summaryrefslogtreecommitdiff
path: root/libavb/avb_util.c (plain)
blob: 43662b4cb8a190757e2e7f0a6c30d01ad09cff9e
1/*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Permission is hereby granted, free of charge, to any person
5 * obtaining a copy of this software and associated documentation
6 * files (the "Software"), to deal in the Software without
7 * restriction, including without limitation the rights to use, copy,
8 * modify, merge, publish, distribute, sublicense, and/or sell copies
9 * of the Software, and to permit persons to whom the Software is
10 * furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25#include "avb_util.h"
26
27#include <stdarg.h>
28
29uint32_t avb_be32toh(uint32_t in) {
30 uint8_t* d = (uint8_t*)&in;
31 uint32_t ret;
32 ret = ((uint32_t)d[0]) << 24;
33 ret |= ((uint32_t)d[1]) << 16;
34 ret |= ((uint32_t)d[2]) << 8;
35 ret |= ((uint32_t)d[3]);
36 return ret;
37}
38
39uint64_t avb_be64toh(uint64_t in) {
40 uint8_t* d = (uint8_t*)&in;
41 uint64_t ret;
42 ret = ((uint64_t)d[0]) << 56;
43 ret |= ((uint64_t)d[1]) << 48;
44 ret |= ((uint64_t)d[2]) << 40;
45 ret |= ((uint64_t)d[3]) << 32;
46 ret |= ((uint64_t)d[4]) << 24;
47 ret |= ((uint64_t)d[5]) << 16;
48 ret |= ((uint64_t)d[6]) << 8;
49 ret |= ((uint64_t)d[7]);
50 return ret;
51}
52
53/* Converts a 32-bit unsigned integer from host to big-endian byte order. */
54uint32_t avb_htobe32(uint32_t in) {
55 union {
56 uint32_t word;
57 uint8_t bytes[4];
58 } ret;
59 ret.bytes[0] = (in >> 24) & 0xff;
60 ret.bytes[1] = (in >> 16) & 0xff;
61 ret.bytes[2] = (in >> 8) & 0xff;
62 ret.bytes[3] = in & 0xff;
63 return ret.word;
64}
65
66/* Converts a 64-bit unsigned integer from host to big-endian byte order. */
67uint64_t avb_htobe64(uint64_t in) {
68 union {
69 uint64_t word;
70 uint8_t bytes[8];
71 } ret;
72 ret.bytes[0] = (in >> 56) & 0xff;
73 ret.bytes[1] = (in >> 48) & 0xff;
74 ret.bytes[2] = (in >> 40) & 0xff;
75 ret.bytes[3] = (in >> 32) & 0xff;
76 ret.bytes[4] = (in >> 24) & 0xff;
77 ret.bytes[5] = (in >> 16) & 0xff;
78 ret.bytes[6] = (in >> 8) & 0xff;
79 ret.bytes[7] = in & 0xff;
80 return ret.word;
81}
82
83int avb_safe_memcmp(const void* s1, const void* s2, size_t n) {
84 const unsigned char* us1 = s1;
85 const unsigned char* us2 = s2;
86 int result = 0;
87
88 if (0 == n) {
89 return 0;
90 }
91
92 /*
93 * Code snippet without data-dependent branch due to Nate Lawson
94 * (nate@root.org) of Root Labs.
95 */
96 while (n--) {
97 result |= *us1++ ^ *us2++;
98 }
99
100 return result != 0;
101}
102
103bool avb_safe_add_to(uint64_t* value, uint64_t value_to_add) {
104 uint64_t original_value;
105
106 avb_assert(value != NULL);
107
108 original_value = *value;
109
110 *value += value_to_add;
111 if (*value < original_value) {
112 avb_error("Overflow when adding values.\n");
113 return false;
114 }
115
116 return true;
117}
118
119bool avb_safe_add(uint64_t* out_result, uint64_t a, uint64_t b) {
120 uint64_t dummy;
121 if (out_result == NULL) {
122 out_result = &dummy;
123 }
124 *out_result = a;
125 return avb_safe_add_to(out_result, b);
126}
127
128bool avb_validate_utf8(const uint8_t* data, size_t num_bytes) {
129 size_t n;
130 unsigned int num_cc;
131
132 for (n = 0, num_cc = 0; n < num_bytes; n++) {
133 uint8_t c = data[n];
134
135 if (num_cc > 0) {
136 if ((c & (0x80 | 0x40)) == 0x80) {
137 /* 10xx xxxx */
138 } else {
139 goto fail;
140 }
141 num_cc--;
142 } else {
143 if (c < 0x80) {
144 num_cc = 0;
145 } else if ((c & (0x80 | 0x40 | 0x20)) == (0x80 | 0x40)) {
146 /* 110x xxxx */
147 num_cc = 1;
148 } else if ((c & (0x80 | 0x40 | 0x20 | 0x10)) == (0x80 | 0x40 | 0x20)) {
149 /* 1110 xxxx */
150 num_cc = 2;
151 } else if ((c & (0x80 | 0x40 | 0x20 | 0x10 | 0x08)) ==
152 (0x80 | 0x40 | 0x20 | 0x10)) {
153 /* 1111 0xxx */
154 num_cc = 3;
155 } else {
156 goto fail;
157 }
158 }
159 }
160
161 if (num_cc != 0) {
162 goto fail;
163 }
164
165 return true;
166
167fail:
168 return false;
169}
170
171bool avb_str_concat(char* buf,
172 size_t buf_size,
173 const char* str1,
174 size_t str1_len,
175 const char* str2,
176 size_t str2_len) {
177 uint64_t combined_len;
178
179 if (!avb_safe_add(&combined_len, str1_len, str2_len)) {
180 avb_error("Overflow when adding string sizes.\n");
181 return false;
182 }
183
184 if (combined_len > buf_size - 1) {
185 avb_error("Insufficient buffer space.\n");
186 return false;
187 }
188
189 avb_memcpy(buf, str1, str1_len);
190 avb_memcpy(buf + str1_len, str2, str2_len);
191 buf[combined_len] = '\0';
192
193 return true;
194}
195
196void* avb_malloc(size_t size) {
197 void* ret = avb_malloc_(size);
198 if (ret == NULL) {
199 avb_error("Failed to allocate memory.\n");
200 return NULL;
201 }
202 return ret;
203}
204
205void* avb_calloc(size_t size) {
206 void* ret = avb_malloc(size);
207 if (ret == NULL) {
208 return NULL;
209 }
210
211 avb_memset(ret, '\0', size);
212 return ret;
213}
214
215char* avb_strdup(const char* str) {
216 size_t len = avb_strlen(str);
217 char* ret = avb_malloc(len + 1);
218 if (ret == NULL) {
219 return NULL;
220 }
221
222 avb_memcpy(ret, str, len);
223 ret[len] = '\0';
224
225 return ret;
226}
227
228const char* avb_strstr(const char* haystack, const char* needle) {
229 size_t n, m;
230
231 /* Look through |haystack| and check if the first character of
232 * |needle| matches. If so, check the rest of |needle|.
233 */
234 for (n = 0; haystack[n] != '\0'; n++) {
235 if (haystack[n] != needle[0]) {
236 continue;
237 }
238
239 for (m = 1;; m++) {
240 if (needle[m] == '\0') {
241 return haystack + n;
242 }
243
244 if (haystack[n + m] != needle[m]) {
245 break;
246 }
247 }
248 }
249
250 return NULL;
251}
252
253const char* avb_strv_find_str(const char* const* strings,
254 const char* str,
255 size_t str_size) {
256 size_t n;
257 for (n = 0; strings[n] != NULL; n++) {
258 if (avb_strlen(strings[n]) == str_size &&
259 avb_memcmp(strings[n], str, str_size) == 0) {
260 return strings[n];
261 }
262 }
263 return NULL;
264}
265
266char* avb_replace(const char* str, const char* search, const char* replace) {
267 char* ret = NULL;
268 size_t ret_len = 0;
269 size_t search_len, replace_len;
270 const char* str_after_last_replace;
271
272 search_len = avb_strlen(search);
273 replace_len = avb_strlen(replace);
274
275 str_after_last_replace = str;
276 while (*str != '\0') {
277 const char* s;
278 size_t num_before;
279 size_t num_new;
280
281 s = avb_strstr(str, search);
282 if (s == NULL) {
283 break;
284 }
285
286 num_before = s - str;
287
288 if (ret == NULL) {
289 num_new = num_before + replace_len + 1;
290 ret = avb_malloc(num_new);
291 if (ret == NULL) {
292 goto out;
293 }
294 avb_memcpy(ret, str, num_before);
295 avb_memcpy(ret + num_before, replace, replace_len);
296 ret[num_new - 1] = '\0';
297 ret_len = num_new - 1;
298 } else {
299 char* new_str;
300 num_new = ret_len + num_before + replace_len + 1;
301 new_str = avb_malloc(num_new);
302 if (ret == NULL) {
303 goto out;
304 }
305 avb_memcpy(new_str, ret, ret_len);
306 avb_memcpy(new_str + ret_len, str, num_before);
307 avb_memcpy(new_str + ret_len + num_before, replace, replace_len);
308 new_str[num_new - 1] = '\0';
309 avb_free(ret);
310 ret = new_str;
311 ret_len = num_new - 1;
312 }
313
314 str = s + search_len;
315 str_after_last_replace = str;
316 }
317
318 if (ret == NULL) {
319 ret = avb_strdup(str_after_last_replace);
320 if (ret == NULL) {
321 goto out;
322 }
323 } else {
324 size_t num_remaining = avb_strlen(str_after_last_replace);
325 size_t num_new = ret_len + num_remaining + 1;
326 char* new_str = avb_malloc(num_new);
327 if (ret == NULL) {
328 goto out;
329 }
330 avb_memcpy(new_str, ret, ret_len);
331 avb_memcpy(new_str + ret_len, str_after_last_replace, num_remaining);
332 new_str[num_new - 1] = '\0';
333 avb_free(ret);
334 ret = new_str;
335 ret_len = num_new - 1;
336 }
337
338out:
339 return ret;
340}
341
342/* We only support a limited amount of strings in avb_strdupv(). */
343#define AVB_STRDUPV_MAX_NUM_STRINGS 32
344
345char* avb_strdupv(const char* str, ...) {
346 va_list ap;
347 const char* strings[AVB_STRDUPV_MAX_NUM_STRINGS];
348 size_t lengths[AVB_STRDUPV_MAX_NUM_STRINGS];
349 size_t num_strings, n;
350 uint64_t total_length;
351 char *ret = NULL, *dest;
352
353 num_strings = 0;
354 total_length = 0;
355 va_start(ap, str);
356 do {
357 size_t str_len = avb_strlen(str);
358 strings[num_strings] = str;
359 lengths[num_strings] = str_len;
360 if (!avb_safe_add_to(&total_length, str_len)) {
361 avb_fatal("Overflow while determining total length.\n");
362 break;
363 }
364 num_strings++;
365 if (num_strings == AVB_STRDUPV_MAX_NUM_STRINGS) {
366 avb_fatal("Too many strings passed.\n");
367 break;
368 }
369 str = va_arg(ap, const char*);
370 } while (str != NULL);
371 va_end(ap);
372
373 ret = avb_malloc(total_length + 1);
374 if (ret == NULL) {
375 goto out;
376 }
377
378 dest = ret;
379 for (n = 0; n < num_strings; n++) {
380 avb_memcpy(dest, strings[n], lengths[n]);
381 dest += lengths[n];
382 }
383 *dest = '\0';
384 avb_assert(dest == ret + total_length);
385
386out:
387 return ret;
388}
389
390const char* avb_basename(const char* str) {
391 int64_t n;
392 size_t len;
393
394 len = avb_strlen(str);
395 if (len >= 2) {
396 for (n = len - 2; n >= 0; n--) {
397 if (str[n] == '/') {
398 return str + n + 1;
399 }
400 }
401 }
402 return str;
403}
404