165 */
166static void parse_options(int argc, char **argv)
167{
168 int c;
169 static const char *sopt = "-bdhnV";
170 static const struct option lopt[] = {
171 { "help", no_argument, NULL, 'h' },
172 { "no-action", no_argument, NULL, 'n' },
173 { "clear-bad-sectors", no_argument, NULL, 'b' },
174 { "clear-dirty", no_argument, NULL, 'd' },
175 { "version", no_argument, NULL, 'V' },
176 { NULL, 0, NULL, 0 }
177 };
178
179 memset(&opt, 0, sizeof(opt));
180
181 while ((c = getopt_long(argc, argv, sopt, lopt, NULL)) != -1) {
182 switch (c) {
183 case 1: /* A non-option argument */
184 if (!opt.volume)
185 opt.volume = argv[optind - 1];
186 else {
187 ntfs_log_info("ERROR: Too many arguments.\n");
188 usage();
189 }
190 break;
191 case 'b':
192 opt.clear_bad_sectors = TRUE;
193 break;
194 case 'd':
195 opt.clear_dirty = TRUE;
196 break;
197 case 'n':
198 opt.no_action = TRUE;
199 break;
200 case 'h':
201 case '?':
202 usage();
203 /* fall through */
204 case 'V':
205 version();
206 default:
207 ntfs_log_info("ERROR: Unknown option '%s'.\n", argv[optind - 1]);
208 usage();
209 }
210 }
211
212 if (opt.volume == NULL) {
213 ntfs_log_info("ERROR: You must specify a device.\n");
214 usage();
215 }
216}
217
218/**
219 * OLD_ntfs_volume_set_flags
220 */
221static int OLD_ntfs_volume_set_flags(ntfs_volume *vol, const le16 flags)
222{
223 MFT_RECORD *m = NULL;
224 ATTR_RECORD *a;
225 VOLUME_INFORMATION *c;
226 ntfs_attr_search_ctx *ctx;
227 int ret = -1; /* failure */
228
229 if (!vol) {
230 errno = EINVAL;
231 return -1;
232 }
233 if (ntfs_file_record_read(vol, FILE_Volume, &m, NULL)) {
234 ntfs_log_perror("Failed to read $Volume");
235 return -1;
236 }
237 /* Sanity check */
238 if (!(m->flags & MFT_RECORD_IN_USE)) {
239 ntfs_log_error("$Volume has been deleted. Cannot handle this "
240 "yet. Run chkdsk to fix this.\n");
241 errno = EIO;
242 goto err_exit;
243 }
244 /* Get a pointer to the volume information attribute. */
245 ctx = ntfs_attr_get_search_ctx(NULL, m);
246 if (!ctx) {
247 ntfs_log_debug("Failed to allocate attribute search "
248 "context.\n");
249 goto err_exit;
250 }
251 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, AT_UNNAMED, 0,
252 CASE_SENSITIVE, 0, NULL, 0, ctx)) {
253 ntfs_log_error("Attribute $VOLUME_INFORMATION was not found in "
254 "$Volume!\n");
255 goto err_out;
256 }
257 a = ctx->attr;
258 /* Sanity check. */
259 if (a->non_resident) {
260 ntfs_log_error("Attribute $VOLUME_INFORMATION must be resident "
261 "(and it isn't)!\n");
262 errno = EIO;
263 goto err_out;
264 }
265 /* Get a pointer to the value of the attribute. */
266 c = (VOLUME_INFORMATION*)(le16_to_cpu(a->value_offset) + (char*)a);
267 /* Sanity checks. */
268 if ((char*)c + le32_to_cpu(a->value_length) >
269 (char*)m + le32_to_cpu(m->bytes_in_use) ||
270 le16_to_cpu(a->value_offset) +
271 le32_to_cpu(a->value_length) > le32_to_cpu(a->length)) {
272 ntfs_log_error("Attribute $VOLUME_INFORMATION in $Volume is "
273 "corrupt!\n");
274 errno = EIO;
275 goto err_out;
276 }
277 /* Set the volume flags. */
278 vol->flags = c->flags = flags;
279 if (ntfs_mft_record_write(vol, FILE_Volume, m)) {
280 ntfs_log_perror("Error writing $Volume");
281 goto err_out;
282 }
283 ret = 0; /* success */
284err_out:
285 ntfs_attr_put_search_ctx(ctx);
286err_exit:
287 free(m);
288 return ret;
289}
290
291/**
292 * set_dirty_flag
293 */
294static int set_dirty_flag(ntfs_volume *vol)
295{
296 le16 flags;
297
298 /* Porting note: We test for the current state of VOLUME_IS_DIRTY. This
299 * should actually be more appropriate than testing for NVolWasDirty. */
300 if (vol->flags & VOLUME_IS_DIRTY)
301 return 0;
302 ntfs_log_info("Setting required flags on partition... ");
303 /*
304 * Set chkdsk flag, i.e. mark the partition dirty so chkdsk will run
305 * and fix it for us.
306 */
307 flags = vol->flags | VOLUME_IS_DIRTY;
308 if (!opt.no_action && OLD_ntfs_volume_set_flags(vol, flags)) {
309 ntfs_log_info(FAILED);
310 ntfs_log_error("Error setting volume flags.\n");
311 return -1;
312 }
313 vol->flags = flags;
314
315 /* Porting note: libntfs-3g does not have the 'WasDirty' flag/property,
316 * and never touches the 'dirty' bit except when explicitly told to do
317 * so. Since we just wrote the VOLUME_IS_DIRTY bit to disk, and
318 * vol->flags is up-to-date, we can just ignore the NVolSetWasDirty
319 * statement. */
320 /* NVolSetWasDirty(vol); */
321
322 ntfs_log_info(OK);
323 return 0;
324}
325
326/**
327 * empty_journal
328 */
329static int empty_journal(ntfs_volume *vol)
330{
331 if (NVolLogFileEmpty(vol))
332 return 0;
333 ntfs_log_info("Going to empty the journal ($LogFile)... ");
334 if (ntfs_logfile_reset(vol)) {
335 ntfs_log_info(FAILED);
336 ntfs_log_perror("Failed to reset $LogFile");
337 return -1;
338 }
339 ntfs_log_info(OK);
340 return 0;
341}
342
343/**
344 * Clear the bad cluster marks (option)
345 */
346static int clear_badclus(ntfs_volume *vol)
347{
348 static ntfschar badstream[] = {
349 const_cpu_to_le16('$'), const_cpu_to_le16('B'),
350 const_cpu_to_le16('a'), const_cpu_to_le16('d')
351 } ;
352 ntfs_inode *ni;
353 ntfs_attr *na;
354 BOOL ok;
355
356 ok = FALSE;
357 ntfs_log_info("Going to un-mark the bad clusters ($BadClus)... ");
358 ni = ntfs_inode_open(vol, FILE_BadClus);
359 if (ni) {
360 na = ntfs_attr_open(ni, AT_DATA, badstream, 4);
361 /*
362 * chkdsk does not adjust the data size when
363 * moving clusters to $BadClus, so we have to
364 * check the runlist.
365 */
366 if (na && !ntfs_attr_map_whole_runlist(na)) {
367 if (na->rl
368 && na->rl[0].length && na->rl[1].length) {
369 /*
370 * Truncate the stream to free all its clusters,
371 * (which requires setting the data size according
372 * to allocation), then reallocate a sparse stream
373 * to full size of volume and reset the data size.
374 */
375 na->data_size = na->allocated_size;
376 na->initialized_size = na->allocated_size;
377 if (!ntfs_attr_truncate(na,0)
378 && !ntfs_attr_truncate(na,vol->nr_clusters
379 << vol->cluster_size_bits)) {
380 na->data_size = 0;
381 na->initialized_size = 0;
382 ni->flags |= FILE_ATTR_SPARSE_FILE;
383 NInoFileNameSetDirty(ni);
384 ok = TRUE;
385 } else {
386 ntfs_log_perror("Failed to un-mark the bad clusters");
387 }
388 } else {
389 ntfs_log_info("No bad clusters...");
390 ok = TRUE;
391 }
392 ntfs_attr_close(na);
393 } else {
394 ntfs_log_perror("Failed to open $BadClus::$Bad");
395 }
396 ntfs_inode_close(ni);
397 } else {
398 ntfs_log_perror("Failed to open inode FILE_BadClus");
399 }
400 if (ok)
401 ntfs_log_info(OK);
402 return (ok ? 0 : -1);
403}
404
405/**
406 * fix_mftmirr
407 */
408static int fix_mftmirr(ntfs_volume *vol)
409{
410 s64 l, br;
411 unsigned char *m, *m2;
412 int i, ret = -1; /* failure */
413 BOOL done;
414
415 ntfs_log_info("\nProcessing $MFT and $MFTMirr...\n");
416
417 /* Load data from $MFT and $MFTMirr and compare the contents. */
418 m = (u8*)malloc(vol->mftmirr_size << vol->mft_record_size_bits);
419 if (!m) {
420 ntfs_log_perror("Failed to allocate memory");
421 return -1;
422 }
423 m2 = (u8*)malloc(vol->mftmirr_size << vol->mft_record_size_bits);
424 if (!m2) {
425 ntfs_log_perror("Failed to allocate memory");
426 free(m);
427 return -1;
428 }
429
430 ntfs_log_info("Reading $MFT... ");
431 l = ntfs_attr_mst_pread(vol->mft_na, 0, vol->mftmirr_size,
432 vol->mft_record_size, m);
433 if (l != vol->mftmirr_size) {
434 ntfs_log_info(FAILED);
435 if (l != -1)
436 errno = EIO;
437 ntfs_log_perror("Failed to read $MFT");
438 goto error_exit;
439 }
440 ntfs_log_info(OK);
441
442 ntfs_log_info("Reading $MFTMirr... ");
443 l = ntfs_attr_mst_pread(vol->mftmirr_na, 0, vol->mftmirr_size,
444 vol->mft_record_size, m2);
445 if (l != vol->mftmirr_size) {
446 ntfs_log_info(FAILED);
447 if (l != -1)
448 errno = EIO;
449 ntfs_log_perror("Failed to read $MFTMirr");
450 goto error_exit;
451 }
452 ntfs_log_info(OK);
453
454 /*
455 * FIXME: Need to actually check the $MFTMirr for being real. Otherwise
456 * we might corrupt the partition if someone is experimenting with
457 * software RAID and the $MFTMirr is not actually in the position we
458 * expect it to be... )-:
459 * FIXME: We should emit a warning it $MFTMirr is damaged and ask
460 * user whether to recreate it from $MFT or whether to abort. - The
461 * warning needs to include the danger of software RAID arrays.
462 * Maybe we should go as far as to detect whether we are running on a
463 * MD disk and if yes then bomb out right at the start of the program?
464 */
465
466 ntfs_log_info("Comparing $MFTMirr to $MFT... ");
467 done = FALSE;
468 for (i = 0; i < vol->mftmirr_size; ++i) {
469 MFT_RECORD *mrec, *mrec2;
470 const char *ESTR[12] = { "$MFT", "$MFTMirr", "$LogFile",
471 "$Volume", "$AttrDef", "root directory", "$Bitmap",
472 "$Boot", "$BadClus", "$Secure", "$UpCase", "$Extend" };
473 const char *s;
474 BOOL use_mirr;
475
476 if (i < 12)
477 s = ESTR[i];
478 else if (i < 16)
479 s = "system file";
480 else
481 s = "mft record";
482
483 use_mirr = FALSE;
484 mrec = (MFT_RECORD*)(m + i * vol->mft_record_size);
485 if (mrec->flags & MFT_RECORD_IN_USE) {
486 if (ntfs_is_baad_record(mrec->magic)) {
487 ntfs_log_info(FAILED);
488 ntfs_log_error("$MFT error: Incomplete multi "
489 "sector transfer detected in "
490 "%s.\nCannot handle this yet. "
491 ")-:\n", s);
492 goto error_exit;
493 }
494 if (!ntfs_is_mft_record(mrec->magic)) {
495 ntfs_log_info(FAILED);
496 ntfs_log_error("$MFT error: Invalid mft "
497 "record for %s.\nCannot "
498 "handle this yet. )-:\n", s);
499 goto error_exit;
500 }
501 }
502 mrec2 = (MFT_RECORD*)(m2 + i * vol->mft_record_size);
503 if (mrec2->flags & MFT_RECORD_IN_USE) {
504 if (ntfs_is_baad_record(mrec2->magic)) {
505 ntfs_log_info(FAILED);
506 ntfs_log_error("$MFTMirr error: Incomplete "
507 "multi sector transfer "
508 "detected in %s.\n", s);
509 goto error_exit;
510 }
511 if (!ntfs_is_mft_record(mrec2->magic)) {
512 ntfs_log_info(FAILED);
513 ntfs_log_error("$MFTMirr error: Invalid mft "
514 "record for %s.\n", s);
515 goto error_exit;
516 }
517 /* $MFT is corrupt but $MFTMirr is ok, use $MFTMirr. */
518 if (!(mrec->flags & MFT_RECORD_IN_USE) &&
519 !ntfs_is_mft_record(mrec->magic))
520 use_mirr = TRUE;
521 }
522 if (memcmp(mrec, mrec2, ntfs_mft_record_get_data_size(mrec))) {
523 if (!done) {
524 done = TRUE;
525 ntfs_log_info(FAILED);
526 }
527 ntfs_log_info("Correcting differences in $MFT%s "
528 "record %d...", use_mirr ? "" : "Mirr",
529 i);
530 br = ntfs_mft_record_write(vol, i,
531 use_mirr ? mrec2 : mrec);
532 if (br) {
533 ntfs_log_info(FAILED);
534 ntfs_log_perror("Error correcting $MFT%s",
535 use_mirr ? "" : "Mirr");
536 goto error_exit;
537 }
538 ntfs_log_info(OK);
539 }
540 }
541 if (!done)
542 ntfs_log_info(OK);
543 ntfs_log_info("Processing of $MFT and $MFTMirr completed "
544 "successfully.\n");
545 ret = 0;
546error_exit:
547 free(m);
548 free(m2);
549 return ret;
550}
551
552/*
553 * Rewrite the $UpCase file as default
554 *
555 * Returns 0 if could be written
556 */
557
558static int rewrite_upcase(ntfs_volume *vol, ntfs_attr *na)
559{
560 s64 l;
561 int res;
562
563 /* writing the $UpCase may require bitmap updates */
564 res = -1;
565 vol->lcnbmp_ni = ntfs_inode_open(vol, FILE_Bitmap);
566 if (!vol->lcnbmp_ni) {
567 ntfs_log_perror("Failed to open bitmap inode");
568 } else {
569 vol->lcnbmp_na = ntfs_attr_open(vol->lcnbmp_ni, AT_DATA,
570 AT_UNNAMED, 0);
571 if (!vol->lcnbmp_na) {
572 ntfs_log_perror("Failed to open bitmap data attribute");
573 } else {
574 /* minimal consistency check on the bitmap */
575 if (((vol->lcnbmp_na->data_size << 3)
576 < vol->nr_clusters)
577 || ((vol->lcnbmp_na->data_size << 3)
578 >= (vol->nr_clusters << 1))
579 || (vol->lcnbmp_na->data_size
580 > vol->lcnbmp_na->allocated_size)) {
581 ntfs_log_error("Corrupt cluster map size %lld"
582 " (allocated %lld minimum %lld)\n",
583 (long long)vol->lcnbmp_na->data_size,
584 (long long)vol->lcnbmp_na->allocated_size,
585 (long long)(vol->nr_clusters + 7) >> 3);
586 } else {
587 ntfs_log_info("Rewriting $UpCase file\n");
588 l = ntfs_attr_pwrite(na, 0, vol->upcase_len*2,
589 vol->upcase);
590 if (l != vol->upcase_len*2) {
591 ntfs_log_error("Failed to rewrite $UpCase\n");
592 } else {
593 ntfs_log_info("$UpCase has been set to default\n");
594 res = 0;
595 }
596 }
597 ntfs_attr_close(vol->lcnbmp_na);
598 vol->lcnbmp_na = (ntfs_attr*)NULL;
599 }
600 ntfs_inode_close(vol->lcnbmp_ni);
601 vol->lcnbmp_ni = (ntfs_inode*)NULL;
602 }
603 return (res);
604}
605
606/*
607 * Fix the $UpCase file
608 *
609 * Returns 0 if the table is valid or has been fixed
610 */
611
612static int fix_upcase(ntfs_volume *vol)
613{
614 ntfs_inode *ni;
615 ntfs_attr *na;
616 ntfschar *upcase;
617 s64 l;
618 u32 upcase_len;
619 u32 k;
620 int res;
621
622 res = -1;
623 ni = (ntfs_inode*)NULL;
624 na = (ntfs_attr*)NULL;
625 /* Now load the upcase table from $UpCase. */
626 ntfs_log_debug("Loading $UpCase...\n");
627 ni = ntfs_inode_open(vol, FILE_UpCase);
628 if (!ni) {
629 ntfs_log_perror("Failed to open inode FILE_UpCase");
630 goto error_exit;
631 }
632 /* Get an ntfs attribute for $UpCase/$DATA. */
633 na = ntfs_attr_open(ni, AT_DATA, AT_UNNAMED, 0);
634 if (!na) {
635 ntfs_log_perror("Failed to open ntfs attribute");
636 goto error_exit;
637 }
638 /*
639 * Note: Normally, the upcase table has a length equal to 65536
640 * 2-byte Unicode characters but allow for different cases, so no
641 * checks done. Just check we don't overflow 32-bits worth of Unicode
642 * characters.
643 */
644 if (na->data_size & ~0x1ffffffffULL) {
645 ntfs_log_error("Error: Upcase table is too big (max 32-bit "
646 "allowed).\n");
647 errno = EINVAL;
648 goto error_exit;
649 }
650 upcase_len = na->data_size >> 1;
651 upcase = (ntfschar*)ntfs_malloc(na->data_size);
652 if (!upcase)
653 goto error_exit;
654 /* Read in the $DATA attribute value into the buffer. */
655 l = ntfs_attr_pread(na, 0, na->data_size, upcase);
656 if (l != na->data_size) {
657 ntfs_log_error("Failed to read $UpCase, unexpected length "
658 "(%lld != %lld).\n", (long long)l,
659 (long long)na->data_size);
660 errno = EIO;
661 goto error_exit;
662 }
663 /* Consistency check of $UpCase, restricted to plain ASCII chars */
664 k = 0x20;
665 while ((k < upcase_len)
666 && (k < 0x7f)
667 && (le16_to_cpu(upcase[k])
668 == ((k < 'a') || (k > 'z') ? k : k + 'A' - 'a')))
669 k++;
670 if (k < 0x7f) {
671 ntfs_log_error("Corrupted file $UpCase\n");
672 if (!opt.no_action) {
673 /* rewrite the $UpCase file from default */
674 res = rewrite_upcase(vol, na);
675 /* free the bad upcase record */
676 if (!res)
677 free(upcase);
678 } else {
679 /* keep the default upcase but return an error */
680 free(upcase);
681 }
682 } else {
683 /* accept the upcase table read from $UpCase */
684 free(vol->upcase);
685 vol->upcase = upcase;
686 vol->upcase_len = upcase_len;
687 res = 0;
688 }
689error_exit :
690 /* Done with the $UpCase mft record. */
691 if (na)
692 ntfs_attr_close(na);
693 if (ni && ntfs_inode_close(ni)) {
694 ntfs_log_perror("Failed to close $UpCase");
695 }
696 return (res);
697}
698
699/*
700 * Rewrite the boot sector
701 *
702 * Returns 0 if successful
703 */
704
705static int rewrite_boot(struct ntfs_device *dev, char *full_bs,
706 s32 sector_size)
707{
708 s64 bw;
709 int res;
710
711 res = -1;
712 ntfs_log_info("Rewriting the bootsector\n");
713 bw = ntfs_pwrite(dev, 0, sector_size, full_bs);
714 if (bw == sector_size)
715 res = 0;
716 else {
717 if (bw != -1)
718 errno = EINVAL;
719 if (!bw)
720 ntfs_log_error("Failed to rewrite the bootsector (size=0)\n");
721 else
722 ntfs_log_perror("Error rewriting the bootsector");
723 }
724 return (res);
725}
726
727/*
728 * Locate an unnamed attribute in an MFT record
729 *
730 * Returns NULL if not found (with no error message)
731 */
732
733static ATTR_RECORD *find_unnamed_attr(MFT_RECORD *mrec, ATTR_TYPES type)
734{
735 ATTR_RECORD *a;
736 u32 offset;
737
738 /* fetch the requested attribute */
739 offset = le16_to_cpu(mrec->attrs_offset);
740 a = (ATTR_RECORD*)((char*)mrec + offset);
741 while ((a->type != AT_END)
742 && ((a->type != type) || a->name_length)
743 && (offset < le32_to_cpu(mrec->bytes_in_use))) {
744 offset += le32_to_cpu(a->length);
745 a = (ATTR_RECORD*)((char*)mrec + offset);
746 }
747 if ((a->type != type)
748 || a->name_length)
749 a = (ATTR_RECORD*)NULL;
750 return (a);
751}
752
753/*
754 * First condition for having a self-located MFT :
755 * only 16 MFT records are defined in MFT record 0
756 *
757 * Only low-level library functions can be used.
758 *
759 * Returns TRUE if the condition is met.
760 */
761
762static BOOL short_mft_selfloc_condition(struct MFT_SELF_LOCATED *selfloc)
763{
764 BOOL ok;
765 ntfs_volume *vol;
766 MFT_RECORD *mft0;
767 ATTR_RECORD *a;
768 runlist_element *rl;
769 u16 seqn;
770
771 ok = FALSE;
772 vol = selfloc->vol;
773 mft0 = selfloc->mft0;
774 if ((ntfs_pread(vol->dev,
775 vol->mft_lcn << vol->cluster_size_bits,
776 vol->mft_record_size, mft0)
777 == vol->mft_record_size)
778 && !ntfs_mst_post_read_fixup((NTFS_RECORD*)mft0,
779 vol->mft_record_size)) {
780 a = find_unnamed_attr(mft0,AT_DATA);
781 if (a
782 && a->non_resident
783 && (((le64_to_cpu(a->highest_vcn) + 1)
784 << vol->cluster_size_bits)
785 == (SELFLOC_LIMIT*vol->mft_record_size))) {
786 rl = ntfs_mapping_pairs_decompress(vol, a, NULL);
787 if (rl) {
788 /*
789 * The first error condition is having only
790 * 16 entries mapped in the first MFT record.
791 */
792 if ((rl[0].lcn >= 0)
793 && ((rl[0].length << vol->cluster_size_bits)
794 == SELFLOC_LIMIT*vol->mft_record_size)
795 && (rl[1].vcn == rl[0].length)
796 && (rl[1].lcn == LCN_RL_NOT_MAPPED)) {
797 ok = TRUE;
798 seqn = le16_to_cpu(
799 mft0->sequence_number);
800 selfloc->mft_ref0
801 = ((MFT_REF)seqn) << 48;
802 }
803 free(rl);
804 }
805 }
806 }
807 return (ok);
808}
809
810/*
811 * Second condition for having a self-located MFT :
812 * The 16th MFT record is defined in MFT record >= 16
813 *
814 * Only low-level library functions can be used.
815 *
816 * Returns TRUE if the condition is met.
817 */
818
819static BOOL attrlist_selfloc_condition(struct MFT_SELF_LOCATED *selfloc)
820{
821 ntfs_volume *vol;
822 ATTR_RECORD *a;
823 ATTR_LIST_ENTRY *attrlist;
824 ATTR_LIST_ENTRY *al;
825 runlist_element *rl;
826 VCN vcn;
827 leVCN levcn;
828 u32 length;
829 int ok;
830
831 ok = FALSE;
832 length = 0;
833 vol = selfloc->vol;
834 a = find_unnamed_attr(selfloc->mft0,AT_ATTRIBUTE_LIST);
835 if (a) {
836 selfloc->attrlist_resident = !a->non_resident;
837 selfloc->attrlist_lcn = 0;
838 if (a->non_resident) {
839 attrlist = selfloc->attrlist;
840 rl = ntfs_mapping_pairs_decompress(vol, a, NULL);
841 if (rl
842 && (rl->lcn >= 0)
843 && (le64_to_cpu(a->data_size) < vol->cluster_size)
844 && (ntfs_pread(vol->dev,
845 rl->lcn << vol->cluster_size_bits,
846 vol->cluster_size, attrlist) == vol->cluster_size)) {
847 selfloc->attrlist_lcn = rl->lcn;
848 al = attrlist;
849 length = le64_to_cpu(a->data_size);
850 }
851 } else {
852 al = (ATTR_LIST_ENTRY*)
853 ((char*)a + le16_to_cpu(a->value_offset));
854 length = le32_to_cpu(a->value_length);
855 }
856 if (length) {
857 /* search for a data attribute defining entry 16 */
858 vcn = (SELFLOC_LIMIT*vol->mft_record_size)
859 >> vol->cluster_size_bits;
860 levcn = cpu_to_le64(vcn);
861 while ((length > 0)
862 && al->length
863 && ((al->type != AT_DATA)
864 || ((leVCN)al->lowest_vcn != levcn))) {
865 length -= le16_to_cpu(al->length);
866 al = (ATTR_LIST_ENTRY*)
867 ((char*)al + le16_to_cpu(al->length));
868 }
869 if ((length > 0)
870 && al->length
871 && (al->type == AT_DATA)
872 && !al->name_length
873 && ((leVCN)al->lowest_vcn == levcn)
874 && (MREF_LE(al->mft_reference) >= SELFLOC_LIMIT)) {
875 selfloc->mft_ref1
876 = le64_to_cpu(al->mft_reference);
877 selfloc->attrlist_to_ref1 = al;
878 ok = TRUE;
879 }
880 }
881 }
882 return (ok);
883}
884
885/*
886 * Third condition for having a self-located MFT :
887 * The location of the second part of the MFT is defined in itself
888 *
889 * To locate the second part, we have to assume the first and the
890 * second part of the MFT data are contiguous.
891 *
892 * Only low-level library functions can be used.
893 *
894 * Returns TRUE if the condition is met.
895 */
896
897static BOOL self_mapped_selfloc_condition(struct MFT_SELF_LOCATED *selfloc)
898{
899 BOOL ok;
900 s64 inum;
901 u64 offs;
902 VCN lowest_vcn;
903 MFT_RECORD *mft1;
904 ATTR_RECORD *a;
905 ntfs_volume *vol;
906 runlist_element *rl;
907
908 ok = FALSE;
909 vol = selfloc->vol;
910 mft1 = selfloc->mft1;
911 inum = MREF(selfloc->mft_ref1);
912 offs = (vol->mft_lcn << vol->cluster_size_bits)
913 + (inum << vol->mft_record_size_bits);
914 if ((ntfs_pread(vol->dev, offs, vol->mft_record_size,
915 mft1) == vol->mft_record_size)
916 && !ntfs_mst_post_read_fixup((NTFS_RECORD*)mft1,
917 vol->mft_record_size)) {
918 lowest_vcn = (SELFLOC_LIMIT*vol->mft_record_size)
919 >> vol->cluster_size_bits;
920 a = find_unnamed_attr(mft1,AT_DATA);
921 if (a
922 && (mft1->flags & MFT_RECORD_IN_USE)
923 && ((VCN)le64_to_cpu(a->lowest_vcn) == lowest_vcn)
924 && (le64_to_cpu(mft1->base_mft_record)
925 == selfloc->mft_ref0)
926 && ((u16)MSEQNO(selfloc->mft_ref1)
927 == le16_to_cpu(mft1->sequence_number))) {
928 rl = ntfs_mapping_pairs_decompress(vol, a, NULL);
929 if ((rl[0].lcn == LCN_RL_NOT_MAPPED)
930 && !rl[0].vcn
931 && (rl[0].length == lowest_vcn)
932 && (rl[1].vcn == lowest_vcn)
933 && ((u64)(rl[1].lcn << vol->cluster_size_bits)
934 <= offs)
935 && ((u64)((rl[1].lcn + rl[1].length)
936 << vol->cluster_size_bits) > offs)) {
937 ok = TRUE;
938 }
939 }
940 }
941 return (ok);
942}
943
944/*
945 * Fourth condition, to be able to fix a self-located MFT :
946 * The MFT record 15 must be available.
947 *
948 * The MFT record 15 is expected to be marked in use, we assume
949 * it is available if it has no parent, no name and no attr list.
950 *
951 * Only low-level library functions can be used.
952 *
953 * Returns TRUE if the condition is met.
954 */
955
956static BOOL spare_record_selfloc_condition(struct MFT_SELF_LOCATED *selfloc)
957{
958 BOOL ok;
959 s64 inum;
960 u64 offs;
961 MFT_RECORD *mft2;
962 ntfs_volume *vol;
963
964 ok = FALSE;
965 vol = selfloc->vol;
966 mft2 = selfloc->mft2;
967 inum = SELFLOC_LIMIT - 1;
968 offs = (vol->mft_lcn << vol->cluster_size_bits)
969 + (inum << vol->mft_record_size_bits);
970 if ((ntfs_pread(vol->dev, offs, vol->mft_record_size,
971 mft2) == vol->mft_record_size)
972 && !ntfs_mst_post_read_fixup((NTFS_RECORD*)mft2,
973 vol->mft_record_size)) {
974 if (!mft2->base_mft_record
975 && (mft2->flags & MFT_RECORD_IN_USE)
976 && !find_unnamed_attr(mft2,AT_ATTRIBUTE_LIST)
977 && !find_unnamed_attr(mft2,AT_FILE_NAME)) {
978 ok = TRUE;
979 }
980 }
981 return (ok);
982}
983
984/*
985 * Fix a self-located MFT by swapping two MFT records
986 *
987 * Only low-level library functions can be used.
988 *
989 * Returns 0 if the MFT corruption could be fixed.
990 */
991static int fix_selfloc_conditions(struct MFT_SELF_LOCATED *selfloc)
992{
993 MFT_RECORD *mft1;
994 MFT_RECORD *mft2;
995 ATTR_RECORD *a;
996 ATTR_LIST_ENTRY *al;
997 ntfs_volume *vol;
998 s64 offs;
999 s64 offsm;
1000 s64 offs1;
1001 s64 offs2;
1002 s64 inum;
1003 u16 usa_ofs;
1004 int res;
1005
1006 res = 0;
1007 /*
1008 * In MFT1, we must fix :
1009 * - the self-reference, if present,
1010 * - its own sequence number, must be 15
1011 * - the sizes of the data attribute.
1012 */
1013 vol = selfloc->vol;
1014 mft1 = selfloc->mft1;
1015 mft2 = selfloc->mft2;
1016 usa_ofs = le16_to_cpu(mft1->usa_ofs);
1017 if (usa_ofs >= 48)
1018 mft1->mft_record_number = const_cpu_to_le32(SELFLOC_LIMIT - 1);
1019 mft1->sequence_number = const_cpu_to_le16(SELFLOC_LIMIT - 1);
1020 a = find_unnamed_attr(mft1,AT_DATA);
1021 if (a) {
1022 a->allocated_size = const_cpu_to_le64(0);
1023 a->data_size = const_cpu_to_le64(0);
1024 a->initialized_size = const_cpu_to_le64(0);
1025 } else
1026 res = -1; /* bug : it has been found earlier */
1027
1028 /*
1029 * In MFT2, we must fix :
1030 * - the self-reference, if present
1031 */
1032 usa_ofs = le16_to_cpu(mft2->usa_ofs);
1033 if (usa_ofs >= 48)
1034 mft2->mft_record_number = cpu_to_le32(MREF(selfloc->mft_ref1));
1035
1036 /*
1037 * In the attribute list, we must fix :
1038 * - the reference to MFT1
1039 */
1040 al = selfloc->attrlist_to_ref1;
1041 al->mft_reference = MK_LE_MREF(SELFLOC_LIMIT - 1, SELFLOC_LIMIT - 1);
1042
1043 /*
1044 * All fixes done, we can write all if allowed
1045 */
1046 if (!res && !opt.no_action) {
1047 inum = SELFLOC_LIMIT - 1;
1048 offs2 = (vol->mft_lcn << vol->cluster_size_bits)
1049 + (inum << vol->mft_record_size_bits);
1050 inum = MREF(selfloc->mft_ref1);
1051 offs1 = (vol->mft_lcn << vol->cluster_size_bits)
1052 + (inum << vol->mft_record_size_bits);
1053
1054 /* rewrite the attribute list */
1055 if (selfloc->attrlist_resident) {
1056 /* write mft0 and mftmirr if it is resident */
1057 offs = vol->mft_lcn << vol->cluster_size_bits;
1058 offsm = vol->mftmirr_lcn << vol->cluster_size_bits;
1059 if (ntfs_mst_pre_write_fixup(
1060 (NTFS_RECORD*)selfloc->mft0,
1061 vol->mft_record_size)
1062 || (ntfs_pwrite(vol->dev, offs, vol->mft_record_size,
1063 selfloc->mft0) != vol->mft_record_size)
1064 || (ntfs_pwrite(vol->dev, offsm, vol->mft_record_size,
1065 selfloc->mft0) != vol->mft_record_size))
1066 res = -1;
1067 } else {
1068 /* write a full cluster if non resident */
1069 offs = selfloc->attrlist_lcn << vol->cluster_size_bits;
1070 if (ntfs_pwrite(vol->dev, offs, vol->cluster_size,
1071 selfloc->attrlist) != vol->cluster_size)
1072 res = -1;
1073 }
1074 /* replace MFT2 by MFT1 and replace MFT1 by MFT2 */
1075 if (!res
1076 && (ntfs_mst_pre_write_fixup((NTFS_RECORD*)selfloc->mft1,
1077 vol->mft_record_size)
1078 || ntfs_mst_pre_write_fixup((NTFS_RECORD*)selfloc->mft2,
1079 vol->mft_record_size)
1080 || (ntfs_pwrite(vol->dev, offs2, vol->mft_record_size,
1081 mft1) != vol->mft_record_size)
1082 || (ntfs_pwrite(vol->dev, offs1, vol->mft_record_size,
1083 mft2) != vol->mft_record_size)))
1084 res = -1;
1085 }
1086 return (res);
1087}
1088
1089/*
1090 * Detect and fix a Windows XP bug, leading to a corrupt MFT
1091 *
1092 * Windows cannot boot anymore, so chkdsk cannot be started, which
1093 * is a good point, because chkdsk would have deleted all the files.
1094 * Older ntfs-3g fell into an endless recursion (recent versions
1095 * refuse to mount).
1096 *
1097 * This situation is very rare, but it was fun to fix it.
1098 *
1099 * The corrupted condition is :
1100 * - MFT entry 0 has only the runlist for MFT entries 0-15
1101 * - The attribute list for MFT shows the second part
1102 * in an MFT record beyond 15
1103 * Of course, this record has to be read in order to know where it is.
1104 *
1105 * Sample case, met in 2011 (Windows XP) :
1106 * MFT record 0 has : stdinfo, nonres attrlist, the first
1107 * part of MFT data (entries 0-15), and bitmap
1108 * MFT record 16 has the name
1109 * MFT record 17 has the third part of MFT data (16-117731)
1110 * MFT record 18 has the second part of MFT data (117732-170908)
1111 *
1112 * Assuming the second part of the MFT is contiguous to the first
1113 * part, we can find it, and fix the condition by relocating it
1114 * and swapping it with MFT record 15.
1115 * This record number 15 appears to be hardcoded into Windows NTFS.
1116 *
1117 * Only low-level library functions can be used.
1118 *
1119 * Returns 0 if the conditions for the error were not met or
1120 * the error could be fixed,
1121 * -1 if some error was encountered
1122 */
1123
1124static int fix_self_located_mft(ntfs_volume *vol)
1125{
1126 struct MFT_SELF_LOCATED selfloc;
1127 BOOL res;
1128
1129 ntfs_log_info("Checking for self-located MFT segment... ");
1130 res = -1;
1131 selfloc.vol = vol;
1132 selfloc.mft0 = (MFT_RECORD*)malloc(vol->mft_record_size);
1133 selfloc.mft1 = (MFT_RECORD*)malloc(vol->mft_record_size);
1134 selfloc.mft2 = (MFT_RECORD*)malloc(vol->mft_record_size);
1135 selfloc.attrlist = (ATTR_LIST_ENTRY*)malloc(vol->cluster_size);
1136 if (selfloc.mft0 && selfloc.mft1 && selfloc.mft2
1137 && selfloc.attrlist) {
1138 if (short_mft_selfloc_condition(&selfloc)
1139 && attrlist_selfloc_condition(&selfloc)
1140 && self_mapped_selfloc_condition(&selfloc)
1141 && spare_record_selfloc_condition(&selfloc)) {
1142 ntfs_log_info(FOUND);
1143 ntfs_log_info("Fixing the self-located MFT segment... ");
1144 res = fix_selfloc_conditions(&selfloc);
1145 ntfs_log_info(res ? FAILED : OK);
1146 } else {
1147 ntfs_log_info(OK);
1148 res = 0;
1149 }
1150 free(selfloc.mft0);
1151 free(selfloc.mft1);
1152 free(selfloc.mft2);
1153 free(selfloc.attrlist);
1154 }
1155 return (res);
1156}
1157
1158/*
1159 * Try an alternate boot sector and fix the real one
1160 *
1161 * Only after successful checks is the boot sector rewritten.
1162 *
1163 * The alternate boot sector is not rewritten, either because it
1164 * was found correct, or because we truncated the file system
1165 * and the last actual sector might be part of some file.
1166 *
1167 * Returns 0 if successful
1168 */
1169
1170static int try_fix_boot(ntfs_volume *vol, char *full_bs,
1171 s64 read_sector, s64 fix_sectors, s32 sector_size)
1172{
1173 s64 br;
1174 int res;
1175 s64 got_sectors;
1176 le16 sector_size_le;
1177 NTFS_BOOT_SECTOR *bs;
1178
1179 res = -1;
1180 br = ntfs_pread(vol->dev, read_sector*sector_size,
1181 sector_size, full_bs);
1182 if (br != sector_size) {
1183 if (br != -1)
1184 errno = EINVAL;
1185 if (!br)
1186 ntfs_log_error("Failed to read alternate bootsector (size=0)\n");
1187 else
1188 ntfs_log_perror("Error reading alternate bootsector");
1189 } else {
1190 bs = (NTFS_BOOT_SECTOR*)full_bs;
1191 got_sectors = le64_to_cpu(bs->number_of_sectors);
1192 bs->number_of_sectors = cpu_to_le64(fix_sectors);
1193 /* alignment problem on Sparc, even doing memcpy() */
1194 sector_size_le = cpu_to_le16(sector_size);
1195 if (!memcmp(&sector_size_le, &bs->bpb.bytes_per_sector,2)
1196 && ntfs_boot_sector_is_ntfs(bs)
1197 && !ntfs_boot_sector_parse(vol, bs)) {
1198 ntfs_log_info("The alternate bootsector is usable\n");
1199 if (fix_sectors != got_sectors)
1200 ntfs_log_info("Set sector count to %lld instead of %lld\n",
1201 (long long)fix_sectors,
1202 (long long)got_sectors);
1203 /* fix the normal boot sector */
1204 if (!opt.no_action) {
1205 res = rewrite_boot(vol->dev, full_bs,
1206 sector_size);
1207 } else
1208 res = 0;
1209 }
1210 if (!res && !opt.no_action)
1211 ntfs_log_info("The boot sector has been rewritten\n");
1212 }
1213 return (res);
1214}
1215
1216/*
1217 * Try the alternate boot sector if the normal one is bad
1218 *
1219 * Actually :
1220 * - first try the last sector of the partition (expected location)
1221 * - then try the last sector as shown in the main boot sector,
1222 * (could be meaningful for an undersized partition)
1223 * - finally try truncating the file system actual size of partition
1224 * (could be meaningful for an oversized partition)
1225 *
1226 * if successful, rewrite the normal boot sector accordingly
1227 *
1228 * Returns 0 if successful
1229 */
1230
1231static int try_alternate_boot(ntfs_volume *vol, char *full_bs,
1232 s32 sector_size, s64 shown_sectors)
1233{
1234 s64 actual_sectors;
1235 int res;
1236
1237 res = -1;
1238 ntfs_log_info("Trying the alternate boot sector\n");
1239
1240 /*
1241 * We do not rely on the sector size defined in the
1242 * boot sector, supposed to be corrupt, so we try to get
1243 * the actual sector size and defaulting to 512 if failed
1244 * to get. This value is only used to guess the alternate
1245 * boot sector location and it is checked against the
1246 * value found in the sector itself. It should not damage
1247 * anything if wrong.
1248 *
1249 * Note : the real last sector is not accounted for here.
1250 */
1251 actual_sectors = ntfs_device_size_get(vol->dev,sector_size) - 1;
1252
1253 /* first try the actual last sector */
1254 if ((actual_sectors > 0)
1255 && !try_fix_boot(vol, full_bs, actual_sectors,
1256 actual_sectors, sector_size))
1257 res = 0;
1258
1259 /* then try the shown last sector, if less than actual */
1260 if (res
1261 && (shown_sectors > 0)
1262 && (shown_sectors < actual_sectors)
1263 && !try_fix_boot(vol, full_bs, shown_sectors,
1264 shown_sectors, sector_size))
1265 res = 0;
1266
1267 /* then try reducing the number of sectors to actual value */
1268 if (res
1269 && (shown_sectors > actual_sectors)
1270 && !try_fix_boot(vol, full_bs, 0, actual_sectors, sector_size))
1271 res = 0;
1272
1273 return (res);
1274}
1275
1276/*
1277 * Check and fix the alternate boot sector
1278 *
1279 * The alternate boot sector is usually in the last sector of a
1280 * partition, which should not be used by the file system
1281 * (the sector count in the boot sector should be less than
1282 * the total sector count in the partition).
1283 *
1284 * chkdsk never changes the count in the boot sector.
1285 * - If this is less than the total count, chkdsk place the
1286 * alternate boot sector into the sector,
1287 * - if the count is the same as the total count, chkdsk place
1288 * the alternate boot sector into the middle sector (half
1289 * the total count rounded upwards)
1290 * - if the count is greater than the total count, chkdsk
1291 * declares the file system as raw, and refuses to fix anything.
1292 *
1293 * Here, we check and fix the alternate boot sector, only in the
1294 * first situation where the file system does not overflow on the
1295 * last sector.
1296 *
1297 * Note : when shrinking a partition, ntfsresize cannot determine
1298 * the future size of the partition. As a consequence the number of
1299 * sectors in the boot sectors may be less than the possible size.
1300 *
1301 * Returns 0 if successful
1302 */
1303
1304static int check_alternate_boot(ntfs_volume *vol)
1305{
1306#if 0
1307 s64 got_sectors;
1308 s64 actual_sectors;
1309 s64 last_sector_off;
1310 char *full_bs;
1311 char *alt_bs;
1312 NTFS_BOOT_SECTOR *bs;
1313 s64 br;
1314 s64 bw;
1315 int res;
1316
1317 res = -1;
1318 full_bs = (char*)malloc(vol->sector_size);
1319 alt_bs = (char*)malloc(vol->sector_size);
1320 if (!full_bs || !alt_bs) {
1321 ntfs_log_info("Error : failed to allocate memory\n");
1322 goto error_exit;
1323 }
1324 /* Now read both bootsectors. */
1325 br = ntfs_pread(vol->dev, 0, vol->sector_size, full_bs);
1326 if (br == vol->sector_size) {
1327 bs = (NTFS_BOOT_SECTOR*)full_bs;
1328 got_sectors = le64_to_cpu(bs->number_of_sectors);
1329 actual_sectors = ntfs_device_size_get(vol->dev,
1330 vol->sector_size);
1331 if (actual_sectors > got_sectors) {
1332 last_sector_off = (actual_sectors - 1)
1333 << vol->sector_size_bits;
1334 ntfs_log_info("Checking the alternate boot sector... ");
1335 br = ntfs_pread(vol->dev, last_sector_off,
1336 vol->sector_size, alt_bs);
1337 } else {
1338 ntfs_log_info("Checking file system overflow... ");
1339 br = -1;
1340 }
1341 /* accept getting no byte, needed for short image files */
1342 if (br >= 0) {
1343 if ((br != vol->sector_size)
1344 || memcmp(full_bs, alt_bs, vol->sector_size)) {
1345 if (opt.no_action) {
1346 ntfs_log_info("BAD\n");
1347 } else {
1348 bw = ntfs_pwrite(vol->dev,
1349 last_sector_off,
1350 vol->sector_size, full_bs);
1351 if (bw == vol->sector_size) {
1352 ntfs_log_info("FIXED\n");
1353 res = 0;
1354 } else {
1355 ntfs_log_info(FAILED);
1356 }
1357 }
1358 } else {
1359 ntfs_log_info(OK);
1360 res = 0;
1361 }
1362 } else {
1363 ntfs_log_info(FAILED);
1364 }
1365 } else {
1366 ntfs_log_info("Error : could not read the boot sector again\n");
1367 }
1368 free(full_bs);
1369 free(alt_bs);
1370
1371error_exit :
1372 return (res);
1373#endif
1374 return (0);
1375}
1376
1377/*
1378 * Try to fix problems which may arise in the start up sequence
1379 *
1380 * This is a replay of the normal start up sequence with fixes when
1381 * some problem arise.
1382 */
1383
1384static int fix_startup(struct ntfs_device *dev, unsigned long flags)
1385{
1386 s64 br;
1387 ntfs_volume *vol;
1388 BOOL dev_open;
1389 s64 shown_sectors;
1390 char *full_bs;
1391 NTFS_BOOT_SECTOR *bs;
1392 s32 sector_size;
1393 int res;
1394 int eo;
1395
1396 errno = 0;
1397 res = -1;
1398 dev_open = FALSE;
1399 full_bs = (char*)NULL;
1400 if (!dev || !dev->d_ops || !dev->d_name) {
1401 errno = EINVAL;
1402 ntfs_log_perror("%s: dev = %p", __FUNCTION__, dev);
1403 vol = (ntfs_volume*)NULL;
1404 goto error_exit;
1405 }
1406
1407 /* Allocate the volume structure. */
1408 vol = ntfs_volume_alloc();
1409 if (!vol)
1410 goto error_exit;
1411
1412 /* Create the default upcase table. */
1413 vol->upcase_len = ntfs_upcase_build_default(&vol->upcase);
1414 if (!vol->upcase_len || !vol->upcase)
1415 goto error_exit;
1416
1417 /* Default with no locase table and case sensitive file names */
1418 vol->locase = (ntfschar*)NULL;
1419 NVolSetCaseSensitive(vol);
1420
1421 /* by default, all files are shown and not marked hidden */
1422 NVolSetShowSysFiles(vol);
1423 NVolSetShowHidFiles(vol);
1424 NVolClearHideDotFiles(vol);
1425 if (flags & NTFS_MNT_RDONLY)
1426 NVolSetReadOnly(vol);
1427
1428 /* ...->open needs bracketing to compile with glibc 2.7 */
1429 if ((dev->d_ops->open)(dev, NVolReadOnly(vol) ? O_RDONLY: O_RDWR)) {
1430 ntfs_log_perror("Error opening '%s'", dev->d_name);
1431 goto error_exit;
1432 }
1433 dev_open = TRUE;
1434 /* Attach the device to the volume. */
1435 vol->dev = dev;
1436
1437 sector_size = ntfs_device_sector_size_get(dev);
1438 if (sector_size <= 0)
1439 sector_size = DEFAULT_SECTOR_SIZE;
1440 full_bs = (char*)malloc(sector_size);
1441 if (!full_bs)
1442 goto error_exit;
1443 /* Now read the bootsector. */
1444 br = ntfs_pread(dev, 0, sector_size, full_bs);
1445 if (br != sector_size) {
1446 if (br != -1)
1447 errno = EINVAL;
1448 if (!br)
1449 ntfs_log_error("Failed to read bootsector (size=0)\n");
1450 else
1451 ntfs_log_perror("Error reading bootsector");
1452 goto error_exit;
1453 }
1454 bs = (NTFS_BOOT_SECTOR*)full_bs;
1455 if (!ntfs_boot_sector_is_ntfs(bs)
1456 /* get the bootsector data, only fails when inconsistent */
1457 || (ntfs_boot_sector_parse(vol, bs) < 0)) {
1458 shown_sectors = le64_to_cpu(bs->number_of_sectors);
1459 /* boot sector is wrong, try the alternate boot sector */
1460 if (try_alternate_boot(vol, full_bs, sector_size,
1461 shown_sectors)) {
1462 errno = EINVAL;
1463 goto error_exit;
1464 }
1465 res = 0;
1466 } else {
1467 res = fix_self_located_mft(vol);
1468 }
1469error_exit:
1470 if (res) {
1471 switch (errno) {
1472 case ENOMEM :
1473 ntfs_log_error("Failed to allocate memory\n");
1474 break;
1475 case EINVAL :
1476 ntfs_log_error("Unrecoverable error\n");
1477 break;
1478 default :
1479 break;
1480 }
1481 }
1482 eo = errno;
1483 free(full_bs);
1484 if (vol) {
1485 free(vol->upcase);
1486 free(vol);
1487 }
1488 if (dev_open) {
1489 (dev->d_ops->close)(dev);
1490 }
1491 errno = eo;
1492 return (res);
1493}
1494
1495/**
1496 * fix_mount
1497 */
1498static int fix_mount(void)
1499{
1500 int ret = 0; /* default success */
1501 ntfs_volume *vol;
1502 struct ntfs_device *dev;
1503 unsigned long flags;
1504
1505 ntfs_log_info("Attempting to correct errors... ");
1506
1507 dev = ntfs_device_alloc(opt.volume, 0, &ntfs_device_default_io_ops,
1508 NULL);
1509 if (!dev) {
1510 ntfs_log_info(FAILED);
1511 ntfs_log_perror("Failed to allocate device");
1512 return -1;
1513 }
1514 flags = (opt.no_action ? NTFS_MNT_RDONLY : 0);
1515 vol = ntfs_volume_startup(dev, flags);
1516 if (!vol) {
1517 ntfs_log_info(FAILED);
1518 ntfs_log_perror("Failed to startup volume");
1519
1520 /* Try fixing the bootsector and MFT, then redo the startup */
1521 if (!fix_startup(dev, flags)) {
1522 if (opt.no_action)
1523 ntfs_log_info("The startup data can be fixed, "
1524 "but no change was requested\n");
1525 else
1526 vol = ntfs_volume_startup(dev, flags);
1527 }
1528 if (!vol) {
1529 ntfs_log_error("Volume is corrupt. You should run chkdsk.\n");
1530 ntfs_device_free(dev);
1531 return -1;
1532 }
1533 if (opt.no_action)
1534 ret = -1; /* error present and not fixed */
1535 }
1536 /* if option -n proceed despite errors, to display them all */
1537 if ((!ret || opt.no_action) && (fix_mftmirr(vol) < 0))
1538 ret = -1;
1539 if ((!ret || opt.no_action) && (fix_upcase(vol) < 0))
1540 ret = -1;
1541 if ((!ret || opt.no_action) && (set_dirty_flag(vol) < 0))
1542 ret = -1;
1543 if ((!ret || opt.no_action) && (empty_journal(vol) < 0))
1544 ret = -1;
1545 /*
1546 * ntfs_umount() will invoke ntfs_device_free() for us.
1547 * Ignore the returned error resulting from partial mounting.
1548 */
1549 ntfs_umount(vol, 1);
1550 return ret;
1551}
1552
1553/**
1554 * main
1555 */
1556int main(int argc, char **argv)
1557{
1558 ntfs_volume *vol;
1559 unsigned long mnt_flags;
1560 unsigned long flags;
1561 int ret = 1; /* failure */
1562 BOOL force = FALSE;
1563
1564 ntfs_log_set_handler(ntfs_log_handler_outerr);
1565
1566 parse_options(argc, argv);
1567
1568 if (!ntfs_check_if_mounted(opt.volume, &mnt_flags)) {
1569 if ((mnt_flags & NTFS_MF_MOUNTED) &&
1570 !(mnt_flags & NTFS_MF_READONLY) && !force) {
1571 ntfs_log_error("Refusing to operate on read-write "
1572 "mounted device %s.\n", opt.volume);
1573 exit(1);
1574 }
1575 } else
1576 ntfs_log_perror("Failed to determine whether %s is mounted",
1577 opt.volume);
1578 /* Attempt a full mount first. */
1579 flags = (opt.no_action ? NTFS_MNT_RDONLY : 0);
1580 ntfs_log_info("Mounting volume... ");
1581 vol = ntfs_mount(opt.volume, flags);
1582 if (vol) {
1583 ntfs_log_info(OK);
1584 ntfs_log_info("Processing of $MFT and $MFTMirr completed "
1585 "successfully.\n");
1586 } else {
1587 ntfs_log_info(FAILED);
1588 if (fix_mount() < 0) {
1589 if (opt.no_action)
1590 ntfs_log_info("No change made\n");
1591 exit(1);
1592 }
1593 vol = ntfs_mount(opt.volume, 0);
1594 if (!vol) {
1595 ntfs_log_perror("Remount failed");
1596 exit(1);
1597 }
1598 }
1599 if (check_alternate_boot(vol)) {
1600 ntfs_log_error("Error: Failed to fix the alternate boot sector\n");
1601 exit(1);
1602 }
1603 /* So the unmount does not clear it again. */
1604
1605 /* Porting note: The WasDirty flag was set here to prevent ntfs_unmount
1606 * from clearing the dirty bit (which might have been set in
1607 * fix_mount()). So the intention is to leave the dirty bit set.
1608 *
1609 * libntfs-3g does not automatically set or clear dirty flags on
1610 * mount/unmount, this means that the assumption that the dirty flag is
1611 * now set does not hold. So we need to set it if not already set.
1612 *
1613 * However clear the flag if requested to do so, at this stage
1614 * mounting was successful.
1615 */
1616 if (opt.clear_dirty)
1617 vol->flags &= ~VOLUME_IS_DIRTY;
1618 else
1619 vol->flags |= VOLUME_IS_DIRTY;
1620 if (!opt.no_action && ntfs_volume_write_flags(vol, vol->flags)) {
1621 ntfs_log_error("Error: Failed to set volume dirty flag (%d "
1622 "(%s))!\n", errno, strerror(errno));
1623 }
1624
1625 /* Check NTFS version is ok for us (in $Volume) */
1626 ntfs_log_info("NTFS volume version is %i.%i.\n", vol->major_ver,
1627 vol->minor_ver);
1628 if (ntfs_version_is_supported(vol)) {
1629 ntfs_log_error("Error: Unknown NTFS version.\n");
1630 goto error_exit;
1631 }
1632 if (opt.clear_bad_sectors && !opt.no_action) {
1633 if (clear_badclus(vol)) {
1634 ntfs_log_error("Error: Failed to un-mark bad sectors.\n");
1635 goto error_exit;
1636 }
1637 }
1638 if (vol->major_ver >= 3) {
1639 /*
1640 * FIXME: If on NTFS 3.0+, check for presence of the usn
1641 * journal and stamp it if present.
1642 */
1643 }
1644 /* FIXME: We should be marking the quota out of date, too. */
1645 /* That's all for now! */
1646 ntfs_log_info("NTFS partition %s was processed successfully.\n",
1647 vol->dev->d_name);
1648 /* Set return code to 0. */
1649 ret = 0;
1650error_exit:
1651 if (ntfs_umount(vol, 0))
1652 ntfs_umount(vol, 1);
1653 if (ret)
1654 exit(ret);
1655 return ret;
1656}
1657
1658