summaryrefslogtreecommitdiff
path: root/audio_codec/libfaad/helixaac/sbrhfgen.c (plain)
blob: 0ab7dad74c029165ce1a2bc66f46d870306445c2
1/* ***** BEGIN LICENSE BLOCK *****
2 * Source last modified: $Id: sbrhfgen.c,v 1.1.2.2 2005/05/19 21:00:01 jrecker Exp $
3 *
4 * Portions Copyright (c) 1995-2005 RealNetworks, Inc. All Rights Reserved.
5 *
6 * The contents of this file, and the files included with this file,
7 * are subject to the current version of the RealNetworks Public
8 * Source License (the "RPSL") available at
9 * http://www.helixcommunity.org/content/rpsl unless you have licensed
10 * the file under the current version of the RealNetworks Community
11 * Source License (the "RCSL") available at
12 * http://www.helixcommunity.org/content/rcsl, in which case the RCSL
13 * will apply. You may also obtain the license terms directly from
14 * RealNetworks. You may not use this file except in compliance with
15 * the RPSL or, if you have a valid RCSL with RealNetworks applicable
16 * to this file, the RCSL. Please see the applicable RPSL or RCSL for
17 * the rights, obligations and limitations governing use of the
18 * contents of the file.
19 *
20 * This file is part of the Helix DNA Technology. RealNetworks is the
21 * developer of the Original Code and owns the copyrights in the
22 * portions it created.
23 *
24 * This file, and the files included with this file, is distributed
25 * and made available on an 'AS IS' basis, WITHOUT WARRANTY OF ANY
26 * KIND, EITHER EXPRESS OR IMPLIED, AND REALNETWORKS HEREBY DISCLAIMS
27 * ALL SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES
28 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET
29 * ENJOYMENT OR NON-INFRINGEMENT.
30 *
31 * Technology Compatibility Kit Test Suite(s) Location:
32 * http://www.helixcommunity.org/content/tck
33 *
34 * Contributor(s):
35 *
36 * ***** END LICENSE BLOCK ***** */
37
38/**************************************************************************************
39 * Fixed-point HE-AAC decoder
40 * Jon Recker (jrecker@real.com)
41 * February 2005
42 *
43 * sbrhfgen.c - high frequency generation for SBR
44 **************************************************************************************/
45
46#include "sbr.h"
47#include "assembly.h"
48
49#define FBITS_LPCOEFS 29 /* Q29 for range of (-4, 4) */
50#define MAG_16 (16 * (1 << (32 - (2*(32-FBITS_LPCOEFS))))) /* i.e. 16 in Q26 format */
51#define RELAX_COEF 0x7ffff79c /* 1.0 / (1.0 + 1e-6), Q31 */
52
53/* newBWTab[prev invfMode][curr invfMode], format = Q31 (table 4.158)
54 * sample file which uses all of these: al_sbr_sr_64_2_fsaac32.aac
55 */
56static const int newBWTab[4][4] = {
57 {0x00000000, 0x4ccccccd, 0x73333333, 0x7d70a3d7},
58 {0x4ccccccd, 0x60000000, 0x73333333, 0x7d70a3d7},
59 {0x00000000, 0x60000000, 0x73333333, 0x7d70a3d7},
60 {0x00000000, 0x60000000, 0x73333333, 0x7d70a3d7},
61};
62
63/**************************************************************************************
64 * Function: CVKernel1
65 *
66 * Description: kernel of covariance matrix calculation for p01, p11, p12, p22
67 *
68 * Inputs: buffer of low-freq samples, starting at time index = 0,
69 * freq index = patch subband
70 *
71 * Outputs: 64-bit accumulators for p01re, p01im, p12re, p12im, p11re, p22re
72 * stored in accBuf
73 *
74 * Return: none
75 *
76 * Notes: this is carefully written to be efficient on ARM
77 * use the assembly code version in sbrcov.s when building for ARM!
78 **************************************************************************************/
79#if 0// (defined (__arm) && defined (__ARMCC_VERSION)) || (defined (_WIN32) && defined (_WIN32_WCE) && defined (ARM)) || (defined(__GNUC__) && defined(__arm__))
80#ifdef __cplusplus
81extern "C"
82#endif
83void CVKernel1(int *XBuf, int *accBuf);
84#else
85void CVKernel1(int *XBuf, int *accBuf)
86{
87 U64 p01re, p01im, p12re, p12im, p11re, p22re;
88 int n, x0re, x0im, x1re, x1im;
89
90 x0re = XBuf[0];
91 x0im = XBuf[1];
92 XBuf += (2 * 64);
93 x1re = XBuf[0];
94 x1im = XBuf[1];
95 XBuf += (2 * 64);
96
97 p01re.w64 = p01im.w64 = 0;
98 p12re.w64 = p12im.w64 = 0;
99 p11re.w64 = 0;
100 p22re.w64 = 0;
101
102 p12re.w64 = MADD64(p12re.w64, x1re, x0re);
103 p12re.w64 = MADD64(p12re.w64, x1im, x0im);
104 p12im.w64 = MADD64(p12im.w64, x0re, x1im);
105 p12im.w64 = MADD64(p12im.w64, -x0im, x1re);
106 p22re.w64 = MADD64(p22re.w64, x0re, x0re);
107 p22re.w64 = MADD64(p22re.w64, x0im, x0im);
108 for (n = (NUM_TIME_SLOTS * SAMPLES_PER_SLOT + 6); n != 0; n--) {
109 /* 4 input, 3*2 acc, 1 ptr, 1 loop counter = 12 registers (use same for x0im, -x0im) */
110 x0re = x1re;
111 x0im = x1im;
112 x1re = XBuf[0];
113 x1im = XBuf[1];
114
115 p01re.w64 = MADD64(p01re.w64, x1re, x0re);
116 p01re.w64 = MADD64(p01re.w64, x1im, x0im);
117 p01im.w64 = MADD64(p01im.w64, x0re, x1im);
118 p01im.w64 = MADD64(p01im.w64, -x0im, x1re);
119 p11re.w64 = MADD64(p11re.w64, x0re, x0re);
120 p11re.w64 = MADD64(p11re.w64, x0im, x0im);
121
122 XBuf += (2 * 64);
123 }
124 /* these can be derived by slight changes to account for boundary conditions */
125 p12re.w64 += p01re.w64;
126 p12re.w64 = MADD64(p12re.w64, x1re, -x0re);
127 p12re.w64 = MADD64(p12re.w64, x1im, -x0im);
128 p12im.w64 += p01im.w64;
129 p12im.w64 = MADD64(p12im.w64, x0re, -x1im);
130 p12im.w64 = MADD64(p12im.w64, x0im, x1re);
131 p22re.w64 += p11re.w64;
132 p22re.w64 = MADD64(p22re.w64, x0re, -x0re);
133 p22re.w64 = MADD64(p22re.w64, x0im, -x0im);
134
135 accBuf[0] = p01re.r.lo32;
136 accBuf[1] = p01re.r.hi32;
137 accBuf[2] = p01im.r.lo32;
138 accBuf[3] = p01im.r.hi32;
139 accBuf[4] = p11re.r.lo32;
140 accBuf[5] = p11re.r.hi32;
141 accBuf[6] = p12re.r.lo32;
142 accBuf[7] = p12re.r.hi32;
143 accBuf[8] = p12im.r.lo32;
144 accBuf[9] = p12im.r.hi32;
145 accBuf[10] = p22re.r.lo32;
146 accBuf[11] = p22re.r.hi32;
147}
148#endif
149
150/**************************************************************************************
151 * Function: CalcCovariance1
152 *
153 * Description: calculate covariance matrix for p01, p12, p11, p22 (4.6.18.6.2)
154 *
155 * Inputs: buffer of low-freq samples, starting at time index 0,
156 * freq index = patch subband
157 *
158 * Outputs: complex covariance elements p01re, p01im, p12re, p12im, p11re, p22re
159 * (p11im = p22im = 0)
160 * format = integer (Q0) * 2^N, with scalefactor N >= 0
161 *
162 * Return: scalefactor N
163 *
164 * Notes: outputs are normalized to have 1 GB (sign in at least top 2 bits)
165 **************************************************************************************/
166static int CalcCovariance1(int *XBuf, int *p01reN, int *p01imN, int *p12reN, int *p12imN, int *p11reN, int *p22reN)
167{
168 int accBuf[2 * 6];
169 int n, z, s, loShift, hiShift, gbMask;
170 U64 p01re, p01im, p12re, p12im, p11re, p22re;
171
172 CVKernel1(XBuf, accBuf);
173 p01re.r.lo32 = accBuf[0];
174 p01re.r.hi32 = accBuf[1];
175 p01im.r.lo32 = accBuf[2];
176 p01im.r.hi32 = accBuf[3];
177 p11re.r.lo32 = accBuf[4];
178 p11re.r.hi32 = accBuf[5];
179 p12re.r.lo32 = accBuf[6];
180 p12re.r.hi32 = accBuf[7];
181 p12im.r.lo32 = accBuf[8];
182 p12im.r.hi32 = accBuf[9];
183 p22re.r.lo32 = accBuf[10];
184 p22re.r.hi32 = accBuf[11];
185
186 /* 64-bit accumulators now have 2*FBITS_OUT_QMFA fraction bits
187 * want to scale them down to integers (32-bit signed, Q0)
188 * with scale factor of 2^n, n >= 0
189 * leave 2 GB's for calculating determinant, so take top 30 non-zero bits
190 */
191 gbMask = ((p01re.r.hi32) ^(p01re.r.hi32 >> 31)) | ((p01im.r.hi32) ^(p01im.r.hi32 >> 31));
192 gbMask |= ((p12re.r.hi32) ^(p12re.r.hi32 >> 31)) | ((p12im.r.hi32) ^(p12im.r.hi32 >> 31));
193 gbMask |= ((p11re.r.hi32) ^(p11re.r.hi32 >> 31)) | ((p22re.r.hi32) ^(p22re.r.hi32 >> 31));
194 if (gbMask == 0) {
195 s = p01re.r.hi32 >> 31;
196 gbMask = (p01re.r.lo32 ^ s) - s;
197 s = p01im.r.hi32 >> 31;
198 gbMask |= (p01im.r.lo32 ^ s) - s;
199 s = p12re.r.hi32 >> 31;
200 gbMask |= (p12re.r.lo32 ^ s) - s;
201 s = p12im.r.hi32 >> 31;
202 gbMask |= (p12im.r.lo32 ^ s) - s;
203 s = p11re.r.hi32 >> 31;
204 gbMask |= (p11re.r.lo32 ^ s) - s;
205 s = p22re.r.hi32 >> 31;
206 gbMask |= (p22re.r.lo32 ^ s) - s;
207 z = 32 + CLZ(gbMask);
208 } else {
209 gbMask = FASTABS(p01re.r.hi32) | FASTABS(p01im.r.hi32);
210 gbMask |= FASTABS(p12re.r.hi32) | FASTABS(p12im.r.hi32);
211 gbMask |= FASTABS(p11re.r.hi32) | FASTABS(p22re.r.hi32);
212 z = CLZ(gbMask);
213 }
214
215 n = 64 - z; /* number of non-zero bits in bottom of 64-bit word */
216 if (n <= 30) {
217 loShift = (30 - n);
218 *p01reN = p01re.r.lo32 << loShift;
219 *p01imN = p01im.r.lo32 << loShift;
220 *p12reN = p12re.r.lo32 << loShift;
221 *p12imN = p12im.r.lo32 << loShift;
222 *p11reN = p11re.r.lo32 << loShift;
223 *p22reN = p22re.r.lo32 << loShift;
224 return -(loShift + 2 * FBITS_OUT_QMFA);
225 } else if (n < 32 + 30) {
226 loShift = (n - 30);
227 hiShift = 32 - loShift;
228 *p01reN = (p01re.r.hi32 << hiShift) | (p01re.r.lo32 >> loShift);
229 *p01imN = (p01im.r.hi32 << hiShift) | (p01im.r.lo32 >> loShift);
230 *p12reN = (p12re.r.hi32 << hiShift) | (p12re.r.lo32 >> loShift);
231 *p12imN = (p12im.r.hi32 << hiShift) | (p12im.r.lo32 >> loShift);
232 *p11reN = (p11re.r.hi32 << hiShift) | (p11re.r.lo32 >> loShift);
233 *p22reN = (p22re.r.hi32 << hiShift) | (p22re.r.lo32 >> loShift);
234 return (loShift - 2 * FBITS_OUT_QMFA);
235 } else {
236 hiShift = n - (32 + 30);
237 *p01reN = p01re.r.hi32 >> hiShift;
238 *p01imN = p01im.r.hi32 >> hiShift;
239 *p12reN = p12re.r.hi32 >> hiShift;
240 *p12imN = p12im.r.hi32 >> hiShift;
241 *p11reN = p11re.r.hi32 >> hiShift;
242 *p22reN = p22re.r.hi32 >> hiShift;
243 return (32 - 2 * FBITS_OUT_QMFA - hiShift);
244 }
245
246 return 0;
247}
248
249/**************************************************************************************
250 * Function: CVKernel2
251 *
252 * Description: kernel of covariance matrix calculation for p02
253 *
254 * Inputs: buffer of low-freq samples, starting at time index = 0,
255 * freq index = patch subband
256 *
257 * Outputs: 64-bit accumulators for p02re, p02im stored in accBuf
258 *
259 * Return: none
260 *
261 * Notes: this is carefully written to be efficient on ARM
262 * use the assembly code version in sbrcov.s when building for ARM!
263 **************************************************************************************/
264#if 0// (defined (__arm) && defined (__ARMCC_VERSION)) || (defined (_WIN32) && defined (_WIN32_WCE) && defined (ARM)) || (defined(__GNUC__) && defined(__arm__))
265#ifdef __cplusplus
266extern "C"
267#endif
268void CVKernel2(int *XBuf, int *accBuf);
269#else
270void CVKernel2(int *XBuf, int *accBuf)
271{
272 U64 p02re, p02im;
273 int n, x0re, x0im, x1re, x1im, x2re, x2im;
274
275 p02re.w64 = p02im.w64 = 0;
276
277 x0re = XBuf[0];
278 x0im = XBuf[1];
279 XBuf += (2 * 64);
280 x1re = XBuf[0];
281 x1im = XBuf[1];
282 XBuf += (2 * 64);
283
284 for (n = (NUM_TIME_SLOTS * SAMPLES_PER_SLOT + 6); n != 0; n--) {
285 /* 6 input, 2*2 acc, 1 ptr, 1 loop counter = 12 registers (use same for x0im, -x0im) */
286 x2re = XBuf[0];
287 x2im = XBuf[1];
288
289 p02re.w64 = MADD64(p02re.w64, x2re, x0re);
290 p02re.w64 = MADD64(p02re.w64, x2im, x0im);
291 p02im.w64 = MADD64(p02im.w64, x0re, x2im);
292 p02im.w64 = MADD64(p02im.w64, -x0im, x2re);
293
294 x0re = x1re;
295 x0im = x1im;
296 x1re = x2re;
297 x1im = x2im;
298 XBuf += (2 * 64);
299 }
300
301 accBuf[0] = p02re.r.lo32;
302 accBuf[1] = p02re.r.hi32;
303 accBuf[2] = p02im.r.lo32;
304 accBuf[3] = p02im.r.hi32;
305}
306#endif
307
308/**************************************************************************************
309 * Function: CalcCovariance2
310 *
311 * Description: calculate covariance matrix for p02 (4.6.18.6.2)
312 *
313 * Inputs: buffer of low-freq samples, starting at time index = 0,
314 * freq index = patch subband
315 *
316 * Outputs: complex covariance element p02re, p02im
317 * format = integer (Q0) * 2^N, with scalefactor N >= 0
318 *
319 * Return: scalefactor N
320 *
321 * Notes: outputs are normalized to have 1 GB (sign in at least top 2 bits)
322 **************************************************************************************/
323static int CalcCovariance2(int *XBuf, int *p02reN, int *p02imN)
324{
325 U64 p02re, p02im;
326 int n, z, s, loShift, hiShift, gbMask;
327 int accBuf[2 * 2];
328
329 CVKernel2(XBuf, accBuf);
330 p02re.r.lo32 = accBuf[0];
331 p02re.r.hi32 = accBuf[1];
332 p02im.r.lo32 = accBuf[2];
333 p02im.r.hi32 = accBuf[3];
334
335 /* 64-bit accumulators now have 2*FBITS_OUT_QMFA fraction bits
336 * want to scale them down to integers (32-bit signed, Q0)
337 * with scale factor of 2^n, n >= 0
338 * leave 1 GB for calculating determinant, so take top 30 non-zero bits
339 */
340 gbMask = ((p02re.r.hi32) ^(p02re.r.hi32 >> 31)) | ((p02im.r.hi32) ^(p02im.r.hi32 >> 31));
341 if (gbMask == 0) {
342 s = p02re.r.hi32 >> 31;
343 gbMask = (p02re.r.lo32 ^ s) - s;
344 s = p02im.r.hi32 >> 31;
345 gbMask |= (p02im.r.lo32 ^ s) - s;
346 z = 32 + CLZ(gbMask);
347 } else {
348 gbMask = FASTABS(p02re.r.hi32) | FASTABS(p02im.r.hi32);
349 z = CLZ(gbMask);
350 }
351 n = 64 - z; /* number of non-zero bits in bottom of 64-bit word */
352
353 if (n <= 30) {
354 loShift = (30 - n);
355 *p02reN = p02re.r.lo32 << loShift;
356 *p02imN = p02im.r.lo32 << loShift;
357 return -(loShift + 2 * FBITS_OUT_QMFA);
358 } else if (n < 32 + 30) {
359 loShift = (n - 30);
360 hiShift = 32 - loShift;
361 *p02reN = (p02re.r.hi32 << hiShift) | (p02re.r.lo32 >> loShift);
362 *p02imN = (p02im.r.hi32 << hiShift) | (p02im.r.lo32 >> loShift);
363 return (loShift - 2 * FBITS_OUT_QMFA);
364 } else {
365 hiShift = n - (32 + 30);
366 *p02reN = p02re.r.hi32 >> hiShift;
367 *p02imN = p02im.r.hi32 >> hiShift;
368 return (32 - 2 * FBITS_OUT_QMFA - hiShift);
369 }
370
371 return 0;
372}
373
374/**************************************************************************************
375 * Function: CalcLPCoefs
376 *
377 * Description: calculate linear prediction coefficients for one subband (4.6.18.6.2)
378 *
379 * Inputs: buffer of low-freq samples, starting at time index = 0,
380 * freq index = patch subband
381 * number of guard bits in input sample buffer
382 *
383 * Outputs: complex LP coefficients a0re, a0im, a1re, a1im, format = Q29
384 *
385 * Return: none
386 *
387 * Notes: output coefficients (a0re, a0im, a1re, a1im) clipped to range (-4, 4)
388 * if the comples coefficients have magnitude >= 4.0, they are all
389 * set to 0 (see spec)
390 **************************************************************************************/
391static int CalcLPCoefs(int *XBuf, int *a0re, int *a0im, int *a1re, int *a1im, int gb)
392{
393 int zFlag, n1, n2, nd, d, dInv, tre, tim;
394 int p01re, p01im, p02re, p02im, p12re, p12im, p11re, p22re;
395
396 /* pre-scale to avoid overflow - probably never happens in practice (see QMFA)
397 * max bit growth per accumulator = 38*2 = 76 mul-adds (X * X)
398 * using 64-bit MADD, so if X has n guard bits, X*X has 2n+1 guard bits
399 * gain 1 extra sign bit per multiply, so ensure ceil(log2(76/2) / 2) = 3 guard bits on inputs
400 */
401 if (gb < 3) {
402 nd = 3 - gb;
403 for (n1 = (NUM_TIME_SLOTS * SAMPLES_PER_SLOT + 6 + 2); n1 != 0; n1--) {
404 XBuf[0] >>= nd;
405 XBuf[1] >>= nd;
406 XBuf += (2 * 64);
407 }
408 XBuf -= (2 * 64 * (NUM_TIME_SLOTS * SAMPLES_PER_SLOT + 6 + 2));
409 }
410
411 /* calculate covariance elements */
412 n1 = CalcCovariance1(XBuf, &p01re, &p01im, &p12re, &p12im, &p11re, &p22re);
413 n2 = CalcCovariance2(XBuf, &p02re, &p02im);
414
415 /* normalize everything to larger power of 2 scalefactor, call it n1 */
416 if (n1 < n2) {
417 nd = MIN(n2 - n1, 31);
418 p01re >>= nd;
419 p01im >>= nd;
420 p12re >>= nd;
421 p12im >>= nd;
422 p11re >>= nd;
423 p22re >>= nd;
424 n1 = n2;
425 } else if (n1 > n2) {
426 nd = MIN(n1 - n2, 31);
427 p02re >>= nd;
428 p02im >>= nd;
429 }
430
431 /* calculate determinant of covariance matrix (at least 1 GB in pXX) */
432 d = MULSHIFT32(p12re, p12re) + MULSHIFT32(p12im, p12im);
433 d = MULSHIFT32(d, RELAX_COEF) << 1;
434 d = MULSHIFT32(p11re, p22re) - d;
435 //this assert always failed,no a fatal error when decoder sbr data ????.
436 //ASSERT(d >= 0,ERR_AAC_SBR_BITSTREAM); /* should never be < 0 */
437
438 zFlag = 0;
439 *a0re = *a0im = 0;
440 *a1re = *a1im = 0;
441 if (d > 0) {
442 /* input = Q31 d = Q(-2*n1 - 32 + nd) = Q31 * 2^(31 + 2*n1 + 32 - nd)
443 * inverse = Q29 dInv = Q29 * 2^(-31 - 2*n1 - 32 + nd) = Q(29 + 31 + 2*n1 + 32 - nd)
444 *
445 * numerator has same Q format as d, since it's sum of normalized squares
446 * so num * inverse = Q(-2*n1 - 32) * Q(29 + 31 + 2*n1 + 32 - nd)
447 * = Q(29 + 31 - nd), drop low 32 in MULSHIFT32
448 * = Q(29 + 31 - 32 - nd) = Q(28 - nd)
449 */
450 nd = CLZ(d) - 1;
451 d <<= nd;
452 dInv = InvRNormalized(d);
453
454 /* 1 GB in pXX */
455 tre = MULSHIFT32(p01re, p12re) - MULSHIFT32(p01im, p12im) - MULSHIFT32(p02re, p11re);
456 tre = MULSHIFT32(tre, dInv);
457 tim = MULSHIFT32(p01re, p12im) + MULSHIFT32(p01im, p12re) - MULSHIFT32(p02im, p11re);
458 tim = MULSHIFT32(tim, dInv);
459
460 /* if d is extremely small, just set coefs to 0 (would have poor precision anyway) */
461 if (nd > 28 || (FASTABS(tre) >> (28 - nd)) >= 4 || (FASTABS(tim) >> (28 - nd)) >= 4) {
462 zFlag = 1;
463 } else {
464 *a1re = tre << (FBITS_LPCOEFS - 28 + nd); /* i.e. convert Q(28 - nd) to Q(29) */
465 *a1im = tim << (FBITS_LPCOEFS - 28 + nd);
466 }
467 }
468
469 if (p11re) {
470 /* input = Q31 p11re = Q(-n1 + nd) = Q31 * 2^(31 + n1 - nd)
471 * inverse = Q29 dInv = Q29 * 2^(-31 - n1 + nd) = Q(29 + 31 + n1 - nd)
472 *
473 * numerator is Q(-n1 - 3)
474 * so num * inverse = Q(-n1 - 3) * Q(29 + 31 + n1 - nd)
475 * = Q(29 + 31 - 3 - nd), drop low 32 in MULSHIFT32
476 * = Q(29 + 31 - 3 - 32 - nd) = Q(25 - nd)
477 */
478 nd = CLZ(p11re) - 1; /* assume positive */
479 p11re <<= nd;
480 dInv = InvRNormalized(p11re);
481
482 /* a1re, a1im = Q29, so scaled by (n1 + 3) */
483 tre = (p01re >> 3) + MULSHIFT32(p12re, *a1re) + MULSHIFT32(p12im, *a1im);
484 tre = -MULSHIFT32(tre, dInv);
485 tim = (p01im >> 3) - MULSHIFT32(p12im, *a1re) + MULSHIFT32(p12re, *a1im);
486 tim = -MULSHIFT32(tim, dInv);
487
488 if (nd > 25 || (FASTABS(tre) >> (25 - nd)) >= 4 || (FASTABS(tim) >> (25 - nd)) >= 4) {
489 zFlag = 1;
490 } else {
491 *a0re = tre << (FBITS_LPCOEFS - 25 + nd); /* i.e. convert Q(25 - nd) to Q(29) */
492 *a0im = tim << (FBITS_LPCOEFS - 25 + nd);
493 }
494 }
495
496 /* see 4.6.18.6.2 - if magnitude of a0 or a1 >= 4 then a0 = a1 = 0
497 * i.e. a0re < 4, a0im < 4, a1re < 4, a1im < 4
498 * Q29*Q29 = Q26
499 */
500 if (zFlag || MULSHIFT32(*a0re, *a0re) + MULSHIFT32(*a0im, *a0im) >= MAG_16 || MULSHIFT32(*a1re, *a1re) + MULSHIFT32(*a1im, *a1im) >= MAG_16) {
501 *a0re = *a0im = 0;
502 *a1re = *a1im = 0;
503 }
504
505 /* no need to clip - we never changed the XBuf data, just used it to calculate a0 and a1 */
506 if (gb < 3) {
507 nd = 3 - gb;
508 for (n1 = (NUM_TIME_SLOTS * SAMPLES_PER_SLOT + 6 + 2); n1 != 0; n1--) {
509 XBuf[0] <<= nd;
510 XBuf[1] <<= nd;
511 XBuf += (2 * 64);
512 }
513 }
514 return ERR_AAC_NONE;
515}
516
517/**************************************************************************************
518 * Function: GenerateHighFreq
519 *
520 * Description: generate high frequencies with SBR (4.6.18.6)
521 *
522 * Inputs: initialized PSInfoSBR struct
523 * initialized SBRGrid struct for this channel
524 * initialized SBRFreq struct for this SCE/CPE block
525 * initialized SBRChan struct for this channel
526 * index of current channel (0 for SCE, 0 or 1 for CPE)
527 *
528 * Outputs: new high frequency samples starting at frequency kStart
529 *
530 * Return: none
531 **************************************************************************************/
532int GenerateHighFreq(PSInfoSBR *psi, SBRGrid *sbrGrid, SBRFreq *sbrFreq, SBRChan *sbrChan, int ch)
533{
534 int band, newBW, c, t, gb, gbMask, gbIdx;
535 int currPatch, p, x, k, g, i, iStart, iEnd, bw, bwsq;
536 int a0re, a0im, a1re, a1im;
537 int x1re, x1im, x2re, x2im;
538 int ACCre, ACCim;
539 int *XBufLo, *XBufHi;
540 int err = ERR_AAC_NONE;
541 /* calculate array of chirp factors */
542 for (band = 0; band < sbrFreq->numNoiseFloorBands; band++) {
543 c = sbrChan->chirpFact[band]; /* previous (bwArray') */
544 newBW = newBWTab[sbrChan->invfMode[0][band]][sbrChan->invfMode[1][band]];
545
546 /* weighted average of new and old (can't overflow - total gain = 1.0) */
547 if (newBW < c) {
548 t = MULSHIFT32(newBW, 0x60000000) + MULSHIFT32(0x20000000, c); /* new is smaller: 0.75*new + 0.25*old */
549 } else {
550 t = MULSHIFT32(newBW, 0x74000000) + MULSHIFT32(0x0c000000, c); /* new is larger: 0.90625*new + 0.09375*old */
551 }
552 t <<= 1;
553
554 if (t < 0x02000000) { /* below 0.015625, clip to 0 */
555 t = 0;
556 }
557 if (t > 0x7f800000) { /* clip to 0.99609375 */
558 t = 0x7f800000;
559 }
560
561 /* save curr as prev for next time */
562 sbrChan->chirpFact[band] = t;
563 sbrChan->invfMode[0][band] = sbrChan->invfMode[1][band];
564 }
565
566 iStart = sbrGrid->envTimeBorder[0] + HF_ADJ;
567 iEnd = sbrGrid->envTimeBorder[sbrGrid->numEnv] + HF_ADJ;
568
569 /* generate new high freqs from low freqs, patches, and chirp factors */
570 k = sbrFreq->kStart;
571 g = 0;
572 bw = sbrChan->chirpFact[g];
573 bwsq = MULSHIFT32(bw, bw) << 1;
574
575 gbMask = (sbrChan->gbMask[0] | sbrChan->gbMask[1]); /* older 32 | newer 8 */
576 gb = CLZ(gbMask) - 1;
577
578 for (currPatch = 0; currPatch < sbrFreq->numPatches; currPatch++) {
579 for (x = 0; x < sbrFreq->patchNumSubbands[currPatch]; x++) {
580 /* map k to corresponding noise floor band */
581 if (k >= sbrFreq->freqNoise[g + 1]) {
582 g++;
583 bw = sbrChan->chirpFact[g]; /* Q31 */
584 bwsq = MULSHIFT32(bw, bw) << 1; /* Q31 */
585 }
586
587 p = sbrFreq->patchStartSubband[currPatch] + x; /* low QMF band */
588 XBufHi = psi->XBuf[iStart][k];
589 if (bw) {
590 err = CalcLPCoefs(psi->XBuf[0][p], &a0re, &a0im, &a1re, &a1im, gb);
591 if (err) {
592 return err;
593 }
594 a0re = MULSHIFT32(bw, a0re); /* Q31 * Q29 = Q28 */
595 a0im = MULSHIFT32(bw, a0im);
596 a1re = MULSHIFT32(bwsq, a1re);
597 a1im = MULSHIFT32(bwsq, a1im);
598
599 XBufLo = psi->XBuf[iStart - 2][p];
600
601 x2re = XBufLo[0]; /* RE{XBuf[n-2]} */
602 x2im = XBufLo[1]; /* IM{XBuf[n-2]} */
603 XBufLo += (64 * 2);
604
605 x1re = XBufLo[0]; /* RE{XBuf[n-1]} */
606 x1im = XBufLo[1]; /* IM{XBuf[n-1]} */
607 XBufLo += (64 * 2);
608
609 for (i = iStart; i < iEnd; i++) {
610 /* a0re/im, a1re/im are Q28 with at least 1 GB,
611 * so the summing for AACre/im is fine (1 GB in, plus 1 from MULSHIFT32)
612 */
613 ACCre = MULSHIFT32(x2re, a1re) - MULSHIFT32(x2im, a1im);
614 ACCim = MULSHIFT32(x2re, a1im) + MULSHIFT32(x2im, a1re);
615 x2re = x1re;
616 x2im = x1im;
617
618 ACCre += MULSHIFT32(x1re, a0re) - MULSHIFT32(x1im, a0im);
619 ACCim += MULSHIFT32(x1re, a0im) + MULSHIFT32(x1im, a0re);
620 x1re = XBufLo[0]; /* RE{XBuf[n]} */
621 x1im = XBufLo[1]; /* IM{XBuf[n]} */
622 XBufLo += (64 * 2);
623
624 /* lost 4 fbits when scaling by a0re/im, a1re/im (Q28) */
625 CLIP_2N_SHIFT30(ACCre, 4);
626 ACCre += x1re;
627 CLIP_2N_SHIFT30(ACCim, 4);
628 ACCim += x1im;
629
630 XBufHi[0] = ACCre;
631 XBufHi[1] = ACCim;
632 XBufHi += (64 * 2);
633
634 /* update guard bit masks */
635 gbMask = FASTABS(ACCre);
636 gbMask |= FASTABS(ACCim);
637 gbIdx = (i >> 5) & 0x01; /* 0 if i < 32, 1 if i >= 32 */
638 sbrChan->gbMask[gbIdx] |= gbMask;
639 }
640 } else {
641 XBufLo = (int *)psi->XBuf[iStart][p];
642 for (i = iStart; i < iEnd; i++) {
643 XBufHi[0] = XBufLo[0];
644 XBufHi[1] = XBufLo[1];
645 XBufLo += (64 * 2);
646 XBufHi += (64 * 2);
647 }
648 }
649 k++; /* high QMF band */
650 }
651 }
652 return ERR_AAC_NONE;
653}
654
655
656